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Предисловие

В евклидовом пространстве точек x = (x1, . . . , xn) рассмотрим
оператор

D ≡ Dn ≡ ∂n

∂x1 . . . ∂xn
(1)

и пусть M — линейный однородный дифференциальный оператор с
переменными коэффициентами, содержащий лишь производные, полу-
чаемые из D отбрасыванием по крайней мере одного дифференцирова-
ния.

Основной целью нашего исследования являются уравнения вида

(D + M)u = f(x). (2)

В соответствии с классификацией из [3, с. 15–16] уравнение (2) отно-
сится к гиперболическому типу.

Известно [6, с. 63], что дифференциальные уравнения с операто-
ром (1) используются при изучении процессов, связанных с явлениями
вибрации и другими задачами механики и математической физики, а
также играют существенную роль в теориях аппроксимации и отобра-
жений [6, с. 109]. К виду (2) специальными подстановками приводятся
уравнения

∂nF (ω, x)

∂ωn
− ∂nF (ω, x)

∂xn
−

∑

i+k<n

Pik(ω, x)
∂i+kF (ω, x)

∂ωi∂xk
= H(ω, x) (3)

в смешанных переменных: комплексной по ω и действительной по x [75].
В свою очередь, к задаче Коши для частных форм (3) сводится зада-
ча интегрального представления преобразований одних обыкновенных
линейных дифференциальных операторов в другие [76], [77, с. 5–13].
Задача Гурса для уравнений с итерациями операторов (1) тоже связа-
на с задачей Коши для обыкновенных дифференциальных уравнений
[6, п. 7.4 главы 7].

Первая известная нам публикация, обнаруженная А.А. Андре-
евым (Самарский университет, кафедра уравнений математической
физики) об уравнениях вида (2) относится к 1879 г. и принадлежит
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А. Старкову [67]. Им рассмотрен частный случай Mu ≡ c(x)u: путем
некоторой последовательности подстановок сконструирован ряд, пред-
ставляющий общий интеграл этого уравнения. В дальнейшем различ-
ные вопросы, связанные с указанным случаем, изучались другими ав-
торами, в том числе сравнительно недавно [20], [103], [129]. В 1895 г.
Л. Бианки [95] и О. Николетти [116] предложили распространение на
общий случай (2) метода решения задачи Коши, разработанного в свое
время Б. Риманом для уравнения

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y). (4)

Заметим, что Луиджи Бианки был специалистом не только в области
дифференциальных уравнений: Д.Я. Стройк в своей книге по истории
математики называет его “самым блестящим представителем диффе-
ренциальной геометрии в Италии” 19 века [68, с. 221]. Через 50 лет
результаты Л. Бианки были для n = 3 переоткрыты Е. Лаэ [109],
а в 1956 – 1958 г.г. появились публикации М.К. Фаге [74], [75], по-
священные этому же уравнению. В статье [75] при этом отмечалось,
что “. . . Бианки и Николетти разработали лишь формальную часть
теории, не вдаваясь в аналитические детали . . . ”. В той же статье
был представлен вариант метода Римана, более соответствующий со-
временному уровню развития математики. Здесь же обращает на себя
внимание некоторая самооценка автора: “. . . изучение сопровождается
довольно сложными выкладками” [75, c. 281]. В названии же работы
уравнению присваивается имя Бианки. Позднее [77, с. 11] М.К. Фаге
указал, что первым автором термина “уравнение Бианки” был Бей-
тмен [94]. Мы будем называть (2) основным уравнением, поскольку да-
лее рассматриваются другие уравнения, в которых оператор D входит
в продифференцированной форме.

Перечисленные выше авторы развивали метод Римана, отправ-
ляясь от его классического варианта. Однако, имеется модификация
этого метода [11, §§ 4–6], [2, c. 62–66], которая заключается в том, что
исходное тождество, использованное Риманом, берется в иной форме.
Предлагаемое ниже развитие метода Римана базируется как раз на
указанной модификации. При этом введено еще одно изменение: функ-
ция Римана определяется не как решение сопряженного уравнения,
удовлетворяющее граничным условиям, число которых очень быстро
увеличивается с ростом n, а как решение некоторого интегрального
уравнения. Оба указанных изменения привели, на наш взгляд, к су-
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щественному уменьшению сложности выкладок, и вывод окончатель-
ных формул решения стал более прозрачным. К тому же появились
дополнительные возможности получения функции Римана в явном ви-
де путем непосредственного решения интегрального уравнения.

В книге для уравнения (2) рассматриваются также новые ха-
рактеристические задачи с нормальными производными в граничных
условиях. Здесь картина разрешимости, по сравнению с известными
задачами Коши и Гурса, существенно меняется.

К более сложным уравнениям, в которые оператор D входит в
продифференцированной форме, также применяется предложенное на-
ми развитие метода Римана. Пока что это удалось сделать только для
некоторых частных случаев обсуждаемых уравнений.

Иной подход используется при исследовании уравнения с посто-
янными коэффициентами

m∑

k=0

akL
ku = 0, (5)

где Lk может быть, в частности, итерацией k-го порядка от операто-
ра D. Удалось получить общее представление решений уравнения (5),
аналогичное классической формуле общего решения обыкновенного ли-
нейного дифференциального уравнения с постоянными коэффициента-
ми.

К классу уравнений со старшими производными мы относим
также систему

∂ui

∂xi
=

m∑

k=1

aik(x)uk + fi(x), i = 1, . . . , n, (6)

где x = (x1, . . . , xn) — точка n-мерного евклидова пространства, ко-
торая с разных точек зрения изучалась А.В. Бицадзе [4], Т.В. Чек-
маревым [85] – [88], О.М. Теутом [70], И.Е. Плещинской [56] – [58] и
другими.

Поясним здесь цели нашего исследования на примере n = 2:

u1x1
= a(x1, x2)u1 + b(x1, x2)u2 + f(x1, x2),

u2x2
= c(x1, x2)u1 + d(x1, x2)u2 + g(x1, x2).

(7)

Задача Гурса для (7) рассматривается в характеристическом прямо-
угольнике T = {x10 < x1 < x11, x20 < x2 < x21} и состоит в отыскании
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функций u1, u2 по известным их значениям

u1(x10, x2) = ϕ1(x2), u2(x1, x20) = ϕ2(x1). (8)

Наряду с термином “задача Гурса” часто употребляется название “ха-
рактеристическая задача”. Ее решение существует и единственно. При
внимательном рассмотрении формул (7) – (8) нетрудно заметить не-
которое несоответствие: u1, u2 входят в (7) равноправно, а в гранич-
ных условиях (8) каждая из этих функций жестко связана с определен-
ной характеристикой. В связи с данным обстоятельством естественной
представляется мысль о замене (8) следующими более общими соотно-
шениями:

α11(x2)u1(x10, x2) + α12(x2)u2(x10, x2) = m1(x2),
α21(x1)u1(x1, x20) + α22(x1)u2(x1, x20) = m2(x1).

(9)

Очевидно, в постановку задачи включается тогда частный случай, ког-
да уравнения (7) имеют вид

u1x1
= 0, u2x2

= 0, (10)

а условия (8) —

u1(x1, x20) = m2(x1), u2(x10, x2) = m1(x2). (11)

Из (10) следует, что u1 должна зависеть лишь от x2, а u2 — лишь
от x1. Поэтому (11) не могут выполняться в общей своей форме: не-
обходимо, чтобы m1(x2) и m2(x1) были константами. Если они равны
соответственно λ и µ, то

u1 = µ + Φ1(x2), u2 = λ + Φ2(x1)

с произвольными функциями Φ1(x2), Φ2(x1), обращающимися в нуль
при x1 = x10, x2 = x20, дадут решение задачи (10) – (11). Следователь-
но, в общей постановке задача (7), (9) может быть как неразрешимой,
так и разрешимой, причем во втором случае решение может быть как
единственным (задача Гурса), так и содержащим произвольные функ-
ции. Таким образом, возникает вопрос об условиях, обеспечивающих
тот или иной характер разрешимости задачи (7), (9). В предлагаемой
книге (глава 4) как раз и рассматривается этот вопрос по отношению
к системе (6) при n = 2, 3. Конечно, задача может быть легко сфор-
мулирована для любого n. Именно эту общую постановку мы будем
называть “общей характеристической задачей”.
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Глава 1. Задачи Коши и Гурса
для основного уравнения

В п.п. 1 – 2 следующего параграфа мы для удобства дальнейших
рассуждений изложим указанную выше модификацию метода Римана.

§ 1. Случай двух независимых переменных

1. Метод интегральных уравнений

Рассмотрим уравнение

ϕ(x, y)−
∫ x

x0

K1(x, y, ξ)ϕ(ξ, y)dξ −
∫ y

y0

K2(y, x, η)ϕ(x, η)dη −

−
∫ x

x0

∫ y

y0

K(x, y, ξ, η)ϕ(ξ, η)dηdξ = F (x, y) (1.1)

с непрерывными коэффициентами. Известно [51, § 28], что его реше-
ние существует и единственно. Нашей задачей здесь является запись
решения в виде обозримой формулы.

Возьмем сначала частные случаи:

ϕ1(x, y)−
∫ x

x0

K1(x, y, ξ)ϕ1(ξ, y)dξ = F1(x, y),

ϕ2(x, y)−
∫ y

y0

K2(y, x, η)ϕ2(x, η)dη = F2(x, y).

(1.2)

Обычным способом, отыскивая их решения в виде ряда Неймана, по-
лучим (см., напр., [46, § 21])

ϕ1(x, y) = F1(x, y) +

∫ x

x0

Γ1(x, y, ξ)F1(ξ, y)dξ,

ϕ2(x, y) = F2(x, y) +

∫ y

y0

Γ2(y, x, η)F2(x, η)dη,

(1.3)
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где резольвенты Γk имеют вид:

Γ1(x, y, ξ) =
∞∑

m=0

K1,m(x, y, ξ), K1,0 ≡ K1,

K1,m(x, y, ξ) =

∫ x

ξ

K1(x, y, ξ1)K1,m−1(ξ1, y, ξ)dξ1,

m = 1, 2, . . . ,

Γ2(y, x, η) =
∞∑

m=0

K2,m(y, x, η), K2,0 ≡ K2,

K2,m(y, x, η) =

∫ y

η

K2(y, x, η1)K2,m−1(η1, x, η)dη1,

m = 1, 2, . . . .

(1.4)

При этом Γ1, Γ2 удовлетворяют соотношениям

Γ1(x, y, ξ) = K1(x, y, ξ) +

∫ x

ξ

K1(x, y, ξ1)Γ1(ξ1, y, ξ)dξ1 =

= K1(x, y, ξ) +

∫ x

ξ

K1(ξ1, y, ξ)Γ1(x, y, ξ1)dξ1,

Γ2(y, x, η) = K2(y, x, η) +

∫ y

η

K2(y, x, η1)Γ2(η1, x, η)dη1 =

= K2(y, x, η) +

∫ y

η

K2(η1, x, η)Γ2(y, x, η1)dη1,

(1.5)

Теперь обратимся к общему случаю уравнения (1.1). Будем ис-
кать его решение в форме

ϕ(x, y) = ϕ0(x, y) +

∫ x

x0

Γ1(x, y, ξ)ϕ0(ξ, y)dξ +

∫ y

y0

Γ2(y, x, η)ϕ0(x, η)dη,

(1.6)

где ϕ0(x, y) — новая искомая функция. Подставляя (1.6) в (1.1) и при-
нимая во внимание (1.5), получим

ϕ0(x, y)−
∫ x

x0

∫ y

y0

K0(x, y, ξ, η)ϕ0(ξ, η)dηdξ = F (x, y), (1.7)
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K0(x, y, ξ, η) = K1(x, y, ξ)Γ2(y, ξ, η) + K2(y, x, η)Γ1(x, η, ξ) +

+ K(x, y, ξ, η) +

∫ x

ξ

K(x, y, ξ1, η)Γ1(ξ1, η, ξ)dξ1 +

+

∫ y

η

K(x, y, ξ, η1)Γ2(η1, ξ, η)dη1. (1.8)

Поступая с (1.7), как с (1.3), найдем его решение в виде

ϕ0(x, y) = F (x, y) +

∫ x

x0

∫ y

y0

Γ0(x, y, ξ, η)F (ξ, η)dηdξ, (1.9)

где

Γ0(x, y, ξ, η) =
∞∑

m=0

K0,m(x, y, ξ, η), K0,0 ≡ K0,

K0,m(x, y, ξ, η) =

∫ x

ξ

∫ y

η

K0(x, y, ξ, η)K0,m−1(ξ1, η1, ξ, η)dη1dξ1,

m = 1, 2, . . . .

(1.10)

Подставляя (1.9) в (1.6), получим окончательную формулу решения:

ϕ(x, y) = F (x, y) +

∫ x

x0

Γ1(x, y, ξ)F (ξ, y)dξ +

+

∫ y

y0

Γ2(y, x, η)F (x, η)dη +

∫ x

x0

∫ y

y0

Γ(x, y, ξ, η)F (ξ, η)dηdξ, (1.11)

Γ(x, y, ξ, η) = Γ0(x, y, ξ, η) +

∫ x

ξ

Γ1(x, y, ξ1)Γ0(ξ1, y, ξ, η)dξ1 +

+

∫ y

η

Γ2(y, x, η1)Γ0(x, η1, ξ, η)dη1. (1.12)

Замечание. Проследив изложенный вывод формулы (1.11) (он
заимствован из [11, § 3]), а также учитывая абсолютную и равномерную
сходимость рядов (1.4), (1.10) и рядов, получаемых из них дифферен-
цированием (при соответствующей гладкости коэффициентов в (1.1)),
нетрудно сделать вывод, что степень гладкости ϕ(x, y) будет той же,
что у K1, K2, K, F .

Только что описанный процесс получения формулы (1.11) мож-
но, очевидно, считать доказательством существования решения урав-
нения (1.1). Покажем, что некоторое продолжение рассуждений дает
возможность доказать и единственность.
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Действительно, считая в (1.6)

ϕ(x, y)−
∫ y

y0

Γ2(y, x, η)ϕ0(x, η)dη

временно известной функцией, мы можем с помощью резольвенты
Γ∗1(x, y, η) прийти к соотношению

ϕ0(x, y) +

∫ y

y0

Γ2(y, x, η)ϕ0(x, η)dη = ϕ(x, y) +

+

∫ x

x0

Γ∗1(x, y, ξ)ϕ(ξ, y)dξ −
∫ x

x0

∫ y

y0

Γ∗1(x, y, ξ)Γ2(y, ξ, η)ϕ0(ξ, η)dηdξ.

Опять рассматривая здесь правую часть как известную, разрешим это
уравнение через резольвенту для ядра “−Γ2”. Тогда придем для ϕ0 к
уравнению вида (1.7), которое в свою очередь разрешим по формуле
вида (1.9). Функция, играющая роль F , будет представлять собой од-
нородный интегральный оператор от ϕ. Таким образом, мы доказали,
что (1.6) определяет взаимно однозначное соответствие между реше-
ниями ϕ уравнения (1.1) и решениями ϕ0 уравнения (1.7), при этом
тривиальному значению ϕ0 ≡ 0 соответствует ϕ ≡ 0.

Пусть теперь в (1.1) F ≡ 0. Тогда и (1.7) будет однородным для
ϕ0. Но для (1.7) имеет место теорема единственности. Следовательно,
ϕ0 ≡ 0, откуда по сказанному следует ϕ ≡ 0.

Итак, дополненное рассуждение можно считать доказательст-
вом существования и единственности решения уравнения (1.1).

Рассмотрим теперь в прямоугольнике D = {x0 < x < x1, y0 <

y < y1} задачу Гурса:
L(u) ≡ uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y), (1.13)

u(x0, y) = ϕ(y), u(x, y0) = ψ(x), ϕ(y0) = ψ(x0). (1.14)

Путем непосредственного интегрирования (1.13) с учетом (1.14) нахо-
дим

u(x, y) +

∫ x

x0

b(ξ, y)u(ξ, y)dξ +

∫ y

y0

a(x, η)u(x, η)dη +

+

∫ x

x0

∫ y

y0

[c(ξ, η)− aξ(ξ, η)− bη(ξ, η)]u(ξ, η)dηdξ = F (x, y), (1.15)

12



F (x, y) = ϕ(y) + ψ(x)− ψ(x0) +

∫ x

x0

b(ξ, y0)ψ(ξ)dξ +

+

∫ y

y0

a(x0, η)ϕ(η)dη +

∫ x

x0

∫ y

y0

f(ξ, η)dη. (1.16)

Очевидно, соотношение (1.15) есть частный случай уравнения (1.1).
Подставляя в (1.11) значения K1, K2, K, F из (1.15), (1.16), получим
в терминах резольвент решение задачи Гурса, которое будет регуляр-
ным, если ϕ ∈ C1[y0, y1], ψ ∈ C1[x0, x1], а также существуют ax, by

и при этом a, b, c, ax, by ∈ C(D). Окончательная формула содержит
определенную информацию о структуре решения уравнения (1.13): при
произвольных ϕ(y), ψ(x) ее можно рассматривать как интегральное
представление решений данного уравнения.

Заметим еще, что проведенное здесь рассуждение можно рас-
сматривать как еще одно доказательство существования и единствен-
ности решения задачи Гурса.

2. Метод Римана

Остановимся на решении задачи Гурса (1.13) – (1.14). Решение
интегрального уравнения

v(x, y)−
∫ x

ξ

b(α, y)v(α, y)dα−
∫ y

η

a(x, β)v(x, β)dβ +

+

∫ x

ξ

∫ y

η

c(α, β)v(α, β)dβdα = 1 (1.17)

будем называть функцией Римана. Это есть частный случай (1.1), по-
этому v существует и единственна. Когда нужно подчеркнуть зависи-
мость v от (ξ, η), будем писать v = R(x, y, ξ, η). Из (1.17) непосредст-
венно усматривается, что

∂R

∂x
− b(x, η)R ≡ 0 при y = η,

∂R

∂y
− a(ξ, y)R ≡ 0 при x = ξ,

R(x, y, x, y) ≡ 1.

(1.18)
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Если, как в предыдущем пункте a, b, c, ax, by ∈ C(D), то для
любой непрерывной в D функции u(x, y), удовлетворяющей условиям
ux, uy, uxy ∈ C(D), имеет место тождество

∂2(uR)

∂x∂y
−RL(u) ≡ ∂

∂x

[
u

(
∂R

∂y
− aR

)]
+

∂

∂y

[
u

(
∂R

∂x
− bR

)]
. (1.19)

Оно проверяется непосредственно, при этом надо принять во внимание,
что по (x, y) R удовлетворяет сопряженному с L(u) = 0 уравнению
(см. (1.17)). Полагая в (1.19) u(x, y) решением (1.13), меняя ролями
переменные (x, ξ), (y, η) и вычисляя затем двойной интеграл по ξ, η в
пределах x0 < ξ < x, y0 < η < y, с учетом тождеств (1.18) и значений
(1.14), получим

u(x, y) = R(x, y0, x, y)ψ(x) + R(x0, y, x, y)ϕ(y)−R(x0, y0, x, y)ψ(x0) +

+

∫ x

x0

[
b(α, y0)R(α, y0, x, y)− ∂

∂α
R(α, y0, x, y)

]
ψ(α)dα +

+

∫ y

y0

[
a(x0, β)R(x0, β, x, y)− ∂

∂β
R(x0, β, x, y)

]
ϕ(β)dβ +

+

∫ x

x0

∫ y

y0

R(α, β, x, y)f(α, β)dβdα. (1.20)

Это и есть решение задачи Гурса.
Считая ϕ(y), ψ(x) произвольными функциями, можно рассмат-

ривать (1.20) как общее представление регулярных решений уравнения
(1.13) [2, c. 66].

Конечно, функция R удовлетворяет и традиционному ее опреде-
лению: она есть решение уравнения

vxy − (av)x − (bv)y + cv = 0

c условиями

v |y=η= exp

∫ x

ξ

b(α, η)dα, v |x=ξ= exp

∫ y

η

a(ξ, β)dβ. (1.21)

Тождество (1.19) можно использовать и для решения задачи Ко-
ши. Для этого его следует записать в несколько иной форме (объединяя
правую часть с первым слагаемым левой части):

RL(u) ≡ ∂

∂x

[
1

2
(uR)y − u(Ry − aR)

]
+

∂

∂y

[
1

2
(uR)x − u(Rx − bR)

]
.
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Интегрируя это тождество по области, в которой рассматривается за-
дача Коши, с применением формулы Грина, придем к известному ре-
зультату [2, c. 67].

3. Варианты эффективного решения

3.1. Функции Римана для уравнений с нулевыми инвари-
антами. В связи с формулой (1.20) важным является вопрос о постро-
ении функции Римана в явном виде, ибо тогда решение задачи Гурса
тоже приобретает замкнутую форму. Имеются обзоры уравнений, для
которых указанное построение удается сделать [102], [16].

В частности, функция Римана записывается в явном виде в том
случае, когда выполняется хотя бы одно из условий h = ax +ab−c ≡ 0,
k = by +ab− c ≡ 0, функции h и k являются известными инвариантами
[71, c. 176].

Пусть k ≡ 0. Тогда сопряженное к (4) уравнение имеет вид
(

∂

∂x
− b

)(
∂

∂y
− a

)
v = 0. (1.22)

Уравнение (1.22) можно разрешить в квадратурах [71, c. 177]:

v(x, y, ξ, η) =

∫ y

η

exp

(∫ y

β1

a(x, β)dβ +

∫ x

ξ

b(α, β1)dα

)
ϕ(β1)dβ1 +

+ exp

(∫ y

η

a(x, β)dβ

)
ψ(x).

Здесь ϕ(y) и ψ(x) — произвольные функции. Учитывая условия (1.21),
получим явную запись для функции Римана

v(x, y, ξ, η) = exp

(∫ y

η

a(x, β)dβ +

∫ x

ξ

b(α, η)dα

)
. (1.23)

В случае h ≡ 0 сопряженное уравнение записывается в форме
(

∂

∂y
− a

)(
∂

∂x
− b

)
v = 0.

Аналогично вышеизложенному получаем

v(x, y, ξ, η) = exp

(∫ y

η

a(ξ, β)dβ +

∫ x

ξ

b(α, y)dα

)
. (1.24)
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3.2. Новые варианты интегральных уравнений для
функции Римана. Здесь мы излагаем [34] некоторый подход к ре-
шению данного вопроса, основанный на возможности так записать ин-
тегральное уравнение для функции Римана, что оно будет содержать
лишь двойной интеграл.

Запишем уравнение, предшествующее (1.21), в форме(
∂

∂y
− a

)(
∂

∂x
− b

)
v = hv, h = ax + ab− c. (1.25)

Построим сначала функцию Римана R для (1.25), считая h ≡ 0. Не-
трудно проверить непосредственно, что R есть решение задачи(

∂

∂x
+ b

)(
∂

∂y
+ a

)
R = 0, (1.26)

R(x, η, ξ, η) = exp

∫ ξ

x

b(α, η)dα, R(ξ, y, ξ, η) = exp

∫ η

y

a(ξ, β)dβ.

