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Investigation into Whether

Proximal Suspensory Desmitis of
the Hindlimb Could Predispose
Horses to Sacroiliac Disease
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Abstract

Proximal suspensory desmopathy/desmitis (PSD) of the hindlimb is a well
understood condition with widely accepted treatment protocols; however, there
is little research demonstrating understanding or potential correlation between
hindlimb PSD and sacroiliac disease (SID). Several studies have examined the
co-existence of hindlimb PSD and SID each investigating unique predisposing
factors. This has led to little direct correlation of cause and effect with no definitive
conclusions drawn. The need to be objective is highlighted by the limited number
of studies and that two studies used anecdotal evidence to support their hypothesis
and thus creating the question does hindlimb proximal suspensory desmopathy
predispose horses to sacroiliac disease? This review looks at the two conditions and
compares the literature for each, including the incidence, biomechanics, anatomy,
and treatment. The review further discusses whether one disorder predisposes
horses/equids to the other.

Keywords: hindlimb proximal suspensory desmitis, sacroiliac disease, lameness,
equine, sacroiliac joint, interosseous, kinematics

1. Introduction

The objective of this review was to assess whether there is a correlation between
hindlimb proximal suspensory ligament desmopathy (hindlimb PSD) and sacroiliac
dysfunction (SID), and provide an understanding of the current thought process
of examining these disorders. There are several studies examining the coexistence
of back pain and poor performance, however for the most part, the discussion
focusses on the efficacy of diagnostic techniques of the thoracolumbar region with
some recognition of influencing factors [1-3]. Some authors have assumed a cor-
relation between the two disorders in their treatment programmes [4, 5] but none
quantified the association or correlation of the two conditions. There are limited
studies that have looked at the structure of the sacroiliac region and applied those
principles to locomotion [2] however there are many text books that describe the
structure alone [6, 7]. This chapter explores the two conditions and explores the
background and present theories behind hindlimb PSD and SID.
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1.1 Sacroiliac joint structure and function

The sacroiliac joint lies deep within the pelvis of the horse, made up of the
sacrum (five vertebrae fused together) and the surrounding ligaments. It is known
as an atypical synovial joint [2] and a cartilaginous joint [7]. The iliac surface has
fibrocartilage coverage, with the sacral surface lined with hyaline cartilage, thus
creating a modified symphysis [8]. There is great variation in the joint form from L
shaped to C shaped either being relatively flat or concaved, although most are at an
angle of 30° [2].

The sacroiliac joint lies between the ilium wings, forming a synchondrosis that
is held in place by a multitude of ligaments. These ligaments are called the dorsal
and ventral sacrosciatic ligaments and the broad sacrotuberous ligament [7]. The
dorsal sacrosciatic ligament has two elements, a band that runs from the dorsal
tuber sacrale to the apex of the sacral spinous processes; with the lateral dorsal
sacrosciatic ligament running from the tuber sacrale and ilial wing to the sacral
crest on the lateral aspect. The broad sacrotuberous ligament runs from the sacrum
and transverse processes of the 1st and 2nd caudal vertebrae to the ischiatic spine
and tuber ischium [2, 7]. The function of this joint is to provide a relatively inelastic
structure that is capable of asymmetric pelvic deformation during movement [2, 9].
The muscle structure of the back plays significant influential roles in both anatomy
and biomechanics.

The movement of the horses back differs depending on the location and medio-
lateral swing of body mass; dorsoventral movement is seen with the greatest being
middle of the back (40-47 mm per peak per stride) with a reduction cranially and
caudally [10-12]. The natural movement of the lumbosacral area and the hindlimb
produce a sinusoidal movement of no more than 4° within each stride cycle.
Extension within this sinusoidal curve starts just moments before ground contact
with the hoof, with the hindlimb at maximal protraction. In the sound horse this
means that movement of the sacroiliac joint is minimal as longissimus dorsi is inactive
in the impact and support phase of the flight arc of the hoof, in theory resulting ina
stable joint [12-14]. Having said that linear regression revealed a significant devia-
tion in movement over Lumbar 1 and Sacral 3 correlated to increasing speed [12].
This indicated that the movement of the back and sacroiliac joint is complex [2] and
changes with every change in pace (Figure 1) [11].

