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Abstract Particle swarm optimization (PSO) is a
population-based stochastic optimization algorithm moti-
vated by intelligent collective behavior of some animals such
as flocks of birds or schools of fish. Since presented in 1995, it
has experienced a multitude of enhancements. As researchers
have learned about the technique, they derived new versions
aiming to different demands, developed new applications in a
host of areas, published theoretical studies of the effects of the
various parameters and proposed many variants of the algo-
rithm. This paper introduces its origin and background and
carries out the theory analysis of the PSO. Then, we analyze
its present situation of research and application in algorithm
structure, parameter selection, topology structure, discrete
PSO algorithm and parallel PSO algorithm, multi-objective
optimization PSO and its engineering applications. Finally,
the existing problems are analyzed and future research direc-
tions are presented.
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1 Introduction

Particle swarm optimization (PSO) algorithm is a stochastic
optimization technique based on swarm, which was proposed
by Eberhart and Kennedy (1995) and Kennedy and Eberhart
(1995). PSO algorithm simulates animal’s social behavior,
including insects, herds, birds and fishes. These swarms con-
form a cooperative way to find food, and each member in the
swarms keeps changing the search pattern according to the
learning experiences of its own and other members.

Main design idea of the PSO algorithm is closely related
to two researches: One is evolutionary algorithm, just like
evolutionary algorithm; PSO also uses a swarm mode which
makes it to simultaneously search large region in the solu-
tion space of the optimized objective function. The other is
artificial life, namely it studies the artificial systems with life
characteristics.

In studying the behavior of social animals with the artifi-
cial life theory, for how to construct the swarm artificial life
systems with cooperative behavior by computer, Millonas
proposed five basic principles (van den Bergh 2001):

(1) Proximity: the swarm should be able to carry out simple
space and time computations.

(2) Quality: the swarm should be able to sense the quality
change in the environment and response it.

(3) Diverse response: the swarm should not limit its way to
get the resources in a narrow scope.

(4) Stability: the swarm should not change its behavior mode
with every environmental change.
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(5) Adaptability: the swarm should change its behavior mode
when this change is worthy.

Note that the fourth principle and the fifth one are the opposite
sides of the same coin. These five principles include the main
characteristics of the artificial life systems, and they have
become guiding principles to establish the swarm artificial
life system. In PSO, particles can update their positions and
velocities according to the environment change, namely it
meets the requirements of proximity and quality. In addition,
the swarm in PSO does not limit its movement but contin-
uously search the optimal solution in the possible solution
space. Particles in PSO can keep their stable movement in the
search space, while change their movement mode to adapt
the change in the environment. So particle swarm systems
meet the above five principles.

2 Origin and background

In order to illustrate production background and development
of the PSO algorithm, here we first introduce the early simple
model, namely Boid (Bird-oid) model (Reynolds 1987). This
model is designed to simulate the behavior of birds, and it is
also a direct source of the PSO algorithm.

The simplest model can be depicted as follows. Each indi-
vidual of the birds is represented by a point in the Cartesian
coordinate system, randomly assigned with initial velocity
and position. Then run the program in accordance with “the
nearest proximity velocity match rule,” so that one individual
has the same speed as its nearest neighbor. With the iteration
going on in the same way, all the points will have the same
velocity quickly. As this model is too simple and far away
from the real cases, a random variable is added to the speed
item. That is to say, at each iteration, aside from meeting “the
nearest proximity velocity match,” each speed will be added
with a random variable, which makes the total simulation to
approach the real case.

Heppner designed a “cornfield model” to simulate the for-
aging behavior of a flock of birds (Clerc and Kennedy 2002).
Assume that there was a “cornfield model” on the plane, i.e.,
food’s location, and birds randomly dispersed on the plane at
the beginning. In order to find the location of the food, they
moved according to the following rules.

First, we assume that position coordinate of the cornfield
is (x0,Yy0), and position coordinate and velocity coordinate of
individual bird are (x,y) and (vy,vy), respectively. Distance
between the current position and cornfield is used to measure
the performance of the current position and speed. The further
the distance to the “cornfield”, the better the performance, on
the contrary, the performance is worse. Assume that each bird
has the memory ability and can memorize the best position
it ever reached, denoted as pbest. a is velocity adjusting
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constant, rand denotes a random number in [0, 1], change in
the velocity item can be set according to the following rules:

if x > pbestx, vy, = vy — rand x a, otherwise, v, =
vy +rand X a.

if y > pbesty, vy = vy — rand x a, otherwise, vy =
vy +rand x a.

Then assume that the swarm can communicate in some
way, and each individual is able to know and memorize the
best location (marked as gbest) of the total swarm so far.
And b is the velocity adjusting constant; then, after the veloc-
ity item was adjusted according to above rules, it must also
update according to the following rules:

if x > gbestx, vy = vy — rand x b, otherwise, v, =
Uy + rand x b.

if y > gbesty, vy = vy —rand x b, otherwise, v, =
vy +rand x b.

Computer simulation results show that when a/b is rel-
atively large, all individuals will gather to the “cornfield”
quickly; on the contrary, if a/b is small, the particles will
gather around the “cornfield” unsteadily and slowly. Through
this simple simulation, it can be found that the swarm can find
the optimal point quickly. Inspired by this model, Kennedy
and Eberhart devised an evolutionary optimization algo-
rithm, after a sea of trials and errors, they finally fixed the
basic algorithm as follows:

Vy = Uy + 2 xrand x (pbestx — x)
+ 2 xrand % (ghestx — x)
X =X+ vy (D

They abstracted each individual to be a particle without mass
and volume, with only velocity and position, so they called
this algorithm “particle swarm optimization algorithm.”

On this basis, PSO algorithm can be summarized as fol-
lows: PSO algorithm is a kind of searching process based
on swarm, in which each individual is called a particle
defined as a potential solution of the optimized problem in
D-dimensional search space, and it can memorize the opti-
mal position of the swarm and that of its own, as well as the
velocity. In each generation, the particles information is com-
bined together to adjust the velocity of each dimension, which
is used to compute the new position of the particle. Particles
change their states constantly in the multi-dimensional search
space, until they reach balance or optimal state, or beyond
the calculating limits. Unique connection among different
dimensions of the problem space is introduced via the objec-
tive functions. Many empirical evidences have showed that
this algorithm is an effective optimization tool. Flowchart of
the PSO algorithm is shown in Fig. 1.

The following gives a relatively complete presentation
of the PSO algorithm. In the continuous space coordi-
nate system, mathematically, the PSO can be described
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Fig. 1 Flowchart of the particle swarm optimization algorithm

as follows. Assume that swarm size is N, each parti-
cle’s position vector in D-dimensional space is X; =
(xi1, xi2, - -+ , Xid, - -+ , Xip), velocity vector is V; = (vj1,
Vi2, -+, Vid, - , Vip), individual’s optimal position (i.e.,
the optimal position that the particle has experienced)
is P, = (pi1, pi2,*+* » Pid> -+ » Pip), swarm’s optimal
position (i.e., the optimal position that any individual in
this swarm has experienced) is represented as P, =
(Pg1s Pg2s -+ » Pgds -+ » Pgp). Without loss of generality,
taking the minimizing problem as the example, in the initial
version of the PSO algorithm, update formula of the individ-
ual’s optimal position is:

d .
¢ f f(X; p;
o= {x,m,l F i) < [(Pyp) .

pld ;» Otherwise

The swarm’s optimal position is that of all the individual’s
optimal positions. Update formula of velocity and position
is denoted as follows, respectively:

d d d d
Vi =V, terx rand % (pi; — xi’t)
d d
+ cp * rand % (Pgr — Xip) 3)

d _.d d
Xitpl = X TV g )

Since the initial version of PSO was not very effective
in optimization problem, a modified PSO algorithm (Shi
and Eberhart 1998) appeared soon after the initial algorithm
was proposed. Inertia weight was introduced to the velocity
update formula, and the new velocity update formula became:

d d d d
Vi) = @V, +Cp % rand * (Pi,z — xi,t)

+ ¢y x rand * (pg’t — xft) (@)

Although this modified algorithm has almost the same
complexity as the initial version, it has greatly improved
the algorithm performance; therefore, it has achieved exten-
sive applications. Generally, the modified algorithm is called
canonical PSO algorithm, and the initial version is called
original PSO algorithm.

By analyzing the convergence behavior of the PSO algo-
rithm, Clerc and Kennedy (2002) introduced a variant of the
PSO algorithm with constriction factor x which ensured the
convergence and improved the convergence rate. Then, the
velocity update formula became:

fo_l = X(vl-‘{t + ¢1 x rand * (pf{t — xl-‘ft)
+ ¢o * rand * (Pg,z — xf{t)) (6)

Obviously, there is no essential difference between the
iteration formulas (5) and (6). If appropriate parameters are
selected, the two formulas are identical.