(1.27)

Как было сказано выше, уравнение (1.26) решается в квадратурах.
Проделав это с учетом (1.27), найдем

R(x, y, ξ, η) = exp

(∫ η

y

a(x, β)dβ +

∫ ξ

x

b(α, η)dα

)
. (1.28)

Пусть теперь h 6≡ 0. Рассматривая уравнение (1.25) как неодно-
родное, запишем его решение по формуле (1.20), в которой предвари-
тельно проинтегрируем по частям слагаемые, содержащие производ-
ные от R. Полагая x0 = ξ, y0 = η, имеем:

v(x, y) = R(ξ, η, x, y)v(ξ, η) +

+

∫ x

ξ

R(α, η, x, y)

[
∂v(α, η)

∂α
− b(α, η)v(α, η)

]
dα +

+

∫ y

η

R(ξ, β, x, y)

[
∂v(ξ, β)

∂β
− a(ξ, β)v(ξ, β)

]
dβ +

+

∫ x

ξ

∫ y

η

R(α, β, x, y)h(α, β)v(α, β)dβdα.

Здесь для краткости у v не записана вторая пара аргументов (ξ, η).
Так как в соответствии с (1.21)

v(ξ, y, ξ, η) = exp

∫ y

η

a(ξ, β)dβ, v(x, η, ξ, η) = exp

∫ x

ξ

b(α, η)dα,
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то выражения в квадратных скобках тождественно равны нулю, а
v(ξ, η) = v(ξ, η, ξ, η) = 1. Поэтому от предыдущей формулы остается

v(x, y) =

∫ x

ξ

∫ y

η

R(α, β, x, y)h(α, β)v(α, β)dβdα + R(ξ, η, x, y). (1.29)

Аналогично можно рассуждать, отправляясь от записи уравне-
ния для v в отличной от (1.25) форме

(
∂

∂x
− b

)(
∂

∂y
− a

)
v = kv, k = by + ab− c. (1.30)

Тогда функция Римана при k ≡ 0 дается формулой

R1(x, y, ξ, η) = exp

(∫ η

y

a(ξ, β)dβ +

∫ ξ

x

b(α, y)dα

)
, (1.31)

а вместо (1.29) получается равенство

v(x, y) =

∫ x

ξ

∫ y

η

R1(α, β, x, y)k(α, β)v(α, β)dβdα + R1(ξ, η, x, y). (1.32)

Соотношения (1.29) и (1.32) есть как раз те варианты интегральных
уравнений для функции Римана v, которые мы хотели получить. Инте-
ресно, что в случаях, когда хоть один из инвариантов h, k тождествен-
но равен нулю, эти уравнения автоматически дают явный вид функции
Римана (1.28) или (1.31).

Полученные уравнения можно использовать для выявления ме-
нее тривиальных, чем (1.23), (1.24) случаев построения функции Ри-
мана в явном виде.

1. Предположим, например, что

a = a1(y) + λx, b = b1(x) + λy, λ = const. (1.33)

Тогда h ≡ k, и

R ≡ R1 =
r(x)s(y) exp(−λxy)

r(ξ)s(η) exp(−λξη)
,

r(x) = exp

∫ 0

x

b1(α)dα, s(y) = exp

∫ 0

y

a1(β)dβ. (1.34)

Поэтому уравнения (1.29) и (1.32) совпадают и после введения новой
функции

ω = r(x)s(y) exp(−λxy)v(x, y) (1.35)
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записываются в форме

ω(x, y) = r(ξ)s(η) exp(−λξη)−
∫ x

ξ

∫ y

η

h(α, β)ω(α, β)dβdα. (1.36)

Очевидно, (1.36) эквивалентно задаче для дифференциального уравне-
ния

ωxy − hω = 0 (1.37)

с условиями Гурса

ω(x, η) = ω(ξ, y) = r(ξ)s(η) exp(−λξη). (1.38)

Предположим теперь, что инвариант h представляет собой произведе-
ние двух функций, каждая из которых зависит лишь от одного пере-
менного

h = −ϕ(x)ψ(y). (1.39)

Для этого случая уравнения (1.37) функция Римана известна [89]. Это
есть функция Бесселя

Ω = J0

(
2
[∫ x

ξ

ϕ(α)dα

∫ y

η

ψ(β)dβ
] 1

2

)
. (1.40)

Снова пользуясь формулой (1.20), вычисляем ω(x, y) в виде

ω = r(ξ)s(η) exp(−λξη)Ω(x, y, ξ, η).

Отсюда по формулам (1.34), (1.35) находим функцию Римана исходного
уравнения (1.13)

v = Ω(x, y, ξ, η) exp

(∫ x

ξ

b1(α)dα +

∫ y

η

a1(β)dβ + λ(xy − ξη)

)
. (1.41)

Итак, доказано утверждение: при условиях (1.33) и c− ab− λ =
ϕ(x)ψ(y) функция Римана уравнения (1.13) дается формулой (1.41).

2. Пусть теперь a, b, c имеют структурные представления

a =
q′(y) + ry(x, y)

w(x, y)
, b =

p′(x) + rx(x, y)
w(x, y)

,

c = rxy(x, y)w(x, y) + ϕ(x)ψ(y),
(1.42)
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где p, q, r, ϕ, ψ — любые непрерывные (вместе с производными из
(1.42)) функции и при этом выполнено условие

w = p(x) + q(y) + r(x, y) 6= 0.

Оказывается, что в этом случае (1.39) тоже имеет место, уравнения
(1.29), (1.32) совпадают и решаются по схеме предыдущего случая 1.
Функция Римана имеет вид

v = Ω(x, y, ξ, η)
p(x) + q(y) + r(x, y)

p(ξ) + q(η) + r(ξ, η)
, (1.43)

где Ω по-прежнему дается формулой (1.40).
3. По изложенной схеме могут быть рассмотрены и более об-

щие случаи, аналогичные 1 – 2. Так, если вместо (1.33) имеют место
представления

a(x, y) = a1(y) +
n∑

k=1

ϕk(x)ψ′k(y),

b(x, y) = b1(x) +
n∑

k=1

ϕ′k(x)ψk(y),

(1.44)

и при этом

c− ab−
n∑

k=1

ϕ′k(x)ψ′k(y) = ϕ(x)ψ(y), (1.45)

то

v = Ω(x, y, ξ, η) exp

(∫ x

ξ

b1(α)dα +

∫ y

η

a1(β)dβ+

+
n∑

k=1

[ϕk(x)ψk(y)− ϕk(ξ)ψk(η)]

)
. (1.46)

Здесь ϕ, ψ, ϕk, ψk — любые функции из классов ϕ, ψ ∈ C, ϕk, ψk ∈ C1.
Если вместо (1.42) a, b, c даются более общими формулами

a =
m∑

k=1

q′k + rky

wk
, b =

m∑

k=1

p′k + rkx

wk
,

c =
m∑

k=1

rkxy

wk
+ 2

m∑

k, s=1,
k<s

(p′k + rkx)(q
′
s + rsy)

wkws
+ ϕ(x)ψ(y),

(1.47)
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то функция Римана имеет вид

v = Ω(x, y, ξ, η)
m∏

k=1

wk(x, y)

ws(ξ, η)
. (1.48)

Предполагается при этом, что для всех wk = pk + qk + rk выполняются
неравенства wk 6= 0.

§ 2. Трехмерные задачи

Здесь речь пойдет об уравнении

L(u) ≡ uxyz + auxy + buyz + cuxz + dux + euy + fuz + gu = 0. (2.1)

Общая схема рассуждений будет такой же, как в § 1. Сначала обра-
тимся к интегральному уравнению.

1. Решение задачи Гурса в резольвентах интегральных
уравнений

Рассмотрим уравнение

ϕ(x, y, z)−
∫ x

x0

K1(x, y, z, ξ)ϕ(ξ, y, z)dξ −
∫ y

y0

K2(x, y, z, η)ϕ(x, η, z)dη−

−
∫ z

z0

K3(x, y, z, ζ)ϕ(x, y, ζ)dζ −
∫ x

x0

∫ y

y0

L1(x, y, z, ξ, η)ϕ(ξ, η, z)dηdξ−

−
∫ x

x0

∫ z

z0

L2(x, y, z, ξ, ζ)ϕ(ξ, y, ζ)dζdξ−

−
∫ y

y0

∫ z

z0

L3(x, y, z, η, ζ)ϕ(x, η, ζ)dζdη−

−
∫ x

x0

∫ y

y0

∫ z

z0

K(x, y, z, ξ, η, ζ)ϕ(ξ, η, ζ)dζdηdξ = F (x, y, z) (2.2)

с непрерывными коэффициентами. О существовании и единственности
решения этого уравнения известно [51, § 30]. Как и для уравнения (1.1)
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из § 1 покажем, что его решение может быть записано в замкнутой
форме.

Аналогами уравнений (1.2) здесь являются

ϕ1(x, y, z)−
∫ x

x0

K1(x, y, z, ξ)ϕ1(ξ, y, z)dξ = F1(x, y, z),

ϕ2(x, y, z)−
∫ y

y0

K2(x, y, z, η)ϕ2(x, η, z)dη = F2(x, y, z),

ϕ3(x, y, z)−
∫ z

z0

K3(x, y, z, ζ)ϕ3(x, y, ζ)dζ = F3(x, y, z).

Для каждого из них аналогично формулам (1.4) можно ввести резоль-
венты Γ1, Γ2, Γ3 (соответственно), которые удовлетворяют соотноше-
ниям

Γ1(x, y, z, ξ) = K1(x, y, z, ξ) +

∫ x

ξ

K1(x, y, z, ξ1)Γ1(ξ1, y, z, ξ)dξ1,

Γ2(x, y, z, η) = K2(x, y, z, η) +

∫ y

η

K2(x, y, z, η1)Γ2(x, η1, z, η)dη1,

Γ3(x, y, z, ζ) = K3(x, y, z, ζ) +

∫ z

ζ

K3(x, y, ζ1, ζ)Γ3(x, y, ζ1, ζ)dζ1,

(2.3)

играющим роль (1.5).
Введем замену искомой функции, аналогичную (1.6):

ϕ(x, y, z) = ϕ0(x, y, z) +

∫ x

x0

Γ1(x, y, z, ξ)ϕ0(ξ, y, z)dξ +

+

∫ y

y0

Γ2(x, y, z, η)ϕ0(x, η, z)dη +

∫ z

z0

Γ3(x, y, z, ζ)ϕ0(x, y, ζ)dζ. (2.4)

При подстановке (2.4) в (2.2) слагаемые с однократными интеграла-
ми оказываются в силу соотношений (2.3) равными нулю, а уравнение
приобретает вид

ϕ0(x, y, z)−
∫ x

x0

∫ y

y0

K0
1(x, y, z, ξ, η)ϕ0(ξ, η, z)dηdξ−

−
∫ x

x0

∫ z

z0

K0
2(x, y, z, ξ, ζ)ϕ0(ξ, y, ζ)dζdξ−
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−
∫ y

y0

∫ z

z0

K0
3(x, y, z, η, ζ)ϕ0(x, η, ζ)dζdη−

−
∫ x

x0

∫ y

y0

∫ z

z0

K0(x, y, z, ξ, η, ζ)ϕ0(ξ, η, ζ)dζdηdξ = F (x, y, z), (2.5)

где

K0
1(x, y, z, ξ, η) = L1(x, y, z, ξ, η) + K1(x, y, z, ξ)Γ2(ξ, y, z, η)+

+K2(x, y, z, η)Γ1(x, η, z, ξ) +

∫ x

ξ

L1(x, y, z, ξ1, η)Γ1(ξ1, η, z, ξ)dξ1+

+

∫ y

η

L1(x, y, z, ξ, η1)Γ2(ξ, η1, z, η)dη1,

K0
2(x, y, z, ξ, ζ) = L2(x, y, z, ξ, ζ) + K2(x, y, z, ξ)Γ3(ξ, y, z, ζ)+

+K3(x, y, z, ζ)Γ1(x, y, ζ, ξ) +

∫ x

ξ

L2(x, y, z, ξ1, ζ)Γ1(ξ1, y, ζ, ξ)dξ1+

+

∫ z

ζ

L2(x, y, z, ξ, ζ1)Γ3(ξ, y, ζ1, ζ)dζ1,

K0
3(x, y, z, η, ζ) = L3(x, y, z, η, ζ) + K2(x, y, z, η)Γ3(x, η, z, ζ)+

+K3(x, y, z, ζ)Γ2(x, y, ζ, η) +

∫ y

η

L3(x, y, z, η1, ζ)Γ2(x, η1, ζ, η)dη1+

+

∫ z

ζ

L3(x, y, z, η, ζ1)Γ3(x, η, ζ1, ζ)dζ1,

K0(x, y, z, ξ, η, ζ) = K(x, y, z, ξ, η, ζ) + L3(x, y, z, η, ζ)Γ1(x, η, ζ, ξ)+

+L2(x, y, z, ξ, ζ)Γ2(ξ, y, ζ, η) + L1(x, y, z, ξ, η)Γ3(ξ, η, z, ζ)+

+

∫ x

ξ

K(x, y, z, ξ1, η, ζ)Γ1(ξ1, η, ζ, ξ)dξ1+

+

∫ y

η

K(x, y, z, ξ, η1, ζ)Γ2(ξ, η1, ζ, η)dη1+

+

∫ z

ζ

K(x, y, z, ξ, η, ζ1)Γ3(ξ, η, ζ1, ζ)dζ1.

Итак, в результате перехода к неизвестной функции ϕ0(x, y, z)
мы освободились от однократных интегралов. Применим этот же при-
ем к уравнению (2.5), чтобы получить уравнение, содержащее лишь
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тройной интеграл.Опять берем аналоги уравнений (1.2), но уже с двой-
ными интегралами, содержащими K0

1 , K0
2 , K0

3 . Для них вводим резоль-
венты Γ0

1(x, y, z, ξ, η), Γ0
2(x, y, z, ξ, ζ), Γ0

3(x, y, z, η, ζ) и соотношения типа
(1.5), (2.3):

Γ0
1(x, y, z, ξ, η) = K0

1(x, y, z, ξ, η)+

+

∫ x

ξ

∫ y

η

K0
1(x, y, z, ξ1, η1)Γ

0
1(ξ1, η1, z, ξ, η)dη1dξ1,

Γ0
2(x, y, z, ξ, ζ) = K0

2(x, y, z, ξ, ζ)+

+

∫ x

ξ

∫ z

ζ

K0
2(x, y, z, ξ1, ζ1)Γ

0
2(ξ1, y, ζ1, ξ, ζ)dζ1dξ1,

Γ0
3(x, y, z, η, ζ) = K0

3(x, y, z, η, ζ)+

+

∫ y

η

∫ z

ζ

K0
3(x, y, z, η1, ζ1)Γ

0
3(x, η1, ζ1, η, ζ)dζ1dη1.

(2.6)

После этого вводим искомую функцию ϕ1 с помощью подстановки вида
(1.7), (2.4):

ϕ0(x, y, z) = ϕ1(x, y, z) +

∫ x

x0

∫ y

y0

Γ0
1(x, y, z, ξ, η)ϕ1(ξ, η, z)dηdξ +

+

∫ x

x0

∫ z

z0

Γ0
2(x, y, z, ξ, ζ)ϕ1(ξ, y, ζ)dζdξ +

+

∫ y

y0

∫ z

z0

Γ0
3(x, y, z, η, ζ)ϕ1(x, η, ζ)dζdη. (2.7)

Подставляя (2.7) в (2.5), обнаруживаем, что в силу формул (2.6) все
двойные интегралы исчезнут, и уравнение (2.5) преобразуется в сле-
дующее:

ϕ1(x, y, z)−
∫ x

x0

∫ y

y0

∫ z

z0

K1(x, y, z, ξ, η, ζ)ϕ1(ξ, η, ζ)dζdηdξ = F (x, y, z).

(2.8)

Здесь
K1(x, y, z, ξ, η, ζ) = K0(x, y, z, ξ, η, ζ)+

+

∫ x

ξ

[K0
1(x, y, z, ξ1, η)Γ0

2(ξ1, η, z, ξ, ζ)+K0
2(x, y, z, ξ1, ζ)Γ0

1(ξ1, y, ζ, ξ, η)]dξ1+
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+

∫ y

η

[K0
1(x, y, z, ξ, η1)Γ

0
3(ξ, η1, z, η, ζ)+K0

3(x, y, z, η1, ζ)Γ0
1(x, η1, ζ, ξ, η)]dη1+

+

∫ z

ζ

[K0
2(x, y, z, ξ, ζ1)Γ

0
3(ξ, y, ζ1, η, ζ)+K0

3(x, y, z, η, ζ1)Γ
0
2(x, η, ζ1, ξ, ζ)]dζ1+

+

∫ x

ξ

∫ y

η

K0(x, y, z, ξ1, η1, ζ)Γ0
1(ξ1, η1, ζ, ξ, η)dη1dξ1+

+

∫ x

ξ

∫ z

ζ

K0(x, y, z, ξ1, η, ζ1)Γ
0
2(ξ1, η, ζ1, ξ, ζ)dζ1dξ1+

+

∫ y

η

∫ z

ζ

K0(x, y, z, ξ, η1, ζ1)Γ
0
3(ξ, η1, ζ1, η, ζ)dζ1dη1.

Для (2.8) обычным путем определяется резольвента Γ(x, y, z, ξ, η, ζ), с
помощью которой записывается решение

ϕ1(x, y, z) = F (x, y, z) +

∫ x

x0

∫ y

y0

∫ z

z0

Γ(x, y, z, ξ, η, ζ)F (ξ, η, ζ)dζdηdξ.

(2.9)

Подставив это значение ϕ1 в (2.7), а получающийся при этом резуль-
тат — в (2.4), найдем окончательное решение в виде формулы, игра-
ющей роль (1.11). Эта формула содержит семь резольвент Γ1, Γ2, Γ3,
Γ0

1, Γ0
2, Γ0

3, Γ более простых уравнений, чем исходное.
Приведеное рассуждение есть еще одно доказательство сущест-

вования решения. Единственность решения можно доказать аналогич-
но тому, как это сделано в п. 1 § 1. А именно, рассуждая с (2.4) как
с (1.6), убеждаемся в том, что ϕ0 однозначно определяется через ϕ,
причем ϕ ≡ 0 отвечает ϕ0 ≡ 0 и наоборот. Повторяя ту же схему, но
уже по отношению к (2.7), приходим к однозначному определению ϕ1

через ϕ0, а следовательно, через ϕ. При этом значению ϕ ≡ 0 отвечает
ϕ1 ≡ 0 и наоборот. По формуле (2.9) при F ≡ 0 имеем ϕ1 ≡ 0, а значит,
и ϕ ≡ 0.

Обратимся теперь к задаче Гурса: найти в параллелепипеде
D = {x0 < x < x1, y0 < y < y1, z0 < z < z1} решение уравнения (2.1),
удовлетворяющее условиям

u
∣∣
X

= ϕ1(y, z), u
∣∣
Y

= ϕ2(x, z), u
∣∣
Z

= ϕ3(x, y) . (2.10)

Здесь X, Y , Z — грани D при x = x0, y = y0, z = z0 соответственно.
Черта сверху, как обычно, означает замыкание множества. Решение
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ищется в классе C(1,1,1)(D)∩C(D), где C(k,l,m) означает существование

непрерывных производных
∂r1+r2+r3

∂xr1∂yr2∂zr3
для всех r1 6 k, r2 6 l, r3 6 m.

Гладкость коэффициентов уравнения определяется включениями

a ∈ C(1,1,0), b ∈ C(0,1,1), c ∈ C(1,0,1), d ∈ C(1,0,0),

e ∈ C(0,1,0), f ∈ C(0,0,1), g ∈ C(0,0,0),
(2.11)

имеющими место в замкнутой области D.
Относительно граничных значений (2.10) предполагается, что

ϕ1 ∈ C(1,1)(X), ϕ2 ∈ C(1,1)(Y ), ϕ3 ∈ C(1,1)(Z), (2.12)

а также выполняются условия согласования на ребрах D:

ϕ2(x, z0) = ϕ3(x, y0), ϕ1(y, z0) = ϕ3(x0, y), ϕ1(y0, z) = ϕ2(x0, z).
(2.13)

Путем непосредственного интегрирования (2.1) с учетом (2.10)
приходим к интегральному уравнению

u(x, y, z) +

∫ x

x0

[bu](ξ, y, z)dξ +

∫ y

y0

[cu](x, η, z)dη+

+

∫ z

z0

[au](x, y, ζ)dζ −
∫ x

x0

∫ y

y0

[(bη + cξ − f)u](ξ, η, z)dηdξ−

−
∫ x

x0

∫ z

z0

[(aξ + bζ − e)u](ξ, y, ζ)dζdξ−

−
∫ y

y0

∫ z

z0

[(aη + cζ − d)u](x, η, ζ)dζdη+

+

∫ x

x0

∫ y

y0

∫ z

z0

[(aξη + bηζ + cξζ − dξ − eη−

−fζ + g)u](ξ, η, ζ)dζdηdξ = F (x, y, z), (2.14)

F (x, y, z) = ϕ1(y, z) + ϕ2(x, z) + ϕ3(x, y)−
−ϕ1(y0, z)− ϕ2(x, z0)− ϕ3(x0, y) + ϕ1(y0, z0)+

+

∫ x

x0

[b(ξ, y0, z)ϕ2(ξ, z) + b(ξ, y, z0)ϕ3(ζ, y)− b(ξ, y0, z0)ϕ2(ξ, z0)]dξ+

+

∫ y

y0

[c(x0, η, z)ϕ1(η, z) + c(x, η, z0)ϕ3(x, η)− c(x0, η, z0)ϕ3(x0, η)]dη+
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+

∫ z

z0

[a(x0, y, ζ)ϕ1(y, ζ) + a(x, y0, ζ)ϕ2(x, ζ)− a(x0, y0, ζ)ϕ1(y0, ζ)]dζ−

−
∫ x

x0

∫ y

y0

[bη + cξ − f ](ξ, η, z0)ϕ3(ξ, η)dηdξ−

−
∫ x

x0

∫ z

z0

[aξ + bζ − e](ξ, y0, ζ)ϕ2(ξ, ζ)dζdξ−

−
∫ y

y0

∫ z

z0

[aη + cζ − d](x0, η, ζ)ϕ1(η, ζ)dζdη.

Здесь, например, запись [(bη + cξ − f)u](ξ, η, z) означает [bη(ξ, η, z) +
cξ(ξ, η, z)− f(ξ, η, z)]u(ξ, η, z).

Очевидно, (2.14) есть частный случай уравнения (2.2). Поэтому
решение задачи (2.1), (2.10) существует, единственно и записывается с
помощью резольвент некоторых интегральных уравнений, более прос-
тых, чем (2.14). Проследив рассуждения, касающиеся уравнения (2.2),
можно убедиться, что включения (2.11) – (2.13) обеспечивают принад-
лежность u(x, y, z) указанному классу C(1,1,1)(D) ∩ C(D).