The movement within the joint is assumed to be little [15] due to the middle gluteal
and surrounding ligaments holding it in place. Despite this, a series of studies of the
human sacroiliac joint revealed adaptations to forces transmitted through the joint;

Tuber sacrale
Sacrum

Broad sacrotuberous ligament

Deep dorsal sacroiliac ligament

Tuber ischii —— (

Figure 1.
Schematic of the right lateral view of the pelvis showing the position of the sacroiliac joint between the wings of
the ilium and wing of the sacrum and the sacrotuberous ligament (adapted from [2]).
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which was seen as roughened areas on the contrasting surfaces [16]. Comparable
studies of the equine sacrum have looked at nutational forces to determine the degree
of movement and suggested there is limited movement [2]. However, another investi-
gation raised the interesting point that when the sacrotuberous ligament was cut there
was a marked increase in movement [2]. This would seem obvious, as its function

is to reduce movement but does suggest that ligament damage or laxity could cause
increased asymmetrical movement which in itself could have an adverse effect on the
soft tissue structures of the distal limb.

1.2 The interosseous muscle structure and function

The structure of the third interosseous muscle, also known as the suspensory
ligament, the middle interosseous muscle or the interosseous ligament, is relatively
straight forward. It originates from the proximal palmer surface of the metacarpal
bones, running distally where just proximal to the sesamoid bones it bifurcates
inserting on to each of the two sesamoid bones. From here it travels as the extensor
branch joining the common digital extensor tendon. Even though it is termed a
muscle, it is believed that once the horse matures it becomes completely collagenous
in nature [7]. However, this is an over simplification as others describe the ligament
as having a reduction of muscle fibres [17], while still retaining some which reduce
with increased age [18, 19]. Muscle fibres quantitation showed a difference of 40%
between the Thoroughbreds and Standardbreds with the Thoroughbred having
less muscle fibres than its counterpart, with more muscle content being found in
the hindlimb suspensory ligament than the forelimb [20]. It was also noted that the
proximal region of the suspensory ligament contained less muscular tissue [19, 21].
This work also showed that the number of muscle fibres reduced with increased
work intensity, thus suggesting that the suspensory ligament becomes less elastic
and more susceptible to strain with increased work load (Figure 2).

The composition of the interosseous muscle is something of a hybrid, with the
majority being collagen fibres but approximately 10% being type I muscle fibres
and less than 5% type Il muscle fibres. The suspensory ligament is defined by the
infrequent fibroblasts embedded in the collagen matrix. These fibres are dispersed
differently throughout the length of the ligament. Proximally, they are grouped as
loose fascicles medially and laterally with the greater concentration just below the

Interosseous ligament

Extensor branch
of interosseous
ligament

Figure 2.
Schematic left lateral view showing the intevosseous ligament of the hindlimb (adapted from Budras et al. [6]).
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surface. As it reaches the three quarter mark they become less distinct, fewer in
number with reduced striations. Interestingly these fibres are arranged pinnately
between 45 and 80° [17, 22, 23] leading to theories that high forces are created
because of the greater pinnate angle in order to stabilise the joint and indications
that its purpose is anti-fatigue and postural support [24]. This was supported
further by the suggestion that the elasticity of the lower limb, creating a vibration
of 30-40 Hz, needs damping to reduce the likelihood of damage to tendons or
bones and that this is achieved through these short muscle fibres [25, 26]. Due to the
elastic nature of the suspensory ligament, it is unable to cope with sudden surges in
force and is not built to deal with increased amounts of fatigue [27, 28]. It has also
been noted that as the age of the horse increases so does the stiffness of a tendon
unit which in turn could induce a change in kinematics [29].

1.3 Elastic strain energy

It is commonly understood that tendons and ligaments play an important role
in elastic strain energy during locomotion. Humans and ungulates have evolved to
have more efficient locomotory systems; with equine evolution determining the
distal limb muscle mass would not only be challenging to manoeuvre but very costly
in terms of energy expenditure. Thus we see tendons and ligaments in the distal
limb as a means of storing elastic energy [25, 28, 30-33]. In order for the horse to
utilise this mechanism within the suspensory ligament the energy from the ground
reaction force is stored as strain energy to retract the limb [27, 32] helping to pro-
duce the break over point [34].