PSO algorithm has two versions, called global version
and local version, respectively. In the global version, two
extremes that the particles track are the optimal position
pbest of its own and the optimal position gbest of the swarm.
Accordingly, in local version, aside from tracking its own
optimal position pbest, the particle does not track the swarm
optimal position gbest, instead it tracks all particles’ opti-
mal position nbest in its topology neighborhood. For the
local version, the velocity update equation (5) became:

d d d d
Vi) =@V, +Cp % rand * (Pi,z — xi,t)

+ ¢y x rand * (pfj’t — xffl) @)

where p; was the optimal position in the local neighborhood.

In each generation, iteration procedure of any particle is
illustrated in Fig. 2. Analyzing the velocity update formula
from a sociological perspective, we can see that in this update
formula, the first part is the influence of the particle’s previ-
ous velocity. It means that the particle has confidence on its
current moving state and conducts inertial moving according
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Fig. 2 Iteration scheme of the particles

to its own velocity, so parameter o is called inertia weight.
The second part depends on the distance between the par-
ticle’s current position and its own optimal position, called
the “cognitive” item. It means particle’s own thinking, i.e.,
particle’s move resulting from its own experience. Therefore,
parameter ¢ is called cognitive learning factor (also called
cognitive acceleration factor). The third part relies on the dis-
tance between the particle’s current position and the global
(or local) optimal position in the swarm, called “social” fac-
tor. It means the information share and cooperation among
the particles, namely particle’s moving coming from other
particles’ experience in the swarm. It simulates the move of
good particle through the cognition, so the parameter ¢ is
called social learning factor (also called social acceleration
factor).

Due to its intuitive background, simple and easy to imple-
ment, as well as the wide adaptability to different kinds of
functions, since the PSO algorithm has been proposed, it has
obtained great attention. In the past twenty years, both the
theory and application of the PSO algorithm have achieved
great progress. Researchers have had a preliminary under-
standing of the principle, and its application has been realized
in different domains.

PSO is a stochastic and parallel optimization algorithm.
Its advantages can be summarized as follows: It does not
require the optimized functions differential, derivative and
continuous; its convergence rate is fast; and the algorithm is
simple and easy to execute through programming. Unfortu-
nately, it also has some disadvantages (Wang 2012): (1) For
the functions with multiple local extremes, it probably falls
into the local extreme and cannot get correct result. Two rea-
sons result in this phenomenon: One is the characteristics of
the optimized functions and the other is the particles’ diver-
sity disappearing quickly, causing premature convergence.
These two factors are usually inextricably intertwined. (2)
Due to lack of cooperation of good search methods, PSO
algorithm cannot get satisfactory results. The reason is that
the PSO algorithm does not sufficiently use the information
obtained in the calculation procedure. During each iteration,
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instead it only uses the information of the swarm optima and
individual optima. (3) Though PSO algorithm provides the
possibility of global search, it cannot guarantee convergence
to the global optima. (4) PSO algorithm is a meta-heuristic
bionic optimization algorithm, and there is no rigorous the-
ory foundation so far. It is designed only through simplifying
and simulating the search phenomenon of some swarms, but
it neither explains why this algorithm is effective from the
principle, nor specifies its applicable range. Therefore, PSO
algorithm is generally suitable for a class of optimization
problems which are high dimensional and need not to get
very accurate solutions.

Now there are many different kinds of researches about
the PSO algorithm, and they can be divided into the following
eight categories: (1) Theoretically analyze the PSO algorithm
and try to understand its working mechanism. (2) Change its
structure and try to get better performance. (3) Study the
influence of various parameters configuration on PSO algo-
rithm. (4) Study the influence of various topology structures
on PSO algorithm. (5) Study the parallel PSO algorithm.
(6) Study the discrete PSO algorithm. (7) Study the multi-
objective optimization with the PSO algorithm. (8) Apply the
PSO algorithm to various engineering fields. The remainder
of this paper will begin to summarize the current researches
on PSO algorithm from the above eight categories. Because
the related studies are too much, we cannot do all well, so
we just pick up some representative ones to review.

3 Theoretical analysis

Nowadays, theory study of the PSO algorithm mainly focuses
on the principle of the PSO algorithm, i.e., how the parti-
cles to interact with each other, why it is effective for many
optimization problems, but not obvious for other problems.
Specifically, researches on this problem can be divided into
three aspects: One is the moving trajectory of a single parti-
cle; another is the convergence problem; and the third is the
evolution and distribution of the total particle system with
the time.

The first analysis of simplified particles behavior was car-
ried out by Kennedy (1998), who gave different particle
trajectories under a series of design choices through simulat-
ing. The first theoretical analysis of simplified PSO algorithm
was proposed by Ozcan and Mohan (1998) who indicated
that in a simplified one-dimensional PSO system, a parti-
cle moved along a path defined by a sinusoidal wave, and
determined its amplitude and frequency randomly. However,
their analysis was merely limited to the simple PSO model
without the inertia weight, and assumed that P;; and Pgy
kept unchanged. Actually, P;4 and Pgq changed frequently,
so the particle’ trajectory was a sine wave composed of many
different amplitudes and frequencies. Therefore, the total tra-
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jectory looked still disorder. This reduced the effect of their
conclusions significantly.

The first formal analysis of the PSO algorithm’s stability
was carried out by Clerc and Kennedy (2002), but this anal-
ysis method treated the random coefficients as constants, so
it simplified the standard stochastic PSO to a deterministic
dynamic system. The resulting system was a second-order
linear dynamic system whose stability depended on the sys-
tem poles or the eigenroots of state matrix. van den Bergh
(2001) did a similar analysis of the deterministic version of
PSO algorithm and determined the regions where the stabil-
ity could be guaranteed in the parameter space. Convergence
and parameters selection were also addressed in the literature
(Trelea 2003; Yasuda et al. 2003). But the authors admitted
that they did not take the stochastic feature of the PSO algo-
rithm into account, thus their results had certain limitations.
A similar analysis about the continuous version of PSO algo-
rithm has also been done in Emara and Fattah (2004).

As ithas already been proposed, the PSO algorithm adopts
constant w and uniform distribution random numbers ¢ and
cy. How the first- and second-order stability regions of the
particle trajectories will be changed if @ also uses a ran-
dom variable, and/or ¢ and ¢> conform to other statistical
distributions instead of the uniform distribution? First-order
stability analysis (Clerc and Kennedy 2002; Trelea 2003;
Bergh and Engelbrecht 2006) aimed to test that stability of
the mean trajectories relied on the parameters (w, ¢), where
¢ = (ag +a;)/2, and ¢ and ¢, were uniform distribution
in the intervals [0, ag] and [0, a;], respectively. Stochastic
stability analysis contained higher-order moments and had
been proved to be very useful for understanding the particle
swarm dynamics and clarifying the PSO convergence prop-
erties (Fernandez-Martinez and Garcia-Gonzalo 2011; Poli
2009).

Bare Bones PSO (BBPSO) was proposed by Kennedy
(2003) as a model of PSO dynamics. Its particle’s veloc-
ity update conforms to a Gaussian distribution. Although
Kennedy’s original formulation is not competitive to stan-
dard PSO, adding a component-wise jumping mechanism,
and a tuning of the standard deviation, can produce a compa-
rable optimization algorithm. Hence, al Rifaie and Blackwell
(2012) proposed a Bare Bones with jumps algorithm (BBJ),
with an altered search spread component and a smaller jump
probability. It used the difference between the neighbor-
hood best with the current position rather than the difference
between either the left and right neighbors’ bests (in local
neighborhood) or the particle’s personal best and the neigh-
borhood best (in global neighborhood). Three performance
measures (i.e., accuracy, efficiency and reliability) were
utilized to compare the BBJ with other standard PSO of
Clerc—Kennedy and other variations of BBJ. Using these
measures, it was shown that in terms of accuracy, when
benchmarks with successful convergence were considered,

the accuracy of BBJ compared to other algorithms was sig-
nificantly better. Additionally, BBJ was empirically shown
to be both the most efficient and the most reliable algorithm
in both local and global neighborhoods.

Meanwhile, social variant of PSO (¢; = 0) and fully
informed particle swarm (Mendes et al. 2004) were also stud-
ied by Poli (2008). Garcia-Gonza and Fernandez-Martinez
(2014) presented the convergence and stochastic stability
analysis of a series of PSO variants, and their research was
different from the classical PSO in the statistical distribu-
tion of the three PSO parameters: inertia weight, local and
global acceleration factors. They gave an analytical presenta-
tion for the upper limit of the second-order stability areas (the
so called USL curves) of the particle trajectories, which is
available for most of the PSO algorithms. Numerical exper-
iments showed that the best algorithm performance could
be obtained through tuning the PSO parameters close to the
USL curve.

Kadirkamanathan et al. (2006) analyzed the stability of
particle dynamics by using the Lyapunov stability analy-
sis and the concept of passive system. This analysis did not
assume that all parameters were non-random, and obtained
the sufficient conditions of stability. It was based on the ran-
dom particle dynamics that represented particle dynamics
as a nonlinear feedback control system. Such system had a
deterministic linear part and a nonlinear one and/or a time-
varying gain in the feedback loop. Though it considered the
influence of random components, its stability analysis was
carried out aiming at the optimal position; therefore, the con-
clusion cannot be applied to non-optimal particles directly.

