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Abstract—This work describes a planning path-tracking con-
trol for a 6-axis robot manipulator in palettes assembly. Two
biologically inspired approaches motivated this work: the general
τ -J erk theory for trajectory tracking and a recurrent bi-layer
Hopfield artificial neural network. Equidistant Cartesian points
generate free-collision paths between the robot and the palette.
Nonlinear regression-based 3rd grade polynomials represents
polynomial assembling trajectories. A variational method opti-
mizes paths length. The method is validated through numeric
simulations, showing feasibility and effectiveness.

Index Terms—robotic-arm, assembling, model-based-control,
tau-theory, vision, Hopfield-neurons, by-layer-ANN

I. INTRODUCTION

Today’s manufacturing systems and organizations strongly
depend on the need to use numerous intelligent control tech-
niques and scientific computing models to fulfill their produc-
tion goals [1]. This work is motivated by the need to control
a 6-axis robotic arm in automatic assembling of self-locking
nylon ties in palettes of cable harnesses. The focus of this work
is inspired by two biological approaches for robot’s trajectory
tracking control: the general τ -Jerk theory for trajectory con-
trol [2] [3]; and a recurrent Hopfield-based bilayer ANN as
visual observer. The ANN outputs determine the target regions,
from which new assembling trajectories are generated. The
robot’s kinematic model was deduced for tracking motion con-
trol. A red-green-blue-Depth (RGB-D) visual sensor was fixed
at the scenario’s top location to obtain exteroceptive views
[5]. The RGB-D sensor provides both, 2D intensity-based
images and metric 3D cloud points. From multiple arbitrary
robot’s postures, different trajectories to the palette’s regions
of interest are yielded. The highest priority path is optimized
by minimizing two criteria: the robot-palette distance and the
path’s number of inflection points. In industrial manufacture,
robot arms are extensively deployed, SCARA-type robots [6],
peg-in-hole assembly tasks [7], [8], assembling for haptic-
device-based trajectory teaching and control [9], components
assembly on continuously-moving lines [12] or multi-robot
with multi-visual systems for automotive front wheel com-
ponents assembly [10]. Moreover, vision-based deep-learning
techniques [8] and research progress on neural networks for
controlling manipulators [11] for industrial applications are
becoming popularly used. Further, the τ theory establishes that
biological entities yield goal-directed motions from perceptual

Fig. 1. Kinematic diagram of 6-axis robotic arm (SIA20).

reflects depending on the world’s geometrical inter-relations.
In [13], an optimal trajectory planning technique of robot arms
involving kinematic motion constraints and values of velocity,
acceleration and Jerk was presented. The work [14] reported
a method to obtain optimal time-Jerk robot motion applying
5o B-spline interpolations to construct a path. Similarly, [15]
presented a meta-heuristic optimal path planner of a welding
robot. This paper is organized by the following sections.
Section II presents the kinematic model. Section III describes
the τ -Jerk model for path generation. Section IV indtroduces
the bilayer neural visual observer. Section V presents the path
optimization method. Finally, section VI provides conclusions.

II. ROBOTIC ARM KINEMATICS

The robot kinematics (showed in Fig.1) is deduced to its
1st-order linear matrix form. Let us provide the definition II.1:

Definition II.1. Let c0, c01, s2 represent a short notation of
functions cos(φ0), cos(φ0 + φ1) and sin(φ2), respectively.

Based on Definition II.1, the Cartesian model for robot of
Fig.1 is expressed by (1)-(3),

x = l1c1s0 + l2(c13s0c2 + s13s2)+

l3[c135s0c2c4 + s135c2s4 − c135s0s2s4 + s135s2c4],
(1)

for the y-component,

y = (l1c1 + l2c13 + l3c135)c0 (2)

and
z = l1s1s0 − l2(c13s0s2 − s13c2)−

l3[c135s0s2c4 − s135s2s4 + c135s0c2s4 − s135c2c4].
(3)
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It follows from previous position expressions that the first-
order derivatives describing the robot arm’s Cartesian speeds
ṗ is given in terms of the joints rotary speeds Φ̇. Thus, it
can be expressed in the linear matrix form as ṗ = J · Φ̇. The
matrix J is non stationary time-varying Jacobian matrix. The
Jacobian elements are deduced next by the functions partial
derivatives w.r.t. joints angular variables. Thus, the derivatives
for the function x are:
∂x