2. Развитие метода Римана

Рассмотрим трехмерный аналог уравнения (1.17):

v(x, y, z)−
∫ z

ζ

a(x, y, γ)v(x, y, γ)dγ−

−
∫ x

ξ

b(α, y, z)v(α, y, z)dα−
∫ y

η

c(x, β, z)v(x, β, z)dβ+

+

∫ y

η

∫ z

ζ

d(x, β, γ)v(x, β, γ)dγdβ +

∫ x

ξ

∫ z

ζ

e(α, y, γ)v(α, y, γ)dγdα+

+

∫ x

ξ

∫ y

η

f(α, β, z)v(α, β, z)dβdα−

−
∫ x

ξ

∫ y

η

∫ z

ζ

g(α, β, γ)v(α, β, γ)dγdβdα = 1. (2.15)
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Решение этого уравнения будем называть функцией Римана. Посколь-
ку (2.15) есть частный случай (2.2), функция v существует и единст-
венна. Очевидно, v зависит от ξ, η, ζ. Когда нужно эту зависимость
подчеркнуть, будем писать v = R(x, y, z, ξ, η, ζ).

Непосредственным вычислением можно убедиться в справедли-
вости тождества

(uR)xyz ≡ RL(u) + ([Rz − aR]u)xy + ([Rx − bR]u)yz +

+ ([Ry − cR]u)xz − ([Ryz − (aR)y − (cR)z + dR]u)x −
− ([Rxz − (aR)x − (bR)z + eR]u)y − ([Rxy − (bR)y − (cR)x + fR]u)z,

(2.16)

где a, . . . , f зависят от (x, y, z), R = R(x, y, z, ξ, η, ζ), а u(x, y, z) —
любая функция из C(1,1,1).

В дальнейшем (2.16) играет роль соотношения (1.19): путем ин-
тегрирования этого тождества будут получены решения задач Гурса
и Коши.

Введем обозначения

A = Rx − bR, B = Ry − cR, C = Rz − aR,

M = Rxy − (bR)y − (cR)x + fR,

N = Ryz − (aR)y − (cR)z + dR,

P = Rxz − (aR)x − (bR)z + eR.

(2.17)

Путем дифференцирования соотношения (2.15) нетрудно убедиться в
выполнении тождеств

A ≡ 0 при y = η, z = ζ; B ≡ 0 при x = ξ, z = ζ;
C ≡ 0 при x = ξ, y = η; M ≡ 0 при z = ζ;

N ≡ 0 при x = ξ; P ≡ 0 при y = η.

(2.18)

3. Формула решения задачи Гурса

Считая в тождестве (2.16) функцию u(x, y, z) решением урав-
нения (2.1), меняя ролями переменные (x, ξ), (y, η), (z, ζ) и вычисляя
затем тройной интеграл по ξ, η, ζ в пределах x0 < ξ < x, y0 < η < y,
z0 < ζ < z с учетом (2.18), получим

u(x, y, z) = R(x, y, z0)ϕ3(x, y) + R(x, y0, z)ϕ2(x, z)+
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+R(x0, y, z)ϕ1(y, z)−R(x, y0, z0)ϕ3(x, y0)−
−R(x0, y, z0)ϕ3(x0, y)−R(x0, y0, z)ϕ2(x0, z) + R(x0, y0, z0)ϕ1(y0, z0)+

+

∫ x

x0

[A(α, y0, z0)ϕ3(α, y0)− A(α, y, z0)ϕ3(α, y)− A(α, y0, z)ϕ2(α, z)]dα+

+

∫ y

y0

[B(x0, β, y0)ϕ3(x0, β)−B(x, β, z0)ϕ3(x, β)−B(x0, β, z)ϕ1(β, z)]dβ+

+

∫ z

z0

[C(x0, y0, γ)ϕ2(y0, γ)− C(x, y0, γ)ϕ2(x, γ)− C(x0, y, γ)ϕ1(y, γ)]dγ+

+

∫ x

x0

∫ y

y0

M(α, β, z0)ϕ3(α, β)dβdα +

∫ x

x0

∫ z

z0

P (α, y0, γ)ϕ2(α, γ)dγdα+

+

∫ y

y0

∫ z

z0

N(x0, β, γ)ϕ1(β, γ)dγdβ. (2.19)

Это и есть искомая формула. Заметим, что у R, A, B, C, M , N , P

указана только первая тройка аргументов, вторая всегда есть (x, y, z).
Подобно тому, как это делается в [2, с. 66] можно рассматривать

(2.19) при произвольных ϕ1, ϕ2, ϕ3 в качестве общего представления
решений уравнения (2.1).

Формула (2.19) выведена в [27]. Несколько иным путем позднее
она была получена в [17].

Замечание. Если при интегрировании тождества (2.16) счи-
тать, что u является решением неоднородного уравнения L(u) =
F (x, y, z), то в правой части (2.19) добавится слагаемое

u0 =

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ)F (α, β, γ)dγdβdα.

Очевидно, u0 есть решение однородной задачи Гурса для неоднородно-
го уравнения, соответствующего (2.1).

4. Задача Коши

Пусть z = z(x, y) — уравнение поверхности S класса C3, обла-
дающей свойством: касательная плоскость к ней ни в одной точке не
параллельна ни одной из координатных осей (например, zx > 0, zy > 0).
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Проведем через точкуM(x0, y0, z0) 6∈ S плоскости x = x0, y = y0, z = z0,
пересекающие S по кривым QC, CP и PQ соответственно. Обозна-
чим Ω конечную область, ограниченную этими плоскостями и участ-
ком QCP поверхности S. Считаем ориентацию Ω положительной.

Задача: найти регулярное в Ω решение уравнения (2.1), удов-
летворяющее граничным условиям

∂ku

∂lk

∣∣∣∣
S

= ψk, k = 0, 1, 2, (2.20)

где l — заданное на S некасательное к этой поверхности поле на-
правлений.

Будем считать

a, b, c, d, e, f, g ∈ C3(Ω), ψk ∈ C3−k(S). (2.21)

Перепишем тождество (2.16) в виде

RL(u) ≡ ∂T1

∂x
+

∂T2

∂y
+

∂T3

∂z
, (2.22)

T1 =
1

3
(uR)yz − 1

2
[(uC)y + (uB)z] + uN,

T2 =
1

3
(uR)xz − 1

2
[(uC)x + (uA)z] + uP,

T3 =
1

3
(uR)xy − 1

2
[(uA)y + (uB)x] + uM.

(2.23)

Считая u(x, y, z) решением уравнения (2.1), интегрируя (2.22) по об-
ласти Ω, и используя формулу Гаусса — Остроградского [43, c. 241],
получим

∫∫

∂Ω

T1dy ∧ dz + T2dz ∧ dx + T3dx ∧ dy = 0. (2.24)

Здесь знак “∧” — внешнее умножение дифференциальных форм. За-
меняя в левой части, которую обозначим I, интеграл по ∂Ω суммой
интегралов по ее составляющим CQM , PCM , PQM и PQC, а также
учитывая последние три тождества (2.18), имеем

I =

∫∫

CMQ

{
∂

∂z

[
1

6
(uR)y − 1

2
uB

]
+

∂

∂y

[
1

6
(uR)z − 1

2
uC

]}
dy ∧ dz+
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+

∫∫

PMC

{
∂

∂x

[
1

6
(uR)z − 1

2
uC

]
+

∂

∂z

[
1

6
(uR)x − 1

2
uA

]}
dz ∧ dx+

+

∫∫

PQM

{
∂

∂y

[
1

6
(uR)x − 1

2
uA

]
+

∂

∂x

[
1

6
(uR)y − 1

2
uB

]}
dx ∧ dy+

+

∫∫

PQC

[
1

3
uyzR− 1

6
uyRz − 1

6
uzRy +

1

3
uRyz +

1

2
uyaR−

−1

2
u(aR)y +

1

2
uzcR− 1

2
u(cR)z + udR

]
dy ∧ dz+

+

[
1

3
uxzR− 1

6
uxRz − 1

6
uzRx +

1

3
uRxz +

1

2
uxaR−

−1

2
u(aR)x +

1

2
uzbR− 1

2
u(bR)z + ueR

]
dz ∧ dx+

+

[
1

3
uxyR− 1

6
uxRy − 1

6
uyRx +

1

3
uRxy +

1

2
uybR−

−1

2
u(bR)y +

1

2
uxcR− 1

2
u(cR)x + ufR

]
dx ∧ dy.

По формуле Грина [43, c. 236] все интегралы по плоским об-
ластям сводятся к однократным интегралам по замкнутым контурам,
причем любой участок каждого контура обходится дважды (в проти-
воположных направлениях), как это и должно быть у ориентированной
поверхности:

I =

∫

CMQ

[
1

6
(uR)z − 1

2
uC

]
dz −

[
1

6
(uR)y − 1

2
uB

]
dy+

+

∫

PMC

[
1

6
(uR)x − 1

2
uA

]
dx−

[
1

6
(uR)z − 1

2
uC

]
dz+

+

∫

PQM

[
1

6
(uR)y − 1

2
uB

]
dy −

[
1

6
(uR)x − 1

2
uA

]
dx+

+
1

6

∫∫

PQC

{
2uyzR + uy(3aR−Rz) + uz(3cR−Ry)+
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+u[2Ryz − 3(aR)y − 3(cR)z + 6dR]
}

dy ∧ dz+

+
{

2uxzR + ux(3aR−Rz) + uz(3bR−Rx)+

+u[2Rxz − 3(aR)x − 3(bR)z + 6eR]
}

dz ∧ dx+

+
{

2uxyR + ux(3cR−Ry) + uy(3bR−Rx)+

+u[2Rxy − 3(bR)y − 3(cR)x + 6fR]
}

dx ∧ dy.

Аналогично случаю с двойными интегралами, заменяя каждый криво-
линейный интеграл суммой интегралов по составляющим его контура
и используя первые три тождества (2.18), получим, что сумма этих
однократных интегралов K перепишется в виде:

K =
1

6

∫

CM

(uR)z dz − 1

6

∫

MQ

(uR)y dy+

+
1

6

∫

QC

(uzR− 2uRz + 3uaR) dz − (uyR− 2uRy + 3ucR) dy+

+
1

6

∫

PM

(uR)x dx− 1

6

∫

MC

(uR)z dz+

+
1

6

∫

CP

(uxR− 2uRx + 3ubR) dx− (uzR− 2uRz + 3uaR) dz+

+
1

6

∫

QM

(uR)y dy − 1

6

∫

MP

(uR)x dx+

+
1

6

∫

PQ

(uyR− 2uRy + 3ucR) dy − (uxR− 2uRx + 3ubR) dx.

Вычисляя здесь интегралы по отрезкам прямых и используя K, I и
(2.24), окончательно получаем:

u(x0, y0, z0) =
(uR)(C) + (uR)(Q) + (uR)(P )

3
−

−1

6

{ ∫

QC

[
uzR + u(3aR− 2Rz)

]
dz −

[
uyR + u(3cR− 2Ry)

]
dy+
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+

∫

CP

[
uxR + u(3bR− 2Rx)

]
dx−

[
uzR + u(3aR− 2Rz)

]
dz+

+

∫

PQ

[
uyR + u(3cR− 2Ry)

]
dy −

[
uxR + u(3bR− 2Rx)

]
dx+

+

∫∫

PQC

[
2uyzR + uy(3aR−Rz) + uz(3cR−Ry)+

+u(2Ryz − 3(aR)y − 3(cR)z + 6dR)
]
dy dz+

+
[
2uxzR + ux(3aR−Rz) + uz(3bR−Rx)+

+u(2Rxz − 3(aR)x − 3(bR)z + 6eR)
]
dx dz+

+
[
2uxyR + ux(3cR−Ry) + uy(3bR−Rx)+

+u(2Rxy − 3(bR)y − 3(cR)x + 6fR)
]
dx dy

}
. (2.25)

Формула (2.25) даст решение задачи (2.1), (2.20), если ux, uy, . . .

на поверхности S выразить через данные Коши. Покажем, как это мож-
но сделать.

Пусть поле направлений l задано вектором ~a(l1, l2, l3), lk(x, y) ∈
C3, k = 1, 2, 3. Очевидно, можно полагать |~a| ≡ 1. Тогда в криволиней-
ных координатах (x, y, l), связанных с S, имеем u = u(x + l1(x, y)l, y +
l2(x, y)l, z(x, y) + l3(x, y)l). Находя на поверхности S все частные про-
изводные функции u по x, y, l, получим систему 9 уравнений с 9-ю
неизвестными частными производными решения u по x, y, z до второ-
го порядка, вычисленными на S: ux(x, y, z(x, y)), uy(x, y, z(x, y)) и т. д.
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Вот эта система:



ux + uzzx = ψ0x,
uy + uzzy = ψ0y,

uxl1 + uyl2 + uzl3 = ψ1,

uxx + uzz(zx)
2 + 2uxzzx + uzzxx = ψ0xx,

uyy + uzz(zy)
2 + 2uyzzy + uzzyy = ψ0yy,

uxxl
2
1 + uyyl

2
2 + uzzl

2
3 + 2uxyl1l2 + 2uxzl1l3 + 2uyzl2l3 = ψ2,

uzzzxzy + uxy + uxzzy + uyzzx + uzzxy = ψ0xy,

uxxl1 + uzzzxl3 + uxyl2 + uxz(l3 + zxl1) + uyzzxl2+
+uxl1x + uyl2x + uzl3x = ψ1x,

uyyl2 + uzzzyl3 + uxyl1 + uxzzyl1 + uyz(l3 + zyl2)+
+uxl1y + uyl2y + uzl3y = ψ1y.

(2.26)

Ее определитель есть

W =

∣∣∣∣
A B

C D

∣∣∣∣ ,

где

A =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


 , B =




1 0 zx

0 1 zy

l1 l2 l3


 ,

C =




1 0 z2
x 0 2zx 0

0 1 z2
y 0 0 2zy

l21 l22 l23 2l1l2 2l1l3 2l2l3
0 0 zxzy 1 zy zx

l1 0 zxl3 l2 l3 + zxl1 zxl2
0 l2 zyl3 l1 zyl1 l3 + zyl2




, D =




0 0 zxx

0 0 zyy

0 0 0
0 0 zxy

l1x l2x l3x

l1y l2y l3y




.

Значение W не зависит от D [45, c. 41] и равно det B det C. По-
нижая порядок определителя det C по методу Гаусса, получим

det C =

∣∣∣∣∣∣∣∣∣∣

1 z2
y 0 0 2zy

l22 l23 − l21z
2
x 2l1l2 2l1l3 − 2l21zx 2l2l3

0 zxzy 1 zy zx

0 zxl3 − l1z
2
x l2 l3 − zxl1 zxl2

l2 zyl3 l1 zyl1 l3 + zyl2

∣∣∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣

l23 − l21z
2
x − l22z

2
y 2l1l2 2l1l3 − 2l21zx 2l2l3 − 2l22zy

zxzy 1 zy zx

zxl3 − l1z
2
x l2 l3 − zxl1 zxl2

zyl3 − l2z
2
y l1 zyl1 l3 − zyl2

∣∣∣∣∣∣∣∣
=

33



=

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
,

где

a11 = l23 − l21z
2
x − l22z

2
y − 2l1l2zxzy, a12 = 2l1(l3 − l1zx − l2zy),

a13 = 2l2(l3 − l1zx − l2zy), a21 = zx(l3 − l1zx − l2zy),
a22 = l3 − l1zx − l2zy, a23 = 0,
a31 = zy(l3 − l1zx − l2zy), a32 = 0,
a33 = l3 − l1zx − l2zy.

Так как a11 = (l3 + l1zx + l2zy)(l3 − l1zx − l2zy), то все элементы имеют
общий множитель l3 − l1zx − l2zy = det B. Поэтому

det C = (det B)3

∣∣∣∣∣∣

l3 + l1zx + l2zy 2l1 2l2
zx 1 0
zy 0 1

∣∣∣∣∣∣
=

= (det B)3(l3 + l1zx + l2zy − 2l2zy − 2l1zx) = (det B)4.

Значит,

W = (det B)5 =

∣∣∣∣∣∣

1 0 zx

0 1 zy

l1 l2 l3

∣∣∣∣∣∣

5

.

В полученном определителе две первые строки — координаты векто-
ров, касательных к S, а третья — вектора ~a, который по предположе-
нию не касателен к S. Итак, W 6= 0, вследствие чего система (2.26)
однозначно разрешима. Таким образом, на S могут быть определены
все подынтегральные выражения формулы (2.25), и задачу Коши мож-
но считать решенной.

При изложении настоящего пункта мы следовали работе
В.А. Севастьянова [63].
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5. Построение функции Римана в явном виде

Методика, изложенная в п. 3 § 1, допускает распространение на
случай уравнения (2.1). Аналогами инвариантов h, k здесь являются

h1 = ax + ab− e, h2 = ay + ac− d, h3 = by + bc− f,
h4 = bz + ab− e, h5 = cx + bc− f, h6 = cz + ac− d,

h7 = dx + bd− g, h8 = ey + ce− g, h9 = fz + af − g.

(2.27)

Взяв от (2.15) производную
∂3

∂x∂y∂z
, получим, что v удовлетво-

ряет сопряженному с (2.1) уравнению

− L∗(u) ≡ vxyz − (av)xy − (bv)yz − (cv)xz + (dv)x +

+ (ev)y + (fv)z − gv = 0. (2.28)

5.1. Случаи расщепления оператора в левой части урав-
нения. Положим в (2.15) ξ = x0, η = y0, ζ = z0. Потребуем, чтобы
выполнялись условия

h3 ≡ h4 ≡ h6 ≡ h9 ≡ 0. (2.29)

Тогда функция Римана для уравнения (2.1) имеет вид

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z0)dα+

+

∫ y

y0

c(x, β, z0)dβ +

∫ z

z0

a(x, y, γ)dγ

)
. (2.30)

Доказательство этого утверждения будем проводить сначала
при двух фиксированных переменных, затем при одной фиксированной
переменной и в общем виде.

Положим в (2.15) y = y0, z = z0, затем продифференцируем по
x. Получим

vx(x, y0, z0)− (bv)(x, y0, z0) = 0,

откуда

R(x, y0, z0, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z0)dα

)
. (2.31)
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Коэффициент перед экспонентой в (2.31) равен 1 в силу того, что
R(x0, y0, z0, x0, y0, z0) = 1.

Очевидно, что (2.31) — частный случай (2.30). Аналогичным
образом находим

R(x0, y, z0, x0, y0, z0) = exp

(∫ y

y0

c(x0, β, z0)dβ

)
,

R(x0, y0, z, x0, y0, z0) = exp

(∫ z

z0

a(x0, y0, γ)dγ

)
.

Положим теперь в (2.15) z = z0 и продифференцируем по x и y. Тогда

vxy(x, y, z0)− (bv)x(x, y, z0)− (cv)y(x, y, z0) + (fv)(x, y, z0) = 0. (2.32)

Так как h3 ≡ 0, (2.32) равносильно уравнению
(

∂

∂x
− b(x, y, z0)

)(
∂

∂y
− c(x, y, z0)

)
v(x, y, z0) = 0.

Перепишем его в виде системы



∂v

∂y
− cv = v1,

∂v1

∂x
− bv1 = 0.

Общее решение системы имеет вид

v(x, y, z0) = exp

(∫ y

y0

c(x, β, z0)dβ

)
×

×
[∫ y

y0

exp

(
−

∫ η

y0

c(x, β, z0)dβ +

∫ x

x0

b(α, η, z0)dα

)
ϕ(η)dη + ψ(x)

]
,

(2.33)

где ϕ и ψ — произвольные функции. Положим в (2.33) y = y0. Тогда

ψ(x) = R(x, y0, z0, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z0)dα

)
.

Подставим найденную функцию ψ(x) в (2.33). Положив x = x0, полу-
чим

exp

(∫ y

y0

c(x0, β, z0)dβ

)[∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, z0)dβ

)
ϕ(η)dη + 1

]
=

= R(x0, y, z0, x0, y0, z0) = exp

(∫ y

y0

c(x0, β, z0)dβ

)
.
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Следовательно
∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, z0)dβ

)
ϕ(η)dη = 0. (2.34)

Поскольку верхний предел интегрирования в (2.34) переменный,
ϕ(η) ≡ 0.

Подставляя ψ и ϕ в (2.33) получаем

v(x, y, z0) = exp

(∫ x

x0

b(α, y0, z0)dα +

∫ y

y0

c(x, β, z0)dβ

)
,

то есть (2.30) при z = z0.
Аналогично показывается справедливость (2.30) при x = x0 и

при y = y0.
Наконец, пусть все три переменные x, y, z в (2.30) не являются

фиксированными. Продифференцируем (2.15) по x, y, z. Полученное
уравнение

vxyz − (av)xy − (bv)yz − (cv)xz + (dv)x + (ev)y + (fv)z − gv = 0

в силу условий (2.29) равносильно уравнению
(

∂

∂x
− b

)(
∂

∂y
− c

)(
∂

∂z
− a

)
v = 0. (2.35)

Покажем это. Перепишем (2.35):
(

∂

∂x
− b

)(
vyz − (av)y − (cv)z + dv

)
= 0.

При этом мы учли, что h6 ≡ 0. Преобразуем данное уравнение еще раз:

vxyz − (av)xy − bvyz − (cv)xz + (dv)x + b(av)y + b(cv)z − bdv = 0.

Перегруппируем слагаемые:

vxyz − (av)xy − (bv)yz − (cv)xz + (dv)x + ([bz + ab]v)y +

+ ([by + bc]v)z − (byz + aby + cbz + bd)v = 0.

В силу (2.29)
by + bc = f, bz + ab = e,

byz + aby + cbz + bd = (by + bc)z + a(by + bc) = fz + af = g.
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Тем самым формула (2.35) доказана.
Записав уравнение (2.35) в виде системы





∂v

∂z
− av = v1,

∂v1

∂y
− cv1 = v2,

∂v2

∂x
− bv2 = 0,

находим общее решение

v(x, y, z) = R(x, y, z, x0, y0, z0) = exp

(∫ z

z0

a(x, y, γ)dγ

)
×

×
[∫ z

z0

exp

(
−

∫ ζ

z0

a(x, y, γ)dγ +

∫ y

y0

c(x, β, ζ)dβ

)
×

×
(∫ y

y0

exp

(
−

∫ η

y0

c(x, β, ζ)dβ +

∫ x

x0

b(α, η, ζ)dα

)
×

×ϕ1(η, ζ)dη + ϕ2(x, ζ)

)
dζ + ϕ3(x, y)

]
. (2.36)

Положим z = z0. Тогда

ϕ3(x, y) = R(x, y, z0, x0, y0, z0) =

= exp

(∫ x

x0

b(α, y0, z0)dα +

∫ y

y0

c(x, β, z0)dβ

)
.

Подставим выражение для ϕ3(x, y) в (2.36). При y = y0 будет

exp

(∫ z

z0

a(x, y0, γ)dγ

)[∫ z

z0

exp

(
−

∫ ζ

z0

a(x, y0, γ)dγ

)
×

×ϕ2(x, ζ)dζ + exp

(∫ x

x0

b(α, y0, z0)dα

)]
=

= R(x, y0, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z0)dα +

∫ z

z0

a(x, y0, γ)dγ

)
.

