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Abstract

Fingerprinting and cryptographic hashing have quite different usages in computer
science, but have similar properties. Interpretation of their properties is determined by
the area of their usage: fingerprinting methods are methods for constructing efficient
randomized and quantum algorithms for computational problems, whereas hashing
methods are one of the central cryptographical primitives. Fingerprinting and hashing
methods are being developed from the mid of the previous century, whereas quantum
fingerprinting and quantum hashing have a short history. In this chapter, we investigate
quantum fingerprinting and quantum hashing. We present computational aspects of
quantum fingerprinting and quantum hashing and discuss cryptographical properties
of quantum hashing.

Keywords: quantum computations, quantum cryptography, fingerprinting, hashing

1. Introduction

Fingerprinting and hashing are well-known techniques. Fingerprinting is widely used in
various meanings in different areas of computer science. We restrict ourselves to the area of
computational complexity theory where the notion of fingerprinting is more or less formal-
ized. Cryptographic hashing allows to securely present objects and mathematically is more
formalized. Fingerprinting and cryptographic hashing have quite different usages in computer
science, but have similar properties. Interpretation of their properties is determined by the area
of their usage: fingerprinting methods are methods for constructing efficient randomized and
quantum algorithms for computational problems, whereas hashing methods are one of the
central cryptographical primitives.

Fingerprinting and hashing methods are being developed from the mid of the previous cen-
tury, whereas quantum fingerprinting and quantum hashing have a short history.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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In this chapter, we present computational aspects of quantum fingerprinting, discuss crypto-
graphical properties of quantum hashing, and present the possible use of quantum hashing for
quantum hash-based message authentication codes (QMAC).

1.1. Classical and quantum fingerprinting

Fingerprinting in complexity theory is a procedure that maps a large data item to a much
shorter string, its fingerprint, that identifies the original data (with high probability). The key
properties of classical fingerprinting methods are (i) they allow to build efficient randomized
computational algorithms and (ii) the resulting algorithms have bounded error [1].

Rusins Freivalds was one of the first researchers who introduced methods (later called finger-
printing) for constructing efficient randomized algorithms (which are more efficient than any
deterministic algorithm) [2, 3].

In quantum case, fingerprinting is a procedure that maps classical data to a quantum state that
identifies the original data (with high probability). One of the first applications of the quantum
fingerprinting method is due to Ambainis and Freivalds [4]: for a specific language, they have
constructed a quantum finite automaton with an exponentially smaller size than any classical
randomized automaton. An explicit definition of the quantum fingerprinting was introduced
by Buhrman et al. [5] in (2001) for constructing efficient quantum communication protocol for
equality testing. It is worth noting that the fingerprinting by Buhrman et al. has been used as a
cryptographic hash function in [6, 7].

1.2. Cryptographic quantum hashing

Cryptographic hashing has a lot of fruitful applications in cryptography. Note that in cryptog-
raphy functions satisfying (i) one-way property and (ii) collision resistance property (in differ-
ent specific meanings) are called hash functions, and we propose to do so when we are
considering cryptographical aspects of quantum functions with the above properties. So, we
suggest to call a quantum function that satisfies properties (i) and (ii) (in the quantum setting),
a cryptographic quantum hash function or just quantum hash function. Note, however, that
there is only a thin line between the notions of quantum fingerprinting and quantum hashing.
One of the first considerations of a quantum function (that maps classical words into quantum
states) as a cryptographic primitive, having one-way property and collision resistance prop-
erty is due to [6], where the quantum fingerprinting function from [5] was used. Another
approach to constructing quantum hash functions from quantum walks was considered in
[8, 9, 10], and it resulted in privacy amplification in quantum key distribution and other useful
applications.

1.3. The chapter organization

In Section 3, we consider quantum fingerprinting as a mapping of classical inputs to quantum
states, which allows to construct efficient quantum algorithms for computing Boolean func-
tions. We consider the quantum fingerprinting function from [5] as well as the quantum
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fingerprinting technique from [11]. The latter was motivated by the paper [4] and its general-
ization [12].

We define a notion of quantum (6, €)-hash function that is quantumly one-way 6-resistant and
quantumly collision e-resistant.