∂φ0
= l1c1c0 + l2(c13c0c2) + l3(c135c0c2c4 − c135c0s2s4),

(4)

∂x

∂φ1
= −l1s1s0 + l2(−s13s0c2 + c13s2)+

l3(−s135s0c2c4 + c135c2s4 + s135s0s2s4 + c135s2c4), (5)

∂x

∂φ2
= −l2(c13s0s2 + s13c2)−

l3(c135s0s2c4 + s135s2s4 + c135c0s2s4 − s135c2c4), (6)

∂x

∂φ3
= −l2(s13s0c2 − c13s2)−

l3(s135s0c2c4 − c135c2s4 − s135s0s2s4 − c135s2c4), (7)

∂x

∂φ4
= −l3(c135s0c2s4 − s135c2c4 + c135s0s2c4 + s135s2s4),

(8)
∂x

∂φ5
= l3(−s135s0c2c4 + c135c2s4 + s135s0s2s4 + c135s2c4).

(9)
Likewise, the partial derivatives of y w.r.t. joints angular

variables are given as:

∂y

∂φ0
= −(l1c1 + l2c13 + l3c135)s0, (10)

∂y

∂φ1
= (−l1s1 − l2s13 − l3s135)c0, (11)

∂y

∂φ2
= 0, (12)

∂y

∂φ3
= (−l2s13 − l3s135)c0, (13)

∂y

∂φ4
= 0, (14)

∂y

∂φ5
= −l3s135c0. (15)

Similarly, the partial derivatives of z w.r.t. joints angular
variables are
∂z

∂φ0
= l1s1c0 − l2(c13c0s2)− l3(c135c0s2c4 + c135c0c2s4),

(16)

∂z

∂φ1
= l1c1s0 + l2(s13s0s2 + c13c2)+

l3(s135s0s2c4 + c135s2s4 + s135s0c2s4 + c135c2c4), (17)

∂z

∂φ2
= l1s1s0 − l2(c13s0s2 − s13c2)−

l3[c135s0s2c4 − s135s2s4 + c135s0c2s4 − s135c2c4], (18)

∂z

∂φ3
= l2(−s13s0s2 − c13c2)−

l3(−s135s0s2c4 − c135s2s4 − s135s0c2s4 − c135c2c4), (19)

∂z

∂φ4
= l3[−c135s0s2s4−s135s2c4+c135s0c2c4+s135c2s4]

(20)

and
∂z

∂φ5
= l3(−s135s0s2c4 − c135s2s4 − s135s0c2s4 − c135c2c4).

(21)
Furthermore, the robot’s end-effectors pose (Euler orientation)
is modeled by its pitch α = φ1+φ3+φ5, roll β = φ2+φ4 and
yaw γ = φ0 angles. The Jacobian works as a controllability
matrix that keeps time-varying converging error by successive
approximations in control loop, as given by Proposition II.1.

Proposition II.1. The kinematic model describes the geomet-
ric constraints in terms of its independent control rotary joints:

ẋ
ẏ
ż
α̇

β̇
γ̇

 =



∂x
∂φ0

∂x
∂φ1

∂x
∂φ2

∂x
∂φ3

∂x
∂φ4

∂x
∂φ5

∂y
∂φ0

∂x
∂φ1

0 ∂x
∂φ3

0 ∂x
∂φ5

∂z
∂φ0

∂x
∂φ1

∂x
∂φ2

∂x
∂φ3

∂x
∂φ4

∂x
∂φ5

0 ∂α
∂φ1

0 ∂α
∂φ3

0 ∂α
∂φ5

0 0 ∂β
∂φ2

0 ∂β
∂φ4

0
∂γ
∂φ0

0 0 0 0 0


·



φ̇0

φ̇1

φ̇2

φ̇3

φ̇4

φ̇5


.

(22)

The errors are feedback terms that converge by the Ja-
cobian, decreasing overtime. From previous deductions, the
general 1st-order derivative kinematics was analytically ob-
tained as (22), which will take a relevant roll in the τ −J erk
formulation subsequently.