Even the original PSO algorithm could converge, it could
only converge to the optima that the swarm could search, and
could not guarantee that the achieved solution was the best,
even it could not guarantee that it was the local optima. van
den Bergh and Engelbrecht (2002) proposed a PSO algorithm
which could ensure the algorithm convergence. It applied
a new update equation for the global optimal particle and
made it to generate a random search near the global opti-
mal position, while other particles updated by their original
equations. This algorithm could ensure the PSO algorithm
to convergence to the local optimal solution with the cost of
faster convergence rate, but its performance was inferior to
the canonical PSO algorithm in multi-modal problems.

Lack of population diversity was regarded early (Kennedy
and Eberhart 1995) as the important influence factor for pre-
mature convergence of the swarm toward a local optimum,;
hence, enhancing diversity was considered to be an useful
approach to escape from the local optima (Kennedy and Eber-
hart 1995; Zhan et al. 2009). Enhancing the swarm diversity,
however, is harmful to fast convergence toward the optimal
solution. This phenomenon is well known because it was
proved by Wolpert and Macready (1997) that an algorithm
cannot surpass all the others on each kind of problem. Hence,
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research trials to promote the performance of an optimization
algorithm should not be intended to search for a general func-
tion optimizer (Mendes et al. 2004; Wolpert and Macready
1997), but rather search for a general problem-solver which
can perform well on many well-balanced practical bench-
mark problems (Garcia-Martinez and Rodriguez 2012).

Avoiding premature convergence on a local optimum solu-
tion, meanwhile keeping the fast convergence feature of the
original PSO formulation, is an important reason why a few
PSO variants have been put forward (Valle et al. 2008). These
methods include fine-tuning the PSO parameters to manip-
ulate the particle velocity updating (Nickabadi et al. 2011),
various PSO local formulation to consider the best solution
within a local topological particle neighborhood instead of
the entire swarm (Kennedy and Mendes 2002, 2003; Mendes
et al. 2004) and integrating the PSO with other heuristic
algorithms (Chen et al. 2013). For example, comprehensive
learning PSO (Liang et al. 2006) applied a new learning
scheme to increase the swarm diversity in order to avoid
the premature convergence in solving multi-modal problems.
ALC-PSO (Chen et al. 2013) endowed the swarm leader an
increasing age and a lifespan to escape from the local optima
and thus avoid the premature convergence. Self-regulating
PSO (Tanweer et al. 2016) adopted a self-regulating inertia
weight and self-perception on the global search direction to
get faster convergence and better results.

For the spherically symmetric local neighborhood func-
tions, Blackwell (2005) has theoretically analyzed and exper-
imentally verified the speed features with diversity loss in
PSO algorithm. Kennedy (2005) has systematically studied
how the speed influence the PSO algorithm, and it was help-
ful to understand the contribution of the speed to the PSO
performance. Clerc (2006) studied the iteration process of
the PSO at the stagnant stage, as well as the roles of each
random coefficient in detail; finally, he gave the probability
density functions of each random coefficient.

4 Algorithm structure

There are a sea of enhancement approaches for the PSO
algorithm structure, which can be classified into 8 main sub-
sections as follows.

4.1 Adopting multi-sub-populations

In 2001, Suganthan (1999) introduced the concept of sub-
population of the genetic algorithm and brought a reproduc-
tion operator in the PSO algorithm. Dynamic multi-swarm
PSO was proposed by Liang and Suganthan (2005) where
the swarm was divided into several sub-swarm, and these
sub-swarms were regrouped frequently to share information
among them. Peng and Chen (2015) presented a symbiotic
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particle swarm optimization (SPSO) algorithm to optimize
the neural fuzzy networks. The presented SPSO algorithm
used the multi-swarm strategy which used each particle to
represent a single fuzzy rule and each particle in each swarm
evolved separately to avoid falling into a local optima. Chang
(2015) proposed a modified PSO algorithm to solve multi-
modal function optimization problems. It divided the original
single swarm into several sub-swarms based on the order of
particles. The best particle in each sub-swarm was recorded
and then applied into the velocity updating formula to replace
the original global best particle in the whole population. To
update all particles in each sub-swarm, the enhanced velocity
formula was adopted.

In addition, Tanweer et al. (2016) presented a new
dynamic mentoring and self-regulation-based particle swarm
optimization (DMeSR-PSO) algorithm which divided the
particles into mentor, mentee and independent learner groups
according to their fitness differences and Euclidian dis-
tances with respect to the best particle. Performance of
DMeSR-PSO had been extensively evaluated on 12 bench-
mark functions (unimodal and multi-modal) from CEC2005,
more complex shifted and rotated CEC2013 benchmark
functions and 8 real-world optimization problems from
CEC2011. The performance of DMeSR-PSO on CEC2005
benchmark functions had been compared with six PSO vari-
ants and five meta-heuristic algorithms. The results clearly
highlighted that DMeSR-PSO provided the most consistent
performance on the selected benchmark problems. The non-
parametric Friedman test followed by the pair-wise post hoc
Bonferroni—Dunn test provided the evidence that DMeSR-
PSO was statistically better than the selected algorithms with
95% confidence level. Further, the performance had also
been statistically compared with seven PSO variants on the
CEC2013 benchmark functions where the performance of
DMeSR-PSO was significantly better than five algorithms
with a confidence level of 95%. The performance of DMeSR-
PSO on the CEC2011 real-world optimization problems was
better than the winner and runner-up of the competition,
indicating that DMeSR-PSO was an effective optimization
algorithm for real-world applications. Based on these results,
the DMeSR-PSO would be recommended to deal with the
CEC test sets.

For the high-dimensional optimization problem, PSO
algorithm requires too many particles which results in high
computational complexity; thus, it is difficult to achieve a sat-
isfactory solution. So recently, cooperative particle swarm
algorithm (CPSO-H) (Bergh and Engelbrecht 2004) was
proposed which split the input vector into multiple sub-
vector, and for each sub-vector, a particle swarm was used
to optimize it. Although the CPSO-H algorithm used one-
dimensional swarm to search for each dimension, respec-
tively, after the search results were integrated by a global
swarm, its performance on multi-modal problems had been
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greatly improved. Further, Niu et al. (2005) introduced
master—slave sub-population mode into the PSO algorithm
and put forward a multi-population cooperative PSO algo-
rithm. Similarly, Seo et al. (2006) proposed a multi-grouped
PSO which used N groups of particles to search N peaks
of the multi-modal problems simultaneously. Selleri et al.
(2006) used multiple independent sub-populations and added
some new items to the particle velocity update formula which
made the particles to move toward the historical optimal posi-
tion of the sub-population, or away from the gravity center
of other sub-populations.

4.2 Improving the selection strategy for particle
learning object

Al-kazemi and Mohan (2002) proposed a multi-phase PSO
algorithm in which particles were grouped according to
the temporary search targets in different phases, and these
temporary targets allowed the particles to move toward or
away from its own or the global best position. Ting et al.
(2003) modified every particle’s pBest, and every dimen-
sion learned from randomly determined other dimensions.
After that, if the new p Best was better, then it was used to
replace the original p Best.

In PSO algorithm, Yang and Wang (2006) introduced the
roulette selection technique to determine the g Best, so that
in the early stage of evolution, all individuals had chance
to lead the search direction to avoid premature. Zhan et al.
(2011) introduced an orthogonal learning PSO in which an
orthogonal learning scheme was used to get efficient exem-
plars. Abdelbar et al. (2005) proposed a fuzzy measure, and
several particles with the best fitness values in each neighbor
could affect other particles.

Contrary to the original PSO algorithm, there is a class
method which makes the particles to move away from the
worst position instead of toward the best position. Yang and
Simon (2005) proposed to record the worst position rather
than the best position in the algorithm, and all particles
moved away from these worst positions. Similarly, Leon-
titsis et al. (2006) introduced a new concept—repel operator
which used the information of individual’s optimal position
and swarm’s optimal position. Meanwhile, it also recorded
the current individual’s worst positions and swarm’s worst
positions and used them to repel the particles toward the
best position, so that the swarm could reach the best position
quickly.

4.3 Modifying particle’s update formula

Many of these methods use chaotic sequences to modify
the particle positions, in which particles search for solu-
tions extensively due to the chaoticity. It is known that these
PSO variants have a more diverse search than the standard

PSO (Tatsumi et al. 2013). Coelho and Lee (2008) random-
ized the cognitive and social behaviors of the swarm with
chaotic sequences and Gaussian distribution, respectively.
Tatsumi et al. (2015) emphasized the chaotic PSO to exploit
a virtual quartic objective function according to the personal
and global optima. This model adopted a perturbation-based
chaotic system derived from a quartic tentative objective
function through applying the steepest descent method with
a perturbation. The function was determined for each parti-
cle, and it had two global minima at the pbest of the particle
and the gbest.