Отсюда ∫ z

z0

exp

(
−

∫ ζ

z0

a(x, y0, γ)dγ

)
ϕ2(x, ζ)dζ = 0.

Как и в предыдущем случае получаем, что ϕ2(x, ζ) ≡ 0.
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Наконец, пусть x = x0. Тогда (2.36) запишется в виде

v(x0, y, z) = exp

(∫ z

z0

a(x0, y, γ)dγ

)
×

×
[∫ z

z0

exp

(
−

∫ ζ

z0

a(x0, y, γ)dγ +

∫ y

y0

c(x0, β, ζ)dβ

)
×

×
∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, ζ)dβ

)
ϕ1(η, ζ)dηdζ+

+exp

(∫ y

y0

c(x0, β, z0)dβ

)]
= R(x0, y, z, x0, y0, z0) =

= exp

(∫ y

y0

c(x0, β, z0)dβ +

∫ z

z0

a(x0, y, γ)dγ

)
.

Следовательно

∫ z

z0

exp

(
−

∫ ζ

z0

a(x0, y, γ)dγ +

∫ y

y0

c(x0, β, ζ)dβ

)
×

×
∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, ζ)dβ

)
ϕ1(η, ζ)dηdζ = 0,

поэтому ϕ1(η, ζ) ≡ 0.
Формула (2.30) доказана.
Пользуясь приведенной выше схемой рассуждений, можно дока-

зать следующие утверждения.
1) Если h4 ≡ h5 ≡ h6 ≡ h9 ≡ 0, то функция Римана для уравне-

ния (2.1) имеет вид

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y, z0)dα+

+

∫ y

y0

c(x0, β, z0)dβ +

∫ z

z0

a(x, y, γ)dγ

)
.

2) Если h1 ≡ h2 ≡ h3 ≡ h8 ≡ 0, то

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z)dα+

+

∫ y

y0

c(x, β, z)dβ +

∫ z

z0

a(x0, y0, γ)dγ

)
.
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3) Если h2 ≡ h3 ≡ h4 ≡ h8 ≡ 0, то

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y0, z0)dα+

+

∫ y

y0

c(x, β, z)dβ +

∫ z

z0

a(x, y0, γ)dγ

)
.

4) Если h1 ≡ h2 ≡ h5 ≡ h7 ≡ 0, то

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y, z)dα+

+

∫ y

y0

c(x0, β, z)dβ +

∫ z

z0

a(x0, y0, γ)dγ

)
.

5) Если h1 ≡ h5 ≡ h6 ≡ h7 ≡ 0, то

R(x, y, z, x0, y0, z0) = exp

(∫ x

x0

b(α, y, z)dα+

+

∫ y

y0

c(x0, β, z0)dβ +

∫ z

z0

a(x0, y, γ)dγ

)
.

5.2. Использование интегральных уравнений. Здесь речь
идет о построении интегрального уравнения для функции Римана, со-
держащего только тройной интеграл [32].

Пусть

h3 ≡ h4 ≡ h6 ≡ 0. (2.37)

В этом случае уравнение (2.28) может быть записано в виде
(

∂

∂x
− b

)(
∂

∂y
− c

)(
∂

∂z
− a

)
v = −h9v. (2.38)

Формула (2.38) доказывается так же, как (2.35).
Сопряженное к (2.38) уравнение при h9 ≡ 0 может быть пред-

ставлено в форме
(

∂

∂z
+ a

)(
∂

∂y
+ c

)(
∂

∂x
+ b

)
w = 0.
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Функция Римана для уравнения (2.38) при h9 ≡ 0 имеет вид (см. п. 5.1)

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y, z)dα−

−
∫ y

y0

c(x0, β, z)dβ −
∫ z

z0

a(x0, y0, γ)dγ

)
.

Мы будем рассматривать (2.38) как неоднородное уравнение с
правой частью −h9v. Формула (2.19) с учетом замечания на странице
28 дает нам решение задачи Гурса для такого уравнения. Избавимся
в (2.19) от производных функции R при помощи интегрирования по
частям

v(x, y, z) = (Rv)(x0, y0, z0) +

∫ x

x0

(R[vα − bv])(α, y0, z0)dα+

+

∫ y

y0

(R[vβ − cv])(x0, β, z0)dβ +

∫ z

z0

(R[vγ − av])(x0, y0, γ)dγ+

+

∫ x

x0

∫ y

y0

(R[vαβ − cvα − bvβ + (f − cα − bβ)v])(α, β, z0)dβdα+

+

∫ x

x0

∫ z

z0

(R[vαγ − avα − bvγ + (e− aα − bγ)v])(α, y0, γ)dγdα+

+

∫ y

y0

∫ z

z0

(R[vβγ − avβ − cvγ + (d− aβ − cγ)v])(x0, β, γ)dγβ−

−
∫ x

x0

∫ y

y0

∫ z

z0

(Rh9v)(α, β, γ)dγdβdα. (2.39)

В (2.39) не записана вторая тройка аргументов у функции R, которая
всегда есть (x, y, z).

Сопоставляя уравнения (2.15) и (2.39), видим, что все выраже-
ния в квадратных скобках в одно- и двукратных интегралах тождест-
венно равны нулю, а v(x0, y0, z0) = 1. Следовательно, функция Римана
(2.1) при условиях (2.37) удовлетворяет уравнению

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h9(α, β, γ)v(α, β, γ)dγdβdα. (2.40)
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Аналогично вышеизложеному получаются следующие 5 вариан-
тов условий, обеспечивающих построение интегральных уравнений ти-
па (2.40).

1) h4 ≡ h5 ≡ h6 ≡ 0.

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h9(α, β, γ)v(α, β, γ)dγdβdα,

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y0, z)dα+

−
∫ y

y0

c(x, β, z)dβ −
∫ z

z0

a(x0, y0, γ)dγ

)
.

2) h1 ≡ h2 ≡ h3 ≡ 0.

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h8(α, β, γ)v(α, β, γ)dγdβdα,

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y, z0)dα−

−
∫ y

y0

c(x0, β, z0)dβ −
∫ z

z0

a(x, y, γ)dγ

)
.

3) h2 ≡ h3 ≡ h4 ≡ 0.

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h8(α, β, γ)v(α, β, γ)dγdβdα,

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y, z)dα−

−
∫ y

y0

c(x0, β, z0)dβ −
∫ z

z0

a(x0, y, γ)dγ

)
.
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4) h1 ≡ h2 ≡ h5 ≡ 0.

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h7(α, β, γ)v(α, β, γ)dγdβdα,

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y0, z0)dα−

−
∫ y

y0

c(x, β, z0)dβ −
∫ z

z0

a(x, y, γ)dγ

)
.

5) h1 ≡ h5 ≡ h6 ≡ 0.

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)h7(α, β, γ)v(α, β, γ)dγdβdα,

R(x, y, z, x0, y0, z0) = exp

(
−

∫ x

x0

b(α, y0, z0)dα−

−
∫ y

y0

c(x, β, z)dβ −
∫ z

z0

a(x, y0, γ)dγ

)
.

Используем полученный результат для построения функции Ри-
мана в явном виде.

1. Предположим, что имеет место (2.37) и

a = a1(z) + λxy, b = b1(x) + λyz, c = c1(y) + λxz, λ = const.

(2.41)

Тогда непосредственным вычислением легко убедиться в том, что

h7 = h8 = h9 = H,

а уравнение (2.40) и все его аналоги из 1) – 5) совпадают и записыва-
ются в форме

v(x, y, z) = R(x0, y0, z0, x, y, z)−
−

∫ x

x0

∫ y

y0

∫ z

z0

R(α, β, γ, x, y, z)H(α, β, γ)v(α, β, γ)dγdβdα. (2.42)
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Введем обозначениe

T (x, y, z) = exp

(
−

∫ x

0
b1(α)dα−

∫ y

0
c1(β)dβ −

∫ z

0
a1(γ)dγ − λxyz

)
.

Используя новую искомую функцию ω = Tv, перепишем (2.42) в виде

ω(x, y, z) = T (x0, y0, z0)−
∫ x

x0

∫ y

y0

∫ z

z0

H(α, β, γ)ω(α, β, γ)dγdβdα. (2.43)

Уравнение (2.43) эквивалентно задаче Гурса для уравнения

ωxyz −Hω = 0 (2.44)

с условиями
ω |x=x0

= ω |y=y0
= ω |z=z0

= T (x0, y0, z0).

Если

H = ϕ(x)ψ(y)θ(z), (2.45)

то функция Римана r уравнения (2.44) известна [16, c. 10–12]. Она да-
ется формулой

r = 0F2(1, 1; σ), σ = −
∫ x

x0

ϕ(α)dα

∫ y

y0

ψ(β)dβ

∫ z

z0

θ(γ)dγ.

Здесь 0F2(1, 1; σ) =
∞∑

k=0

1

[(1)k]2
σk

k!
— обобщенная гипергеометрическая

функция [1, c. 183], (1)k = 1 ·2 · . . . ·k — символ Похгаммера. Вычислив
ω по формуле (2.19) и возвратившись снова к функции v, получим

v(x, y, z, x0, y0, z0) = 0F2(1, 1; σ) exp

(∫ x

x0

b1(α)dα+

+

∫ y

y0

c1(β)dβ +

∫ z

z0

a1(γ)dγ + λ(xyz − x0y0z0)

)
. (2.46)

Нами доказано утверждение: если выполняются условия (2.37),
(2.41), (2.45), то функция Римана уравнения (2.1) дается формулой
(2.46). Условие (2.37) можно заменить на одно из условий 1) – 5).

2. Пусть имеют место представления

a =
1

w

∂w

∂z
, b =

1

w

∂w

∂x
, c =

1

w

∂w

∂y
, d =

1

w

∂2w

∂y∂z
,

e =
1

w

∂2w

∂x∂z
, f =

1

w

∂2w

∂x∂y
, g =

1

w

∂3w

∂x∂y∂z
+ ϕ(x)ψ(y)θ(z),

(2.47)
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где w имеет структуру

w = p1(x) + p2(y) + p3(z) + q1(x, y) + q2(y, z) + q3(x, z) + r(x, y, z) 6= 0.

Тогда имеют место (2.37) и (2.45), уравнения типа (2.40) из п. 5.2 сов-
падают и могут быть разрешены по схеме случая 1. Функция Римана
для (2.1) записывается в форме

v = 0F2(1, 1, σ)
w(x, y, z)

w(x0, y0, z0)
,

где σ та же, что и в (2.46).
3. Рассмотрим теперь некоторые обобщения случаев из 1 – 2.
Если коэффициенты a, b, c имеют вид

a(x, y, z) = a1(z) +
n∑

k=1

ϕk(x)ψk(y)θ′k(z),

b(x, y, z) = b1(x) +
n∑

k=1

ϕ′k(x)ψk(y)θk(z),

c(x, y, z) = c1(y) +
n∑

k=1

ϕk(x)ψ′k(y)θk(z),

а также выполняются условия

h3 ≡ h4 ≡ h6 ≡ 0, h9 = ϕ(x)ψ(y)θ(z), (2.48)

то

v(x, y, z, x0, y0, z0) = 0F2(1, 1; σ) exp

(∫ x

x0

b1(α)dα +

∫ y

y0

c1(β)dβ+

+

∫ z

z0

a1(γ)dγ +
n∑

k=1

[ϕk(x)ψk(y)θk(z)− ϕk(x0)ψk(y0)θk(z0)]

)
,

где σ та же, что в (2.46).
Если

a =
m∑

k=1

1

wk

∂wk

∂z
, b =

m∑

k=1

1

wk

∂wk

∂x
, c =

m∑

k=1

1

wk

∂wk

∂y
,

wk = p1k(x) + p2k(y) + p3k(z) + q1k(x, y)+

+q2k(y, z) + q3k(x, z) + rk(x, y, z) 6= 0,
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то при выполнении (2.48) получаем

v = 0F2(1, 1, σ)
m∏

k=1

wk(x, y, z)

wk(x0, y0, z0)
,

функция σ опять та же, что и в (2.46).

§ 3. О многомерных задачах (n > 4)

Метод интегральных уравнений, подробно изложенный в п. 1
§ 1 и п. 1 § 2 может быть обобщен на случай любого конечного числа
измерений. В.А. Севастьяновым [61], [62], [64] предложена схема полу-
чения в резольвентах решений многомерных аналогов уравнений (1.1),
(2.2) и доказаны существование и единственность их решений. Здесь
мы не будем рассматривать этот вопрос, а остановимся на построении
решений задач Гурса и Коши в терминах функции Римана.

1. Четырехмерное пространство

1.1. Задача Гурса. Рассмотрим уравнение

uxyzt + auxyz + buxyt + cuxzt + duyzt + euxy + fuxz + guxt +

+ huyz + kuyt + suzt + mux + nuy + puz + qut + ru = 0. (3.1)

Задача: найти в области D = {0 < x < x1, 0 < y < y1, 0 < z <

z1, 0 < t < t1} решение уравнения (3.1), удовлетворяющее условиям

u
∣∣
X

= ϕ1(y, z, t), u
∣∣
Y

= ϕ2(x, z, t), u
∣∣
Z

= ϕ3(x, y, t), u
∣∣
T

= ϕ4(x, y, z).

(3.2)

Здесь X, Y, Z, T — грани D при x = 0, y = 0, z = 0, t = 0 соответ-
ственно.

46



Решение задачи Гурса для уравнения (3.1) ищется в классе
C(1,1,1,1)(D) ∩ C(D). Коэффициенты (3.1) должны удовлетворять сле-
дующим условиям:

a ∈ C(1,1,1,0)(D), b ∈ C(1,1,0,1)(D), c ∈ C(1,0,1,1)(D),

d ∈ C(0,1,1,1)(D), e ∈ C(1,1,0,0)(D), f ∈ C(1,0,1,0)(D),

g ∈ C(1,0,0,1)(D), h ∈ C(0,1,1,0)(D), k ∈ C(0,1,0,1)(D),

s ∈ C(0,0,1,1)(D), m ∈ C(1,0,0,0)(D), n ∈ C(0,1,0,0)(D),

p ∈ C(0,0,1,0)(D), q ∈ C(0,0,0,1)(D), r ∈ C(0,0,0,0)(D).

(3.3)

Относительно граничных значений предполагаем выполнение условий
гладкости

ϕ1 ∈ C(1,1,1)(X), ϕ2 ∈ C(1,1,1)(Y ), ϕ3 ∈ C(1,1,1)(Z), ϕ4 ∈ C(1,1,1)(T ),
(3.4)

и условий согласования

ϕ1(0, z, t) = ϕ2(0, z, t), ϕ1(y, 0, t) = ϕ3(0, y, t),
ϕ1(y, z, 0) = ϕ4(0, y, z), ϕ2(x, 0, t) = ϕ3(x, 0, t),
ϕ2(x, z, 0) = ϕ4(x, 0, z), ϕ3(x, y, 0) = ϕ4(x, y, 0).

(3.5)

Здесь C(k,l,m,n) означает существование непрерывных производ-

ных
∂r1+r2+r3+r4

∂xr1∂yr2∂zr3∂tr4
для всех r1 6 k, r2 6 l, r3 6 m, r4 6 n.

Путем непосредственного интегрирования (3.1) с учетом (3.2)
приходим к интегральному уравнению Вольтерра, аналогичному
(2.14). Следовательно, решение задачи (3.1), (3.2) существует, единст-
венно и записывается с помощью резольвент интегральных уравнений.
Условия (3.3) – (3.5) обеспечивают принадлежность u(x, y, z, t) указан-
ному классу C(1,1,1,1)(D) ∩ C(D).

Четырехмерный аналог уравнений (1.17), (2.15) имеет вид

v(x, y, z, t)−
∫ t

τ

(av)(x, y, z, δ)dδ −
∫ z

ζ

(bv)(x, y, γ, t)dγ−

−
∫ y

η

(cv)(x, β, z, t)dβ −
∫ x

ξ

(dv)(α, y, z, t)dα+

+

∫ z

ζ

∫ t

τ

(ev)(x, y, γ, δ)dδdγ +

∫ y

η

∫ t

τ

(fv)(x, β, z, δ)dδdβ+

+

∫ y

η

∫ z

ζ

(gv)(x, β, γ, t)dγdβ +

∫ x

ξ

∫ t

τ

(hv)(α, y, z, δ)dδdα+
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+

∫ x

ξ

∫ z

ζ

(kv)(α, y, γ, t)dγdα +

∫ x

ξ

∫ y

η

(sv)(α, β, z, t)dβdα−

−
∫ y

η

∫ z

ζ

∫ t

τ

(mv)(x, β, γ, δ)dδdγdβ−

−
∫ x

ξ

∫ z

ζ

∫ t

τ

(nv)(α, y, γ, δ)dδdγdα−

−
∫ x

ξ

∫ y

η

∫ t

τ

(pv)(α, β, z, δ)dδdβdα−

−
∫ x

ξ

∫ y

η

∫ z

ζ

(qv)(α, β, γ, t)dγdβdα+

+

∫ x

ξ

∫ y

η

∫ z

ζ

∫ t

τ

(rv)(α, β, γ, δ)dδdγdβdα = 1. (3.6)

Решение этого уравнения будем называть функцией Римана. Функция
v существует и единственна. Очевидно, v зависит от ξ, η, ζ, τ , то есть
v = R(x, y, z, t, ξ, η, ζ, τ).

Непосредственным вычислением можно убедиться в справедли-
вости тождества

(uR)xyzt ≡ RL(u) + ([Rt − aR]u)xyz + ([Rz − bR]u)xyt+

+(u[Ry − cR])xzt + ([Rx − dR])yzt − ([Rzt − (aR)z − (bR)t + eR]u)xy−
−([Ryt − (aR)y − (cR)t + fR]u)xz − ([Ryz − (bR)y − (cR)z + gR]u)xt−
−([Rxt − (aR)x − (dR)t + hR]u)yz − ([Rxz − (bR)x − (dR)z + kR]u)yt−
−([Rxy − (cR)x − (dR)y + sR]u)zt + ([Ryzt − (aR)yz − (bR)yt − (cR)zt+

+(eR)y + (fR)z + (gR)t −mR]u)x + ([Rxzt − (aR)xz − (bR)xt − (dR)zt+

+(eR)x + (hR)z + (kR)t − nR]u)y + ([Rxyt − (aR)xy − (cR)xt − (dR)yt+

+(fR)x + (hR)y + (sR)t − pR]u)z + ([Rxyz − (bR)xy − (cR)xz − (dR)yz+

+(gR)x + (kR)y + (sR)z − qR]u)t. (3.7)

Введем обозначения:

A = Rt − aR, B = Rz − bR, C = Ry − cR, D = Rx − dR,

E = Rzt − (aR)z − (bR)t + eR, F = Ryt − (aR)y − (cR)t + fR,
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G = Ryz − (bR)y − (cR)t + gR, H = Rxt − (aR)x − (dR)t + hR,

K = Rxz − (bR)x − (dR)z + kR, S = Rxy − (cR)x − (dR)y + sR,

M = Ryzt − (aR)yz − (bR)yt − (cR)zt + (eR)y+

+(fR)z + (gR)t −mR,

N = Rxzt − (aR)xz − (bR)xt − (dR)zt + (eR)x+

+(hR)z + (kR)t − nR,

P = Rxyt − (aR)xy − (cR)xt − (dR)yt + (fR)x+

+(hR)y + (sR)t − pR,

Q = Rxyz − (bR)xy − (cR)xz − (dR)yz + (gR)x+

+(kR)y + (sR)z − qR,

где a, . . . , q зависят от x, y, z, t, а R (следовательно A, . . . , Q) — от x, y,
z, t, ξ, η, ζ, τ . Дифференцируя соотношение (3.6), нетрудно убедиться
в выполнении тождеств

A ≡ 0 при x = ξ, y = η, z = ζ;
B ≡ 0 при x = ξ, y = η, t = τ ;
C ≡ 0 при x = ξ, z = ζ, t = τ ;
D ≡ 0 при y = η, z = ζ, t = τ ;

E ≡ 0 при x = ξ, y = η; F ≡ 0 при x = ξ, z = ζ;
G ≡ 0 при x = ξ, t = τ ; H ≡ 0 при y = η, z = ζ;
K ≡ 0 при y = η, t = τ ; S ≡ 0 при z = ζ, t = τ ;

M ≡ 0 при x = ξ, t = τ ; N ≡ 0 при y = η;
P ≡ 0 при z = ζ; Q ≡ 0 при t = τ.

(3.8)

Полагая в тождестве (3.7) u(x, y, z, t) решением уравнения (3.1),
меняя ролями переменные (x, ξ), (y, η), (z, ζ), (t, τ) и вычисляя четы-
рехкратный интеграл по ξ, η, ζ, τ в пределах x0 < ξ < x, y0 < η < y,
z0 < ζ < z, t0 < τ < t с учетом (3.8), получим

u(x, y, z, t) = (Ru)(x0, y, z, t) + (Ru)(x, y0, z, t)+

+(Ru)(x, y, z0, t) + (Ru)(x, y, z, t0)− (Ru)(x0, y0, z, t)−
−(Ru)(x0, y, z0, t)− (Ru)(x0, y, z, t0)− (Ru)(x, y0, z0, t)−
−(Ru)(x, y0, z, t0)− (Ru)(x, y, z0, t0) + (Ru)(x0, y0, z0, t)+

+(Ru)(x0, y0, z, t0) + (Ru)(x0, y, z0, t0) + (Ru)(x, y0, z0, t0)−
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−(Ru)(x0, y0, z0, t0)−
∫ t

t0

[(Au)(x0, y, z, δ) + (Au)(x, y0, z, δ)+

+(Au)(x, y, z0, δ)− (Au)(x0, y1, z, δ)− (Au)(x0, y, z0, δ)−

−(Au)(x, y0, z0, δ) + (Au)(x0, y1, z0, δ)] dδ −
∫ z

z0

[(Bu)(x0, y, γ, t)+

+(Bu)(x, y0, γ, t) + (Bu)(x, y, γ, t0)− (Bu)(x0, y0, γ, t)−
−(Bu)(x0, y, γ, t0)− (Bu)(x, y0, γ, t0) + (Bu)(x0, y0, γ, t0)] dγ−

−
∫ y

y0

[(Cu)(x0, β, z, t) + (Cu)(x, β, z0, t) + (Cu)(x, β, z, t0)−

−(Cu)(x0, β, z0, t)− (Cu)(x0, β, z, t0)− (Cu)(x, β, z0, t0)+

+(Cu)(x0, β, z0, t0)] dβ −
∫ x

x0

[(Du)(α, y0, z, t) + (Du)(α, y, z0, t)+

+(Du)(α, y, z, t0)− (Du)(α, y0, z0, t)− (Du)(α, y0, z, t0)−
−(Du)(α, y, z0, t0) + (Du)(α, y0, z0, t0)] dα+

+

∫ z

z0

∫ t

t0

[(Eu)(x0, y, γ, δ) + (Eu)(x, y0, γ, δ)−

−(Eu)(x0, y0, γ, δ)] dδdγ +

∫ y

y0

∫ t

t0

[(Fu)(x0, β, z, δ)+

+(Fu)(x, β, z0, δ)− (Fu)(x0, β, z0, δ)] dδdβ+

+

∫ y

y0

∫ z

z0

[(Gu)(x0, β, γ, t) + (Gu)(x, β, γ, t0)−

−(Gu)(x0, β, γ, t0)] dγdβ +

∫ x

x0

∫ t

t0

[(Hu)(α, y0, z, δ)+

+(Hu)(α, y, z0, δ)− (Hu)(α, y0, z0, δ)] dδdα+

+

∫ x

x0

∫ z

z0

[(Ku)(α, y0, γ, t) + (Ku)(α, y, γ, t0)−

−(Ku)(α, y0, γ, t0)] dγdα +

∫ x

x0

∫ y

y0

[(Su)(α, β, z0, t)+

+(Su)(α, β, z, t0)− (Su)(α, β, z0, t0)] dβdα−

−
∫ y

y0

∫ z

z0

∫ t

t0

(Mu)(x0, β, γ, δ) dδdγdβ−

50



−
∫ x

x0

∫ z

z0

∫ t

t0

(Nu)(α, y0, γ, δ) dδdγdα−

−
∫ x

x0

∫ y

y0

∫ t

t0

(Pu)(α, β, z0, δ) dδdβdα−

−
∫ x

x0

∫ y

y0

∫ z

z0

(Qu)(α, β, γ, t0) dγdβdα. (3.9)

Подставляя сюда граничные значения (3.2), получим формулу реше-
ния задачи Гурса. В записи функций R, A, . . . , Q для сокращения за-
писи указаны лишь первые четыре аргумента, вторые четыре всюду
(x, y, z, t).