III. τ -J erk TRAJECTORY GENERATION

The bioinspired τ theory works for any perceptual system,
particularly when interacting with close objects. All control
motion tasks are mainly purposed to reduce the spatial sepa-
ration through a motion-gap. A system has a τ model related
to a type of gap, which might be represented by a distance,
angle, force, etc [17]. A motion-gap is a spatial distance with
remaining time τ(t) between the actual motion in progression
and the target being reached, thus

dx

dt
=
x

τ
, (23)

where speed dx/dt of a current motion-gap is located at gap x.
By dropping-off τ and rearranging the form of state variables,

τ(t) =
x(t)

dx/dt
=
x(t)

ẋ(t)
. (24)

In Cartesian acceleration, a robotic arm begins and ends in
zero, hence, the acceleration can be coupled to the position
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gap at the end of the motion. According to the general
τ theory, the τ -gap is defined as the expression (24). By
coupling the τ -gap through expression (25), two or more
objective functions can be coupled allowing them to close all
their gaps simultaneously. The coupled equation for gap τq
depends on another gap τp with constant parameter kq,p that
is proportional to displacement x(t) for gap q and p,

τq = kq,p · τp, (25)

and for the gap q, it is defined by

q = C · p1/kq,p . (26)

Hence, q0 = x0 and p0 compound the total period of time
T to close the Jerk-gap. Thus, following previous expression,
the constant value C is defined as

C =
q0

p
1/kp,q
0

, (27)

where q0 is the initial and final state difference of the gap q.
Further, p0 is the initial and final states difference of gap p,

C =
q0

p
1/kp,q
0

p1/kqp (28)

From coupling equation (25) the gap x is coupled with an
intrinsic gap produced by a J erk (over acceleration) [m/s3],

xJ =
1

6
J T 3

d −
1

6
J t3, (29)

the first-order derivative is obtained as a solution of the jerking
effect displacement xJ by

ẋJ =
1

2
J t2. (30)

In addition, the 2nd-order derivative as function of time is

τJ (t) =
x

ẋ
=

1

3

(
t− T

3
d

t2

)
, (31)

when p0 = T 3 and p = T 3− t3 and substituting into equation
(28), the following expression comes up,

x(t) =
x0

T 3/kp,q

(
T 3 − t3

)1/kqp
, (32)

where (32) is the robotic arm Cartesian position (Figure 2).
The spatial position p ∈ R3 such that p = (x, y, z)> and
pd = ‖p‖ and p(t) = ‖p(t)‖. Hence, to find a distance gap
4p = pd − p(t), which is substituted in

p(t) =
4p
T 3/kp,q

(
T 3 − t3

)1/kqp
. (33)

Therefore, for the inverse solution (angles φi), the gap is stated
in terms of angles 4φ = φd − φ(t), thus

φ(t) =
4φ
T 3/kp,q

(
T 3 − t3

)1/kqp
. (34)

The τ -Jerk method does not directly/inversely relate the an-
gles with Cartesian positions of the kinematic system, but the
gap-specific variable is determined instead. A mathematical
method to solve the inverse of a system of non linear equations

Fig. 2. τ -Jerk at different κ and T = 2.0, x0 = 2.0.

(1)-(3) and α, β, γ are required. The multivariate Taylor series
(35) yield six equations and independent variables. To find the
roots, a nonlinear system is linearized by truncating up to the
2nd term, expressed by

x(Φ) = xt + (φ0t+1 − φ0t)
∂xt
∂φ0

+ · · ·+ (φ5t+1 − φ5t)
∂xt
∂φ5

y(Φ) = yt + (φ0t+1 − φ0t)
∂yt
∂φ0

+ · · ·+ (φ5t+1 − φ5t)
∂yt
∂φ5

z(Φ) = zt + (φ0t+1
− φ0t

)
∂zt
∂φ0

+ · · ·+ (φ5t+1
− φ5t

)
∂zt
∂φ5

α(Φ) = αt + (φ0t+1
− φ0t

)
∂αt
∂φ0

+ · · ·+ (φ5t+1
− φ5t

)
∂αt
∂φ5

β(Φ) = βt + (φ0t+1
− φ0t

)
∂βt
∂φ0

+ · · ·+ (φ5t+1
− φ5t

)
∂βt
∂φ5

γ(Φ) = γt + (φ0t+1
− φ0t

)
∂γt
∂φ0

+ · · ·+ (φ5t+1
− φ5t

)
∂γt
∂φ5

(35)