In addition to these methods, in the Bare bones PSO algo-
rithm (Kennedy 2003), particle positions were updated by
using a Gaussian distribution. Since many foragers and
wandering animals followed a Levy distribution of steps,
this distribution was useful for optimization algorithms. So
Richer and Blackwell (2006) replaced the particle dynamics
within PSO with random sampling from a Levy distribu-
tion. A range of benchmark problems were utilized to test its
performance; the resulting Levy PSO performed as well, or
better, than a standard PSO or equivalent Gaussian models.
Moreover, in speed update equation, Hendtlass (2003) added
memory ability to each particle and He et al. (2004) intro-
duced passive congregation mechanism. Zeng et al. (2005)
introduced acceleration term into the PSO algorithm which
changed the PSO algorithm from a second-order stochastic
system into a third-order stochastic one. In order to improve
the global search ability of the PSO algorithm, Ho et al.
(2006) proposed anew speed and position update formula and
introduced the variable “age.” Moreover, Ngoa et al. (2016)
proposed an improved PSO to enhance the performances of
standard PSO by using a new movement strategy for each
particle. Particles in the PSO fly to their own predefined tar-
get instead of the best particles (i.e., personal and global
bests). Performance of proposed improved PSO was illus-
trated by applying it to 15 unconstrained (i.e., unimodal and
multi-modal) benchmarks and 15 computationally expensive
unconstrained benchmarks.

4.4 Modifying velocity update strategy

Although PSO performance has improved over the past
decades, how to select suitable velocity updating strategy and
parameters remains an important research domain. Ardiz-
zon et al. (2015) proposed a novel example of the original
particle swarm concept, with two types of agents in the
swarm, the “explorers” and the “settlers”, that could dynam-
ically exchange their role during the search procedure. This
approach can dynamically update the particle velocities at
each time step according to the current distance of each
particle from the best position found so far by the swarm.
With good exploration capabilities, uniform distribution ran-
dom numbers in the velocity updating strategy may also
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affect the particle moving. Thus, Fan and Yan (2014) put
forward a self-adaptive PSO with multiple velocity strategies
(SAPSO-MVS) to enhance PSO performance. SAPSO-MVS
could generate self-adaptive control parameters in the total
evolution procedure and adopted a novel velocity updating
scheme to improve the balance between the exploration and
exploitation capabilities of the PSO algorithm and avoided
to tune the PSO parameters manually. Roy and Ghoshal
(2008) proposed Crazy PSO in which particle velocity was
randomized within predefined limits. Its aim was to ran-
domize the velocity of some particles, named as “crazy
particles” through using a predefined probability of craziness
to keep the diversity for global search and better conver-
gence. Unfortunately, values of the predefined probability of
craziness could only be obtained after a few experiments.
Peram et al. (2003) presented a fitness—distance ratio-based
PSO (FDR-PSO), in which a new velocity updating equa-
tion was used to regenerate the velocity of each particle.
Li et al. (2012) presented a self-learning PSO in which
a velocity update scheme could be automatically modified
in the evolution procedure. Lu et al. (2015b) proposed a
mode-dependent velocity updating equation with Marko-
vian switching parameters in switching PSO to overcome
the contradiction between the local search and the global
search, which made it easy to jump out of the local mini-
mum.

Liu et al. (2004) argued that too frequent velocity update
would weaken the particles’ local exploit ability and decrease
the convergence, so he proposed a relaxation velocity update
strategy, which updated the speed only when the original
speed could not improve the particle’s fitness value further.
Experimental results proved that this strategy could reduce
the computation load greatly and accelerate the convergence.
Diosan and Oltean (2006) used genetic algorithm to evolve
PSO algorithm structure, i.e., particles updating order and
frequency.

4.5 Modifying the speed or position constrain method
and dynamically determining the search space

Chaturvedi et al. (2008) dynamically controlled the acceler-
ation coefficients in maximum and minimum limits. Deter-
mining the bound value of the acceleration coefficients,
however, was a very difficult issue because it needed sev-
eral simulations. Stacey et al. (2003) offered a new speed
constrain method to re-randomize the particle speed and a
novel position constrain method to re-randomize the parti-
cle position. Clerc (2004) brought a contraction-expansion
coefficient into evolution algorithms to ensure the algo-
rithm convergence, while relaxing the speed bound. Other
approaches, such as squeezing the search space (Barisal
2013), had also been proposed to dynamically determine the
search space.
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4.6 Combining PSO with other search techniques

It has two main purposes: One is to increase the diver-
sity and avoid premature; the other is to improve the local
search ability of the PSO algorithm. In order to promote
the search diversity in the PSO, a sea of models have been
studied (Poli et al. 2007). These hybrid algorithms included
introducing various genetic operators to the PSO algorithm,
such as selection (Angeline 1998a,b; Lovbjerg et al. 2001),
crossover (Angeline 1998b; Chen et al. 2014), mutation (Tsa-
farakis et al. 2013) or Cauchy mutation (Wang et al. 2011)
to increase the diversity and improve its ability to escape
from the local minima. Meng et al. (2015) proposed a new
hybrid optimization algorithm called crisscross search parti-
cle swarm optimization (CSPSO), which was different from
PSO and its variants in that its every particle was directly
expressed by pbest. Its population was updated by modified
PSO and crisscross search optimization in sequence during
each iteration. Seventeen benchmark functions (including
four unimodal functions, five multi-modal functions and sev-
eral complicated shifted and rotated functions) were used
to test the feasibility and efficiency of the CSPSO algo-
rithm, but it had not coped with the premature convergence in
the later period of the optimization. Vlachogiannis and Lee
(2009) presented a novel control equation in enhanced coor-
dinated aggregation PSO for better communication among
particles to improve the local search. It permitted the parti-
cles to interact with its own best experience as well as all
other particles with better experience on aggregate basis,
instead of the global optimal experience. Selvakumar and
Thanushkodi (2009) presented civilized swarm optimization
(CSO), through combining society-civilization algorithm
with PSO to enhance its communication. This new algorithm
provided clustered search which produced better exploration
and exploitation of the search space. Unfortunately, it needed
several experiments to decide the optimal control parameters
of the CSO.

Lim and Isa (2015) put forward a hybrid PSO algorithm
which introduced the fuzzy reasoning and a weighted particle
to construct a new search behavior model to increase the
search ability of the conventional PSO algorithm. Besides the
information of the global best and individual best particles,
Shin and Kita (2014) took advantage of the information of
the second global best and second individual best particles
to promote the search performance of the original PSO.

Tanweer et al. (2016) presented a novel particle swarm
optimization algorithm named as self-regulating particle
swarm optimization (SRPSO) algorithm which introduced
the best human learning schemes to search the optimum
results. The SRPSO used two learning schemes. The first
scheme adopted a self-regulating inertia weight, and the sec-
ond one adopted the self-perception on the global search
direction. Other methods or models to improve the diversity
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included: attracting-exclusion model (Riget and Vesterstrom
2002), predator-prey model (Gosciniak 2015), uncorrela-
tive component analysis model (Fan et al. 2009), dissipative
model (Xie et al. 2002), self-organizing model (Xie et al.
2004), life cycle model (Krink and Lovbjerg 2002), Bayesian
optimization model (Monson and Seppi 2005), chemical
reaction optimization (Li et al. 2015b), neighborhood search
mechanism (Wang et al. 2013), collision-avoiding mech-
anism (Blackwell and Bentley 2002), information sharing
mechanism (Li et al. 2015a), local search technique (Sharifi
et al. 2015), cooperative behavior (Bergh and Engelbrecht
2004), hierarchical fair competition (Chen et al. 2006b),
external memory (Acan and Gunay 2005), gradient descent
technique (Noel and Jannett 2004), simplex method opera-
tor (Qian et al. 2012; El-Wakeel 2014), hill climbing method
(Lin et al. 2006b), division of labor (Lim and Isa 2015), prin-
cipal component analysis (Mu et al. 2015), Kalman filtering
(Monson and Seppi 2004), genetic algorithm (Soleimani and
Kannan 2015), shuffled frog leaping algorithm (Samuel and
Rajan 2015), random search algorithm (Ciuprina et al. 2007),
Gaussian local search (Jia et al. 2011), simulated annealing
(Liu et al. 2014; Geng et al. 2014), taboo search (Wen and
Liu 2005), Levenberg—Marquardt algorithm (Shirkhani et al.
2014), ant colony algorithm (Shelokar et al. 2007), artifi-
cial bee colony (Vitorino et al. 2015; Li et al. 2011), chaos
algorithm (Yuan et al. 2015), differential evolution (Zhai and
Jiang 2015), evolutionary programming (Jamian et al. 2015),
multi-objective cultural algorithm (Zhang et al. 2013). PSO
algorithm was also extended in quantum space by Sun et al.
(2004). The novel PSO model was based on the delta potential
well and modeled the particles as having quantum behav-
iors. Furthermore, Medasani and Owechko (2005) expanded
the PSO algorithm through introducing the possibility of c-
means and probability theory, and put forward probabilistic
PSO algorithm.