The function of the suspensory ligament is to stabilise the metacarpophalan-
geal joint and hindlimb in preventing hyper flexion in locomotion but also to act as
part of the stay apparatus in preventing collapse of the fetlock joint when immo-
bile [35, 36] effectively acting as passive control [17, 28]. However, the suspensory
ligament differs slightly in its role compared to the other tendons of the distal
limb. For example, the maximal stress the superficial digital flexor tendon (SDFT)
and deep digital flexor tendon (DDFT) functions at is 40-50 MPa (mega-pascal
units) compared to the suspensory ligament functioning at 18-25 MPa when in
gallop; of course this is maximal output and decreases with decreased speeds. To
gain a relative perspective, muscles work at 200-240 MPa. By comparison this
seems quite small but provides an elastic energy saving of 25% for the suspensory
ligament and 40% for the SDFT and DDFT which translates into an energy saving
of 1.23 J/Kg at trot and 6 J/Kg at the gallop [33]; thus reducing metabolic expendi-
ture [25, 31].

Biewener [31] calculated the peak activity stress mean standard deviation on
the fore and hindlimb suspensory ligament with 53 + 14% from walk to trot and
23 £+ 19% into gallop. When ground reaction forces are considered and coupled
with an increase in pace, the change in stress has an astonishingly small mean of
4%. This could be due to the kinematic calculation methods or potentially due to
the biomechanical nature of the suspensory ligament. As the hoof makes contact
with the ground, the suspensory ligament briefly stretches as a reaction to the
ground reaction force and the sinking action of the metacarpal-phalangeal joint.
The ligament then shortens to create an anti-hyperextension force. This elastic
strain energy depends greatly upon the tendon shape and volume. These are varied
as the suspensory ligament bifurcates distally resulting in a greatly reduced cross
sectional area, leaving it under greater stress and strain [25, 31]. The elastic prop-
erty of the lower limb is also heavily influenced by the individual gait pattern of
each horse.
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1.4 Kinematics and kinetics of locomotion

In order to understand the process of veterinary examination and its resultant
observations; it is imperative to fully understand the kinematics and kinetics of
the locomotion of the horse. The structure and function of the cursorial musculo-
skeletal systems have evolved to provide structures and patterns of movement that
favour acceleration, manoeuvrability speed and endurance [30, 37, 38] which has
been harnessed over centuries for various disciplines such as racing and dressage.

It is also important to note the influence central pattern generators (CPG) and
proprioception have on the biomechanics of the horse. The regulated rhythm of
a pace is created by the CPG neurons which are capable of generating the stimuli
and therefore a rhythmic motor behaviour. Even though some believe that the CPG
neurons are capable of producing this regulatory rhythm without stimulus, sensory
feedback is still required [39, 40]. Minute differences the timings or intensity of
these impulses of the right and left central pattern generators cause asymmetrical
movement [41]. Horses that have modified their locomotory movement in an
attempt to compensate for discomfort or pain of either hindlimb PSD or SID will in
effect cause the CPG neurons to adapt their “pacemaker” like outputs; thus creating
a new norm for the horses locomotion [38].

Locomotion occurs as a result of torque at the hip joint [42, 43] and ground
reaction forces exerted on the hoof which in gallop can be as much as 2.5 times the
horses body weight [44, 45], with equal magnitude working in the opposite direc-
tion providing propulsion [46]. Therefore, it is worth considering the kinematic
pattern of hoof placement, to determine how the pathology of SID and hindlimb
PSD may occur. The structure and function of the cursorial musculoskeletal
systems have evolved to provide structures and patterns of movement that favour
acceleration, manoeuvrability speed and endurance [30, 37].

The hoof does not hit the ground with a total sole impact, but instead, as a mea-
sure of control, impacts the ground with the lateral edge. This reduces the concus-
sive effect of the initial ground contact [47, 48]. It is important to remember that the
hoof at ground contact is moving forward and downward during the initial loading
phase [38]. The degree of impact when the hoof hits the ground is determined by
several factors; the 57:43% split of vertical impulse for fore and hindlimb respec-
tively [23, 38], the hoof mass, size and shape of the hoof, contact surface, type of
shoe i.e. racing plate or hunter with or without grips or studs. These all influence the
vertical and horizontal hoof velocity, and degree of slip [37, 38, 49]. The degree of
lameness also has a large influence on interplay between hoof and ground reaction
force [14].