Thus, the system is algebraically reorganized, grouping at
the left-sided of equality the unknown Φt+1, which is the
solution of interest. At right-sided, the known terms at t are

∂xt
∂φ0

φ0t+1
+ · · ·+ ∂xt

∂φ5
φ5t+1

= −xt +
∂xt
∂φ0

φ0t
+ · · ·+ ∂xt

∂φ5
φ5t

∂yt
∂φ0

φ0t+1
+ · · ·+ ∂yt

∂φ5
φ5t+1

= −yt +
∂yt
∂φ0

φ0t
+ · · ·+ ∂yt

∂φ5
φ5t

∂zt
∂φ0

φ0t+1 + · · ·+
∂zt
∂φ5

φ5t+1 = −zt +
∂zt
∂φ0

φ0t + · · ·+
∂zt
∂φ5

φ5t

∂αt
∂φ0

φ0t+1 + · · ·+
∂αt
∂φ5

φ5t+1 = −αt +
∂αt
∂φ0

φ0t + · · ·+
∂αt
∂φ5

φ5t

∂βt
∂φ0

φ0t+1 + · · ·+
∂βt
∂φ5

φ5t+1 = −βt +
∂βt
∂φ0

φ0t + · · ·+
∂βt
∂φ5

φ5t

∂γt
∂φ0

φ0t+1
+ · · ·+ ∂γt

∂φ5
φ5t+1

= −γt +
∂γt
∂φ0

φ0t
+ · · ·+ ∂γt

∂φ5
φ5t

(36)

The system is expressed by Proposition III.1,

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 12:49:52 UTC from IEEE Xplore.  Restrictions apply. 



2021 International Siberian Conference on Control and Communications (SIBCON) 
 
 

Proposition III.1. The inverse kinematic solution in the linear
matrix form is Jt ·Φt+1 = ζt, or

∂xt

∂φ0

∂xt

∂φ1
. . . ∂xt

∂φ5
∂yt
∂φ0

∂yt
∂φ1

. . . ∂yt
∂φ5

∂zt
∂φ0

∂zt
∂φ1

. . . ∂zt
∂φ5

∂αt

∂φ0

∂αt

∂φ1
. . . ∂αt

∂φ5
∂βt

∂φ0

∂βt

∂φ1
. . . ∂βt

∂φ5
∂γt
∂φ0

∂γt
∂φ1

. . . ∂γt
∂φ5


·


φ0t+1

φ1t+1

φ2t+1

φ3t+1

φ4t+1

φ5t+1



=



−xt + ∂xt

∂φ0
φ0t

+ · · ·+ ∂xt

∂φ5
φ5t

−yt + ∂yt
∂φ0

φ0t
+ · · ·+ ∂yt

∂φ5
φ5t

−zt + ∂zt
∂φ0

φ0t
+ · · ·+ ∂zt

∂φ5
φ5t

−αt + ∂αt

∂φ0
φ0t

+ · · ·+ ∂αt

∂φ5
φ5t

−βt + ∂βt

∂φ0
φ0t

+ · · ·+ ∂βt

∂φ5
φ5t

−γt + ∂γt
∂φ0

φ0t
+ · · ·+ ∂γt

∂φ5
φ5t


. (37)

The non-stationary matrix Jt is the Jacobian as in (22). The
vector prediction Φt+1 = (φ0t+1 , . . . , φ5t+1)

> is the solution
to be found. Where ζt is the vector of current known valued
functions and angles. Thus, the inverse solution is

Φt+1 = J−1
t · ζt. (38)

When all values at time t allow calculating predictions at time
t+1, the time is updated t = t+1 to recursively calculate an
approximated solution Φt+1. The best numerical fit is found
when the convergence criterion ‖(Φt+1 −Φt)/Φt+1‖ < εΦ

is accomplished. The inverse solution found allows creating
a gap of rotation. The τ -J erk requires adjustment of time
T and coupling constant κ, obtained by setting (32). As
T successively increases, it produced better results of the
magnitude. For instance, (34) was adjusted for κ = 0.4 and
T = 5. For the angles gap of (33), the angular motion are
obtained from the inverse solution. Figure 3 shows a plot of a
controlled path using joints angular gap solution. In this work

Fig. 3. Robotic arm xyz position using τau-J erk angular gaps.

deduced the τ -J erk theory by considering distances, angles
and speeds from the gaps robot–palette.