Можно рассматривать формулу (3.9) при произвольных функ-
циях u(x0, y, z, t) = ϕ1(y, z, t), u(x, y0, z, t) = ϕ2(x, z, t), u(x, y, z0, t) =
ϕ3(x, y, t), u(x, y, z, t0) = ϕ4(x, y, z), в качестве общего представления
решений уравнения (3.1), как это делается в [2, с. 66] для двумерного
уравнения.

Формула (3.9) получена в работе [29].
Замечание. Если при интегрировании тождества (3.7) считать,

что u является решением неоднородного уравнения L(u) = F (x, y, z),
то в правой части (3.9) добавится слагаемое

u0 =

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

R(α, β, γ, δ)F (α, β, γ, δ)dδdγdβdα.

Очевидно, u0 есть решение однородной задачи Гурса для неоднородно-
го уравнения, соответствующего (3.1).

1.2. Задача Коши. В ориентированном системой координат
(x, y, z, t) пространстве R4 рассмотрим поверхность S класса C4, за-
данную уравнениями:





x = x(µ1, µ2, µ3),
y = y(µ1, µ2, µ3),
z = z(µ1, µ2, µ3),
t = t(µ1, µ2, µ3),

rank




∂x

∂µ1

∂y

∂µ1

∂z

∂µ1

∂t

∂µ1

∂x

∂µ2

∂y

∂µ2

∂z

∂µ2

∂t

∂µ2

∂x

∂µ3

∂y

∂µ3

∂z

∂µ3

∂t

∂µ3




= 3,
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где (µ1, µ2, µ3) ∈ G3 ⊂ R3. Предполагаем, что S в каждой своей точке
имеет касательную плоскость, не параллельную ни одной из коорди-
натных осей. Положим для определенности xy < 0, yz < 0, zt < 0.
Проведем через точку M(x0, y0, z0, t0) плоскости x = x0, y = y0, z = z0,

t = t0. Обозначим через S0 участок поверхности S, вырезанный этими
плоскостями, через Ω — конечную область пространства R4, ограни-
ченную плоскостями x = x0, y = y0, z = z0, t = t0 и S0, ∂Ω — край
Ω. Считаем ориентацию области Ω положительной. Рассмотрим со-
вокупность ориентированных многообразий, обозначаемых символами
S0, Ω и ∂Ω с индексами из 1, 2 или 3 различных переменных x, y, z,
t. S0 и Ω-многообразия определим как пересечения соответственно S0

и Ω с соответствующими плоскостями, а ∂Ω-многообразия — как края
соответствующих Ω-многообразий. Например S0

xy — множество точек
поверхности S0, лежащих в плоскостях x = x0 и y = y0. Очевидно, что
геометрически S0-многообразия содержатся в ∂Ω-многообразиях с теми
же индексами, а Ω-многообразия — в ∂Ω-многообразиях с теми же ин-
дексами без последней переменной. Например S0

y — часть ∂Ωy, Ωzxy —
часть ∂Ωzx. Будем считать, что названные многообразия — не только
подмножества ∂Ω-множеств, но и имеют одинаковую с ними ориента-
цию. Ориентации ∂Ω-многообразий будем считать согласованными с
ориентациями соответствующих Ω-многообразий.

В результате индуктивно определены все введенные ориентиро-
ванные многообразия.

Нетрудно видеть, что два из рассмотренных как Ω-, так и S0-
многообразий совпадают геометрически, если их индексы образованы
одним и тем же набором переменных. Причем, если индексы одного
из них получаются четной перестановкой индексов другого, то ориен-
тации этих многообразий совпадают, в случае нечетной перестановки
ориентации противоположны.

Рассмотрим уравнение с правой частью

L(u) = Φ, (3.10)

соответствующее (3.1).
Задача: найти регулярное в Ω решение уравнения (3.10), ко-

торое удовлеворяет условиям

∂ku

∂lk

∣∣∣∣
S

= ψk, k = 0, 3, (3.11)

52



где l — заданное на S некасательное к этой поверхности поле на-
правлений.

Будем считать

a, b, c, d, e, f, g, h, k s, m, n, p, q, r ∈ C3(Ω), Φ ∈ C(Ω), ψk ∈ C4−k(S).

При решении будем опираться на соотношение:

RΦ =
∂W1

∂x
+

∂W2

∂y
+

∂W3

∂z
+

∂W4

∂t
, (3.12)

где

W1 =
1

4
(Ru)yzt − 1

3
(Au)yz − 1

3
(Bu)yt − 1

3
(Cu)zt+

+
1

2
(Eu)y +

1

2
(Fu)z +

1

2
(Gu)t −Mu,

W2 =
1

4
(Ru)xzt − 1

3
(Au)xz − 1

3
(Bu)xt − 1

3
(Du)zt+

+
1

2
(Eu)x +

1

2
(Hu)z +

1

2
(Ku)t −Nu,

W3 =
1

4
(Ru)xyt − 1

3
(Au)xy − 1

3
(Cu)xt − 1

3
(Du)yt+

+
1

2
(Fu)x +

1

2
(Hu)y +

1

2
(Su)t − Pu,

W4 =
1

4
(Ru)xyz − 1

3
(Bu)xy − 1

3
(Cu)xz − 1

3
(Du)yz+

+
1

2
(Gu)x +

1

2
(Ku)y +

1

2
(Su)z −Qu.

Здесь (3.12) представляет собой видоизмененное тождество (3.7),
u — решение уравнения (3.10), R(x, y, z, t, x0, y0, z0, t0) — функция Ри-
мана для (3.10), удовлетворяющая (3.6) при ξ = x0, η = y0, ζ = z0,
τ = t0.

Интегрируя (3.12) по области Ω и используя общую формулу
Стокса для дифференциальной 3-формы в R4 [43, с. 246], получим

∫

Ω

RΦ dx dy dz dt =

∫

∂Ω

W1dy ∧ dz ∧ dt−W2dz ∧ dt ∧ dx +

+ W3dt ∧ dx ∧ dy −W4dx ∧ dy ∧ dz. (3.13)
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Заменяя в (3.13) интеграл по области ∂Ω суммой интегралов по
ее составляющим и учитывая тождества

M(x0, y, z, t) ≡ 0, N(x, y0, z, t) ≡ 0, P (x, y, z0, t) ≡ 0, Q(x, y, z, t0) ≡ 0,
(3.14)

приведенные ранее, получим
∫

Ω

RΦ dx dy dz dt =

∫

Ωx

(
∂E∗

∂y
+

∂F ∗

∂z
+

∂G∗

∂t

)
dy ∧ dz ∧ dt−

−
∫

Ωy

(
∂H∗

∂z
+

∂K∗

∂t
+

∂E∗

∂x

)
dz ∧ dt ∧ dx+

+

∫

Ωz

(
∂S∗

∂t
+

∂F ∗

∂x
+

∂H∗

∂y

)
dt ∧ dx ∧ dy−

−
∫

Ωt

(
∂G∗

∂x
+

∂K∗

∂y
+

∂S∗

∂z

)
dx ∧ dy ∧ dz+

+
1

12

∫

S0

Mu dy ∧ dz ∧ dt−Nudz ∧ dt ∧ dx + Pudt ∧ dx ∧ dy−

−Qu dx ∧ dy ∧ dz, (3.15)

где

E∗ =
1

12
(Ru)zt − 1

6
(Au)z − 1

6
(Bu)t +

1

2
Eu,

F ∗ =
1

12
(Ru)yt − 1

6
(Au)y − 1

6
(Cu)t +

1

2
Fu,

G∗ =
1

12
(Ru)yz − 1

6
(Bu)y − 1

6
(Cu)z +

1

2
Gu,

H∗ =
1

12
(Ru)xt − 1

6
(Au)x − 1

6
(Du)t +

1

2
Hu,

K∗ =
1

12
(Ru)xz − 1

6
(Bu)x − 1

6
(Du)z +

1

2
Ku,

S∗ =
1

12
(Ru)xy − 1

6
(Cu)x − 1

6
(Du)y +

1

2
Su,

R1 = 3R, A1 = Rt − 4aR, B1 = Rz − 4bR,
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C1 = Ry − 4cR, D1 = Rx − 4dR,

E1 = Rzt − 2(aR)z − 2(bR)t + 6eR,

F1 = Ryt − 2(aR)y − 2(cR)t + 6fR,

G1 = Ryz − 2(bR)y − 2(cR)z + 6gR,

H1 = Rxt − 2(aR)x − 2(dR)t + 6hR,

K1 = Rxz − 2(bR)x − 2(dR)z + 6kR,

S1 = Rxy − 2(cR)x − 2(dR)y + 6sR,

M1 = 3Ryzt − 4(aR)yz − 4(bR)yt − 4(cR)zt + 6(eR)y+

+6(fR)z + 6(gR)t − 12mR,

N1 = 3Rxzt − 4(aR)xz − 4(bR)xt − 4(dR)zt + 6(eR)x+

+6(hR)z + 6(kR)t − 12nR,

P1 = 3Rxyt − 4(aR)xy − 4(cR)xt − 4(dR)yt + 6(fR)x+

+6(hR)y + 6(sR)t − 12pR,

Q1 = 3Rxyz − 4(bR)xy − 4(cR)xz − 4(dR)yz + 6(gR)x+

+6(kR)y + 6(sR)z − 12qR,

Mu = R1uyzt − A1uyz −B1uyt − C1uzt + E1uy+

+F1uz + G1ut −M1u,

Nu = R1uxzt − A1uxz −B1uxt −D1uzt + E1ux+

+H1uz + K1ut −N1u,

Pu = R1uxyt − A1uxy − C1uxt −D1uyt + F1ux+

+H1uy + S1ut − P1u,

Qu = R1uxyz −B1uxy − C1uxz −D1uyz + G1ux+

+K1uy + S1uz −Q1u.

Здесь в записи Mu, Nu, . . . символ u — индекс.
Применяя формулу Гаусса—Остроградского [43, с. 241] к интег-

ралам Ix, Iy, Iz, It по областям Ωx, Ωy, Ωz, Ωt соответственно, заменяя
двойные интегралы по областям ∂Ωx, ∂Ωy, ∂Ωz, ∂Ωt суммами интег-
ралов по их составляющим и учитывая тождества E(x0, y0, z, t) ≡ 0,
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F (x0, y, z0, t) ≡ 0, G(x0, y, z, t0) ≡ 0, H(x, y0, z0, t) ≡ 0, K(x, y0, z, t0) ≡ 0,
S(x, y, z0, t0) ≡ 0, найдем

Ix =

∫

Ωxy

(
∂A∗

∂z
+

∂B∗

∂t

)
dz ∧ dt +

∫

Ωxz

(
∂C∗

∂t
+

∂A∗

∂y

)
dt ∧ dy+

+

∫

Ωxt

(
∂B∗

∂y
+

∂C∗

∂z

)
dy ∧ dz +

1

12

∫

S0
x

Eu dz ∧ dt+

+Fu dt ∧ dy + Gu dy ∧ dz,

Iy =

∫

Ωyx

(
∂A∗

∂z
+

∂B∗

∂t

)
dz ∧ dt +

∫

Ωyz

(
∂D∗

∂t
+

∂A∗

∂x

)
dt ∧ dx+

+

∫

Ωyt

(
∂B∗

∂x
+

∂D∗

∂z

)
dx ∧ dz +

1

12

∫

S0
y

Hu dt ∧ dx+

+Ku dx ∧ dz + Eu dz ∧ dt,

Iz =

∫

Ωzx

(
∂A∗

∂y
+

∂C∗

∂t

)
dy ∧ dt +

∫

Ωzy

(
∂D∗

∂t
+

∂A∗

∂x

)
dt ∧ dx+

+

∫

Ωzt

(
∂C∗

∂x
+

∂D∗

∂y

)
dx ∧ dy +

1

12

∫

S0
z

Su dx ∧ dy+

+Fu dy ∧ dt + Hu dt ∧ dx,

It =

∫

Ωtx

(
∂B∗

∂y
+

∂C∗

∂z

)
dy ∧ dz +

∫

Ωty

(
∂D∗

∂z
+

∂B∗

∂x

)
dz ∧ dx+

+

∫

Ωtz

(
∂C∗

∂x
+

∂D∗

∂y

)
dx ∧ dy +

1

12

∫

S0
t

Gu dy ∧ dz+

+Ku dz ∧ dx + Su dx ∧ dy.

При этом

A∗ =
1

24
(Ru)t − 1

6
Au, B∗ =

1

24
(Ru)z − 1

6
Bu,

C∗ =
1

24
(Ru)y − 1

6
Cu, D∗ =

1

24
(Ru)x − 1

6
Du,

A2 = Rt − 2aR, B2 = Rz − 2bR,
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C2 = Ry − 2cR, D2 = Rx − 2dR,

E2 = 3Rzt − 4(aR)z − 4(bR)t + 6eR,

F2 = 3Ryt − 4(aR)y − 4(cR)t + 6fR,

G2 = 3Ryz − 4(bR)y − 4(cR)z + 6gR,

H2 = 3Rxt − 4(aR)x − 4(dR)t + 6hR,

K2 = 3Rxz − 4(bR)x − 4(dR)z + 6kR,

S2 = 3Rxy − 4(cR)x − 4(dR)y + 6sR,

Eu = Ruzt − A2uz −B2ut + E2u,

Fu = Ruyt − A2uy − C2ut + F2u,

Gu = Ruyz −B2uy − C2uz + G2u,

Hu = Ruxt − A2ux −D2ut + H2u,

Ku = Ruxz −B2ux −D2uz + K2u,

Su = Ruxy − C2ux −D2uy + S2u.

В сумме I1 = Ix − Iy + Iz − It после приведения подобных (рав-
ных) слагаемых из интегралов по плоским областям будут содержать-
ся лишь интегралы по областям Ωxy, Ωxz, Ωxt, Ωyz, Ωyt, Ωzt. Приме-
няя к этим интегралам Ixy, Ixz, Ixt, Iyz, Iyt, Izt формулу Грина [43,
с. 236], заменяя интегралы по контурам ∂Ωxy, ∂Ωxz, ∂Ωxt, ∂Ωyz, ∂Ωyt,
∂Ωzt суммами интегралов по их составляющим и учитывая тождества
A(x0, y0, z0, t) ≡ 0, B(x0, y0, z, t0) ≡ 0, C(x0, y, z0, t0) ≡ 0, D(x, y0, z0, t0) ≡
0, найдем

Ixy =
1

12

( ∫

Ωxyz

(Ru)tdt−
∫

Ωxyt

(Ru)zdz +

∫

S0
xy

Audt−Budz

)
,

Ixz =
1

12

( ∫

Ωxzt

(Ru)ydy −
∫

Ωxzy

(Ru)tdt +

∫

S0
xz

Cudy − Audt

)
,

Ixt =
1

12

( ∫

Ωxty

(Ru)zdz −
∫

Ωxtz

(Ru)ydy +

∫

S0
xt

Budz − Cudy

)
,

Iyz =
1

12

( ∫

Ωyzx

(Ru)tdt−
∫

Ωyzt

(Ru)xdx +

∫

S0
yz

Audt−Dudx

)
,
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Iyt =
1

12

( ∫

Ωytz

(Ru)xdx−
∫

Ωytx

(Ru)zdz +

∫

S0
yt

Dudx−Budz

)
,

Izt =
1

12

( ∫

Ωztx

(Ru)ydy −
∫

Ωzty

(Ru)xdx +

∫

S0
zt

Cudy −Dudx

)
,

где
Au = utR− u(3Rt − 4aR), Bu = uzR− u(3Rz − 4bR),

Cu = uyR− u(3Ry − 4cR), Du = uxR− u(3Rx − 4dR).

В сумме I2 = Ixy + Ixz + Ixt + Iyz + Iyt + Izt после приве-
дения подобных слагаемых из интегралов по отрезкам прямых бу-
дут содержаться лишь интегралы по отрезкам Ωxyz, Ωxyt, Ωxzt, и
Ωyzt. Непосредственно вычисляя эти интегралы, учитывая равенство
R(x0, y0, z0, t0, x0, y0, z0, t0) = 1, вытекающее из определения функции
Римана, и возвращаясь к (3.15), получаем:

u(x0, y0, z0, t0) =
1

4

(
(Ru)(S0

xyz) + (Ru)(S0
xyt) + (Ru)(S0

xzt)+

+(Ru)(S0
yzt)

)
− 1

12

{ ∫

S0
xy

Audt−Budz +

∫

S0
xz

Cudy − Audt+

+

∫

S0
xt

Budz − Cudy +

∫

S0
yz

Audt−Dudx +

∫

S0
yt

Dudx−Budz+

+

∫

S0
zt

Cudy −Dudx +

∫

S0
x

Eudz ∧ dt + Fudt ∧ dy + Gudy ∧ dz−

−
∫

S0
y

Hudt ∧ dx + Kudx ∧ dz + Eudz ∧ dt +

∫

S0
z

Sudx ∧ dy+

+Fudy ∧ dt + Hudt ∧ dx−
∫

S0
t

Gudy ∧ dz + Kudz ∧ dx+

+Sudx ∧ dy +

∫

S0

Mudy ∧ dz ∧ dt−Nudz ∧ dt ∧ dx+
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+Pudt ∧ dx ∧ dy −Qudx ∧ dy ∧ dz

}
+

+

∫ xS0
yzt

x0

dx

∫ yS0
zt

(x)

y0

dy

∫ zS0
t
(x,y)

z0

dz

∫ tS0(x,y,z)

t0

RΦdt. (3.16)

Здесь x = xS0
yzt

— абсцисса точки S0
yzt, y = yS0

zt
(x) — уравнение кривой

S0
zt в плоскости z = z0, t = t0, z = zS0

t
(x, y) — уравнение поверхности

S0
t в плоскости t = t0 и t = tS0(x, y, z) — уравнение поверхности S0.
Перечисленные пределы интегрирования последнего интеграла в (3.16)
существуют, так как все определители

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂µ1

∂y

∂µ1

∂z

∂µ1

∂x

∂µ2

∂y

∂µ2

∂z

∂µ2

∂x

∂µ3

∂y

∂µ3

∂z

∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂µ1

∂y

∂µ1

∂t

∂µ1

∂x

∂µ2

∂y

∂µ2

∂t

∂µ2

∂x

∂µ3

∂y

∂µ3

∂t

∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂µ1

∂z

∂µ1

∂t

∂µ1

∂x

∂µ2

∂z

∂µ2

∂t

∂µ2

∂x

∂µ3

∂z

∂µ3

∂t

∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y

∂µ1

∂z

∂µ1

∂t

∂µ1

∂y

∂µ2

∂z

∂µ2

∂t

∂µ2

∂y

∂µ3

∂z

∂µ3

∂t

∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
отличны от нуля в силу свойств поверхности S.

Формула (3.16) содержит значения частных производных реше-
ния u по x, y, z, t до третьего порядка включительно, вычисленные на
S. Она даст решение рассматриваемой задачи, если указанные произ-
водные вычислить через функции ψk из условий (3.11). Покажем, что
это можно сделать.

Для удобства переобозначим x = x1, y = x2, z = x3, t = x4.
Пусть поле направлений l задано вектором

~l
(
l1(µ1, µ2, µ3), l2(µ1, µ2, µ3), l3(µ1, µ2, µ3), l4(µ1, µ2, µ3)

)
, ~l ∈ C3(G3),
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причем |~l | ≡ 1. Введем систему координат, связанную с поверхностью
S:

xi = xi(µ1, µ2, µ3) + li(µ1, µ2, µ3)µ4, (3.17)

где i = 1, 4, µ4 ∈ R. Поле направлений l по условию не касатель-
но к S, следовательно, существует обратное преобразование µi =
µi(x1, x2, x3, x4) класса C3 в окрестности поверхности S [42, c. 495]. По-
следовательно находя производные первого, второго и третьего поряд-
ков решения исходной задачи u по xi в точках поверхности S, получим:

∂u

∂xα
=

4∑
i=1

∂µi

∂xα

∂u

∂µi
,

∂2u

∂xα∂xβ
=

4∑
i=1

4∑
j=1

∂µi

∂xα

∂µj

∂xβ

∂2u

∂µi∂µj
+

4∑
i=1

∂2µi

∂xα∂xβ

∂u

∂µi
,

∂3u

∂xα∂xβ∂xγ
=

4∑

i=1

4∑

j=1

4∑

k=1

∂µi

∂xα

∂µj

∂xβ

∂µk

∂xγ

∂3u

∂µi∂µj∂µk
+ (3.18)

+
4∑

i=1

4∑
j=1

(
∂2µi

∂xα∂xβ

∂µj

∂xγ

∂2u

∂µi∂µj
+

∂2µi

∂xα∂xγ

∂µj

∂xβ

∂2u

∂µi∂µj
+

+
∂2µi

∂xβ∂xγ

∂µj

∂xα

∂2u

∂µi∂µj

)
+

4∑

i=1

∂3µi

∂xα∂xβ∂xγ

∂u

∂µi
.

Очевидно, здесь

∂su

∂µp
1∂µq

2∂µr
3∂µv

4

∣∣∣∣
S

=
∂s−vψv

∂µp
1∂µq

2∂µr
3
, s = p + q + r + v,

s = 1, 3, а производные µi по xα находятся по теореме о неявной функ-
ции [42, c. 488]. Подставляя эти производные в (3.16), получим решение
задачи Коши.