We show that one-way property and collision resistance property are correlated for a quantum
hash function. The more the function is one-way, the less it is collision resistant and vice versa.
We show that such a correlation can be balanced.

We present an approach for quantum hash function constructions by establishing a connection
with small-biased sets [13] and quantum hash function constructions: we prove that each e-
biased set allows to generate quantum collision ¢-resistant function. Note that one-way prop-
erty of this function depends on the size of such ¢-biased set: the smaller ¢-biased set allows to
generate a quantum function with the better one-way characteristics. Such a connection adds
to the long list of small-biased sets” applications.

In particular, it was observed in [13, 14] that the e-bias property is closely related to the error-
correcting properties of linear codes. In particular, for the binary case, a set S is ¢-biased iff
every pair of distinct code words of corresponding error correcting code Cs has relative
Hamming distance (1 + €)/2.

Note that the quantum fingerprinting function from [5] is based on a binary error-correcting
code, and so it solves the problem of constructing quantum hash functions for the binary case.
For the general (nonbinary) case, ¢-bias does not correspond to Hamming distance. Thus, in
contrast to the binary case, an arbitrary linear error correcting code cannot be used directly for
quantum hash functions.

Note that one-way property of function means computational effectiveness of this func-
tion. We show that considered construction of quantum (6, ¢)-hash function is computed
effectively in the model of quantum branching programs. We consider two complexity
measures: a number width(Q) of qubits that QBP Q uses for computation and a number
time(Q) of computational steps of QBP Q. Such QBP Q is of width(Q)=0O(loglogg) and

time(Q)=log q.

We prove that such QBP construction is optimal. That is, we prove lower bounds Q(loglog q)
for QBP width and Q(log g) for QBP time for quantum (6, ¢€)-hash function presentation.

2. Preliminaries

We recall that mathematically a qubit is described as a unit vector in the two-dimensional
Hilbert complex space H?. Let s> 1. Let H* be the d=2°-dimensional Hilbert space, describing
the states of s qubits. Another notation for H' s (H 2)®S, i.e., H%is made up of s copies of a
single qubit space H>.

(H)® =H?®, ..., @K = H?. (1)

19
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Conventionally, we use notation |i) for the vector from H”, which has a 1 on the i-th position
and 0 elsewhere. An orthonormal basis 1), ... ,Id) is usually referred to as the standard
computational basis.

We let Z, to be a finite additive group of Z/qZ, the integers modulo g. Let Y* be a set of words
of length k over a finite alphabet X. Let X be a finite set. In this paper, we let X = Zf or X = Z,.

For K = [X| and integer s>1, we define a (K;s) classical-quantum function (or just quantum
function) to be mapping

v:X— (H)® or  v:iwe|Y(w). )

In order to outline a computational aspect and present a procedure for quantum function 1,
we define 1 to be a unitary transformation (determined by an element w € X)) of the initial state
|10y € (H2)®* to a quantum state | (w)) € (H*)®*

P flpo)} xX = () [plw)) = Ulw)]g,), ©)

where U(w) is a unitary matrix.

Extracting information on w from [i(w)) is a result of measurements of quantum state |i(w)).
In this chapter, we consider quantum transformations and measurements of quantum states
with respect to computational basis.

3. Quantum fingerprinting

The ideas of the fingerprinting technique in the quantum setting for the first time appeared in
[4]. The authors used a succinct presentation of the classical input by a quantum automata
state, which resulted in an exponential improvement over classical algorithm. Later in the
works of [12] the ideas were developed further to give an arbitrarily small probability of error.
This was the basis for the general quantum fingerprinting framework proposed in [11].

However, the term “quantum fingerprinting” is mostly used in scientific literature to address a
seminal paper [5], where this notion first appeared explicitly. To distinguish between different
versions of the quantum fingerprinting techniques, the fingerprinting function from [5] is
called as “binary” (since it uses some binary error-correcting code in its construction), whereas
the fingerprinting from [11] is called “g-ary” for it uses presentation of the input in Z,,.