Several studies have analysed hoof velocity [38, 44, 50], two of which have
considered horizontal hoof velocity of fore and hindlimbs; one demonstrating
the greatest being in the non-leading limb [49] and other the leading limb [51].
The hoof velocity and leading limb has important implications to the structures
in the hindlimbs; if it is the forelimb the majority of the velocity will be absorbed
by the thoracic sling, if it is the hindlimb the velocity can only end at the sacroiliac
joint, although this is greatly simplified. Having said that, longitudinal velocity
reduces (regardless of limb) as the horse starts to break in early stance phase. In
this early phase the hindlimb suspensory ligament (third interosseous muscle) is
at its peak inertial capacity to prevent hyper extension, while at the same time the
pitch avoidance movement of raising the head and neck backwards increases forces
on the pelvic limb, as the weight is shifted backwards in the late stance phase.

This increases propulsion of the moment arms of the hindlimbs, creating oscillat-
ing forces though the hindlimb [28, 52]. These oscillating forces are created with
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hoof-ground impact causing the limb to vibrate in a craniocaudal movement at
30-40 Hz, the greatest impact being distal in the limb. The muscles of the hindlimb
act as adequate shock absorbers however risk of soft tissue damage increases with
the increase in loading cycles [26]. This suggests that the greater the work load

and discipline level of the horse, the more likely they are to sustain an injury. One
method of removing force is slipping or sliding. The hoof is designed to allow an
element of slip as a natural method of dissipating energy [53] however if sliding
continues in the right conditions this can increase the risk of damage to soft tissue
structures. Coupled with the ground reaction forces, this means that there are two
opposing forces meeting at the horizontal axis, namely the sacroiliac joint [51].

1.5 Conformation of the horse

There are many variable factors when considering the relationship between
hindlimb PSD and SID; one of which is the natural biological variation in every
horse, in that no two are exactly the same in conformation which ultimately
enhances or impedes function. Discipline desirable traits have been documented for
enhancing performance, such as the warmblood breeds for dressage, with greater
hock angle reducing the incidences of injury compare to those with smaller hock
angles [54, 55]. However, this was refuted in a later study of 66 warmblood horses
that had the supposedly undesirable tarsal joint angle of <155.50° [56]. This was
agreed with in another study examining the hock angles of 194 Warmblood horses
with hindlimb PSD [57]. Hobbs et al. [54] described a selection of horses that had
variations between contralateral limbs conformation and those with bone morphol-
ogy variance in contralateral limbs [58]. The results of these differences may induce
compensatory movements in an attempt to redistribute the weight through the
stride cycle. In an attempt to counter this, and stabilise the gait, the hindlimbs may
start to load in a pattern similar to a lame horse. Having said that this load distribu-
tion pattern may come from the horses’ handedness. This raises the question, if the
horse is not physiologically capable of creating vertical impulsion (due to straight
hocks), how and where will this affect the soft tissue structures in the hindlimb?

Asymmetries come in many forms, however each will have a marked effect on
the biomechanics of the horse and more importantly the ground reaction forces; in
the horses attempt to maintain equilibrium [54]. Of course, this need to maintain
stability has different ground reaction forces depending on breed. Elite dressage
Lusitano horses had lower vertical impulses compared to their Dutch Warmblood
counterparts in collected trot with a range of 1.64 + 0.02 N/Kg and 1.90 + 0.08 N/
Kg respectively. However this evened out with a change from collected trot to
passage, with minimal difference being seen. Nevertheless, the key point in this
is that the centre of mass is moved closer to the hindlimbs in the higher move-
ments. Heim and co-authors [11] demonstrated a significant difference between
Franches-Montagnes stallions (n = 27) and a general populous of horses (n = 6) in
the dorsoventral movement (p < 0.02) and mediolateral movement (p < 0.01) for
the spine, although to say this is a generalisation of differing anatomical parts and
their role in locomotion. There is also the influence of the rider to consider here; not
only as their body mass is part of the calculation but as the elite rider is capable of
re-balancing even the most uneducated of horses to maintain the uphill longitudinal
balance that is required of a dressage horse [59]. Dyson and colleagues [60] refuted
this in their pilot study of rider weight, in that the weight of the rider had a greater
significance than body mass index. Although this situation is not definitive, as there
are many influencing factors in this scenario. For example, the balance of the rider
and the dynamics between saddle and rider, both of which have a role in distribu-
tion of forces. In essence if the rider is displaced by an ill-fitting saddle or the rider
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is inexperienced the horse has to re-balance itself in order to compensate [10, 44],
which in itself produces compensatory locomotion. Another interesting factor
relating to distribution of forces, body movement and rider interaction was demon-
strated during the heavy and very heavy rider trials, as the horse demonstrated 3/8
lameness (based on the 0-8 grade lameness scale where 0 is sound and 8 is non-
weightbearing) with these heavier riders [60]. The thoracolumbar width changed
with weight of rider, from 3.9% with a light rider to 2.8% with a heavy rider. Heim
et al. [11] noted that there was less mediolateral movement in the vertebrae when
under saddle, with a difference of approximately 10 mm in the 3rd lumbar vertebrae
as compared to an 8 mm difference in the movement of the tuber sacrale. This
suggested that the horses may be bracing themselves against the movement of the
heavier rider. However this was an observation and not a direct conclusion. It was
also suggested that the interactive surface between horse and rider, the saddle, if
not fitted correctly increased the mediolateral movement of the rider, which led to
their conclusion that the closer contact the rider has with the horse the more likely
they are to be working in equilibrium with them [10].

