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Abstract— This paper presents a control strategy for caging
a flood area via multiple UAVs. The strategy consists of the
following parts. A novel architecture for video segmentation,
Multiscale Features Fusion based MobileNet (MFFM-Net), is
constructed to detect the flood boundary. A Function Approx-
imation Technique based Immersion and Invariance (FATII)
tracking controller is employed to constrain a single UAV on
the flood boundary in the presence of external disturbances.
A flocking based formation controller is designed to uniformly
distribute UAVs along the flood boundary without collisions
among neighbours. The proposed strategy has been verified
through simulations under the ROS/Gazebo environment.

I. INTRODUCTION

Large-scale natural disasters occurred worldwide in recent
years, among which, flood is one of the most frequent
phenomena and leads to a huge economic loss [1]. Therefore,
flood management has drawn growing attentions in the field
of disaster robotics [2]–[6]. Researches in this field aim to
speed up the rescue process for survivors, improve the safety
of rescue teams, and prevent secondary disasters.

In the flood management, one of the essential problems is
to mark the boundary of a flood area. Traditional methods
commonly base on satellites which may lead to high cost
and poor real-time performance. In this paper, we provide
a UAV-based solution which can detect the flood boundary
more efficiently and accurately.

Multiple UAVs are utilized to detect and follow the
boundary until the whole flood area is caged. In this caging
process, two major issues need to be addressed: one is the
vision-based tracking problem, which keeps the boundary of
the flood area within the field of vision of each UAV. The
other is the formation control problem which aims to evenly
distribute UAVs around the flood region without collision.

A. Vision-based adaptive boundary detecting and tracking

The vision-based adaptive boundary tracking problem for a
single UAV consists of flood’s boundary detecting (through
video segmentation) and tracking (through robust adaptive
control).
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1) Boundary detecting: Note that to segment a flood area
fast and accurately for a mobile robot is challenging as
many image segmentation technologies cannot satisfy the
hardware requirements of mobile and embedded devices. In
2017, Howard et al. [7] proposed a network model called
MobileNet that can be applied to mobile and embedded
devices. However, although MobileNet has a good real time
performance, the shallow single feature is difficult to be
preserved as the deepening of the network, which may lead to
a weak accuracy [8], [9]. Multiscale feature fusion technique
[10], [11] can improve the video segmentation accuracy by
persevering more information from the video, but it has a
poor real time performance due to the high computational
cost accompanied with the increasing information. To bal-
ance the accuracy and the real-time performance, we propose
a new architecture for the video segmentation, the MFFM-
Net, by combining the advantages of both the MobileNet and
the Multiscale Features Fusion technology.

2) Boundary tracking: After the boundary of a flood
area is detected, the UAVs need to be constrained on the
boundary. To drive the UAVs to the desired positions in the
presence of the external disturbances, such as strong wind,
in this paper, we design a robust adaptive controller for the
UAVs through the Function Approximation Technique based
Immersion and Invariance (FATII) method. The proposed
FATII based controller is model-free and thus, is applicable
to a wide range of systems. Also, it can reject the effect of the
system uncertainties or external disturbances to the control
system. The asymptotic stability of the FATII controller is
established, and its validity is shown by simulations.

B. Formation control

During a flood disaster, a single UAV is difficult to
complete the caging task efficiently due to its limited view.
Therefore, a formation control algorithm is proposed in this
paper for multiple UAVs such that they can cooperate to
evenly distribute around the flood area without collisions
among each other.

To achieve the desired formation of a multi-agent system,
position-based methods [12]–[15] have been proposed to
track the position of each agent without any interactions
among the agents. However, these methods only work under
ideal conditions when absolute positions of all the UAVs
can be obtained. Different from the position based methods,
the distance-based formation control methods [16]–[19] keep
desired distances among neighboring agents to achieve a
desired formation of the whole system. However, these
methods are not feasible for our caging problem because the
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Fig. 1. Illustration of caging a flood area by multiple UAVs.

size of the flood area is uncertain, and therefore, the desired
distances between the UAVs are unknown in advance. In this
paper, we propose a formation controller through a flocking
based method [20]–[24], which automatically adjusts the
distances between adjacent UAVs.

The rest of the paper is organized as follows. In Section II
we state the research problem. In Section III, we develop
a control strategy, implement it by corresponding control
algorithms, and verify it under simulation in Section IV.
Finally, conclusions are drawn in Section V.