3.1. Binary quantum fingerprinting

The quantum fingerprinting function was formally defined in [5], where it was used for
quantum equality testing in a quantum communication model. It is based on the notion of a
binary error-correcting code.
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An (n,k,d) error-correcting code is a map C: Yk ¥" such that, for any two distinct words w,
w € Xk the Hamming distance d(C(w), C(w)) between code words C(w) and C(w) is at least d.
The code is binary if X ={0, 1}.

The construction of the quantum fingerprinting function is as follows.

e Letc>2and ¢<1. Let k be a positive integer and n=ck. Let E: {0, 1}*—{0, 1}" be a (n, k,d)
binary error-correcting code with Hamming distance d> (1 — ¢)n.

*  Define a family of functions Fg={Ey, ..., E,}, where E; : {0, 1}k — I, is defined by the rule:
E;(w) is the i-th bit of the codeword E(w).

o Let s=log n+1. Define the quantum function r,:{0, 1}/*~(#*)®°, determined by a
word w as

[y (1)) = \%Z 1) Ex(w). @)

Original paper of [5] used this function to construct a quantum communication protocol
that tests equality in the simultaneous message passing (SMP) model with no shared
resources. This protocol requires O(log 1) qubits to compare n-bit binary strings, which is
exponentially smaller than any classical deterministic or even randomized protocol in the
SMP setting with no shared randomness. The proposed quantum protocol has one-sided
error of 1/2(1+(p,(x)! wa(y))z), where ¢ (x)) and [¢p (y)) are two different quantum
fingerprints. Their inner product [(ir (x)! ¢r(y))! is bounded by ¢, if the Hamming
distance of the underlying code is (1 —¢)n. Thus, ¢ is determined by the chosen error-
correcting code. For instance, Justesen codes mentioned in the paper give ¢<9/10+1/(15¢)
for any chosen c>2.

In the same paper, it was shown that this result can be improved by choosing an error-
correcting code with Hamming distance between any two distinct code words (1 — €)n/2 and
(1+¢)n/2 for any €>0 (however, the existence of such codes can only be proved nonconstruct-
ively via probabilistic argument).

Further research on this topic mostly used the following phase presentation version of quan-
tum fingerprinting. We define the quantum fingerprinting function ¢ : {0, 1}*—(#?)®° deter-
mined by a word w as

U (1) = \/iﬁz (— 1)@ ©)
=1

This function gives the following bound for the fingerprints of distinct inputs

(e, @Iy, )] =237 (—pyene) - 2 AE@E@) ©

n 1 n
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3.2. g-ary quantum fingerprinting

In this section, we demonstrate the generalization of binary fingerprinting function to the g-ary
case. General technique is presented in [11, 15]. Here, we present the idea using specific
Boolean function g: {0, 1}"—{0, 1} where g(0)=1 iff c=0mod sq. We treat ¢ also as an integer
encoded by binary string o.

To test g, we rotate the initial state 10) of a single qubit by an angle 0 =mo/g:

|0) — [{(0)) = cos B]0) + sinO[1) 7)
Then, this state |{(0)) is measured and the input o is accepted iff the result of the measurement
is 10).

Obviously, this quantum state is £10) iff =0mod g. In the worst case, this algorithm gives the
one-sided error of cos®rt(q — 1)/g, which can be arbitrarily close to 1.

The above description can be presented as follows using log t+1=(loglog ) + 1 qubits:

1 t
0)®-®0) ®[0) — —
— Vs

0g

|i)(cos 0;]0) + sin 0;]1)), 8)

where 6; = 2”% and the set S={sy, ..., s} CZ, is chosen in order to guarantee the small proba-

bility of error [11, 15]. That is, the last qubit is simultaneously rotated in ¢ different subspaces
by corresponding angles 0.

The above g-ary quantum fingerprinting method can be presented in the following procedure:

1. The initial state of the quantum register is 10)®1°8 1] ).

2. The Hadamard transform creates the uniform superposition \l[

t
& /)|0)of the basis states

{i10y:jefl, ..., H}.