4.7 Improving for multi-modal problems

The seventh solution is specifically for multi-modal prob-
lems, hoping to find several better solutions. In order to
obtain several better solutions for the optimized problem,
Parsopoulos and Vrahatis (2004) used deflection, stretching
and repulsion and other techniques to find as many as possible
minimum points by preventing the particles from moving to
the minimum area ever found before. However, this method
would generate new local optima at both ends of the detected
local ones, which might lead the optimization algorithm to
fall into local optima. Therefore, Jin et al. (2005) proposed a
new form of function transformation which could avoid this
disadvantage.

Another variant is a niche PSO algorithm proposed by
Brits et al. (2003), to locate and track multiple optima by
using multiple sub-populations simultaneously. Brits et al.

(2002) also studied a method to find the multiple optimal
solutions simultaneously through adjusting the fitness value
calculating way. On the basis of the niche PSO algorithm,
Schoeman and Engelbrecht (2005) adopted vector operation
to determine the candidate solution and its border in each
niche through using vector dot production operation and par-
alleled this process to obtain better results. However, there
was a common problem in each niche PSO algorithm, namely
it needed to determine a niche radius, and the algorithm per-
formance was very sensitive to the niche radius. In order to
solve this problem, Benameur et al. (2006) presented an
adaptive method to determine the niching parameters.

4.8 Keeping diversity of the population

Population diversity is especially important for enhancing the
global convergence of the PSO algorithm. The easiest way to
keep population diversity was resetting some particles or total
particle swarm when the diversity was very small. Lovbjerg
and Krink (2002) adopted a self-organized criticality in PSO
algorithm to depict the proximity degree among the particles
in the swarm, further, to decide whether re-initialize the par-
ticle positions or not. Clerc (1999) presented a deterministic
algorithm named as Re-Hope, when the search space was
quite small but had not yet found solutions (No-Hope); then,
it reset the swarm. To keep the population diversity and bal-
ance the global and local search, Fang et al. (2016) proposed a
decentralized form of quantum-inspired particle swarm opti-
mization (QPSO) with cellular structured population (called
cQPSO). Performance of cQPSO-/best was investigated on
42 benchmark functions with different properties (including
unimodal, multi-modal, separated, shifted, rotated, noisy, and
mis-scaled) and compared with a set of PSO variants with dif-
ferent topologies and swarm-based evolutionary algorithms
(EAs).

The modified PSO of Park et al. (2010) introduced chaotic
inertia weight which decreased and oscillated simultane-
ously under the decreasing line in a chaotic manner. In this
manner, additional diversity was brought into the PSO but
it needed tuning the chaotic control parameters. Recently,
Netjinda et al. (2015) presented a novel mechanism into PSO
to increase the swarm diversity, a mechanism inspired by the
collective response behavior of starlings. This mechanism is
composed of three major steps: initialization, which prepared
alternative populations for the next steps; identifying seven
nearest neighbors; and orientation changed which updated
the particle velocity and position according to those neigh-
bors and chosen the best alternative. Due to this collective
response mechanism, the Starling PSO realized a wider scope
of the search space and hence avoided suboptimal solutions.
The trade-off for the improving performance was that this
algorithm added more processes to the original algorithm.
As a result, more parameters were needed while the addi-
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tional process, the collective response process, also made
this algorithm consume more execution time. However, the
algorithm complexity of the Starling PSO was still the same
as that of the original PSO.

5 Parameters selection

There are several important parameters in PSO algorithm,
i.e., inertia weight w (or constriction factor x ), learning fac-
tors c1 and ¢, speed limits V., position limits X, , swarm
size and the initial swarm. Some researchers fixed other
parameters and only studied the influence of single parame-
ter on the algorithm, while some researchers also studied the
effect of multiple parameters on the algorithm.

5.1 Inertia weight

Current studies believe that the inertia weight has the greatest
influence on the performance of PSO algorithm, so there are
the most researches in this area. Shi and Eberhart (1998) was
the first individual to discuss the parameter selection in PSO.
They brought an inertia efficient w into the PSO and promoted
the convergence feature. An extension of this work adopted
fuzzy systems to nonlinearly change the inertia weight during
optimization (Shi and Eberhart 2001).

Generally, it is believed that in PSO, inertia weight is used
to balance the global search and the local search, and bigger
inertia weight is tended to global search while the smaller
inertia weight is tended to local search, so the value of iner-
tia weight should gradually reduce with the time. Shi and
Eberhart (1998) suggested that inertia weight should be set
to [0.9, 1.2] and a linearly time-decreasing inertia weight
could significantly enhance the PSO performance.

As the fixed inertia weight usually cannot get satisfac-
tory results, there appeared some PSO variants whose inertia
weight declined linearly along with iteration times (Shi and
Eberhart 1998), adaptive changed (Nickabadi et al. 2011),
adjusted by a quadratic function (Tang et al. 2011) and
by the population information (Zhan et al. 2009), adjusted
based on Bayesian techniques (Zhang et al. 2015), expo-
nential decreasing inertia weight strategy (Lu et al. 2015a),
declined according to the nonlinear function (Chatterjee and
Siarry 2006), and Sugeno function (Lei et al. 2005) in search
process. At the same time, there are many methods that the
inertia weight adaptively changes along with some evalua-
tion indexes, such as the successful history of search (Fourie
and Groenwold 2002), evolution state (Yang et al. 2007),
particle average velocity (Yasuda and Iwasaki 2004), popu-
lation diversity (Jie et al. 2006), smoothness change in the
objective function (Wang et al. 2005), evolutionary speed and
aggregation degree of the particle swarm, individual search
ability (Qin et al. 2006). Even, Liu et al. (2005) determined
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whether accept the inertia weight change or not according to
Metropolis criteria.

Some people also adopted a random inertia weight, such
as setting to [0.54(rnd/2.0)] (Eberhart and Shi 2001), [0, 1]
uniform distribution random numbers (Zhang et al. 2003).
Jiang and Bompard (2005) introduced the chaos mechanism
in selecting the inertia weight, so the inertia weight could
traverse [0, 1]. The modified PSO of Park et al. (2010) intro-
duced chaotic inertia weight which oscillated and decreased
simultaneously under the decreasing line in a chaotic way,
but it needed tuning the chaotic control parameters.

5.2 Learning factors c¢1 and ¢,

The learning factors c¢1 and c; represent the weights of the
stochastic acceleration terms that pull each particle toward
pBest and gBest (or nBest). In many cases, ¢ and ¢; are
set to 2.0 which make the search to cover the region cen-
tered in p Best and g Best. Another common value is 1.49445
which can ensure the convergence of PSO algorithm (Clerc
and Kennedy 2002). After a lot of experiments, Carlisle and
Dozier (2001) put forward a better parameters set which set
c1 and ¢ to 2.8 and 1.3, respectively, and the performance of
this setting was further confirmed by Schutte and Groen-
wold (2005). Inspired by the idea of time-varying inertia
weight, there appeared many PSO variants whose learning
factors changed with time (Ivatloo 2013), such as learn-
ing factor linearly decreased with time (Ratnaweera et al.
2004), dynamically adjusted based on the particles’ evolu-
tionary states (Ide and Yasuda 2005), dynamically adjusted
in accordance with the number of the fitness values deteri-
orate persistently and the swarm’s dispersion degree (Chen
et al. 2006a).

In most cases, the two learning factors ¢ and ¢, have the
same value, so that the social and cognitive search has the
same weight. Kennedy (1997) studied two kinds of extremes:
model with only the social term and with only the cognitive
term, and the result showed that these two parts were very
crucial to the success of swarm search, while there were no
definitive conclusions about the asymmetric learning factor.

There were researches which determined the inertia
weight and learning factors simultaneously. Many researchers
adopted various optimization techniques to dynamically
determine the inertia weight and learning factors, such as
genetic algorithm (Yu et al. 2005), adaptive fuzzy algo-
rithm (Juang et al. 2011), differential evolutionary algorithm
(Parsopoulos and Vrahatis 2002b), adaptive critic design
technology (Doctor and Venayagamoorthy 2005).

5.3 Speed limits Vi,

Speed of the particles was constrained by a maximum speed
Vinax Which can be used as a constraint to control the global
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search ability of the particle swarm. In original PSO algo-
rithm, o = 1, ¢c; = ¢a = 2, particles’ speed often quickly
increases to a very high value which will affect the perfor-
mance of the PSO algorithm, so it is necessary to restrict
particle velocity. Later, Clerc and Kennedy (2002) pointed
out that it was not necessary to restrict the particle velocity,
introducing constriction factor to the speed update formula
could also realize the purpose of limiting particle velocity.
However, even the constriction factor was used, experiments
showed that better result would be obtained if the particle
velocity was limited simultaneously (Eberhart and Shi 2000),
so the idea of speed limitation was still retained in PSO algo-
rithm. Generally speaking, V,,,, was set to the dynamic range
of each variable, and usually a fixed value, but it could also
linearly decrease with time (Fan 2002) or dynamically reduce
according to the success of search history (Fourie and Groen-
wold 2002).