II. FORMALIZATION OF THE CONTROL PROBLEM

The aim of this research is to cage a flood zone by using
multiple UAVs (see Fig. 1). Assume that a high-resolution
image from a bird’s-eye view can be generated from the
camera of the UAV. The view is limited such that a single
UAV can only see a portion of the flood area. During the
caging process, a groups of UAVs are required to detect the
whole boundary of the flood area, as shown in Fig. 1, which
are represented by yellow blocks. One needs to develop a
control strategy for the UAVs such that:

1) The UAVs can detect and follow the flood boundary
autonomously.

2) The UAVs can be evenly distribute along the flood
boundary, keeping a safe distance.

This constitutes the main goal of this research.
For the control strategy design, the following kinematic

model for the UAVs is adopted:

q̇i = ui + ξi, (1)

where qi is the state (horizontal displacement) of a single
UAV and ui is the corresponding velocity controller. The
control problem is to construct the controller ui so that
the corresponding qi is consistent with the proposed control
strategy. Assuming the number of UAVs is n, one has
i ∈ {1, 2, ..., n}.

In the control problem, the kinematic model (1) is adopted
as one can assume that there is a low-level controller in place
to cancel existing dynamic. Higher-order dynamics can be
accommodated, but the resulting complication obscures the
main result [25]

III. CONTROLLER DESIGN

The design of the controller ui is required to realize three
essential functions: the first function is to make the UAVs

track the edge of a flood area and cage it; the second function
is to restrict the movable range of the UAVs such that they
can be located on the edge of the flood area, and the third
function is to separate the UAVs from each other at a certain
distance to prevent collisions. Correspondingly, the controller
ui is defined as

ui = u
c
i + u

v
i + u

r
i , (2)

where uc
i is the velocity assigned to each UAV during the en-

circling process, uv
i represents boundary tracking controller,

and ur
i represents the separation controller. The separation

controller ur
i is designed based on a potential field method,

which can keep adjacent UAVs within a certain distance.
The controller uv

i for boundary tracking is designed based
on an image segmentation approach. It can achieve real-time
autonomous navigation of a UAV along the boundary of a
flood area.

A. Design of uv
i

The vision-based adaptive boundary tracking problem for
a single UAV mainly has two parts: video segmentation and
robust adaptive boundary tracking. Video segmentation is
used for obtaining the boundary of the flood area, which
can be used by the boundary tracking controller uv

i to
autonomously navigate the UAV along the boundary of the
flood area.

1) Video segmentation technique: It is important for
UAVs to segment a flood area fast and accurately as most
image segmentation technologies cannot satisfy the hardware
requirements of mobile and embedded devices. To balance
accuracy and real-time performance, we propose a nov-
el architecture, MFFM-Net for flood segmentation. Fig. 2
(the red block is MFF Block) shows an architecture of
the proposed method, composed of MobileNet, Multiscale-
Fusion-Feature (MFF) Block, and Feature Pyramid Network
(FPN) [26]. Specifically, to improve the real-time perfor-
mance of the network, we use MobileNet to extract features
and reduce the size and complexity of the MobileNet by
depth deconvolution. It is particularly useful for real-time
embedded vision applications. However, in deeper layer of
the network, shallow features are difficult to preserve. The
lack of complementary spatiotemporal feature information
may affect the object recognition ability.

Shallow features have global information but lack seman-
tic information, which may reduce their object detection a-
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Fig. 2. The architecture of our proposed MFFM-Net.

bility for video segmentation [26]. Therefor, a feasible neural
network should consider both shallow and deep features.
For taking full advantage of shallow and deeper features,
we propose a novel MFF Block, which is mainly used
for feature fusion and feature enhancement among different
feature scales. Commonly, multiscale feature representations
can yield better results than single feature representation
because multiscale feature representation is more informa-
tive and accurate than any single feature representation.
Therefore, multiscale feature fusion is promising for these
disadvantages. Using the MFF Block, the context information
of features can be merged better and target feature extraction
can be achieved. In the MFFM-Net, the input of MFF Block
is the features extracted by Separable Block3, 4, 5. F5 is
the input of the convolutionary layer 1, and the output of
convolutionary layer 1 is a deeper feature. The input of
convolutionary layer 2 is the combination of deeper feature
and F4. A much deeper feature is obtained after being
process by convolutionary layer 2 and becomes the input
of Concat Block. The output of Contact Block is the desired
feature map. Finally, we can obtain the desired feature map.

We propose the Concat Block to combine the shallow and
deeper features, as shown in Fig. 3. The Concat Block is
mainly composed of convolutionary layers and a concatenate
layer. The input of the Concat Block is a feature map.
The convolutionary layers can functionally extract features
from feature map. The concatenate layer is used to combine
several convolutionary layers. The block can improve the
accuracy by increasing the depth of layer and combining the
deeper features from deep layer with shallow features.