IV. RECURRENT ANN VISUAL OBSERVER

This approach proposed an engine of propositional expres-
sions parameterized with thresholds to separate pixel regions
of the palette’s elements: cables, background-base, rivets,
cable ties and target assembling zones. The regions’ centroid in

space domain and their intensities are used as the ANN inputs.
We assumed an RGB image as a cubic matrix I ∈ Rm×n×3

compounded by the union of three color channels namely red
IR, green IG and blue IB . Definition IV.1 describes color-
based segmentation criteria:

Definition IV.1. Let ζP be a threshold of the palette back-
ground to produce a Boolean image IP by

IP = (Ir > ζP ) ∩ (Ig > ζP ) ∩ (Ib > ζP ) (39)

Let ζC be a threshold of black cables, resulting an image IC ,

IC = (Ir < ζC) ∩ (Ig < ζC) ∩ (Ib < ζC). (40)

Let ζN , ζN1
and ζN2

be the color thresholds for cables extreme
connectors and image IN ,

IN = ((Ir < ζN ) ∩ (Ig < ζN )) ∪ (ζN1 < Ib < ζN2). (41)

Let ζT1
, ζT2

and ζT be thresholds of self-locking nylon ties
for image IT ,

IT = (ζT1
< Ir < ζT2

) ∪ ((Ig < ζT ) ∩ (Ib < ζT )). (42)

Figure 4 shows the palette’s element scatter data in the RGB
space. Different approaches on using ANN for robotic control

Fig. 4. Scatter of visual data plotted in the RGB space.

and perception have been reported [18] [19]. The Hopfield
artificial neural networks (HANN) are recurrent systems, in
which each neuron’s output is connected to the rest of the
neurons as additional synaptic weights (Figure 5). In the
proposed HANN’s architecture there are two layers configured
as competitive neurons. The first layer is trained to detect the
palette’s elements of interest. The second layer works as a
faults tolerant and discriminates irrelevant palette’s elements.
Each neuron provides a feedback signal to the rest of the same
layer’s neurons. The HANN has an input vector xi(t) and a
scalar output yi(t) binary (0, 1) or polar (−1, 1).

Fig. 5. Bilayer Hopfield ANN for palette’s elements recognition.
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The HANN’s first layer training produces a numeric weight-
ing matrix Wk per input sample. An input samples is a vector
input xk from the RGB space. The training rule starts by

Wk =

m∑
i=1

xi · x>i , (43)

for an input sample k, ∀ k = {1, 2, . . . ,m}, the total weights
matrix W is optimally obtained by

W = W1 + W2 + · · ·+ Wm, (44)

the weights training matrix arises from the input xi =
(x1, x2, x3, y1, y2)

> (3 neurons and 2 feedback outputs) by

Wi1 =


x1

x2

x3

y1

y2

 · (x1 x2 x3 y1 y2

)
, (45)

expecting that ya = 1⇒ y1 = yb, y2 = yc; when it’s expected
yb = 1 ⇒ y1 = ya, y2 = yc and when expected yc = 1 ⇒
y1 = ya, y2 = yb. Therefore,

W =


w1,1 w1,2 w1,3 w1,4 w1,5

w2,1 w2,2 w2,3 w2,4 w2,5

w3,1 w3,2 w3,3 w3,4 w3,5

w4,1 w4,2 w4,3 w4,4 w4,5

w5,1 w5,2 w5,3 w5,4 w5,5

 (46)

Thus, a neuron’s inner activation function is valued by si

si = W · xi. (47)

A neuron’s output yi produces [+1,−1]. Any component sj
of the vector si, sj < 0 will produce an output yj = −1, thus

yi =

{
1, sj ≥ 0

−1, otherwise
(48)

Table I shows the following classification. The HANN outputs
behave as a competitive network where only a single neuron
is activated. The combinatorial inputs x1, x2, x3 represent
segmented image discriminated by the outputs y1, y2, y3. In
case of detecting false positive/negative fault, all outputs are
classified negatives.