При изложении настоящего пункта мы следовали работе
В.А. Севастьянова [65].
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1.3. Функции Римана для расщепляющихся уравнений.
В дальнейшем используются конструкции

h1,2 = dy + cd− s, h2,1 = cx + cd− s,

h1,3 = dz + bd− k, h3,1 = bx + bd− k,

h1,4 = dt + ad− h, h4,1 = ax + ad− h,
h2,3 = cz + bc− g, h3,2 = by + bc− g,

h2,4 = ct + ac− f, h4,2 = ay + ac− f,

h3,4 = bt + ab− e, h4,3 = az + ab− e,

h12,3 = sz + bs− q, h12,4 = st + as− p,

h13,2 = ky + ck − q, h13,4 = kt + ak − n,
h14,2 = hy + ch− p, h14,3 = hz + bh− n,

h23,1 = gx + dg − q, h24,1 = fx + df − p,

h23,4 = gt + ag −m, h24,3 = fz + bf −m,

h34,1 = ex + de− n, h34,2 = ey + ce−m,
h123,4 = qt + aq − r, h124,3 = pz + bp− r,

h134,2 = ny + cn− r, h234,1 = mx + dm− r.

(3.19)

являющиеся аналогами hi, i = 1, 9, из п. 5 § 2. Нумерация конструкций
из (3.19) имеет следующий смысл. Запишем уравнение (3.1) в виде

ux1x2x3x4
+ a1ux2x3x4

+ a2ux1x3x4
+ a3ux1x2x4

+ a4ux1x2x3
+ a12ux3x4

+

+ a13ux2x4
+ a14ux2x3

+ a23ux1x4
+ a24ux1x3

+ a34ux1x2
+ a123ux4

+

+ a124ux3
+ a134ux2

+ a234ux1
+ a1234u = 0,

где x1 = x, x2 = y, x3 = z, x4 = t. Тогда, например, h1,3 = a1x3
+ a1a3 −

a13, h23,4 = a23x4
+ a23a4 − a234.

Продифференцировав (3.6) по x, y, z, t, получим, что функция v

удовлетворяет сопряженному к (3.1) уравнению

L∗(u) = vxyzt − (av)xyz − (bv)xyt − (cv)xzt − (dv)yzt + (ev)xy +

+ (fv)xz + (gv)xt + (hv)yz + (kv)yt + (sv)zt − (mv)x −
− (nv)y − (pv)z − (qv)t + rv = 0. (3.20)

1. Положим в (3.6) ξ = x0, η = y0, ζ = z0, τ = t0.
Покажем, что если

h1,4 ≡ h2,4 ≡ h3,4 ≡ h1,3 ≡ h2,3 ≡ h1,2 ≡
≡ h12,4 ≡ h13,4 ≡ h23,4 ≡ h12,3 ≡ h123,4 ≡ 0,

(3.21)
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то функция Римана уравнения (3.1) имеет вид

R(x, y, z, t, x0, y0, z0, t0) = exp

(∫ x

x0

d(α, y0, z0, t0) dα+

+

∫ y

y0

c(x, β, z0, t0) dβ +

∫ z

z0

b(x, y, γ, t0) dγ +

∫ t

t0

a(x, y, z, δ) dδ

)
. (3.22)

Доказательство формулы (3.22) (приведенное в [64]) будем про-
водить при фиксированных сначала трех переменных, затем двух, од-
ной и лишь затем — в общем виде.

Предварительно покажем, что при условиях (3.21) уравнение
(3.20) записывается в виде

(
∂

∂x
− d

)(
∂

∂y
− c

)(
∂

∂z
− b

)(
∂

∂t
− a

)
v = 0 . (3.23)

Чтобы показать это, проведем соответствующие вычисления. Сначала
перепишем (3.23):

(
∂

∂x
− d

)(
∂

∂y
− c

)(
vzt − (av)z − (bv)t + ev

)
= 0 . (3.24)

Здесь учтено, что h3,4 ≡ 0, то есть bt + ab = e. Преобразуем (3.24):

(
∂

∂x
− d

)(
vyzt − (av)yz − (bv)yt + (ev)y−

−cvzt + c(av)z + c(bv)t − cev

)
= 0 . (3.25)

Перегруппируем слагаемые в (3.25):

(
∂

∂x
− d

)(
vyzt − (av)yz − (bv)yt − (cv)zt + (ev)y + ((ct + ac)v)z+

+((cz + bc)v)t − (czt + acz + bct + ce)v

)
= 0 . (3.26)

Учитываем теперь, что h2,3 ≡ h2,4 ≡ 0, то есть ct + ac = f , cz + bc = g.
Далее,

czt + acz + bct + ce = (cz + bc)t + a(cz + bc) = gt + ag = m.
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Здесь мы использовали условия h3,4 ≡ 0, h2,3 ≡ 0, h23,4 ≡ 0. Наконец,
распишем уравнение (3.26):

vxyzt − (av)xyz − (bv)xyt − (cv)xzt − dvyzt + (ev)xy +

+ (fv)xz + (gv)xt + d(av)yz + d(bv)yt + d(cv)zt −
− (mv)x − d(ev)y − d(fv)z − d(gv)t + dmv = 0 . (3.27)

Займемся теперь преобразованием выражения

P = −dvyzt + d(av)yz + d(bv)yt + d(cv)zt −
− d(ev)y − d(fv)z − d(gv)t + dmv ,

содержащегося в левой части (3.27):

P = [−(dv)yzt + (dyv)zt + (dzv)yt + (dtv)yz − dyzvt − dytvz−
−dztvy − 2dyztv] + [(adv)yz − dyzav − dy(av)z − dz(av)y]+

+[(bdv)yt− dytbv− dy(bv)t− dt(bv)y] + [(cdv)zt− dztcv− dz(cv)t− dt(cv)z]−
−[(dev)y − dyev]− [(dfv)z − dzfv]− [(dgv)t − dtgv] + dmv =

= −(dv)yzt + ((dy + cd)v)zt + ((dz + bd)v)yt + ((dt + ad)v)yz−
−[dyzvt + dytvz − dytvz + 2dyztv]− [(dyav)z + (dzav)y − dyzav]−
−[(dybv)t + (dtbv)y − dytbv]− [(dzcv)t + (dtcv)z − dztcv]−

−[(dyav)z − (dzav)y − dyzav]− [(dev)y − dyev]− [(dfv)z − dzfv]−
−[(dgv)t − dtgv] + dmv = −(dv)yzt + ((dy + cd)v)zt+

+((dz + bd)v)yt + ((dt + ad)v)yz + P1.

Сгруппируем слагаемые в P1 таким образом:

P1 = −[dyzvt + (dybv)t + (dzcv)t + (dgv)t]−
−[dytvz + (dyav)z + (dtcv)z + (dfv)z]−

−[dztvy + (dzav)y + (dtbv)y + (dev)y] + [dyza + dytb + dztc + dye+

+dzf + dtg + dm− 2dyzt]v = −[(dzt + dza + dtb + de)v]y−
−[(dyt + dya + dtc + df)v]z − [(dyz + dyb + dzc + dg)v]t+

+[dyzt + dyza + dytb + dztc + dye + dzf + dtg + dm]v =

= −[(dzt + dza + dtb + de)v]y − [(dyt + dya + dtc + df)v]z−
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−[(dyz + dyb + dzc + dg)v]t + P2v.

Преобразуем первое слагаемое в полученном выражении:

[(dzt + dza + dtb + de)v]y = [((dz + bd)t + a(dz + bd))v]y = (nv)y.

Здесь использовались условия h3,4 ≡ 0, h1,3 ≡ 0, h13,4 ≡ 0. Совершенно
аналогично получаем, что

[(dyt + dya + dtc + df)v]z = (pv)z, [(dyz + dyb + dzc + dg)v]t = (qv)t,

при этом используются условия h2,3 ≡ h1,2 ≡ h12,3 ≡ 0 и h2,4 ≡
h1,2 ≡ h12,4 ≡ 0 соответственно. Осталось преобразовать P2. Распишем
m = gt + ag (то есть h23,4 ≡ 0). Тогда

P2 = [dyz + dyb + dzc + dg]t + dyza + dye + dzf + dag − dybt − dzct.

Теперь используем формулы e = bt + ab и f = ct + ac. Очевидно

P2 = [dyz + dyb + dzc + dg]t + a[dyza + dyb + dzc + dg] = qt + aq = r,

поскольку h123,4 ≡ 0. Тем самым формула (3.23) доказана.
Положим в (3.6) y = y0, z = z0, t = t0 и продифференцируем по

x. Получим
vx(x, y0, z0, t0)− (dv)(x, y0, z0, t0) = 0,

откуда

R(x, y0, z0, t0, x0, y0, z0, t0) = exp

(∫ x

x0

d(α, y0, z0, t0) dα

)
. (3.28)

Здесь коэффициент перед экспонентой равен 1 в силу

R(x0, y0, z0, t0, x0, y0, z0, t0) = 1.

Очевидно (3.28) — частный случай (3.22). Аналогично находим

R(x0, y, z0, t0, x0, y0, z0, t0) = exp

(∫ y

y0

c(x0, β, z0, t0) dβ

)

R(x0, y0, z, t0, x0, y0, z0, t0) = exp

(∫ z

z0

b(x0, y0, γ, t0) dγ

)

R(x0, y0, z0, t, x0, y0, z0, t0) = exp

(∫ t

t0

a(x0, y0, z0, δ) dδ

)
.
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Полагаем в (3.6) z = z0, t = t0 и дифференцируем по x, y:

vxy(x, y, z0, t0)− (cv)x(x, y, z0, t0)−
− (dv)y(x, y, z0, t0) + (sv)(x, y, z0, t0) = 0. (3.29)

В силу (3.21) dy + cd− s ≡ 0, поэтому (3.29) равносильно уравнению
(

∂

∂x
− d(x, y, z0, t0)

)(
∂

∂y
− c(x, y, z0, t0)

)
v(x, y, z0, t0) = 0.

Записав его в виде системы




∂v

∂y
− cv = v1,

∂v1

∂x
− dv1 = 0,

находим общее решение

v(x, y, z0, t0) = R(x, y, z0, t0, x0, y0, z0, t0) =

= exp

(∫ y

y0

c(x, β, z0, t0) dβ

)[∫ y

y0

exp

(
−

∫ η

y0

c(x, β, z0, t0) dβ+

+

∫ x

x0

d(α, η, z0, t0) dα

)
ϕ(η) dη + ψ(x)

]
. (3.30)

Положим y = y0. Тогда

ψ(x) = R(x, y0, z0, t0, x0, y0, z0, t0) = exp

(∫ x

x0

d(α, y0, z0, t0) dα

)
.

Подставим найденное значение ψ(x) в (3.30). Полагая x = x0, получим

exp

(∫ y

y0

c(x0, β, z0, t0) dx0

)
×

×
[∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, z0, t0) dβ

)
ϕ(η) dη + 1

]
=

= R(x0, y, z0, t0, x0, y0, z0, t0) = exp

(∫ y

y0

c(x0, β, z0, t0) dβ

)
.

Отсюда ∫ y

y0

exp

(
−

∫ η

y0

c(x0, β, z0, t0) dβ

)
ϕ(η) dη = 0.

65



Верхний предел интегрирования внешнего интеграла переменный, сле-
довательно ϕ(η) ≡ 0.

Подставляя ψ и ϕ в (3.30), получим выражение для
R(x, y, z0, t0, x0, y0, z0, t0) совпадающее с (3.22) при z = z0, t = t0.

Аналогично доказывается справедливость (3.22) в оставшихся 5
случаях с фиксированными двумя переменными.

Пусть в уравнении (3.6) теперь t = t0. Дифференцируя его по x,
y, z, получим:

vxyz − (bv)xy − (cv)xz − (dv)yz + (gv)x + (kv)y + (sv)z − qv = 0. (3.31)

Здесь все аргументы (x, y, z, t0).
В силу условий (3.21), уравнение (3.31) можно записать в виде

(
∂

∂x
− d

)(
∂

∂y
− c

)(
∂

∂z
− b

)
v = 0.

Как и раньше, переписывая это уравнение в виде системы




∂v

∂z
− bv = v1,

∂v1

∂y
− cv1 = v2,

∂v2

∂x
− dv2 = 0,

находим его общее решение:

v(x, y, z, t0) = R(x, y, z, t0, x0, y0, z0, t0) = exp

(∫ z

z0

b(x, y, γ, t0) dγ

)
×

×
[∫ z

z0

exp

(
−

∫ ζ

z0

b(x, y, γ, t0) dγ +

∫ y

y0

c(x, β, ζ, t0) dβ

)
×

×
[∫ y

y0

exp

(
−

∫ η

y0

c(x, β, ζ, t0) dβ +

∫ x

x0

d(α, η, ζ, t0) dα

)
×

×ϕ1(η, ζ) dη + ϕ2(x, ζ)

]
dζ + ϕ3(x, y)

]
. (3.32)

Положим z = z0. Получим

ϕ3(x, y) = R(x, y, z0, t0, x0, y0, z0, t0) =

= exp

(∫ x

x0

d(α, y0, z0, t0) dα +

∫ y

y0

c(x, β, z0, t0) dβ

)
.
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Подставим это выражение в (3.32), положим y = y0. Тогда

exp

(∫ z

z0

b(x, y0, γ, t0) dγ

)[∫ z

z0

exp

(
−

∫ ζ

z0

b(x, y0, γ, t0) dγ

)
×

×ϕ2(x, ζ) dζ + exp

(∫ x

x0

d(α, y0, z0, t0) dα

)]
=

= R(x, y0, z, t0, x0, y0, z0, t0) =

= exp

(∫ x

x0

d(α, y0, z0, t0) dα +

∫ z

z0

b(x, y0, γ, t0) dγ

)
.

Отсюда
∫ z

z0

exp

(
−

∫ ζ

z0

b(x, y0, γ, t0) dγ

)
ϕ2(x, ζ) dζ = 0.

Как и в предыдущих случаях ϕ2(x, ζ) ≡ 0.
Аналогично ϕ1(η, ζ) ≡ 0. Подставив ϕ1, ϕ2, ϕ3 в (3.32) получим

формулу (3.22) при t = t0.
Выражения R при x = x0, либо y = y0, либо z = z0 получаются

аналогично.
Действуя по указанной схеме можно найти выражение R не фик-

сируя ни одной переменной, то есть доказать формулу (3.22) полнос-
тью.

Пользуясь приведенной выше схемой доказательства можно по-
лучить еще 23 аналога формулы (3.22), подобно тому, как это было
сделано в п. 5.1 § 2.

2. Покажем, что при условиях

h1,4 ≡ h2,4 ≡ h3,4 ≡ h1,3 ≡ h2,3 ≡ h1,2 ≡
≡ h12,4 ≡ h13,4 ≡ h23,4 ≡ h12,3 ≡ 0

(3.33)

можно записать интегральное уравнение для функции Римана так, что
оно будет содержать лишь четырехкратный интеграл.

Пусть имеет место (3.33). Тогда (3.20) записывается в виде
(

∂

∂x
− d

)(
∂

∂y
− c

)(
∂

∂z
− b

)(
∂

∂t
− a

)
v = h123,4v. (3.34)

Cопряженное к (3.34) уравнение при h123,4 ≡ 0 записывается сле-
дующим образом

(
∂

∂t
+ a

) (
∂

∂z
+ b

)(
∂

∂y
+ c

)(
∂

∂x
+ d

)
w = 0. (3.35)
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Как было показано выше, функция Римана для уравнения (3.23)
при h123,4 ≡ 0 (удовлетворяющая (3.35)) имеет вид

R1234(x, y, z, t, x0, y0, z0, t0) =

= exp

(
−

∫ t

t0

a(x0, y0, z0, δ)dδ −
∫ z

z0

b(x0, y0, γ, t)dγ−

−
∫ y

y0

c(x0, β, z, t)dβ −
∫ x

x0

d(α, y, z, t)dα

)
.

Будем теперь рассматривать (3.23) как неоднородное уравнение
с правой частью h123,4v. Запишем его решение в виде суммы решения
однородного (при h123,4v ≡ 0) и функции

u0 =

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

R(α, β, γ, δ)[h123,4u](α, β, γ, δ)dδdγdβdα.

В соответствии с формулой (3.9) имеем

u(x, y, z, t) = (Ru)(x0, y, z, t) + (Ru)(x, y0, z, t)+

+(Ru)(x, y, z0, t) + (Ru)(x, y, z, t0)− (Ru)(x0, y0, z, t)−
−(Ru)(x0, y, z0, t)− (Ru)(x0, y, z, t0)− (Ru)(x, y0, z0, t)−
−(Ru)(x, y0, z, t0)− (Ru)(x, y, z0, t0) + (Ru)(x0, y0, z0, t)+

+(Ru)(x0, y0, z, t0) + (Ru)(x0, y, z0, t0) + (Ru)(x, y0, z0, t0)−

−(Ru)(x0, y0, z0, t0)−
∫ x

x0

[(Du)(α, y0, z, t) + (Du)(α, y, z0, t)+

+(Du)(α, y, z, t0)− (Du)(α, y0, z0, t)− (Du)(α, y0, z, t0)−
−(Du)(α, y, z0, t0) + (Du)(α, y0, z0, t0)]dα−

−
∫ y

y0

[(Cu)(x0, β, z, t) + (Cu)(x, β, z0, t)+

+(Cu)(x, β, z, t0)− (Cu)(x0, β, z0, t)− (Cu)(x0, β, z, t0)−
−(Cu)(x, β, z0, t0) + (Cu)(x0, β, z0, t0)]dβ−

−
∫ z

z0

[(Bu)(x0, y, γ, t) + (Bu)(x, y0, γ, t)+

+(Bu)(x, y, γ, t0)− (Bu)(x0, y0, γ, t)− (Bu)(x0, y, γ, t0)−
−(Bu)(x, y0, γ, t0) + (Bu)(x0, y0, γ, t0)]dγ−
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−
∫ t

t0

[(Au)(x0, y, z, δ) + (Au)(x, y0, z, δ)+

+(Au)(x, y, z0, δ)− (Au)(x0, y0, z, δ)− (Au)(x0, y, z0, δ)−
−(Au)(x, y0, z0, δ) + (Au)(x0, y0, z0, δ)]dδ+

+

∫ x

x0

∫ y

y0

[(Su)(α, β, z0, t) + (Su)(α, β, z, t0)−

−(Su)(α, β, z0, t0)]dβdα +

∫ x

x0

∫ z

z0

[(Ku)(α, y0, γ, t)+

+(Ku)(α, y, γ, t0)− (Ku)(α, y0, γ, t0)]dγdα+

+

∫ x

x0

∫ t

t0

[(Hu)(α, y0, z, δ) + (Hu)(α, y, z0, δ)−

−(Hu)(α, y0, z0, δ)] dδdα +

∫ y

y0

∫ z

z0

[(Gu)(x0, β, γ, t)+

+(Gu)(x, β, γ, t0)− (Gu)(x0, β, γ, t0)] dγdβ+

+

∫ y

y0

∫ t

t0

[(Fu)(x0, β, z, δ) + (Fu)(x, β, z0, δ)−

−(Fu)(x0, β, z0, δ)]dδdβ +

∫ z

z0

∫ t

t0

[(Eu)(x0, y, γ, δ)+

+(Eu)(x, y0, γ, δ)− (Eu)(x0, y0, γ, δ)] dδdγ−

−
∫ x

x0

∫ y

y0

∫ z

z0

(Qu)(α, β, γ, t0)dγdβdα−

−
∫ x

x0

∫ y

y0

∫ t

t0

(Pu)(α, β, z0, δ)dδdβdα−

−
∫ x

x0

∫ z

z0

∫ t

t0

(Nu)(α, y0, γ, δ)dδdγdα−

−
∫ y

y0

∫ z

z0

∫ t

t0

(Mu)(x0, β, γ, δ)dδdγdβ+

+

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

(Rh123,4u)(α, β, γ, δ)dδdγdβdα. (3.36)

При этом у функций R, A, . . . , Q не записана вторая четверка аргумен-
тов, которая всегда (x, y, z, t).
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Избавившись от производных функции R = R1234 c помощью
интегрирования по частям, перепишем (3.36) так:

v(x, y, z, t) = (R1234v)(x0, y0, z0, t0)+

+

∫ t

t0

(R1234[vδ − av])(x0, y0, z0, δ)dδ +

∫ z

z0

(R1234[vγ − bv])(x0, y0, γ, t0)dγ+

+

∫ y

y0

(R1234[vβ − cv])(x0, β, z0, t0)dβ +

∫ x

x0

(R1234[vα − dv])(α, y0, z0, t0)dα+

+

∫ z

z0

∫ t

t0

(R1234[vγδ − avγ − bvδ + (e− aγ − bδ)v])(x0, y0, γ, δ)dδdγ+

+

∫ y

y0

∫ t

t0

(R1234[vβδ − avβ − cvδ + (f − aβ − cδ)v])(x0, β, z0, δ)dδdβ+

+

∫ x

x0

∫ t

t0

(R1234[vαδ − avα − dvδ + (h− aα − dδ)v])(α, y0, z0, δ)dδdα+

+

∫ y

y0

∫ z

z0

(R1234[vβγ − bvβ − cvγ + (g − bβ − cγ)v])(x0, β, γ, t0)dγβ+

+

∫ x

x0

∫ z

z0

(R1234[vαγ − bvα − dvγ + (k − bα − dγ)v])(α, y0, γ, t0)dγdα+

+

∫ x

x0

∫ y

y0

(R1234[vαβ − cvα − dvβ + (s− cα − dβ)v])(α, β, z0, t0)dβdα+

+

∫ y

y0

∫ z

z0

∫ t

t0

(R1234[vβγδ − avβγ − bvβδ − cvγδ+

+(e− aγ − bδ)vβ + (f − cδ − aβ)vγ + (g − cγ − bβ)vδ−
−(m− eβ − fγ − gδ + aβγ + bβδ + cγδ)v])(x0, β, γ, δ)dδdγdβ+

+

∫ x

x0

∫ z

z0

∫ t

t0

(R1234[vαγδ − avαγ − bvαδ − dvγδ+

+(e− aγ − bδ)vα + (h− aα − dδ)vγ + (k − bα − dγ)vδ−
−(n− eα − hγ − kδ + aαγ + bαδ + dγδ)v])(α, y0, γ, δ)dδdγdα+

+

∫ x

x0

∫ y

y0

∫ t

t0

(R1234[vαβδ − avαβ − cvαγ − dvβδ+

+(f − aβ − cδ)vα + (h− aα − dδ)vβ + (s− cα − dβ)vδ−
−(p− fα − hβ − sδ + aαβ + cαδ + dβδ)v])(α, β, z0, δ)dδdβdα+
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+

∫ x

x0

∫ y

y0

∫ z

z0

(R1234[vαβγ − bvαβ − cvαγ − dvβγ+

+(g − bβ − cγ)vα + (k − bα − dγ)vβ + (s− cα − dβ)vγ−
−(q − gα − kβ − sγ + bαβ + cαγ + dβγ)v])(α, β, γ, t0)dγdβdα+

+

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

(R1234h123,4v)(α, β, γ, δ)dδdγdβdα. (3.37)

Сопоставляя (3.37) и (3.6), видим, что все выражения в квадратных
скобках в одно-, дву- и трехкратных интегралах тождественно равны
нулю, следовательно функция Римана для (3.1) при условиях (3.33)
удовлетворяет уравнению

v(x, y, z, t) = R1234(x0, y0, z0, t0, x, y, z, t)v(x0, y0, z0, t0) +

+

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

R1234(α, β, γ, δ, x, y, z, t)×

× h123,4(α, β, γ, δ)v(α, β, γ, δ)dδdγdβdα. (3.38)

Аналогично вышеизложенному можно построить еще 23 вари-
анта уравнений типа (3.38), подобно тому, как были построены в п.
5.2 § 2 аналоги формулы (2.40). Каждое из них соответствует своему
набору, аналогичному (3.33). При этом каждому из этих наборов отве-
чает уравнение, отличающееся от (3.23) только порядком следования
операторов и правой частью. Фактически при записи уравнений вида
(3.38) приходится лишь менять ролями переменные и коэффициенты.