1.6 Conformation of the hoof and influence of shoeing

The conformation of the hoof capsule and the angle of the internal structures
have a role to play in suspensory ligament desmopathy and limb kinematics. A
significant level of research focusses on the correlation between the navicular bone
angle and force applied to the deep digital flexor tendon [44, 61]. Although the
research was not directed at the hindlimb suspensory ligament; their findings still
shed light on this area due to the anatomical angle of bordering structure and limb
kinematics. The shape of the hoof has been reported to change the kinetics and
kinematics of the distal limb. Dyson et al. [61] reported that the distal phalanx to
hoof wall angle and distal phalanx to horizontal angle were smallest for deep digital
flexor tendon injuries at 52.27° + 3.29 and 50.32° + 3.70 (mean + SD) respectively.
However, it would seem there was no direct correlation between that and the angles
of the hoof wall. Research suggests that optimal hoof angles for both front and back
feet should be 50-55° [62]. In addition, minimal correlation between the dorsal
aspect of the distal phalanx angle and deep digital flexor tendon injury has been
found and the hoof wall angle was not the same as the distal phalanx angle [61],
which could account for natural variation in hoof pastern axis.

The deviation of distal phalanx angle affects the orientation of the structures
above it and subsequently the metacarpophalangeal joint; which in turn has the
potential to cause soft tissue injuries [63, 64]. This is because the ground reaction
forces are reduced delaying break-over to latter breaking phase [64] whereas the
horse should have increased loading at this point [62, 65]. This has the potential to
reduce the strain on the interosseous muscle but could also inhibit the elastic strain
energy needed to create its passive force.

Kane et al. [63] identified 43 race horses with ruptured suspensory ligaments
with lower heel and toe angles; for example the difference between the toe heel
angle control group and those with suspensory apparatus failure was 1.3° less, a
relatively small number in terms of angles but quite significant over the lifetime of a
horse. In real terms this means that an increase in angle of 10° increases the chance
of suspensory ligament failure by 6.75 times [63].

Shoeing has been used since domestication of the horse as a means to improve
performance and help maintain hoof balance. The combination of farriery tech-
niques like rolled toes, plus different types of shoe have a significant effect on the
horse’s feet and their movement [34, 45, 66]. It could be assumed that the applica-
tion of the shoe would only affect the gait pattern of the horse but an 11% vertical
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displacement of the trunk has been observed [66], which implies a physiological
effect of the structures of the back over a lifetime of a horse. Different types of
shoe also have varying effects on the horse [67]. The glue on heart bar increased
strain of the suspensory ligament while the racing plate alone increased strain

in the superficial digital flexor tendon, interestingly when packing was added to
the racing plate the increased strain was seen in the suspensory ligament. Others
demonstrated an increase force of 101 N between the unshod and the steel shod
foot [45, 66]. However, when looking at this in greater detail it can be seen that
there is a difference in kinetics between the two states. By comparison the shod foot
remains medial throughout the entire stance phase putting greater strain on the
medial aspect of the limb structures. This is due to the gripping nature of the steel
shoe which effectively shortens the natural slip effect of the bare foot and increases
musculoskeletal forces after impact, altering the dampening effect of the suspen-
sory ligament and preventing hoof and frog expansion on impact [34]. The stride
duration also increased with the application of a shoe from (mean) 694 to 706 ms as
did the stride length from 2.78 to 2.82 m; with the stride protraction and retraction
decreasing after the application of shoes. This was seen as the carpal joint extending
later in the swing phase and the foot being behind the movement at impact [66].
The unshod foot lands medially to then shift laterally at mid stance to then move
back again medially. The application of a metal shoe removed the hoofs natural
cycle of wear from the equation, which proved to be beneficial for the horse when
assessing the morphology of 100 feral Brumbies [68]. Increased substrate hardness
and distance travelled reduced the likelihood of hoof wall flare, however a possible
negative of this is the loading of the peripheral sole in locomotion as well as the
expected loading of the hoof wall [68].