2) Robust adaptive boundary tracking control for a single
UAV: Combining the image segmentation algorithm with a
robust adaptive velocity controller for a single UAV is an
effective method for solving the tracking problem. As shown
in Fig. 4. Flood zone and non-flood zone are segmented by
using the flood segmentation algorithm, where the blue zone
represents the flood area. The black squared frame represents
the vision field of a single UAV. The aim of the vision-
based controller uv

i is to keep the midpoint of two mass

Fig. 3. The architecture of Concat Block.

Fig. 4. Tracking problem for a single UAV.

centers of land and flood area on the geometric center of the
limited vision field of a single UAV. To reach the purpose,
the controller uv

i can be defined as follows.
Define pi as the absolute position vector which is defined

at the global coordinate frame for the midpoint of two mass
centers of the land and the flood area. The error ei is defined
as qi − pi, which is the distance between a single UAV and
the flood area. The corresponding error dynamics of a single
UAV can be defined as

ėi = u
v
i + di, (3)

where di = ξi − ṗi denotes the lumped uncertainties.
The control problem can then be stated as constructing an

asymptotically stabilizing law uv
i for the control system such
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that limt→∞ ei(t) = 0, in the presence of the time-varying
uncertainty di.

To deal with time-varying uncertainties in the control
system, we propose a FATII based control technique, in
which the uncertainty di in (3) is approximated as

di(t) =
N∑
j=1

dijψj(t), (4)

where dij denotes unknown constant vectors, ψj(t) is the
basis function, selected as the Fourier series [27] in this
paper.

Substituting (4) into (3) yields

ėi = u
v
i +

N∑
j=1

dijψj(t). (5)

In the FATII controller design [28], to remove the un-
known term dij from the expression of ėi, one defines in
the extended space (ei, d̂ij) the manifold

Mi = {(ei, d̂ij) ∈ R2 | dij − d̂ij − βij = 0}, (6)

where d̂ij ∈ Rn×1 (the estimation of dij) and βij(ei, t) ∈
Rn×1 are functions to be specified. By defining the off-the-
manifold variable zij = dij − d̂ij − βij where zij ∈ Rn×1,
(5) is transformed to

ėi = u
v
i +

N∑
j=1

(
zij + d̂ij + βij

)
ψj , (7)

Here, zij = 0 implies that for each agent i, the system
dynamics stays on the manifold Mi.

The FATII based controller is then designed as

uv
i = −kiei −

N∑
j=1

(d̂ij + βij)ψj ,

˙̂
dij = −eiψ̇j + kieiψj ,

βij = eiψj , (8)

where ki = k + 1
4 and k is a positive constant.

Theorem 1: The closed loop system, formulated by (7)
and (8), is asymptotically stable.

Proof: Substituting (8) into (7) yields

ėi = −kiei +
N∑
j=1

zijψj . (9)

The derivative of zi is computed as

żij = − ˙̂
dij −

∂βij

∂ei
ėi −

∂βij

∂t
= −ψj

N∑
k=1

zikψk. (10)

To prove the stability of the closed-loop system, the
Lyapunov candidate function is chosen as

V =
1

2

n∑
i=1

e>i ei +
1

2

n∑
i=1

N∑
j=1

z>ijzij , (11)

the derivative of which is calculated as

V̇ =
n∑

i=1

e>i ėi +
n∑

i=1

N∑
j=1

z>ij żij . (12)

Substituting (9) and (10) into (12) yields

V̇=
n∑

i=1

e>i

−kiei + N∑
j=1

zijψj


−

n∑
i=1

( N∑
j=1

zijψj

)>( N∑
j=1

zijψj

)

=
n∑

i=1

(
e>i

(
− kiei +

N∑
j=1

zijψj

)
+

1

4
e>i ei

−1

4
e>i ei −

( N∑
j=1

zijψj

)>( N∑
j=1

zijψj

))

≤−
n∑

i=1

((
ki −

1

4

)
‖ei‖22 +

∥∥∥∥12ei −
N∑
j=1

zijψj

∥∥∥∥2
2

)
.

By selecting ki = k + 1
4 where k > 0, V̇ is negative semi-

definite. According to the Barbalat’s lemma [29], both the
state and the estimation error converge to zero.

After the single UAV control is achieved, a formation
control algorithm is proposed to deal with a group of UAVs
control.