TABLE I
HOPFIELD ANN’S FIRST LAYER INPUTS AND OUTPUTS.

x1 x2 x3 ya yb yc class
0 0 0 1 -1 -1 cables
0 0 1 -1 1 1 connector
0 1 0 -1 -1 -1 rivet
0 1 1 -1 -1 -1 –
1 0 0 -1 -1 1 tie
1 0 1 -1 -1 -1 –
1 1 0 -1 -1 -1 –
1 1 1 -1 -1 -1 palette

Moreover, the second neurons layer was trained using the
same training algorithm, with differences of combinatorial
input/output. Thus, the second layer weights matrix Wi2 is

Wi2 =


ya
yb
yx
y′1
y′2

 · (ya yb yc y′1 y′2
)
, (49)

The second layer works as a faults tolerant detector out-
putting, the palette’s elements of faults. Table II shows the
following out classification:

TABLE II
HOPFIELD ANN’S SECOND LAYER INPUTS AND OUTPUTS.

ya yb yc ya’ yb’ yc’ class
0 0 0 1 1 1 other objects
0 0 1 -1 -1 1 target (tie)
0 1 0 -1 1 -1 connector
0 1 1 -1 -1 -1 fault
1 0 0 1 -1 -1 cable
1 0 1 -1 -1 -1 fault
1 1 0 -1 -1 -1 fault
1 1 1 -1 -1 -1 fault

The 1st layer detects the palette’s elements using RGB data.
The 2nd layer inputs are polar outputs [−1, 1] to identify
relevant numeric labels by non combinatorial polar outputs
[−1,+1]. Figure 6 shows the HANN detection results. Faults
detection are due to contrast and lighting variations.

a) b)

Fig. 6. HANN-based detection. a) Output space; b) visual detection.

V. MULTI-PATH OPTIMIZATION

Robot arm free-collision planning is a fundamental function
[20]. This work optimizes paths from the robot’s arbitrary
posture to the palette (Figure 7). The polynomial assumes
a Cartesian coordinate function y(x) processing a total of
nT measurement Cartesian points. Thus, let y(x) = a0 +
a1xi+ · · ·+anxn be a measure of the Cartesian trajectory for
positions in the plane XY . Thus, the 3rd degree polynomial
coefficients are
a0

a1

a2

a3

 =
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∑
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3
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 .

(50)
By solving the system (50), the polynomial that estimates the
y-coordinate as a function of the x-coordinate is

y(x) = a0 + a1x+ a2x
2 + a3x

3. (51)
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a)

b)

Fig. 7. Optimized planning. a) Multi-path; b) robot’s local paths.

Therefore, (51) represents a track-path in Cartesian coordi-
nates, which are expressed as a polynomial function y(x). The
1st-order derivative of a function contains the roots that find
the minimum and maximum of an original function by

y′(x) = a1 + 2a2x+ 3a3x
2, (52)

by using the function y′(x), a real root x̂t+1 is found through
the Newton-Raphson root-finding method:

x̂t+1 = x̂t −
y′(x)

y′′(x)
= x̂t −

a1 + 2a2x+ 3a3x
2

2a2 + 6a3x
, (53)

Substituting the root value x̂ into the original polynomial, the
valued function obtains where an optimal value exist, such that

y(x̂) = a0 + a1x̂+ a2x̂
2 + a3x̂

3. (54)

where y(x̂) is an optimized value. Thus, the 2nd-order deriva-
tive is valued using the root to determine either it is a minimum
or a maximum point. Thus,

y′′(x̂) = 2a2 + 6a3x̂, (55)

therefore, {
max, if y′′(x̂) < 0

min, if y′′(x̂) > 0
(56)

The absolute minimum with the shortest magnitude among all
polynomials is chosen as the optimized target function, applied
to either planes xy or yz separately. Figure 7b shows the robot
paths in local coordinates (quasi-linear, quadratic and cubic).

VI. CONCLUSION

This work found out the robot’s dynamic adaptability
to motion from different arbitrary postures, regardless the
differences of cables harness arrange, reaching assembling
targets with dynamic changes of paths, despite posture and
perspective changes. The results showed validity and feasi-
bility of the proposed approach. The recurrent bi-layer ANN
showed reliability for vision-based recognition of the regions
of interest in assembling tasks. Finally, the assembling process
is computer simulated to illustrate the robot’s suitability to be
deployed in real scenarios.

REFERENCES

[1] A. Dogan, D. Birant, “Machine learning and data mining in manufac-
turing”, Exp Sys with Apps, vol. 166, 2021.