1.7 Influence of discipline

There are many influencing factors when taking into consideration the rela-
tionship between horse and rider; the riders ability to control their balance, the
weight of the rider and the fit of the saddle, all of these factors can have an effect
on the equilibrium and the physiology of the horse. The influence of rider weight
on horse movement has also been investigated. Riders were classified as light,
medium, heavy and very heavy; all of which were classified as experienced riders
[69]. Horses were subjectively and objectively observed with inertial sensors to
determine movement at the poll and pelvis, each horse was then assessed with each
rider. All heavy and very heavy rider assessments were abandoned due to temporary
lameness inducement, suggesting a biomechanical change with the introduction of
a dynamic load. In a study that used a lead weight added to the saddle they found
the addition of weight extended the spine [70]. Thoracolumbar width changes have
also been observed in another study, differing by 7.3% from the lightest to heavi-
est riders [71]. Variables such as saddle fit were accounted for by Master Saddlers
checking prior to the tests being ridden and on the days of the test being ridden.
However oscillation of the saddle in trot was reported with all rider weight groups;
very heavy 14.0%, heavy 50.0%, medium 76.9% and light 84.6%, although there
was no depth of discussion as to the occurrence of this except to say not all saddles
fitted perfectly. Saddle bounce also occurred with the very heavy rider on 4 out of 6
horses, although this was associated with the horse being crooked in canter. Having
said that, in the objective gait analysis a pelvic minimal difference of 2.2 + 4.8
(mean + SD) was observed [72].

Influential factors also include rider height and leg length, as this affects the
fit of the saddle for both horse and rider, plus the rider’s core strength for which it
is assumed that an increase in core strength would reduce rider movement in the
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saddle. One of the stark conclusions drawn from this study was that lameness was
observed in most of the horses when being ridden regardless of rider weight (that
was not apparent in hand) and that the heavier riders consistently induced severe
lameness [71, 72]. This research did not answer the question of rider weight ratio
but it highlighted the importance of a well-fitting saddle and the role that it plays in
maintaining normal gait patterns for that horse.

An important consideration is also the discipline of the horse and the move-
ments they are required to perfect. An example of this was elite dressage horses
which are required to produce collection; “maintaining impulsion from behind to
allow a lighter shoulder”, to carry out higher level movements thus distinguishing
the important factor of higher proportion of bodyweight carried by the pelvic limb
[73]. Although this was recognised there was no appreciation that the movement
must originate in the sacroiliac joint. Furthermore the link between tarsal joint
compressions was made but not associated to orthopaedic injury. However this
point was contradicted by the description that the greatest movement of the SIJ to
be on the transverse plane [2]. This allowed for a wider overall viewpoint comparing
the likelihood of SID by disciplines; with dressage horses and show jumpers being
more susceptible [2]. This suggested that SID is induced by the greater degree of
collection required of each discipline and increased angles of the moment arms of
the hindlimbs, in effect reducing stability of the joint.

Data analysis primarily segregates elite and non-elite horses in order to classify
gross morphology [73], demonstrating the understanding that each discipline has a
differing physiological impact. This is then subdivided to location or type of injury.
Conversely, they did not make the distinction in forelimb and hindlimb suspensory
ligament injuries, and although there were a significant number of classifications
observed, it was not stated whether these were distinct individual injuries or if the
horses had sustained more than one [73]. However Barstow and Dyson [1] went
a step further and subdivided their cohort into sacroiliac pain only and sacroiliac
pain with hindlimb lameness; thus starting to demonstrate a correlation between
the two. In comparison, others recognised the presence of other abnormalities but
mainly focussed on osseous changes [74]. Dyson [61] considered an alternative
perspective of tarsal conformation predisposing horses to PSD and acknowledged
biomechanics as a possible influencing factor but again with no correlation to SID.