Полученные результаты могут быть использованы для постро-
ения функции Римана в явном виде.

3. Пусть для (3.1) выполняются условия (3.33) и

a = A(t) + λxyz, b = B(z) + λxyt,

c = C(y) + λxzt, d = D(x) + λyzt, λ = const.
(3.39)

Непосредственным вычислением легко убедиться в том, что

h123,4 = h124,3 = h134,2 = h234,1 = H, (3.40)

а уравнение (3.38) и все его аналоги имеют вид

v(x, y, z, t) = R(x0, y0, z0, t0, x, y, z, t)v(x0, y0, z0, t0) +

+

∫ x

x0

∫ y

y0

∫ z

z0

∫ t

t0

R(α, β, γ, δ, x, y, z, t)×

×H(α, β, γ, δ)v(α, β, γ, δ)dδdγdβdα. (3.41)
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Введем обозначения

ω = Tv, T (x, y, z, t) = exp

(
−

∫ t

0
A(δ)dδ −

∫ z

0
B(γ)dγ−

−
∫ y

0
C(β)dβ −

∫ x

0
D(α)dα− λxyzt

)
,

Тогда (3.41) записывается в форме

ω(x, y, z, t) = T (x0, y0, z0, t0) +

+

∫ t

t0

∫ z

z0

∫ y

y0

∫ x

x0

H(α, β, γ, δ)ω(α, β, γ, δ)dαdβdγdδ.

Это уравнение эквивалентно задаче Гурса для уравнения

ωxyzt −Hω = 0 (3.42)

с условиями

ω |x=x0
= ω |y=y0

= ω |z=z0
= ω |t=t0= T (x0, y0, z0, t0) .

Если

H = χ(x)ϕ(y)ψ(z)θ(t) , (3.43)

то функция Римана r для (3.42) известна [16, c. 10–12]:

r = 0F3(1, 1, 1; σ), σ =

∫ x

x0

χ(α)dα

∫ y

y0

ϕ(β)dβ

∫ z

z0

ψ(γ)dγ

∫ t

t0

θ(δ)dδ,

следовательно ω записывается явно. Вычислив ω согласно формуле
(3.9) и возвратившись снова к функции v, найдем, что

v(x, y, z, t, x0, y0, z0, t0) = 0F3(1, 1, 1; σ)R(x, y, z, t, x0, y0, z0, t0), (3.44)

R(x, y, z, t, x0, y0, z0, t0) = exp

(∫ t

t0

A(δ)dδ +

∫ z

z0

B(γ)dγ+

+

∫ y

y0

C(β)dβ +

∫ x

x0

D(α)dα + λ(xyzt− x0y0z0t0)

)
,

0F3(1, 1, 1; σ) =
∞∑

k=0

1

[(1)k]3
σk

k!
.

Здесь 0F3 — обобщенная гипергеометрическая функция [1, c. 183].
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4. Пусть теперь имеют место представления

a =
1

w

∂w

∂t
, b =

1

w

∂w

∂z
, c =

1

w

∂w

∂y
, d =

1

w

∂w

∂x
,

e =
1

w

∂2w

∂z∂t
, f =

1

w

∂2w

∂y∂t
, h =

1

w

∂2w

∂x∂t
, g =

1

w

∂2w

∂y∂z
,

k =
1

w

∂2w

∂x∂z
, s =

1

w

∂2w

∂x∂y
, m =

1

w

∂3w

∂y∂z∂t
, (3.45)

n =
1

w

∂3w

∂x∂z∂t
, p =

1

w

∂3w

∂x∂y∂t
, q =

1

w

∂3w

∂x∂y∂z
,

r =
1

w

∂4w

∂x∂y∂z∂t
+ χ(x)ϕ(y)ψ(z)θ(t),

при этом имеет место условие

w = p1(x) + p2(y) + p3(z) + p4(t) + p12(x, y) + p13(x, z)+

+p14(x, t) + p23(y, z) + p24(y, t) + p34(z, t) + p123(x, y, z)+

+p124(x, y, t) + p134(x, z, t) + p234(y, z, t) + p1234(x, y, z, t) 6= 0.

Тогда выполняются (3.33), (3.40), (3.43), уравнения типа (3.38)
совпадают и могут быть разрешены по схеме предыдущего случая.
Функция Римана для (3.1) имеет вид

v = 0F3(1, 1, 1, σ)
w(x, y, z)

w(x0, y0, z0)
,

где σ та же, что и в (3.44).
5. Условия (3.39), (3.45) могут быть обобщены. А именно, пусть

a(x, y, z, t) = a1(t) +
n∑

k=1

χk(x)ϕk(y)ψk(z)θ′k(t),

b(x, y, z, t) = b1(z) +
n∑

k=1

χ(x)ϕk(y)ψ′k(z)θk(t),

c(x, y, z, t) = c1(y) +
n∑

k=1

χk(x)ϕk(y)ψ′k(z)θk(t),

d(x, y, z, t) = d1(x) +
n∑

k=1

χ′k(x)ϕk(y)ψk(z)θk(t),
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а также выполняются условия (3.33) и

h123,4 = χ(x)ϕ(y)ψ(z)θ(t). (3.46)

Тогда

v(x, y, z, t, x0, y0, z0, t0) = 0F3(1, 1, 1; σ)×
× exp

(∫ x

x0

d1(α)dα +

∫ y

y0

c1(β)dβ +

∫ z

z0

b1(γ)dγ +

∫ x

x0

a1(δ)dδ+

+
n∑

k=1

[χk(x)ϕk(y)ψk(z)θk(t)− χk(x0)ϕk(y0)ψk(z0)θk(t0)]

)
,

где σ та же, что в (3.44).
Если же

a =
m∑

k=1

1

wk

∂wk

∂t
, b =

m∑

k=1

1

wk

∂wk

∂z
, c =

m∑

k=1

1

wk

∂wk

∂y
,

d =
m∑

k=1

1

wk

∂wk

∂x
, e =

m∑

k=1

1

wk

∂2wk

∂z∂t
, f =

m∑

k=1

1

wk

∂2wk

∂y∂t
,

g =
m∑

k=1

1

wk

∂2wk

∂y∂z
, h =

m∑

k=1

1

wk

∂2wk

∂x∂t
, k =

m∑

k=1

1

wk

∂2wk

∂x∂z
,

s =
m∑

k=1

1

wk

∂2wk

∂x∂y
, m =

m∑

k=1

1

wk

∂3wk

∂y∂z∂t
, n =

m∑

k=1

1

wk

∂3wk

∂x∂z∂t
,

p =
m∑

k=1

1

wk

∂3wk

∂x∂y∂t
, q =

m∑

k=1

1

wk

∂3wk

∂x∂y∂z
,

r =
m∑

k=1

1

wk

∂4wk

∂x∂y∂z∂t
+ χ(x)ϕ(y)ψ(z)θ(t),

wk = p1(x) + p2(y) + p3(z) + p4(t) + p12(x, y) + p13(x, z)+

+p14(x, t) + p23(y, z) + p24(y, t) + p34(z, t) + p123(x, y, z)+

+p124(x, y, t) + p134(x, z, t) + p234(y, z, t) + p1234(x, y, z, t) 6= 0,

то при выполнении условий (3.33), (3.46) функция Римана для (3.1)
имеет вид

v = 0F3(1, 1, 1, σ)
m∏

k=1

wk(x, y, z)

wk(x0, y0, z0)
,

где σ та же, что и в (3.44).
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2. Пространство любого конечного числа измерений

Здесь рассматривается уравнение (2), которое запишем более
подробно:

∂nu

∂x1∂x2 . . . ∂xn
+

n−1∑

k=1

∑

(q1,... ,qk)

aq1...qk
(x)

∂n−ku

∂xr1
. . . ∂xrn−k

+ a(x)u = 0,

где n — произвольное натуральное число, x = (x1, . . . , xn) — точка ев-
клидова пространства Rn, внутренняя сумма берется по всем наборам
(q1, . . . , qk), удовлетворяющим неравенствам 1 6 q1 < . . . < qk 6 n.
При этом набор индексов (r1, . . . , rn−k), r1 < . . . < rn−k дополняет
(q1, . . . , qk) до полного набора (1, . . . , n).

Вычисления, связанные с данным уравнением (1), имеют доста-
точно большой объем, если записывать их в обычном виде. В работах
[31], [64] предложена специальная система теоретико-множественных
обозначений, которая позволила существенно сократить объем выкла-
док. Суть указанной системы состоит в следующем.

Определяется совокупность множеств, которые пробегают раз-
личные наборы индексов. Индексы этих индексов также могут про-
бегать какое-то множество и т.д. Этот язык множеств позволяет без
дополнительных комментариев записывать довольно сложные выра-
жения и операции над ними. При таком подходе усложнение записи
проявляется лишь в появлении дополнительных уровней индексов.

В описанной системе обозначений обсуждаемое уравнение можно
записать следующим образом:

L(u) =
n∑

k=0

∑

Qk
n

aq1...qk
uxqk+1

...xqn
= 0, a = 1, (3.47)

где
Qk

n = {(q1, . . . , qn) | {qj | 1 6 j 6 n} = M, q1 < . . . < qk,

qk+1 < . . . < qn}, M = {p | 1 6 p 6 n}.
Очевидно, первый символ

∑
означает суммирование по различным

порядкам производных, а второй — перебор всевозможных некрат-
ных производных фиксированного порядка. Для обеспечения единст-
венности каждого слагаемого в уравнении (3.47) обе группы индек-
сов (q1, . . . , qk) и (qk+1, . . . , qn), на которые разбивается полный набор
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(q1, . . . , qn), упорядочены. Ясно, что при k = 0 коэффициент не имеет
индекса и по условию a = 1. При k = n получаем член без произ-
водных a12...nu уравнения (3.47). Определим функцию Римана уравне-
ния (3.47) как решение интегрального уравнения, аналогичного (1.17),
(2.15), (3.6). Для записи такого уравнения определяется множество упо-
рядоченных наборов

Qk,n = {(q1, . . . , qk) | 1 6 q1 < . . . < qk 6 n},
где q1, . . . , qk — натуральные числа. В этих обозначениях интегральное
уравнение можно коротко записать в виде:

n∑

k=0

(−1)k
∑

Qk,n

∫ xq1

x0
q1

. . .

∫ xqk

x0
qk

aq1...qk
v(x1, . . . , xq1−1, αq1

, xq1+1, . . . ,

xqk−1, αqk
, xqk+1, . . . , xn) dαqk

. . . dαq1
= 1. (3.48)

Здесь суммирование по Qk,n означает, что берутся всевозможные ин-
тегралы кратности k. Причем в этой записи очевидно, что переменные
в пределах интегралов упорядочены.

Функция Римана на характеристических плоскостях уравнения
(3.47) удовлетворяет тождествам (пишем только первые n аргументов)

Aq1...qk
(x0

1, . . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qk−1, xqk
, x0

qk+1, . . . , x0
n) ≡ 0, (3.49)

(q1, . . . , qk) ∈ Qk,n, k = 1, n,

где

Aq1...qk
(x1, . . . , xn) =

k∑
m=0

(−1)m
∑

Hm
k

(ah1...hm
R)(x1, . . . , xn)xhm+1

...xhk
,

(3.50)

(q1, . . . , qk) ∈ Qk,n, k = 0, n,

Hm
k = {(h1, . . . , hk) | {hj | 1 6 j 6 k} = {qi | 1 6 i 6 k},

h1 < . . . < hm, hm+1 < . . . < hk}.
Тождества легко получаются из (3.48) фиксированием x1 = x0

1, . . . ,
xq1−1 = x0

q1−1, xq1+1 = x0
q1+1, . . . , xqk−1 = x0

qk−1, xqk+1 = x0
qk+1, . . . , xn = x0

n

с последующим дифференцированием по xq1
, . . . , xqk

.
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В частности, функция Римана удовлетворяет сопряженному
уравнению

n∑

k=0

∑

Qk
n

(−1)k(aq1...qk
v)xqk+1

...xqn
= 0. (3.51)

Введем обозначения, которые понадобятся в дальнейшем:

Rv
n−k = {(r1, . . . , rn−k) | {rj | 1 6 j 6 n− k} =

= {qi | k + 1 6 i 6 n}, r1 < . . . < rv, rv+1 < . . . < rn−k},
Qm,m+k

n = {(q1, . . . , qn) | {qj | 1 6 j 6 n} = M,

q1 < . . . < qm, qm+1 < . . . < qm+k, qm+k+1 < . . . < qn},
Tm

v = {(t1, . . . , tv) | {tj | 1 6 j 6 v} =

= {ri | 1 6 i 6 v}, t1 < . . . < tm, tm+1 < . . . < tv},
W r

l = {(w1, . . . , wl) | {wi | 1 6 i 6 l} =

= {qj | n− l 6 j 6 n} \ {qr}, w1 < . . . < wl}, r = n− l, n,

Gm
l = {(g1, . . . , gl) | {gi | 1 6 i 6 l} =

= {wj | 1 6 j 6 l}, g1 < . . . < gm, gm+1 < . . . < gl},
V k

m = {(v1, . . . , vm) | {vi | 1 6 i 6 m} =

= {gj | 1 6 j 6 m}, v1 < . . . < vk, vk+1 < . . . < vm},
Zk

n−v−1 = {(z1, . . . , zn−v−1) | {zi | 1 6 i 6 n− v − 1} =

= {rj | v + 1 6 j 6 n− 1}, z1 < . . . < zk, zk+1 < . . . < zn−v−1},
Db

n−m−2 = {(d1, . . . , dn−m−2) | {di | 1 6 i 6 n−m− 2} =

= {gj | m + 1 6 j 6 n− 2}, d1 < . . . < db, db+1 < . . . < dn−m−2}.

2.1. Задача Гурса. Рассмотрим задачу: найти решение урав-
нения (3.47), принимающее на характеристических плоскостях xi =
x0

i , i = 1, n заданные значения

u(x1, . . . , xi−1, x
0
i , xi+1, . . . , xn) = ϕi(x1, . . . , xi−1, xi+1, . . . , xn), (3.52)

при условиях согласования

Fj(x1, . . . , xj−1, xj+1, . . . , xi−1, x
0
i , xi+1, . . . , xn) = Fi(x1, . . . ,

xj−1, x
0
j , xj+1, . . . , xi−1, xi+1, . . . , xn), j < i.
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Считаем, что граничные условия ϕi ∈ C(1,1,... ,1).
Справедливо тождество

(uR)x1x2...xn
≡ RL(u) +

n−1∑

k=1

(−1)k+1 ×

×
∑

Qk
n

[
u

(
k∑

m=0

(−1)m
∑

Hm
k

(ah1...hm
R)xhm+1

...xhk

)]

xqk+1
...xqn

, (3.53)

являющееся многомерным аналогом тождеств (1.19), (2.16), (3.7).
Действительно, перенося все в одну сторону, получим

−
n∑

k=0

∑

Qk
n

Rxq1
...xqk

uxqk+1
...xqn

+ R

n∑

k=0

∑

Qk
n

aq1...qk
uxqk+1

...xqn
+

+
n−1∑

k=1

∑

Qk
n

n−k∑
v=0

∑

Rv
n−k

k∑
m=0

∑

Hm
k

(−1)k+m+1 ×

×(ah1...hm
R)xhm+1

...xhk
xr1

...xrv
uxrv+1

...xrn−k
=

=
n−1∑
m=0

n−m∑

k=1

(
k∑

v=0

(−1)v+1Cv
k

∑

Qm,m+k
n

(aq1...qm
R)xqm+1

...xqm+k
uxqm+k+1

...xqn

)
+

+R
n−1∑

k=1

∑

Qk
n

aq1...qk
uxqk+1

...xqn
−R

n−1∑

k=1

∑

Qk
n

aq1...qk
uxqk+1

...xqn
+

+(−1)nu

[
Rx1...xn

+
n−1∑

k=1

(−1)k
∑

Qk
n

(aq1...qk
R)xqk+1

...xqn
+ (−1)nRa1...n

]
≡ 0.

Будем искать решение задачи в области D = {x1
1 < x1 < x2

1, . . . ,
x1

n < xn < x2
n}. Пусть коэффициенты уравнения (3.47) удовлетворяют

условиям гладкости aq1...qk
∈ C(r1,... ,rn)(D), ri = 1, если ri 6= qj, ri = 0,

если ri = qj, j = 1, k.
Считая в тождестве (3.53) u решением уравнения (3.47), полагая

xi = αi, x0
i = xi, i = 1, n, вычисляя n-кратный интеграл по α1, . . . , αn в
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пределах x1
i 6 αi 6 xi, i = 1, n, и используя тождества (3.49), получим

u(x1, . . . , xn) =
n−1∑

k=0

(−1)k
∑

Qk,n

∫ xq1

x1
q1

. . .

∫ xqk

x1
qk

(
n−k∑
m=1

(−1)m+1×

×
∑

Hm,n

(uAq1...qk
)(x1, . . . , xh1−1, x

1
h1

, xh1+1, . . . , xq1−1, αq1
, xq1+1, . . . ,

xqk−1, αqk
, xqk+1, . . . , xhm−1, x

1
hm

, xhm+1, . . . , xn)

)
dαqk

. . . dαq1
. (3.54)

Формула (3.54) дает решение задачи Гурса.
Если, интегрируя (3.53), не считать, что L(u) ≡ 0, то в (3.54)

добавится слагаемое
∫ x1

x1
1

. . .

∫ xn

x1
n

R(α1, . . . , αn, x1, . . . , xn)L
(
u(α1, . . . , αn)

)
dαn . . . dα1.

Положим

u(x1, . . . , xn) =

=

∫ x1

x1
1

. . .

∫ xn

x1
n

R(α1, . . . , αn, x1, . . . , xn)F (α1, . . . , αn) dαn . . . dα1, (3.55)

где F ∈ C. Тогда получим тождество
∫ x1

x1
1

. . .

∫ xn

x1
n

R(α1, . . . , αn, x1, . . . , xn)
(
F (α1, . . . , αn)−

− L
(
u(α1, . . . , αn)

))
dαn . . . dα1 ≡ 0.

Откуда L
(
u(x1, . . . , xn)

)
= F (x1, . . . , xn) (следует из единствен-

ности решения однородного уравнения Вольтерра, получаемого диф-
ференцированием тождества по x1, . . . , xn).

Следовательно (3.55) — частное решение неоднородного урав-
нения L(u) = F . А так как (3.54) дает представление всех решений
однородного уравнения L(u) = 0, то известно общее представление ре-
шений неоднородного уравнения, равное их сумме.

2.2. Задача Коши. В ориентированном системой координат
(x1, . . . , xn) пространстве Rn рассмотрим поверхность S, заданную
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уравнениями:





x1 = x1(µ1, . . . , µn−1),
. . . . . . . . . . . . . . . . . . . . . . . .

xn = xn(µ1, . . . , µn−1),
rank




∂x1

∂µ1
· · · ∂xn

∂µ1
. . . . . . . . . . . . . . . . . .
∂x1

∂µn−1
· · · ∂xn

∂µn−1




= n− 1,

где (µ1, . . . , µn−1) ∈ Gn−1 ⊂ Rn−1. Считаем, что S в каждой своей точ-
ке имеет касательную плоскость не параллельную ни одной из коор-

динатных осей, например
∂x1

∂x2
< 0,

∂x2

∂x3
< 0, . . . ,

∂xn−1

∂xn
< 0. Через

точку M(x0
1, . . . , x0

n) проведем плоскости x1 = x0
1, . . . , xn = x0

n. Обо-
значим S0 участок поверхности S, вырезанный этими плоскостями,
Ω — конечную область пространства Rn, ограниченную x1 = x0

1, . . . ,
xn = x0

n и S0, ∂Ω — край Ω. Считаем ориентацию области Ω положи-
тельной. Полностью аналогично четырехмерному случаю рассмотрим
совокупность ориентированных многообразий, обозначаемых символа-
ми S0, Ω и ∂Ω с индексами из 1, . . . , n − 1 различных цифр 1, . . . , n.
S0 и Ω-многообразия определим как пересечения соответственно S0 и
Ω с соответствующими плоскостями, а ∂Ω-многообразия — как края
соответствующих Ω-многообразий. Например S0

12 — множество точек
поверхности S0, лежащих в плоскостях x1 = x0

1 и x2 = x0
2. Как было по-

казано в п. 1, S0-многообразия содержатся в ∂Ω-многообразиях с теми
же индексами, а Ω-многообразия — в ∂Ω-многообразиях с теми же ин-
дексами без последней переменной. Например S0

2 — часть ∂Ω2, Ω312 —
часть ∂Ω31. Пусть ориентации ∂Ω-областей и входящих в них назван-
ных многообразий совпадают. Ориентации ∂Ω-многообразий считаем
согласованными с ориентациями соответствующих Ω-многообразий.

В результате все названные ориентированные многообразия ин-
дуктивно определены.

Как и в R4, два из рассмотренных как Ω, так и S0-многообразий
совпадают геометрически, если их индексы образованы одним и тем
же набором цифр. При этом, если индексы одного из них получаются
четной перестановкой индексов другого, то ориентации этих многооб-
разий совпадают, в случае нечетной перестановки ориентации проти-
воположны.

Рассмотрим уравнение с правой частью

L(u) = F, (3.56)
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соответствующее (3.47).
Задача: найти регулярное в Ω решение уравнения (3.56) по

условиям

∂ku

∂lk

∣∣∣∣
S

= ψk, k = 0, n− 1, (3.57)

ψk ∈ Cn−k(S), а l — заданное на S некасательное к этой поверхности
поле направлений.

Для этого достаточно найти решение уравнения (3.56) класса
Cn(Ω) в точке M .

При решении задачи Коши используется общая формула Стокса
[43, с. 246]

∫

S

(
k∑

i=1

∂Ai

∂xi

)
dx1 ∧ . . . ∧ dxk =

=

∫

∂S

k∑
i=1

(−1)i−1Aidx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxk. (3.58)

Пусть поле направлений l задано вектором

~l
(
l1(µ1, . . . , µn−1), . . . , ln(µ1, . . . , µn−1)

)
, ~l ∈ Cn(Gn−1),

причем |~l | ≡ 1. Введем систему координат, связанную с поверхностью
S:

xi = xi(µ1, . . . , µn−1) + li(µ1, . . . , µn−1)µn, (3.59)

где i = 1, n, µn ∈ R.
Аналогично п. 4 § 2 и п. 1.2 § 3 существует обратное преобразо-

вание координат µi = µi(x1, . . . , xn) класса Cn в окрестности поверх-
ности S.