3. Based on the input o, its fingerprint is created: &Z E;Zl ) < cos Zﬂ% |0) + sin Zn;fg |1)).

4. The Hadamard transform turns the fingerprint into the state [¢) = (3 S
cos 2219)[0) ® 18 |0) +- ..
5. The quantum state 1)) is measured and the input is accepted iff the result is 10)®1°8 £] (),

In [11, 15, 16], we have applied this technique to construct efficient quantum algorithms for a
certain class of Boolean functions in the model of read-once quantum branching programs [17].

3.2.1. Quantum branching programs

Branching program is a well-known computational model in computer science, also known as
a binary decision diagram in Applied Computer Science. Informally speaking, branching
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program is a circuit with ability to test in each of its computational step a needed bit of an
input. Such circuit is a realization of a program that uses only “if then else” and “go to”
primitives. We use the definition from [18]

Definition 1 ([18]) A Quantum Branching Program Q over the Hilbert space H is defined as

Q= (T, [¢)), ©)
where T is a sequence of | instructions: T;=(x;, U;(0), Uf1)) is determined by variable x; tested on the
step j, and U;(0) and U,(1) are unitary transformations in H g
Vectors ) € H are called states (state vectors) of Q o) e H? is the initial state of Q.
We define a computation of Q on an input 6=04, ... ,0, €10, 1}" as follows:
1. A computation of Q starts from the initial state 11)y).

2. The j-th instruction of Q reads the input symbol o; (the value of x;) and applies the transition
matrix U;=Uo;) to the current state | ) to obtain the state | yD') =Uj(a;) l).

3.  The final state is
1
o) = IT wi(oi) | 1wo)- (10)
j=1

Accepting of an input sequence is a result of measuring of final state |{(0)) in computational
basis and is formalized as follows. Let Accept C {1, 2, ...d} be the set of indices of accepting basis
states. After the [-th (last) step of quantum transformation, Q measures its configuration |¢,) =
(ay, ..., ay)" and the input o is accepted with probability

oy == .
wod 192 ) [ ) [t [0 [ o [ oo [4
b H M OH L M g

Figure 1. Branching program in the form of circuit. Variables x;, ..., x; denoting classical control (input) bits. Single
wires carry quantum information, and double wires denote classical information and control.

23
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praccept(a) = Z |0(i|2- (11)

i € Accept

3.2.2. Circuit representation

Quantum circuits are good formalism for quantum algorithms representation [19, 20]. A
quantum branching programs can be viewed as a quantum circuit aided with an ability to
read classical bits as control variables for unitary operations (see Figure 1).

4. Quantum hashing

In this section, we present notion of quantum (9, €)-resistant hash function based on [21].

4.1. One-way 0 resistance

We present the following definition of a quantum é-resistant one-way function. Let “information

extracting” mechanism M be a function M : (3?) ® X Informally speaking, mechanism M
makes some measurements to state 1) € (H*)®* and decodes the result of measurement to X.

Definition 2 ([21]) Let X be a random variable distributed over X {Pr[X =w]: weX}. Let

VX — (H?) ®* be a quantum function. Let Y be any random variable over X obtained by some
mechanism M making measurement to the encoding y of X and decoding the result of the measurement
to X. Let 6>0. We call a quantum function 1 a one-way S-resistant function if

1. it is easy to compute, i.e., a quantum state |1p(w)) for a particular w € X can be determined using a
polynomial-time algorithm.

2. for any mechanism M, the probability Pr[Y = X] that M successfully decodes Y is bounded by 6

PrlY = X]<6. (12)

For the cryptographic purposes, it is natural to expect (and we do this in the rest of the paper)
that random variable X is uniformly distributed.

A quantum state of s>1 qubits can theoretically record an infinite amount of information. On
the other hand, the Holevo’s theorem [22] states that by a quantum measurement, one can
extract O(s) bits of information about the state. Here, we use the result of [23] motivated by the
Holevo’s theorem.

Property 1 ([23]) Let X be a random variable uniformly distributed over {0, 1)%. Let V{0, 1}k—>(7-[ 2)®S
be a quantum function. Let Y be a random variable over {0, 1}* obtained by some mechanism M making
some measurement of the encoding v of X and decoding the result of measurement to {0, 1}*. Then, the
probability of correct decoding is given by
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S

PrY = X]< % (13)

So, extracting an information on input o from state 1)(c)) in conditions of Property 1 is “hard.”
The effectiveness of computation |1(c)) depends on construction of quantum hash function .
In Section 4.4, we consider quantum hash function construction based on small-biased sets and
prove effectiveness of this construction.