1.8 Surface variables

The surface that horses work on have to be taken into consideration as they
directly influence the impact on hoof loading (hoof sliding and the declarative
longitudinal forces) and therefore the reaction of the limb structures [38]. Surfaces
vary based on their composition, a ménage situation will have a hard under layer
with surface applied to a specific depth, while some race tracks will run on turf. The
most important element here is the cushion depth as this has the potential to absorb
some of the concussion [75, 76]. Having said that, a softer surface encourages the
toe to pivot causing a rotational force on the distal limb structures [38]. In a human
based assessment it was found that peak forces reduced with an increase in compli-
ant surfaces [76]. The compliance of track surfaces has also been examined, each
type of surface had a distinct effect on the hoof velocity and swing phase, with the
greatest deformation coming from the most compliant surface [75]. Even though it
was noted that this surface caused significant increases in stance time and angle of
hoof on landing, they did not draw any conclusions from this or discuss the soft tis-
sue implications for the horse. However, it does imply that the suspensory ligament
would have to sustain its force for a prolonged period and thus potentially fatigue if
longer stance time occurred. This concept was looked at in greater detail with the use
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of a dynamometric shoe applied to three race horses which showed that turf surfaces
had a greater ground reaction force (42.9 + 3.8 g; mean + SEM) compared to syn-
thetic surfaces which reduced the ground reaction forces significantly (28.5 + 2.9 g;
mean + SEM) [77]. This implies that there will be less impact on the soft tissue
structures of the hindlimb and subsequently the sacroiliac joint.

1.9 Lameness and evaluation

In order to gain a full understanding of the relationship between hindlimb PSD
and SID, the way in which the horse works, its discipline and level, plus the rider
influence and ability must be considered [73, 78, 82]. Barstow and Dyson [1] used
rider colloquialisms to aid quantification of lameness; this is very subjective even
when well versed in this terminology [12]. This highlights the need to be objective
and specific in pinpointing lameness. Similarly another study used anecdotal evi-
dence to support their hypothesis of sports performance level and orthopaedic injury
diagnosis, suggesting that this is frequently seen in practice but not yet documented
[73]. Having said that, some studies [4, 5] have noted that some horses may suffer
concurrent injuries of the sacroiliac joint or proximal suspensory (respectively) but
did not draw conclusions from this regarding cause and effect or relationship.

As already stated, it is difficult, if not impossible to ascertain where the pain is
coming from within the sacroiliac joint; one of the possibilities is the articular sur-
face. As the horse ages there is an increased likelihood of cartilaginous deterioration
irrespective of breed type or discipline. This deterioration and possible changes may
be the result of long term laxity of the surrounding ligaments [83] which in itself
could cause instability of the sacroiliac joint or degenerative suspensory desmitis
which would alter the gait pattern of the horse permanently [84]. Another factor,
of course, could be the ground reaction forces and the impact of hard work on hard
ground for sustained periods.

It is recognised that lameness of the hindlimb creates compensatory movements
within the lumbosacral region [74, 85]. Signs of subtle discomfort or pain are not
so easily detected. A reduction in equine motivation to work or refusing jumps
or bolting with their rider can be seen [4]. However, use of inertial measurement
units can make the process of assessing asymmetry objective. The assessment of
60 horses used for polo showed 36 horses (60%) demonstrated an asymmetrical
movement in the head, pelvic or both [86]. Statistical analysis linear regression
revealed none of these measures had a slope greater in difference than zero. This
tells us two things; that inertial measures are able to quantify small asymmetries
in the horse but the value of this in a lameness evaluation must be left with the
veterinary professionals to interpret. In reality this technology is not commonly
used in practice and the standardised approach is to use diagnostic nerve blocks to
determine the area of pain. However, this is not straight forward as they need to
be used in conjunction with clinical examination and imaging modalities. In fact
Pilsworth and Dyson [87] described clinically sound horses receiving a palmer
nerve block to have a change in gait. This was echoed by Denoix and co-authors
[88] when describing the pitfalls of sacroiliac nerve blocks, in that potential error
could cause a false positive. In contrast others focussed on the biomechanics of the
entire vertebral column [11, 82] but limited the discussion of the limbs to kine-
matics. This was echoed following assessment of the dynamic asymmetry of polo
ponies, which again reverberated the question of correlation and cause [89].