5.4 Position limits X,

Positions of the particles can be constrained by a maximum
position X4, that can avoid particles flying out of the phys-
ical solution space. Robinson and Rahmat-Samii (2004) put
forward three different control techniques, namely absorb-
ing wall, reflecting wall and invisible wall. Once one of the
dimensions of a particle hit the boundary of the solution
space, the absorbing wall set the velocity in that correspond-
ing dimension to zero, while the reflecting wall changed
the direction of particle velocity, the particle was eventu-
ally pulled back to the allowable solution space by the two
walls. In order to reduce the calculation time and avoid affect
the motions of other particles, the invisible walls did not cal-
culate the fitness values of the particles flying out of the
boundary. However, the performance of PSO algorithm was
greatly influenced by the dimension of the problem and the
relative position between the global optima and the search
space boundary. In order to solve this problem, Huang and
Mohan (2005) integrated the characteristics of absorbing wall
and reflecting wall and proposed a hybrid damping boundary,
to obtain robust and consistent performance. And Mikki and
Kishk (2005) combined the techniques of hard position limit,
absorbing wall and reflecting wall, and the result showed that
it could obtain better results.

5.5 Population size

Selection of population size is related to the problems to be
solved, but it is not very sensitive to the problems. Common
selection is 20-50. In some cases, larger population is used
to meet the special needs.

5.6 Initialization of the population

Initialization of the population is also a very important prob-
lem. Generally, the initial population is randomly generated,
but there are also many intelligent population initializa-
tion methods, such as using the nonlinear simplex method
(Parsopoulos and Vrahatis 2002a), centroidal Voronoi tes-
sellations (Richards and Ventura 2004), orthogonal design
(Zhan et al. 2011), to determine the initial population of
PSO algorithm, making the distribution of the initial pop-
ulation as evenly as possible, and help the algorithm to
explore the search space more effectively and find a bet-
ter solution. Robinson et al. (2002) pointed out that the
PSO algorithm and GA algorithm could be used in turn, i.e.,
taking the population optimized by the PSO algorithm as
the initial population of the GA algorithm, or conversely,
taking the population optimized by GA algorithm as the ini-
tial population of the PSO algorithm, both methods could
get better results. Yang et al. (2015) presented a new PSO
approach called LHNPSO, with low-discrepancy sequence
initialized particles and high-order (1/72) nonlinear time-
varying inertia weight and constant acceleration coefficients.
Initial population was produced through applying the Halton
sequence to fill the search space adequately.

Furthermore, parameters of PSO algorithm could be
adjusted by the methods such as sensitivity analysis (Bartz-
Beielstein et al. 2002), regression trees (Bartz-Beielstein
et al. 2004a) and calculate statistics (Bartz-Beielstein et al.

2004b), to promote the performance of PSO algorithm for
solving the practical problems.

Besides these, Beheshti and Shamsuddin (2015) presented
a nonparametric particle swarm optimization (NP-PSO) to
improve the global exploration and the local exploitation
in PSO without tuning algorithm parameters. This method
integrated local and global topologies with two quadratic
interpolation operations to enhance the algorithm search
capacity.

6 Topological structure

Many researchers have proposed different population topol-
ogy structures in the PSO algorithm because performance of
PSOis directly influenced by population diversity. Therefore,
designing different topologies to improve the performance of
PSO algorithm is also an active research direction.

Since the topology is studied, it must be related to the
concept of neighborhood. Neighborhood can be static, or may
be dynamically determined. There are two ways to determine
the neighborhood: One is determined according to the flag of
the particles (or index) which has nothing to do with distance;
the other is determined in accordance with the topological
distance between the particles.

@ Springer



D. Wang et al.

Most researches (Bratton and Kennedy 2007; Kennedy
and Mendes 2002; Li 2010) used the static topology structure.
Kennedy (1999) and Kennedy and Mendes (2002, 2003) had
analyzed different kinds of static neighborhood structures
and their influences on the performance of PSO algorithm,
and regarded that adaptability of the star, ring and von Neu-
mann topology were best. As studied by the work of Kennedy,
PSO with a small neighborhood might have a better perfor-
mance on complicated problems, while PSO with a large
neighborhood would perform better on simple problems.
Based on K-means clustering algorithm, Kennedy (2000)
also proposed another version of local PSO algorithm, called
social convergence method, with the hybrid space neighbor-
hood and ring topology. Each particle updated itself by using
the common experience of spatial clustering that it belonged
to, rather than the experience of its own. Kennedy (2004)
proved enhanced performance of the PSO algorithm through
applying ring topology and made the particles to move in
accordance with the normally distributed random perturba-
tions. Engelbrecht et al. (2005) studied the ability of the
basic PSO algorithm to locate and maintain several solutions
in the multi-modal optimization problems and found that the
global neighborhood PSO (g Best PSO) was incapable of this
problem, while the efficiency of the local neighborhood PSO
(nBest PSO) was very low.

Mendes et al. (2004) presented the fully informed par-
ticle swarm algorithm that used the information of entire
neighborhood to guide the particles to find the best solution.
Influence of each particle on its neighbor was weighted by its
fitness value and the neighborhood size. Peram et al. (2003)
developed a new PSO algorithm based on fitness—distance
ratio (FDR-PSO) using the interaction of the neighbors. In
updating each dimension component of the velocity, FDR-
PSO algorithm selected an Best of other particles with higher
fitness and much closer to the particle to be updated. This
algorithm selected different neighborhood particles in updat-
ing each dimension of the speed, so it was more effective
than that only selected one neighbor particle in all speed
dimensions. Peer et al. (2003) used different neighborhood
topologies to study the performance of guaranteed conver-
gence PSO (GCPSO).

There is also a small part of the researches about dynamic
topology. Lim and Isa (2014) presented a novel PSO vari-
ant named as PSO with adaptive time-varying topology
connectivity (PSO-ATVTC) which used an ATVTC mod-
ule and a new learning scheme. The presented ATVTC
module particularly aimed to balance the algorithm’s explo-
ration/exploitation search through changing the particle’s
topology connection with time in accordance with its search
performance. Suganthan (1999) used a dynamically adjusted
neighborhood, and this neighborhood could increase gradu-
ally until it included all the particles. Hu and Eberhart (2002)
studied a dynamic neighborhood, and in each generation,
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the nearest m particles were selected to be the new neigh-
bors of one particle. Lin et al. (2006a) studied two kinds
of dynamically randomized neighborhood topology. Mohais
et al. (2005) presented a PSO algorithm with area of influ-
ence (AOI), in AOI, influence of the optimal particle on other
particles depended on the distances between them. Hierarchi-
cal PSO (Hanaf et al. 2016) used the dynamic tree hierarchy
based on the performance of each particle in population to
define the neighborhood structure.

All above neighborhood topologies were used to deter-
mine the group experience gBest, while Hendtlass (2003)
used neighborhood topology to determine individual experi-
ence pBest.

7 Discrete PSO

A sea of optimization problems involve discrete or binary
variables, and the typical examples include scheduling prob-
lems or routing problems. While the update formula and
procedure of the PSO algorithm are originally designed for
the continuous space, which limited its application in dis-
crete optimization domains, therefore it need some changes
to adapt to the discrete space.

In continuous PSO, trajectories are defined as changes
in position on a number of dimensions. By contrast, binary
particle swarm optimization (BPSO) trajectories are changes
in the probability that a coordinate will take on a value of zero
or one.

Jian et al. (2004) defined the first discrete binary ver-
sion of PSO to optimize the structure of neural networks.
The particles used binary strings to encode. By using the
sigmoid function, the velocity was limited to [0,1], and it
was interpreted as “the change in probability.” By re-defining
the particle position and velocity, continuous PSO could be
changed to discrete PSO to solve discrete optimization prob-
lems. Tang et al. (2011) extended this method into quantum
space. Ratnaweera et al. (2004) and Afshinmanesh et al.
(2005) presented the discrete PSO further.

In addition, a few modified binary PSO algorithms have
been proposed. An angle modulation PSO (AMPSO) was
proposed by Mohais et al. (2005) to produce a bit string
to solve the original high-dimensional problem. In this
approach, the high-dimensional binary problem is reduced
to a four-dimensional problem defined in continuous space,
with a direct mapping back to the binary space by angle
modulation. al Rifaie and Blackwell (2012) presented a
new discrete particle swarm optimization method for the
discrete time-cost trade-off problem. Two large-scale bench-
mark problems were use to evaluate the performance of the
DPSO. The results indicated that DPSO provided an effec-
tive and robust alternative for solving real-world time-cost
optimization problems. However, the large-scale benchmark
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problems used in this study included up to 630 activities and
up to five time-cost alternatives and might have certain lim-
itations for representing the complexity of some large-scale
construction projects. Peer et al. (2003) developed a genetic
BPSO model without fixing the size of the swarm. In this
algorithm, two operations, i.e., birth and death, were intro-
duced to dynamically modulate the swarm. Because the birth
and death rates changed naturally with time, this new model
permitted oscillations in the size of the swarm. So it was a
more natural simulation of the social behaviors of the intel-
ligent animals. An enhanced binary BPSO was presented by
Kadirkamanathan et al. (2006) that introduced the concepts
of genotype-phenotype representation and the mutation oper-
ator of GA into the BPSO. A novel BPSO was proposed to
overcome the BPSO problems by Lu et al. (2015b). Although
the performance of the algorithm was better than that of the
BPSO, the new BPSO may be trapped into the local optimum
and generated premature convergence. Therefore, two differ-
ent methods were designed to prevent the stagnation of the
new BPSO. One of the methods improved the performance
of the new BPSO by introducing the concept of guaranteed
convergence BPSO. Another method, modified new BPSO,
adopted the mutation operator to avoid the stagnation issue.
Chatterjee and Siarry (2006) developed an essential binary
PSO to optimize problems in the binary search spaces. In this
algorithm, PSO was divided into its essential elements, and
alternative explanations of these elements were proposed.
Previous direction and state of each particle ware also con-
sidered to search for the good solutions for the optimized
problems. Fourie and Groenwold (2002) presented a fuzzy
discrete particle swarm optimization to cope with real-time
charging coordination of plug-in electric vehicles. Wang et al.
(2005) presented a binary bare bones PSO to search for opti-
mal feature selection. In this algorithm, a reinforced memory
scheme was developed to modify the local leaders of parti-
cles to prevent the degradation of distinguished genes in the
particles, and an uniform combination was presented to bal-
ance the local exploitation and the global exploration of the
algorithm.