4.2. Collision ¢ resistance

The following definition was presented in [24].

Definition 3 Let ¢ >0. We call a quantum function ¢ : X — (3?) ®° a collision e-resistant function if
for any pair w,w of different inputs, | (Y(w)| Pw))| <e.

Informally speaking, we need two states |{(w)) and |¢(w)) that is almost orthogonal in order
to get small probability of collision, that is, if one tests states |{(w)) and i (w)) for equality,
then a testing procedure should give positive result with a small probability. We start with
quantum testing procedures.

4.2.1. Testing equality

The crucial procedure for quantum hashing is an equality test for |1(v)) and | (w)) that can be
used to compare encoded classical messages v and w. This procedure can be a well-known
SWAP test [5] or something that is adapted for specific hashing function, like REVERSE test,
see for example [6].

The SWAP test is the known quantum test for the equality of two unknown quantum states
l1)) and Igb/) (see [6, 25] for more information).

We denote Prswap[v=w] a probability that the SWAP test having quantum hashes [¢y(v)) and
l1(w)) outputs the result “v=w" (outputs the result “ 119 (v)) = [ P(w))”).

Property 2 ([6]) Let function ¢ :ww |(w)) satisfy the following condition. For any two different
elements v, w €X, it is true that | (Y (v)| Y(w))| <e. Then,

Prswap [0 =w|< (1 + 52)- (14)

!
2
Proof. From the description of SWAP test, it follows that
1
Prowaplt = 0] = 5 (1+ (9 (@)p(@))I*). (15)

4.2.1.1. REVERSE test

The test for equality, which we are presenting here, was first mentioned in [6]. In our paper
[25], we call this test a REVERSE test. This test checks if a quantum state |1)) is a hash of an
element v by applying the procedure that inverts the creation of a quantum quantum
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hash. That is, the REVERSE test procedure transforms the quantum hash to the initial
quantum state.

Formally, let the procedure of quantum hashing, given initial state 10), maps the input w by
unitary transformation U(w): i.e., quantum hashing produces quantum state |{(w))= U(w)|
0). Then, the REVERSE test, given v and |¢(w)), applies U '(v) to the state l(w)) and
measures the resulting state with respect to initial state 10). The output of REVERSE test is
“v=w" iff the measurement outcome is 10). The output of REVERSE test is “v/= w” iff the
measurement outcome is different from 10). The probability that the REVERSE test having
quantum state [¢(w)) and an element v outputs the result v=w are denoted by

Prreverse[v=w] .

Property 3 ([23]) Let hash function 1 :w |(w)) satisfies the following condition. For any two
different elements, v and w €X, it is true that | (P(v)| P(w))| <e. Then,

PrREVERSE [U = ZU] < 62. (16)
Prreverse[v=w]= (01U~ @)¢(w)) 1*= KU @)y @) U~ ©@)(w)) |

= ()l @) <& (17)

4.3. Balanced quantum (9, ¢) resistance

The combination of one-way and collision-resistant function definitions gives the definition of
quantum cryptographic function.

Definition 4 ([21]) Let K = |X| and s> 1. Let 6>0 and ¢>0. We call a function ¢ : X — (H?) 8,
quantum (5, €)-hash function iff | is one-way S-resistant and is collision e-resistant function.

We present below the following two examples to demonstrate how one-way 6 resistance and
collision ¢ resistance are correlated. The first example was presented in [4] in terms of quantum
automata.

Example 1 Let v €{0, ..., 2" — 1}. Number v is encoded by a single qubit as follows:
2 2
v cos (%) 0) + sin (?) ). (18)

Extracting information from |¢) by measuring |1) with respect to the basis {10), 1)} gives the
following result. The function 1) is one-way 22—k resistant (see Property 1) and collision

cos(rt/2* 1) resistant. Thus, the function ¢ has a good one-way property but has a bad collision
resistance property for large k.