The need to be more specific was demonstrated by Murray et al. [73] in their
results making reference to thoracolumbar and pelvis but not specifically the SIJ. Goff
and co-authors [90] advanced this to identify degenerative changes of the SIJ causing
poor performance. However there is no correlation to unilateral or bilateral distal
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limb lameness. To emphasise the need to be unambiguous Murray et al. [73] used
alarge sample size (1069 horses), which potentially could be representative of the
equine population. However, as the study was conducted at a referral hospital it
would not represent primary veterinarians seeing acute injuries or stages of disease;
emphasising the need for a retrospective study of primary veterinary practices.

In a study by Barstow and Dyson [1] 296 horses were assessed for SIJ pain, of
which 203 (80%) showed hindlimb lameness with 181 specifically identified with
proximal suspensory desmitis (89% [94% bilateral, 6% unilateral]). Although this
represents relatively small numbers by comparison to sports performance studies
[73] its findings are significant and showed a direct correlation. Furthermore, the
work up of the horses was carried out by the same veterinarian reducing the likeli-
hood of subjectivity in gait analysis.

In a similar study the prevalence of orthopaedic injuries was examined, classify-
ing the horse by injury alone [91]. Having said that, discipline was acknowledged
but no relationship established; although the kinematics of the show jumper’s pelvic
limb were noted. A limitation of this study was that the information was extracted
from yard records rather than from veterinarian’s records. Furthermore the initial
assessments were made by several veterinarians potentially providing greater
diversity in objectivity of lameness detection. In contrast, a unique perspective
examining the likelihood of heritable degenerative suspensory ligament desmitis in
the Peruvian Paso was published [92]. Dyson [61] demonstrated an understanding
of this but also questioned conformation as a predisposing factor.

All of this begs the question as to how a horse with sacroiliac dysfunction and
hindlimb PSD can be identified? Generalised pain detection using facial expres-
sions has been used for many years with infants. Langford et al. [93] took this
principle and adapted it to form the mouse grimace scale for those used in biomedi-
cal research, this was hailed as a great success as a pain indicator. Miller et al. [94]
developed this further to include pain behaviours. The assessment of pain has
always been subjective and relative to the experience of the practitioner, formalis-
ing a grimace scale for horses [95] has made this an objective process for the equine
veterinarian. There are general indicators of pain as seen in the horse grimace scale
whereby an assessment of the horses facial postures are calculated on an ethogram
to determine general level of pain. For example, a horse with tension above the eye
alone may not be indicative of pain, but coupled with ears stiffly backwards and
prominent chewing muscles, it may indicate a level of pain [95]. The facial grimace
scale alone has been identified as limiting an ethogram for equine pain behaviours
both ridden and in hand has been developed [60]. Importantly this study ensured
its efficacy by refining its use with a “within observer repeatability study” to
confirm this as a suitable tool for quantifying pain behaviours. This concept was
taken a step forward in order to develop a scale for the ridden horse, for example
the horse moving on three tracks in trot or canter could be an indicator of sacroiliac
pain [69-96]. Some other indicators are a direct reflexion of the location of pain
such as bucking going into canter demonstrating pain in the sacroiliac region;
however, a horse at the very start of its education may resist the rider and buck out
of frustration. Having said that, persistent displays of these behaviours are a direct
indicator of pain [69]. There are many more subtle signs including asymmetry of
the tuber coxae and the tuber ischii that can be visually assessed by the practitioner,
asymmetrical muscle mass of the superficial gluteal and holding the tail to one
side can also be seen as pain indicators [97]. Saddle slip has also been identified as
an indicator of hindlimb lameness with a direct correlation between bilateral and
unilateral lameness (p = 0.344 and p = 0.286 respectively) [98]. This advancement
could improve criteria in determining the subtle variations in lameness between
sacroiliac dysfunction and hindlimb PSD.
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2. Conclusions

Research in the last 10 years has focussed on poor performance and diagnostic
techniques, back pain and biomechanics or suspensory ligament disease. The cor-
relation of information to demonstrate that lameness may be from one or more sites
in the horse is limited. This indicates the necessity for further studies to determine
whether there are correlations between hindlimb proximal suspensory desmopathy
and sacroiliac disease. Understanding whether correlations are present between
the two disorders could have an impact on evaluation and diagnosis, treatment and
recovery, prognostics and welfare.
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