B. Design of ur
i

During the caging process, to avoid collision between
UAVs, it is necessary to ensure that the adjacent UAVs keep
a specific distance among their neighbors. If the distance is
too small, UAVs need be separated. Due to the limitation of
communication range, if the distance between the adjacent
UAVs is larger than the limitation distance, the interaction
will disappear. To meet these requirements, the separating
controller ur

i can be defined as follows:

ur
i =


∑N

h=1
h6=i

(
1− β(‖qi − qh‖)

)
vi, ‖qi − qh‖ ≤ d

0, ‖qi − qh‖ > d
(13)

where in β(.) of (13) is the 4th order Beta function expressed
by

β =
35

d4
‖qi − qh‖4 −

84

d5
‖qi − qh‖5

+
70

d6
‖qi − qh‖6 −

20

d7
‖qi − qh‖7, (14)

and vi is a constant vector that weights β. Based on (14), if
the distance between a single UAV i and neighbor h is less
than a specific distance value d, UAV i will move away from
neighbor h. On the contrary, if the distance value is compared
with d, the distance value is larger, then the magnitude of
ur
i will be zero.
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C. Combined control algorithm for UAVs

To cage the flood by multiple UAVs, we combine the
flocking-based formation control with the adaptive vision-
based tracking algorithms. The algorithm is effective when
both flood and land areas are in the limited field of vision of
a single UAV. If the vision is filled with only land or flood
area, the UAV will continue to increase its height, and the
limited field of vision of a UAV will be enlarged. The UAV
will stop rising until the flood and land area are observed
at the same time. The combined control algorithm can be
summarized as the Algorithm1.

Algorithm 1
Input: ui

Output: qi
Initialization: ui = qi = 0, obtain images from each
camera of UAV

1: Repeat:
2: if Both a land and a flood area appear in the limited field

of vision of a single UAV then
3: Calculate the position vector pi from the limited field

of vision of a single UAV
4: The controller uv

i will be updated by using (8)
5: The state vector qi can be updated by (1), and the

ur
i will be selected for (13). The ur

i can be a tangent
vector to the edge of the flood area

6: A new image from a camera of a UAV will be
obtained.

7: else
8: The height of a UAV is increased.
9: end if

10: End

IV. CASE STUDY

To verify the effectiveness of the control strategy, we
conduct the following simulations under the ROS/Gazebo
programming environment. A group of UAVs are modified
by using the Hector quadrotor package [30], which has been
collected into the ROS stacks, and the ROS stacks support
simulation and interaction between UAVs and environment
(flood) .

In the simulation, the flood is represented by a lake image
from real world and 10 UAVs are used to track the boundary
of a flood area. The simulation lasts for 100 seconds. The
velocity of each UAV is 1m/s. The maximum distance d in
the Beta-function (14) is chosen to be 10m.

MFFM-Net is trained on the River dataset [31]. The
dataset contains 300 original images of different rivers, and
the corresponding labeled images are given. The water and
background of the labeled images are respectively composed
of a two-dimensional binary matrix. To prevent the fitting
from an insufficient training set, we collect some pictures
from the Internet and take some pictures to expand them
into the training set. Moreover, we use data enhancement
technology to extend the training set by rotating, clipping,
and shifting the dataset.

Fig. 5. Camera image of a UAV during the caging stage.

Moreover, due to the memory limitation, the original
images are split into a patch size of 512 x 512. In this paper,
we use the K-fold [32] cross validation algorithm to avoid
overfitting of data. The basic idea is to divide the original
training set into two sets: one is a new training set within 9
folds, another one is a validation set within 1 fold. The new
training set is used to train the network, and the validation
set is used to validate its error. Then the steps are repeated 10
times until all the elements are selected once. The learning
rate is set to be 0.001, the optimizer we used is Adam, and
values of β1 and β2 are 0.9 and 0.999, respectively.

The image of the limited vision field of a UAV is shown
in Fig. 5. The blue areas and the rest portion respectively
represent the flood and the land area, the blue and red dots
are their Center of Mass(CMs), and the black dot represents
the center of two CMs. Based on the vision-based boundary
tracking algorithm III-C which we have proposed, the black
dot will move to the geometric center of the limited field
of vision of a single UAV such that UAVs can track the
boundary of a flood area.

As shown in Fig. 6. under the proposed controller the
drones, represent by the yellow box, successfully caged a
flood area in an irregular shape.

V. CONCLUSION

A control strategy has been proposed for caging a flood
area via multiple UAVs. The strategy consists of two parts.
One is vision-based adaptive control that allows each UAV
to detect and follow the boundary of the flood area. The
other is flocking based formation control which uniformly
distributes UAVs along the flood boundary without collisions
among neighbours. The proposed strategy has been verified
through simulations under the ROS/Gazebo environment. In
future work, we will continue to conduct experiments in the
real world in order to further verify the effectiveness of our
strategy.
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Fig. 6. A group of UAVs (yellow) cage and track a flood area. A birds’
eye view of the Large Setal Lake. Source: J. Mialdun.
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