Clearly, that one can store (to hash) in this way an arbitrary large amount of classical informa-
tion, that is, for arbitrary large k one can store all numbers from {0, ..., L 1} in a single qubit.
Holevo bound [22] proves that given s>1 qubits, the amount of classical information that can
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be retrieved, i.e., accessed, can be only up to s classical bits. This is a quantum mechanical
approach for the one-way property.

The map ¢ is one to one. So, there is no collision in a “quantum level.” But extracting the result
from quantum state is a probabilistic procedure. This means that one can get the situation when
some procedure that tests the equality of different quantum hashes |{(v)), |{(w)) outputs “the
hashes are the same” (equivalently “the numbers v, w are the same”), while the numbers v and w
are different. For example, two numbers 0 and 2~ 2 generate orthogonal states 11(0))= 1) and
1125 ~2))=10). So, numbers 0 and 2~ 2 are distinguishably reliable in respect of the above
encoding. But two numbers 0 and 1 cannot be reliably distinguished by encoding 1.

Example 2 Binary word v=0y, ... , 0, €{0, 1} encoded by k qubits (each bit encoded by a qubit):
v lovy=1laq), =, lop).

Clearly, we have that such encoding is collision one-way, 1-resistant, and 0-resistant. So, in
contrast to Example 1, the encoding 1) from Example 2 for different words v and w, their
images (quantum states) [1(v)) and |{(v)) are orthogonal and therefore reliably distinguished;
but 1 is easily invertible: the function 1) is not one-way resistant.

The following result [24] proves that a quantum collision ¢-resistant function needs at least
loglog K — c(¢) qubits.

Property 4 ([24]) Let s>1 and K = |X|24. Let i : X — (H?) ®° be a collision e-resistant quantum
hash function. Then,

s>log log K — log log <1+ 2/(1—5)) —1. (19)

Proof. First, we observe that from the definition || ]¢>|| = \/W of the norm, it follows that
) — [P = NP + NI = 2. (20)
Hence, for an arbitrary pair w, w of different elements from X, we have that
lly(e0)) = [p(@ )= v/2(1 = &), (21)

We let A = /2(1 — ¢). For short, we let (H*)® =V in this proof. Consider a set ® = {|i(w)) :
weX}. If we draw spheres of radius A/2 with centers 1) € ®, then spheres do not pairwise
intersect. All these K spheres are in a large sphere of radius 1+ A/2. The volume of a sphere of
radius rin Vis cr* for the complex space V. The constant ¢ depends on the metric of V. From this,
we have that the number K is bonded by the number of “small spheres” in the “large sphere”

25+1

c(1+A/2)

K S 25+l
c(A/2)

(22)

Hence,
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s>log logK — log log (1 +v2/(1 - 5)) -1 (23)

Properties 1 and 4 provide a basis for building a “balanced” one-way 6-resistance and collision
e-resistance properties. That is, roughly speaking, if we need to hash elements w from the
domain X with |X| =K and if one can build for an ¢>0 a collision e-resistant (K;s) hash
function ¢ with s=loglogK —c(¢) qubits, then the function f is one-way 6 resistant with
0= (logK/K). Such a function is balanced with respect to Property 4.

To summarize the above considerations, we can state the following. A quantum (§, ¢)-hash func-
tion is a function that satisfies all of the properties that a “classical” hash function should satisfy.
Preimage resistance follows from Property 1. Second preimage resistance and collision resistance
follow, because all inputs are mapped to states that are nearly orthogonal. Therefore, we see that
quantum hash functions can satisfy the three properties of a classical cryptographic hash function.

4.4. Quantum hash functions construction via small-biased sets

This section is based on the paper [26]. We first present a brief background on ¢-biased sets. For
more information, see [27]. Note that ¢-biased sets are generally defined for arbitrary finite
groups, but here we restrict ourselves to Z,,.

For an a € Z,, a character x, of Z, is a homomorphism x,: Z,— u, where y, is the (multiplica-

tive) group of complex g-th roots of unity. That is, x,(x)=w™, where w = e isa primitive g-th
root of unity. The character y, =1 is called a trivial character.
Definition 5 A set S C Z, is called ¢ biased, if for any nontrivial character x € {x,:a € Z,}

5 | > xlx (24)

XeS

These sets are interesting when [S| < |Z,| (as S=Z, is 0 biased). In their seminal paper, Naor
and Naor [13] defined these small-biased sets, gave the first explicit constructions of such sets,
and demonstrated the power of small-biased sets for several applications.