[2] Y. Fang, J. Qi, J. Hu, W. Wang, Y. Peng, “An approach for jerk-
continuous trajectory generation of robotic manipulators with kinemat-
ical constraints”, Mech and Mach Theo, vol. 153, Nov 2020.

[3] A. Frisoli, C. Loconsole, R. Bartalucci, M. Bergamasco, “A new
bounded jerk on-line trajectory planning for mimicking human move-
ments in robot-aided neurorehabilitation”, Rob and Auton Sys, 61(4),
pp. 404-415, 2013.

[4] R. Song, F. Li, W. Quan, X. Yang, J. Zhao, “Skill learning for robotic
assembly based on visual perspectives and force sensing”, Rob and
Auton Sys, vol. 135, 2021.

[5] R. Wang, A. Wu, X. Chen, J. Wang, “A point and distance constraint
based 6R robot calibration method through machine vision”, Robotics
and Computer-Integrated Manuf, 65(10), 2020.

[6] T. Borangiu, N.A. Ivanescu, S. Barad, “Robotized Flange Assembling
with Line Scan Camera Control”, IFAC Proc. Volumes, 36(23), pp. 119-
124, 2003.

[7] J. Jiang, Z. Huang, Z. Bi, X. Ma, G. Yu, “State-of-the-Art control
strategies for robotic PiH assembly”, Robotics and Computer-Integrated
Manuf., vol. 65, Oct 2020.

[8] J. Song, Q. Chen, Z. Li, A peg-in-hole robot assembly system based
on Gauss mixture model, Robotics and Computer-Integrated Manufac-
turing, vol. 67, 2021.

[9] H. Lin, “Design of an intelligent robotic precise assembly system
for rapid teaching and admittance control”, Robotics and Computer-
Integrated Manufacturing, vol. 64, 2020.

[10] G. Collins, “Sophisticated image processing controls assembly robot”,
Ind. Robot, 27(6), pp.445–448, 2000.

[11] L. Jin, S. Li, J. Yu, J. He, “Robot manipulator control using neural
networks: A survey” Neurocomputing, vol. 285, pp. 23-34, 2018.

[12] V. Gopinath, K. Johansen, M. Derelov, A. Gustafsson, S. Axelsson,
“Safe collaborative assembly on a continuously moving line with large
industrial robots, Robotics and Computer-Integrated Manufacturing,
vol.67, 2021.

[13] A. Gasparetto, V. Zanotto, “A technique for time-jerk optimal planning
of robot trajectories”, Robotics and Computer-Integrated Manuf, 24(3),
pp. 415-426, 2008.

[14] J. Huang, P. Hu, K. Wu, M. Zeng, “Optimal time-jerk trajectory planning
for industrial robots”, Mech and Mach Theo, 121(3), pp. 530-544, 2018.

[15] A. Rout, M. Dileep, G.B. Mohanta, B.B.V.L. Deepak, B.B. Biswal,
“Optimal time-jerk trajectory planning of 6 axis welding robot using
TLBO method”, Proc Comp Sci, vol. 133, pp. 537-544, 2018.

[16] Z. Zhang, X. Yang, “Bio-inspired motion planning for reaching move-
ment of a manipulator based on intrinsic tau jerk guidance”, Adv. Manuf.
7, 315–325 (2019).

[17] D.N. Lee, “General tau theory: evolution to date”, Perception, 38(6),
2009.

[18] S. S. Young, P. D. Scott, N. M. Nasrabadi, “Object recognition using
multilayer Hopfield neural network”, Ind. Robot, Apr 2020.

[19] E. Salari and S. Zhang, “Integrated recurrent neural network for image
resolution enhancement from multiple image frames”, in IEEE Proc.
Vision, Image and Signal Proc, 150(5), pp. 299, Oct. 2003.

[20] R. C. Luo and C. Kuo, “Intelligent Seven-DoF Robot With Dynamic
Obstacle Avoidance and 3-D Object Recognition for Industrial Cy-
ber–Physical Systems” Proc. IEEE Manuf Autom., vol. 104, no. 5, pp.
1102-1113, May 2016.

Authorized licensed use limited to: Kazan Federal University. Downloaded on June 28,2021 at 12:49:52 UTC from IEEE Xplore.  Restrictions apply. 


		2021-05-23T15:31:00-0400
	Preflight Ticket Signature