Traditional PSO suffers from the dimensionality problem,
i.e., its performance deteriorates quickly when the dimen-
sionality of the search space increases exponentially, which
greatly limits its application to large-scale global optimiza-
tion problems. Therefore, for large-scale social network
clustering, Brits et al. (2002) presented a discrete PSO algo-
rithm to optimize community structures in social networks.
Particle position and velocity were redefined in terms of a
discrete form. Subsequently, the particle modify strategies
were redesigned in accordance with the network topology.

Discrete PSO (DPSO) had been successfully applied to
many discrete optimization tasks, such as Sudoku puzzle (Liu
et al. 2004), multi-dimensional knapsack problems (Banka
and Dara 2015), jobshop scheduling problems (Vitorino et al.

2015), complex network clustering problems (Brits et al.
2002), optimizing the echo state network (Shin and Kita
2014), image matching problems (Qian et al. 2012), instance
selection for time series classification (van den Bergh and
Engelbrecht 2002), ear detection (Emara and Fattah 2004),
feature selection (Chen et al. 2006b), capacitated location
routing problem (Liang et al. 2006), generation maintenance
scheduling problem (Schaffer 1985), elderly day care center
timetabling (Lee et al. 2008), high-dimensional feature selec-
tion, classification and validation (Ardizzon et al. 2015), and
high-order graph matching (Fang et al. 2016). All these prob-
lems had the irrespective challenges and were difficult to be
optimized, but they could be effectively solved by DPSO.
Most of the above discrete PSO algorithms were indirect
optimization strategies which determined the binary vari-
ables based on the probability rather than the algorithm
itself; therefore, it could not make full use of the perfor-
mance of PSO algorithm. In dealing with the integer variable,
PSO algorithm was very easy to fall into local minimum.
Original PSO algorithm learned from the experience of indi-
vidual and its companions, the discrete PSO algorithm should
also follow this idea. Based on the traditional velocity-
displacement updating operation, Engelbrecht et al. (2005)
analyzed the optimization mechanism of PSO algorithm and
proposed the general particle swarm optimization (GPSO)
model which was suitable to solve the discrete and combina-
tional optimization problems. Nature of the GPSO model still
conformed to the PSO mechanism, but its particle updating
strategy could be designed either according to the features
of the optimized problems, or integrating with other meth-
ods. Based on the similar ideas, Fan et al. (2009) defined
local search and path-relinking procedures as the velocity
operator to solve the traveling salesman problem. Beheshti
and Shamsuddin (2015) presented a memetic binary particle
swarm optimization strategy in accordance with the hybrid
local and global searches in BPSO. This binary hybrid topol-
ogy particle swarm optimization algorithm had been used to
solve the optimization problems in the binary search spaces.

8 Multi-objective optimization PSO

In recent years, multi-objective (MO) optimization has
become an active research area. In the multi-object opti-
mization problems, each target function can be optimized
independently and then find the optimal value for each tar-
get. Unfortunately, due to the conflicting among the objects,
it is almost impossible to find a perfect solution for all the
objectives. Therefore, only the Pareto optimal solution can
be found.

Information sharing mechanism in PSO algorithm is very
different from other optimization tools based on swarm.
In the genetic algorithm (GA), the chromosomes exchange
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information with each other through crossover operation,
which is a bidirectional information sharing mechanism.
While in most PSO algorithms, only gBest (or nBest)
provides information for other particles. Due to the point
attracting feature, traditional PSO algorithm cannot simulta-
neously locate multiple optimal points constituting the Pareto
frontier. By giving different weights to all the objective func-
tions, then combining them and running many times, though
we can obtain multiple optimal solutions, we still want to
find a method which can simultaneously obtain a group of
Pareto optimal solutions.

In the PSO algorithm, a particle is an independent agent
which can search the problem space according to the expe-
rience of its own and its companions. As mentioned above,
the former is the cognitive part of the particles update for-
mula, and the latter is the social part. Both parts play key
role in guiding the particles’ search. Therefore, choosing the
appropriate social and cognitive guide (g Best and pBest)
is the key problems of the MOPSO algorithm. Selection of
the cognitive guide conforms the same rule as that of the tra-
ditional PSO algorithm, and the only difference is that the
guide should be determined in accordance with Pareto dom-
inance. Selection of the social guide includes two steps: The
first step is creating a candidate pool used to select the guide.
In traditional PSO algorithm, the guide is selected from the
p Best of the neighbors. While in the MOPSO algorithm, the
usual method is using an external pool to store more Pareto
optimal solutions. The second step is choosing the guide.
Selection of the g Best should satisfy the following two stan-
dards: First, it should be able to provide effective guidance
for the particles to obtain a better convergence speed; second,
it needs to provide balanced search along the Pareto frontier,
to maintain the diversity of the population. Two methods
are usually used to determine the social guide: (1) Roulette
selection mode which selects randomly in accordance with
some standards, to maintain the diversity of the population.
(2) Quantity standard: determine the social guide according
to some procedures without involving random selection.

After Peram et al. (2003) presented the vector-evaluated
genetic algorithm, an ocean of multi-objective optimization
algorithms were proposed one after another, such as NSGA-
II (Coello et al. 2004). Liu et al. (2016) were the first to study
the application of the PSO algorithm in multi-objective opti-
mization and emphasized the importance of the individual
search and swarm search, but they did not adopt any method
to maintain the diversity. On the basis of the concept of non-
dominated optimal, Clerc (2004) used an external archive
to store and determine which particles would be the non-
dominated members, and these members were used to guide
other particle’s flight. Kennedy (2003) adopted the main
mechanism of the NSGA-II algorithm to determine local
optimal particle among the local optimal particles and their
offspring particles, and proposed non-dominated sorting PSO
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which used the max-min strategy in the fitness function to
determine the Pareto dominance. Moreover, Goldbarg et al.

(2006) also used the non-dominated sorting PSO to optimize
a U-tube steam generator mathematical model in the nuclear
power plant.

Ghodratnama et al. (2015) applied the comprehensive
learning PSO algorithm combining with Pareto dominance
to solve the multi-objective optimization problems. Ozcan
and Mohan (1998) developed an elitist multi-objective PSO
that combined the elitist mutation coefficient to improve
the particles’ exploitation and exploration capacity. Wang
et al. (2011) proposed an iterative multi-objective particle
swarm optimization-based control vector parameterization to
cope with the dynamic optimization of the state constrained
chemical and biochemical engineering problems. In recent
researches, Clerc and Kennedy (2002), Fan and Yan (2014),
Chen et al. (2014), Lei et al. (2005), et al. also proposed the
corresponding multi-objective PSO algorithms.

Among them, Li (2004) proposed a novel Cultural
MOQPSO algorithm, in which cultural evolution mecha-
nism was introduced into quantum-behaved particle swarm
optimization to deal with multi-objective problems. In Cul-
tural MOQPSO, the exemplar positions of each particle were
obtained according to “belief space,” which contained dif-
ferent types of knowledge. Moreover, to increase population
diversity and obtain continuous and even-distributed Pareto
fronts, a combination-based update operator was proposed to
update the external population. Two quantitative measures,
inverted generational distance and binary quality metric,
were adopted to evaluate its performance. A comprehensive
comparison of Cultural MOQPSO with some state-of-the-art
evolutionary algorithms on several benchmark test func-
tions, including ZDT, DTLZ and CEC2009 test instances,
demonstrated that Cultural MOQPSO had better perfor-
mance than the other MOQPSOs and MOPSOs. Besides,
Cultural MOQPSO was also compared to 11 state-of-the-art
evolutionary algorithms, by testing on the first 10 functions
defined in CEC-2009. The comparative results demonstrated
that, for half of the test functions, Cultural MOQPSO per-
formed better than most of the 11 algorithms. According to
these quantitate comparisons, the Cultural MOQPSO can be
recommended to cope with the multi-objective optimization
problems.