Remark 1 Note that a set S of O(log g/e?) elements selected uniformly at random from Z4 18 € biased
with positive probability [28].

Many other constructions of small-biased sets followed during the last decades.

Vasiliev [26] showed that ¢-biased sets generate (0,¢)-resistant hash functions. We present the
result of [26] in the following form.

Theorem 1 Let SC Z, be an &-biased set. Let Hs={h,(x)=ax(mod q), a€S, h,:Z;—Z,} be a set of

functions determined by S. Then, a quantum function Yy : Z,—(3*)® 10815l
25
‘¢H5 \/F,; w ( )

is a (0, €)-resistant quantum hash function, where 6<1S|/q.
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Proof. One-way 6-resistance property of ¢y, follows from Property 1: a probability of correct
decoding an x from a quantum state |y (x)) is bounded by |S|/g.

Collision e-resistance property of iy follows directly from the corresponding property of [26].
Note that

Yy, (%) me |ay = Zxx )a). (26)

ueS aeS

We will prove that for arbitrary different elements v, v € Z p it is true that

[ (¥a @)l (@) = |S||va o (@) <. 7)

Let x.(x) and x,(x) be characters of group Z,. Then, x;(x) is also a character of Z, and so the
following function is x(x) = x;(x) X, (x). x(x) is nontrivial character of Z,, since x,(x)/= xy (x)
and x(x) = x5 (X)X (x) = X5(x)x,(x) =1, where 1 is a trivial character of Z,. Thus, the state-
ment of Theorem 1 follows from the definition of an ¢-biased set.

[P, (0) [ (0 >|—|S||va )it (a |5|'Z (28)

aesS aeSs

4.5. Quantum fingerprinting functions as hash functions

In this section, we give two explicit examples of the quantum hashing for specific finite abelian
groups, which turn out to be the known quantum fingerprinting schemas.

4.5.1. Hashing the elements of the Boolean cube

For G = 7}, its characters can be written in the form x,(x)=(—1)*", and the corresponding
quantum hash function is the following

15|

¥g(a) mz (29)

The resulting hash function is exactly the quantum fingerprinting by Buhrman et al. [5], once
we consider an error-correcting code, whose matrix is built from the elements of S. Indeed, as
stated in [29] an e-balanced error-correcting code can be constructed out of an e-biased set.
Thus, the inner product (4, x) in the exponent is equivalent to the corresponding bit of the code
word, and altogether, this gives the quantum fingerprinting function that stores information in
the phase of quantum states de Wolf [30].

4.5.2. Hashing the elements of the cyclic group

For group G =Z,, the corresponding quantum hash function is given by
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IS

g (a) \/FZ “j). (30)

The above quantum hash function is essentially equivalent to the one we have defined earlier
in [25], which is in turn based on the quantum fingerprinting function from [11].

* In the content of the definition of quantum hash generator [24] and the above consider-
ation, it is natural to call the set Hs of functions (formed from e-biased set S) a uniform
quantum (0, €)-hash generator for 6=0(| S| /(glog 7q)).

As a corollary from Theorem 1 and the above consideration, we can state the following.

Property 5 For an e-biased set S = {ay, ...,ar } CF, with T= O(logq/e?), for s=10gT, for 5=0(1/(ge%)),
a quantum uniform (5, €)-hash generator Hg generates quantum (0, €)-hash function

Py, 1By — (#2) % (31)
1 T-1

Yy, (%)) = \/_TZ ", (32)
j=0

5. Computing a quantum hash ¢y (x)) by QBP
Theorem 2 Quantum (6, €)-hash function (6)
Pug, By — (77)° (33)

can be computed by quantum branching program Q composed from s=0O(loglogq) qubits in log q
steps.

Proof. Quantum function ¢y, (6) for an input x € F; determines quantum states (7)
[, (%) Z W), (34)
which is a result of quantum Fourier transformation (QFT) of the initial state
1 Il
Yoy =—=D_ 1) (35)

Such a QFT is controlled by the input x. QBP Q for computing quantum hash | (x)) deter-
mined as follows. We represent an integer x € {0, ..., g — 1} as the bit-string x =xg ... X10g5 1 that is,
x=x0+2% + ... +21089~ Yiogg — 1- For a binary string x=xp ... Xjog; 1 @ quantum branching pro-
gram Q over the space (H*)®" for computing |, (x)) (composed of s=log T qubits) is defined as
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Q= (T.[¢o)). (36)

where [¢) is the initial state and T is a sequence of log g instructions:

Tj = (x5, U;(0), Uj(1)) (37)

is determined by the variable x; tested on the step j, and U{0) and U(1) are unitary trans-
formations in (#?)®°. More precise Uj(0) is T x T identity matrix. U;(1) is the T x T diagonal
matrix whose diagonal entries are "% 0" ... "% and the off-diagonal elements are all
zero. That is,

B wﬂozj

w2
Uj(1) = : (38)

a)aT,lzf

We define a computation of Q on an input x=xg, ... , Xjogg—1 € {0, 1}1°84 as follows:
1. A computation of Q starts from the initial state |¢).

2. The j-th instruction of Q reads the input symbol x; (the value of x) and applies the transition
matrix Uj(x)) to the current state |¢) to obtain the state | lp/) =Uj(x)) ).

logg—1
[¥p, () ( Uj (%, )% (39)

j=0

3. The final state is

5.1. Complexity measures

We consider the following notations. For the QBP Q from Theorem 2, we let width(Q)=s and
time(Q) = |T|. Next for quantum hash function 1y, (6), we let

width(yy;, ) = minwidth(Q), time(iy;) = mintime(Q) (40)

where minimum is taken over all QBPs that compute ;..

5.1.1. Upper bounds
Then from Theorem 2, we have the following corollary

Theorem 3
width(yy,,) = O(log logq), (41)

time(ipy,) = O(log q). (42)
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5.1.2. Lower bounds

Here, we show that the quantum branching program from Theorem 2 is optimal for
function 1y,

Theorem 4
width(yy;. ) = Q(log logg), (43)

time(yy_ ) = Q(log q). (44)
Proof. Let Q be a QBP for the function ¢y, computation. ¢y presented by Q as follows:
P )} x {0,117 — (36%) %", (45)
The lower bound (10) for width(y,) follows immediately from Property 4

s>log logg — log log (1 +v2/(1 - 5)) (46)

The lower bound (11) for time(yy,) follows from the fact that ¢y, is collision e-resistant
function. Indeed, the assumption that QBP Q for 1y, can test less than logg (that is, not all
logg) variables of inputs x € F, means existence of (at least) two different inputs w, w' € F, such
that Q produces the same quantum hashes |i(w)) and |l][)(wl)> for w and w), that is, lp(w)) =
|1/)(w/)) = |1). The last contradicts to the fact that states [{(w)) and | 1p(w')) are ¢ orthogonal.

(Y (w)[Pp(w))|<e. (47)

6. Concluding remarks

To conclude, we first like to mention the results of the paper [31], which presents further
development of quantum hash functions construction.

Recall that any e-biased set gives rise to a Cayley expander graph [28]. We show how such
graphs generate balanced quantum hash functions. Every expander graph can be converted to
a bipartite expander graph. The generalization of these bipartite expander graphs is the notion
of extractor graphs. Such point of view gives a method for constructing quantum hash func-
tions based on extractors. This construction of quantum hash functions is applied to define the
notion of keyed quantum hash functions. The latter is used for constructing quantum hash-
based message authentication codes (QMAC). The security proof of QMAC is based on using
strong extractors against quantum storage developed by Ta-Shma [32].

Secondly, in [24], we offered a design that allows to build a large amount of different quantum
hash functions. The construction is based on composition of classical 6-universal hash family
and a given family H; , a quantum hash generator. A resulting family of functions is a new
quantum hash generator. In particular, we present a quantum hash generator Ggs based on
Reed-Solomon code.
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