Because the fitness calculation consumes much compu-
tational resource, in order to reduce the calculation cost, it
needs to reduce the evaluating numbers of fitness function.
Pampara et al. (2005) adopted fitness inheritance technique
and estimation technique to achieve this goal and compared
the effect of fifteen kinds of inheritance techniques and four
estimation techniques that were applied to multi-objective
PSO algorithm.

There are two main methods to maintain the diversity
of the MOPSO: Sigma method (Lovbjerg and Krink 2002)
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and e-dominance method (Juang et al. 2011; Robinson and
Rahmat-Samii 2004). Robinson and Rahmat-Samii (2004)
put forward a multi-swarm PSO algorithm which broke down
the whole swarm into three equally sized sub-swarms. Each
sub-swarm applied different mutation coefficients, and this
scheme enhanced the search capacity of the particles.

Due to the page limit, engineering applications of the PSO
are attached in the supplementary file, interested readers are
encouraged to refer it.

9 Noise and dynamic environments

State of dynamic system changes frequently, even con-
tinuously. Many practical systems involve the dynamic
environment. For example, due to changes caused by the
priority of customers, unexpected equipment maintenance,
most of calculating time in the scheduling system was used
to reschedule. In real applications, these changes in system
states often needed to be re-optimized.

Using the PSO algorithm to track the dynamic system was
initially proposed by Brits et al. (2003), and it followed the
dynamic system through periodically resetting all particles’
memories. Deb and Pratap (2002) also adopted the similar
idea. After that, Geng et al. (2014) introduced an adaptive
PSO algorithm, which could automatically track the changes
in the dynamic system, and different environment detection
and response techniques were tested on the parabolic bench-
mark function. It effectively increased the tracking ability
for the environment change through testing the best particle
in the swarm and reinitializing the particles. Later, Carlisle
and Dozier (2000) used a random point in the search space
to determine whether the environment changed or not, but it
required centralized control, and it was inconsistent with PSO
algorithm’s distributed processing model. So Clerc (2006)
proposed a Tracking Dynamical PSO (TDPSO) that made
the fitness value of the best history position to decrease with
time; thus, it did not need the centralized control. In order to
respond to the rapidly changing dynamic environment, Bink-
ley and Hagiwara (2005) added a penalty term in particles’
update formula to keep the particles lying in an expanding
swarm, and this method need not to examine whether the best
point changed or not.

Experiments of Monson and Seppi (2004) showed that the
basic PSO algorithm could work in the noisy environment
efficiently and stably; even in many cases, the noise could
also help PSO algorithm to avoid falling to the local optima.
Moreover, Mostaghim and Teich (2003) also experimentally
studied the performance of unified particle swarm algorithm
in the dynamic environment. Nickabadi et al. (2011) pro-
posed a anti-noise PSO algorithm. Pan proposed an effective
hybrid PSO algorithm named PSOOHT by introducing the
optimal computing budget allocation (OCBA) technique and

hypothesis test, to solve the function optimization in the noisy
environment.

Research objects of the above works are the simple
dynamic systems, experiment functions used are the sim-
ple single-mode functions, and the changes are uniform ones
in simple environment (that is, fixed step). In fact, the real
dynamic systems are often nonlinear, and they change non-
uniformly in complex multi-mode search space. Kennedy
(2005) used four PSO ( a standard PSO, two randomized
PSO algorithms, and a fine-grained PSO) models to compar-
atively study a series of different dynamic environments.

10 Numerical experiments

PSO was also used in different numerical experiments. To
handle the imprecise operating costs, demands and the capac-
ity data in a hierarchical production planning system, Carlisle
and Dozier (2001) used a modified variant of a possibilis-
tic environment-based particle swarm optimization approach
to solve an aggregate production plan model which used
the strategy of simultaneously minimizing the most pos-
sible value of the imprecise total costs, maximizing the
possibility of obtaining lower total costs and minimizing
the risk of obtaining higher total costs. This method pro-
vides a novel approach to consider the natural uncertainty
of the parameters in an aggregate production plan problem
and can be applied in ambiguous and indeterminate circum-
stances of real-world production planning and scheduling
problems with ill-defined data. To analyze the effects of pro-
cess parameters (cutting speed, depth of cut and feed rate) on
machining criteria, Ganesh et al. (2014) applied the PSO to
optimize the cutting conditions for the developed response
surface models. PSO program gave the minimum values of
the considered criteria and the corresponding optimal cut-
ting conditions. Lu used an improved PSO algorithm which
adopted a combined fitness function to solve the squared
error between the measured values and the modeled ones in
system identification problems. Numerical simulations with
five benchmark functions were used to validate the feasibil-
ity of PSO, and furthermore, numerical experiments were
also carried out to evaluate the performance of the improved
PSO. Consistent results demonstrated that combined fitness
function-based PSO algorithm was feasible and efficient for
system identification and could achieve better performance
over conventional PSO algorithm.

To test the Starling PSO, eight numerical benchmarking
functions which represent various characteristics of typi-
cal problems as well as a real-world application involving
data clustering were used by Lu et al. (2015a). Experimental
results showed that Starling PSO improved the performance
of the original PSO and yielded the optimal solution in many
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numerical benchmarking functions and most of the real-
world problems in the clustering experiments.

Selvakumar and Thanushkodi (2009) put forward an
improved CPSO-VQO with a modified chaotic system whose
bifurcation structure was irrelevant to the difference vec-
tor, and they also proposed a new stochastic method that
selected the updating system according to the ratio between
the components of the difference vector for each particle, and
restarting and acceleration techniques to develop the standard
updating system used in the proposed PSO model. Through
numerical experiments, they verified that the proposed PSOs,
PSO-TPC, PSO-SPC and PSO-SDPC were superior to the
relatively simple existing PSOs and CPSO-VQO in find-
ing high-quality solutions for various benchmark problems.
Since the chaotic system used in these PSOs was based on
the gbest and pbest, this search was mainly restricted around
the two points in spite of its chaoticity.

In addition, Sierra and Coello (2005) conducted numerical
experiments with benchmark objective functions with high
dimensions to verify the convergence and effectiveness of the
proposed initialization of PSO. Salehian and Subraminiam
(2015) adopted an improved PSO to optimize the perfor-
mance in terms of the number of alive nodes in wireless
sensor networks. The performance of the adopted improved
PSO was validated by the numerical experiments in conven-
tional background.

11 Conclusions and discussion

As a technique appearing not long time, PSO algorithm has
received wide attentions in recent years. Advantages of PSO
algorithm can be summarized as follows: (1) It has excellent
robustness and can be used in different application environ-
ments with a little modification. (2) It has strong distributed
ability, because the algorithm is essentially the swarm evolu-
tionary algorithm, so itis easy to realize parallel computation.
(3) It can converge to the optimization value quickly. (4) It
is easy to hybridize with other algorithms to improve its per-
formance.

After many years development, the optimization speed,
quality and robustness of the PSO algorithm have been
greatly improved. However, the current studies mostly focus
on the algorithm’s implementation, enhancement and appli-
cations, while relevant fundamental research is far behind the
algorithm’s development. Lacking of mathematical theory
basis greatly limits the further generalization, improvement
and application of the PSO algorithm.

PSO algorithm research still exist a lot of unsolved prob-
lems, including but not limited to:

(1) Random convergence analysis. Although the PSO algo-
rithm has been proved to be effective in real applications
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and has achieved some preliminary theoretical results,
it has not provided the mathematical proofs about the
algorithm convergence and convergence rate estimation
so far.

(2) How to determine the algorithm parameters. Parame-
ters in PSO are usually determined depending on the
specific problems, application experience and numer-
ous experiment tests, so it has no versatility. Hence,
how to determine the algorithm parameters conve-
niently and effectively is another urgent problem to be
studied.

(3) Discrete/binary PSO algorithm. Most research liter-
atures reported in this paper deal with continuous
variables. Limited research illustrated that the PSO algo-
rithm had some difficulties in dealing with the discrete
variables.

(4) Aiming at the characteristics of different problems,
designing corresponding effective algorithm is a very
meaningful work. For the specific application problems,
we should deeply study PSO algorithm and extend its
application from the breadth and depth. At the same
time, we should focus on the highly efficient PSO design,
combining the PSO with optimized problem or rules,
PSO with the neural network, fuzzy logic, evolutionary
algorithm, simulated annealing, taboo search, biological
intelligence, and chaos, etc, to cope with the prob-
lem that the PSO is easy to be trapped into the local
optima.

(5) PSO algorithm design research. More attention should
be emphasized on the highly efficient PSO algorithm
and put forward suitable core update formula and effec-
tive strategy to balance the global exploration and local
exploitation.

(6) PSO application search. Nowadays, most of the PSO
applications are limited in continuous, single objective,
unconstrained, deterministic optimization problems, so
we should emphasize the applications on discrete, multi-
objective, constrained, un-deterministic, dynamic opti-
mization problems. At the same time, the application
areas of PSO should be expanded further.
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