Пусть aq1...qk
∈ Cn(Ω), (q1, . . . , qk) ∈ Qk,n, k = 1, n; F ∈ C(Ω).

Запишем тождество (3.53) в несколько ином виде:

RL(u) ≡
∑

Q1
n

∂

∂xq1

{
n−1∑
v=0

(−1)v

n− v
×

×
∑

Rv
n−1

[
u

(
v∑

m=0

(−1)m
∑

Tm
v

(at1...tmR)xtm+1
...xtv

)]

xrv+1
...xrn−1

}
. (3.60)
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Пусть u — решение уравнения (3.56). Тогда, интегрируя (3.60)
по области Ω и применяя общую формулу Стокса (3.58) при k = n,
получим:

∫

Ω

RF dx1 . . . dxn =

∫

∂Ω

∑

Q1
n

(−1)q1−1

{
n−1∑
v=0

(−1)v

n− v
×

×
∑

Rv
n−1

[
u

(
v∑

m=0

(−1)m
∑

Tm
v

(at1...tmR)xtm+1
...xtv

)]

xrv+1
...xrn−1

}
×

× dxq2
∧ . . . ∧ dxqn

. (3.61)

Заменим в (3.61) интеграл по области ∂Ω суммой интегралов по
ее составляющим. При этом учтем тождества (3.49) при k = n−1. Так
же как и в (3.60), представим подынтегральные выражения интегралов
по Ω-областям в дивергентном виде, а в подынтегральном выражении
интеграла по S0 откроем скобки. В результате получим:

∫

Ω

RF dx1 . . . dxn =

=
∑

Q1
n

(−1)q1−1
∫

Ωq1

{∑

W r
n−2

∂

∂xqr

[
n−2∑
m=0

(−1)m

(n−m)(n−m− 1)
×

×
∑

Gm
n−2

[
u

(
m∑

k=0

(−1)k
∑

V k
m

(av1...vk
R)xvk+1

...xvm

)]

xgm+1
...xgn−2

]}
×

×dxq2
∧ . . . ∧ dxqn

+

∫

S0

∑

Q1
n

(−1)q1−1

{
n−1∑
v=0

∑

Rv
n−1

n−v−1∑

k=0

∑

Zk
n−v−1

v∑
m=0

∑

Tm
v

(−1)v+m

n− v
uxz1

...xzk
(at1...tmR)xtm+1

...xtvxzk+1
...xzn−v−1

}
×

×dxq2
∧ . . . ∧ dxqn

. (3.62)

К интегралам по областям Ωi, i = 1, n снова применим формулу
Стокса (3.58) при k = n−1, а в подынтегральном выражении интеграла
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по поверхности S0 приведем подобные члены. Для этого воспользуемся
формулой:

k∑
i=0

(−1)iC i
k

n− i
=

(−1)kk! (n− k − 1)!

n!
, k = 0, n− 1, (3.63)

которую легко получить, вычисляя неопределенный интеграл
∫

xn−k−1(x− 1)k dx

сначала последовательно по частям, а затем предварительно посчитав
подынтегральное выражение, после чего полагая x = 1.

В результате (3.62) перепишется
∫

Ω

RF dx1 . . . dxn =

=
∑

Q1
n

(−1)q1−1
∫

∂Ωq1

∑

W r
n−2

(−1)r

{
n−2∑
m=0

(−1)m

(n−m)(n−m− 1)
×

×
∑

Gm
n−2

[
u

(
m∑

k=0

(−1)k
∑

V k
m

(av1...vk
R)xvk+1

...xvm

)]

xgm+1
...xgn−2

}
×

×dxw1
∧ . . . ∧ dxwn−2

+

∫

S0

∑

Q1
n

(−1)q1−1

{
n−1∑
v=0

∑

Rv
n−1

[
v∑

m=0

∑

Tm
v

(−1)v+m(v −m)! (n− v − 1)!

(n−m)!
(at1...tmR)xtm+1

...xtv

]
uxrv+1

...xrn−1

}
×

×dxq2
∧ . . . ∧ dxqn

. (3.64)

Идея дальнейших рассуждений заключается в том, что мы бу-
дем заменять интегралы по областям ∂Ωq1...qp

суммами интегралов по
их составляющим, учитывая тождества (3.49) при k = 1, n− 2. Да-
лее будем снова представлять подынтегральные выражения интегра-
лов по областям Ωq1...qp+1

в дивергентном виде и упрощать вид интег-
ралов по поверхностям S0

q1...qp
. Опять применяем формулу Стокса при
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k = n− p− 1 и т. д. Следуя такой методике, первое слагаемое правой
части (3.64) I преобразуем к виду:

I =
∑

Q2
n

(−1)β2

∫

Ωq1q2

{∑

W r
n−3

∂

∂xqr

[
n−3∑
m=0

(−1)m

(n−m)(n−m− 1)(n−m− 2)
×

×
∑

Gm
n−3

[
u

(
m∑

k=0

(−1)k
∑

V k
m

(av1...vk
R)xvk+1

...xvm

)]

xgm+1
...xgn−3

]}
×

×dxq3
∧ . . . ∧ dxqn

+
∑

Q1
n

(−1)q1−1
∫

S0
q1

∑

W r
n−2

(−1)r×

×
{

n−2∑
m=0

∑

Gm
n−2

n−m−2∑

b=0

∑

Db
n−m−2

m∑

k=0

∑

V k
m

(−1)m+k

(n−m)(n−m− 1)
×

×uxd1
...xdb

(av1...vk
R)xvk+1

...xvmxdb+1
...xdn−m−2

}
dxw1

∧ . . . ∧ dxwn−2
, (3.65)

где

β2 =

{
q1 + q2, q1 > q2,

q1 + q2 − 1, q1 < q2.

Как было показано, области Ωij и Ωji совпадают как множества и
имеют противоположные ориентации. Другими словами, в процессе на-
хождения решения поставленной задачи будут появляться одинаковые
интегралы по одной области с точностью до ее ориентации. Например,
при фиксированном множестве {qi | 1 6 i 6 k} будет k! интегралов от
одного выражения по областям Ωh1...hk

, где (h1, . . . , hk) — всевозмож-
ные перестановки (q1, . . . , qk). Нетрудно усмотреть, что с учетом зна-
ков все эти члены оказываются равными. Для дальнейших вычислений
с коэффициентом k! будем оставлять интеграл по области Ω с упоря-
доченным набором индексов. Из логики применяемого метода следует,
что знак этого интеграла можно записать, например, (−1)αk(q), где

αk(q) =
k∑

i=1

(qi − i).
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Учитывая сказанное, применим формулу Стокса при k = n− 2
к первому слагаемому правой части (3.65), а в подынтегральных вы-
ражениях интегралов по поверхностям S0

q1
, как и раньше, приведем

подобные члены. Для этого воспользуемся формулой:

k∑
i=0

(−1)iC i
k

(n− i)(n− i− 1)
=

(−1)k(k + 1)! (n− k − 2)!

n!
, k = 0, n− 2,

которую можно получить аналогично (3.63), дважды вычисляя неопре-
деленный интеграл

∫
xn−k−2(x− 1)k dx. В результате получим:

I = 2!
∑

Q2
n

(−1)α2(q)
∫

∂Ωq1q2

∑

W r
n−3

(−1)r−1×

×
{

n−3∑
m=0

(−1)m

(n−m)(n−m− 1)(n−m− 2)
×

×
∑

Gm
n−3

[
u

(
m∑

k=0

(−1)k
∑

V k
m

(av1...vk
R)xvk+1

...xvm

)]

xgm+1
...xgn−3

}
×

×dxw1
∧ . . . ∧ dxwn−3

+
∑

Q1
n

(−1)α1(q)
∫

S0
q1

∑

W r
n−2

(−1)r×

×
{

n−2∑
m=0

∑

Gm
n−2

[
m∑

k=0

∑

V k
m

(−1)m+k(m− k + 1)! (n−m− 2)!

(n− k)!
×

×(av1...vk
R)xvk+1

...xvm

]
uxgm+1

...xgn−2

}
dxw1

∧ . . . ∧ dxwn−2
. (3.66)

Для выявления закономерности процесса решения сделаем еще
один шаг. Снова разбиваем области ∂Ωq1q2

, используем тождества
(3.49) при k = n − 3, интегралы по Ω-областям преобразуем к ди-
вергентному виду, применяем формулу Стокса (3.58) при k = n − 3, а
интегралы по поверхностям S0

q1q2
, как и раньше, упрощаем, используя

формулу

k∑
i=0

(−1)iC i
k

(n− i)(n− i− 1)(n− i− 2)
=

(−1)k(k + 2)! (n− k − 3)!

2! n!
,
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k = 0, n− 3, получаемую аналогично предыдущим случаям из∫
xn−k−3(x− 1)k dx. Тогда для первого слагаемого правой части (3.66)

I1 получаем выражение:

I1 = 3!
∑

Q3
n

(−1)α3(q)
∫

∂Ωq1q2q3

∑

W r
n−4

(−1)r×

×
{

n−4∑
m=0

(−1)m

(n−m)(n−m− 1)(n−m− 2)(n−m− 3)
×

×
∑

Gm
n−4

[
u

(
m∑

k=0

(−1)k
∑

V k
m

(av1...vk
R)xvk+1

...xvm

)]

xgm+1
...xgn−4

}
×

×dxw1
∧ . . . ∧ dxwn−4

+
∑

Q2
n

(−1)α2(q)
∫

S0
q1q2

∑

W r
n−3

(−1)r−1

{
n−3∑
m=0

∑

Gm
n−3

[
m∑

k=0

∑

V k
m

(−1)m+k(m− k + 2)! (n−m− 3)!

(n− k)!
×

×(av1...vk
R)xvk+1

...xvm

]
uxgm+1

...xgn−3

}
dxw1

∧ . . . ∧ dxwn−3
.

Здесь при вычислении интегралов по S0
q1q2

произошло сокращение на 2!.
На данном этапе закономерность в процессе получения членов

конечной формулы достаточно хорошо видна. Можно убедиться, что
следующим членом будет

∑

Q3
n

(−1)α3(q)
∫

S0
q1q2q3

∑

W r
n−4

(−1)r ×

×
{

n−4∑
m=0

∑

Gm
n−4

[
m∑

k=0

∑

V k
m

(−1)m+k(m− k + 3)! (n−m− 4)!

(n− k)!
×

×(av1...vk
R)xvk+1

...xvm

]
uxgm+1

...xgn−4

}
dxw1

∧ . . . ∧ dxwn−4
.
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Здесь применена формула

k∑
i=0

(−1)iCi
k

(n− i)(n− i− 1)(n− i− 2)(n− i− 3)
=

=
(−1)k(k + 3)! (n− k − 4)!

3! n!
, k = 0, n− 4,

и сделано сокращение на 3!.
Доказательство формулы

k∑
i=0

(−1)iC i
k(n− i−m)!

(n− i)!
=

(−1)k(k + m− 1)! (n− k −m)!

(m− 1)! n!
,

m = 4, n, k = 0, n−m, можно провести индукцией. В результате, для
интегралов по областям S0

q1...qp
при любом p = 0, n− 2 получаем:

∑

Qp
n

(−1)αp(q)
∫

S0
q1...qp

∑

W r
n−p−1

(−1)r−p−1

{
n−p−1∑
m=0

∑

Gm
n−p−1

[
m∑

k=0

∑

V k
m

(−1)m+k(m− k + p)! (n−m− p− 1)!

(n− k)!
×

×(av1...vk
R)xvk+1

...xvm

]
uxgm+1

...xgn−p−1

}
dxw1

∧ . . . ∧ dxwn−p−1
. (3.67)

Это также можно обосновать индукцией.
Для завершения решения остается лишь выяснить, каким обра-

зом оканчивается изложенный процесс вычислений. Нетрудно понять,
что последним шагом является вычисление одномерных интегралов

∑

Q1
n

(−1)n−q1(n− 1)!

∫

Ωq2...qn

1

n!

∂

∂xq1

(uR) dxq1
=

=
1

n

n∑
i=1

(uR)(M)− 1

n

∑

Qn−1,n

(uR)(S0
q1...qn−1

).

Так как R(x0
1, . . . , x0

n, x
0
1, . . . , x0

n) = 1, то можем записать окончатель-
ную формулу решения задачи (3.56) – (3.57):

u(x0
1, . . . , x0

n) =
1

n

∑

Qn−1,n

(uR)(S0
q1...qn−1

)−
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−
n−2∑
p=0

∑

Qp
n

(−1)αp(q)
∫

S0
q1...qp

∑

W r
n−p−1

(−1)r−p−1

{
n−p−1∑
m=0

∑

Gm
n−p−1

[
m∑

k=0

∑

V k
m

(−1)m+k(m− k + p)! (n−m− p− 1)!

(n− k)!
×

×(av1...vk
R)xvk+1

...xvm

]
uxgm+1

...xgn−p−1

}
dxw1

∧ . . . ∧ dxwn−p−1
+

+

∫

Ω

RF dx1 . . . dxn.

Здесь частные производные решения u на поверхности S по x1, . . . , xn

находятся дифференцированием

u = U
(
µ1(x1, . . . , xn), . . . , µn(x1, . . . , xn)

)

как сложной функции. При этом

∂ku

∂µr1

1 ∂µr2

2 . . . ∂µrn
n

∣∣∣∣
S

=
∂k−rnψrn

∂µr1

1 ∂µr2

2 . . . ∂µ
rn−1

n−1
, k =

n∑
i=1

ri, k = 1, n− 1.

Очевидно,что производные µi по xj нетрудно найти из (3.59) аналогич-
но п. 4 § 2 и п. 1.2 § 3.

Изложенные в данном пункте результаты взяты из работы
В.А. Севастьянова [64].

2.3. Функция Римана для расщепляющихся уравнений.
Результаты, касающиеся построения функций Римана в явном виде
для трех- и четырехмерных уравнений естественно обобщаются на
n-мерный случай.

В дальнейшем используются конструкции

hq1...qk−1,qk
= (aq1...qk−1

)xqk
+ aq1...qk−1

aqk
− aq1...qk

, (3.68)

взятые по всем упорядоченным наборам (q1, . . . , qk), причем считаем,
что aq1...qk

= ap1...pk
, если {qi | 1 6 i 6 k} = {pj | 1 6 j 6 k}. Они явля-

ются аналогами hi, i = 1, 9, из п. 1 § 2.
Покажем, что всего имеется n(2n−1−1) конструкций вида (3.68).

Обозначим число таких конструкций через N . Тогда N =
n∑

k=2
Nk, где
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Nk — число конструкций из (3.68), соответствующих всем наборам
(q1, . . . , qk) длины k. Непосредственно из самой записи конструкций
видно, что Nk = Ck−1

n (n− k + 1). Следовательно

N =
n∑

k=2

Ck−1
n (n− k + 1) =

n∑

k=2

n!

(n− k + 1)! (k − 1)!
(n− k + 1) =

= n

n∑

k=2

(n− 1)!

(n− k)! (k − 1)!
= n

n∑

k=2

Ck−1
n−1 = n(2n−1 − 1).

Докажем, что при условии

aq1...qk
= (aq1...qk−1

)xqk
+ aq1...qk−1

aqk
, (q1, . . . , qk) ∈ Qk,n, k = 2, n,

(3.69)

сопряженное к уравнению

ux1x2...xn
+ L(u) = 0, L(u) =

n∑

k=1

∑

Qk
n

aq1...qk
uxqk+1

...xqn
, (3.70)

уравнение

vx1x2...xn
+ L∗(v) = 0, (3.71)

L∗(v) =
n∑

k=1

(−1)k
∑

Qk
n

(aq1...qk
v)xqk+1

...xqn
=

n∑

k=1

∑

Qk
n

a∗q1...qk
vxqk+1

...xqn
,

запишется в виде(
∂

∂xr1

− ar1

)
. . .

(
∂

∂xrn

− arn

)
v = 0. (3.72)

В этом можно убедиться с помощью индукции по порядку l дифферен-
циального оператора L∗. Не нарушая общности, будем считать, что
(r1, . . . , rn) = (n, . . . , 1).

Действительно, при l = 1, 2 формула (3.72) верна (см. п. 3 § 1 и
п. 5 § 2). Пусть (3.72) справедлива и при l = n− 2, то есть, если

hrq1
...rqk−1

,rqk
≡ 0, (q1, . . . , qk) ∈ Qk,n−1, k = 2, n− 2,

то

vx1x2...xn−1
+ L∗(v) =

n−1∑

k=0

(−1)k
∑

Qk
n−1

(aq1...qk
v)xqk+1

...xqn−1
=

=

(
∂

∂xn−1
− an−1

)(
∂

∂xn−2
− an−2

)
. . .

(
∂

∂x1
− a1

)
v.

89



Докажем (3.72) при l = n− 1:
(

∂

∂xn
− an

)(
∂

∂xn−1
− an−1

)(
∂

∂xn−2
− an−2

)
. . .

(
∂

∂x1
− a1

)
v =

=

(
∂

∂xn
− an

) n−1∑

k=0

(−1)k
∑

Qk
n−1

(aq1...qk
v)xqk+1

...xqn−1
=

=
∂

∂xn

n−1∑

k=0

(−1)k
∑

Qk
n−1

(aq1...qk
v)xqk+1

...xqn−1
−

−
n−1∑

k=0

(−1)k
∑

Qk
n−1

an(aq1...qk
v)xqk+1

...xqn−1
=

=
∂

∂xn

n−1∑

k=0

(−1)k
∑

Qk
n−1

(aq1...qk
v)xqk+1

...xqn−1
−

−
n−1∑

k=0

(−1)k
∑

Qk
n−1

(∑

Hm
k

anxh1
...xhm

ahm+1...hk
v
)

xqk+1
...xqn−1

=

=
n∑

k=0

(−1)k
∑

Qk
n

(aq1...qk
v)xqk+1

...xqn
.

Формула (3.72) доказана.
Наконец, приступим к доказательству основного для данного

пункта утверждения [64]: если выполняется (3.69), то функция Римана
уравнения (3.47) записывается следующим образом

R(x1, . . . , xn, x
0
1, . . . , x0

n) =

= exp
n∑

i=1

∫ xi

x0
i

ai(x1, . . . , xi−1, αi, x
0
i+1, . . . , x0

n) dαi. (3.73)

Докажем это утверждение индукцией по числу p переменных xi

отличных от x0
i .

Для p = 1 утверждение очевидно. Предположим, что оно верно
и при p = r − 1 и докажем его справедливость при p = r.

Зафиксируем (q1, . . . , qr) ∈ Qr,n. Для нахождения R(x0
1, . . . ,

x0
q1−1, xq1

, x0
q1+1, . . . , x0

qr−1, xqr
, x0

qr+1, . . . , x0
n, x0

1, . . . , x0
n) положим в (3.48)
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x1 = x0
1, . . . , xq1−1 = x0

q1−1, xq1+1 = x0
q1+1, . . . , xqr−1 = x0

qr−1, xqr+1 =
x0

qr+1, . . . , xn = x0
n и продифференцируем полученное равенство по

xq1
, . . . , xqr

.
В результате получим:

r∑
m=0

(−1)m
∑

Hm
r

∂(ah1...hm
v)

∂xhm+1
. . . ∂xhr

(x0
1, . . . , x0

q1−1, xq1
,

x0
q1+1, . . . , x0

qr−1, xqr
, x0

qr+1, . . . , x0
n) = 0. (3.74)

В силу условий теоремы это уравнение можно записать в виде
(

∂

∂xq1

− aq1

)(
∂

∂xq2

− aq2

)
. . .

(
∂

∂xqr

− aqr

)
v = 0. (3.75)

Очевидно, что (3.75) может быть разрешено в квадратурах. Для
этого перепишем его в виде равносильной системы





∂v

∂xqr

− aqr
v = v1,

∂v1

∂xqr−1

− aqr−1
v1 = v2,

. . . . . . . . . . . . . . . . . . . . . . . .
∂vr−2

∂xq2

− aq2
vr−2 = vr−1,

∂vr−1

∂xq1

− aq1
vr−1 = 0.

Последовательно разрешая, начиная с конца, уравнения систе-
мы, находим общее решение (3.74):

v(x0
1, . . . , x0

q1−1, xq1
, x0

q1+1, . . . , x0
qr−1, xqr

, x0
qr+1, . . . , x0

n) =

= R(x0
1, . . . , x0

q1−1, xq1
, x0

q1+1, . . . , x0
qr−1, xqr

, x0
qr+1, . . . , x0

n, x
0
1, . . . , x0

n) =

= exp

(∫ xqr

x0
qr

aqr
dαqr

)[∫ xqr

x0
qr

exp

(
−

∫ βqr

x0
qr

aqr
dαqr

+

+

∫ xqr−1

x0
qr−1

aqr−1
dαqr−1

)[∫ xqr−1

x0
qr−1

exp

(
−

∫ βqr−1

x0
qr−1

aqr−1
dαqr−1

+

+

∫ xqr−2

x0
qr−2

aqr−2
dαqr−2

)[
. . .

[∫ xq2

x0
q2

exp

(
−

∫ βq2

x0
q2

aq2
dαq2

+

∫ xq1

x0
q1

aq1
dαq1

)
×
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×ϕ1(βq2
, . . . , βqr

) dβq2
+ ϕ2(xq1

, βq3
, . . . , βqr

)

]
dβq3

+

+ϕ3(xq1
, xq2

, βq4
, . . . , βqr

)

]
dβq4

+ . . . + ϕr−1(xq1
, . . . , xqr−2

, βqr
)

]
×

×dβqr
+ ϕr(xq1

, . . . , xqr−1
)

]
. (3.76)

Осталось только определить функции ϕi, входящие в (3.76). По-
ложим xqr

= x0
qr

. Тогда

ϕr(xq1
, . . . , xqr−1

) = R(x0
1, . . . , x0

q1−1, xq1
, x0

q1+1, . . . , x0
qr−1−1, xqr−1

,

x0
qr−1+1, . . . , x0

n, x
0
1, . . . , x0

n) = exp
r−1∑
i=1

∫ xqi

x0
qi

aqi
(x0

1, . . . , x0
q1−1, xq1

,

x0
q1+1, . . . , x0

qi−1−1, xqi−1
, x0

qi−1+1, . . . , x0
qi−1, αqi

, x0
qi+1, . . . , x0

n) dαqi

по предположению индукции.
Подставим найденное значение ϕr в (3.76). Полагая xqr−1

= x0
qr−1

,
аналогично предыдущему случаю получаем:

exp

( ∫ xqr

x0
qr

aqr
(x0

1, . . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qr−2−1, xqr−2
, x0

qr−2+1, . . .

. . . , x0
qr−1, αqr

, x0
qr+1, . . . , x0

n) dαqr

)[∫ xqr

x0
qr

exp

(
−

∫ βqr

x0
qr

aqr
(x0

1, . . .

. . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qr−2−1, xqr−2
, x0

qr−2+1, . . . , x0
qr−1, αqr

,

x0
qr+1, . . . , x0

n) dαqr

)
ϕr−1(xq1

, . . . , xqr−2
, βqr

) dβqr
+

+ exp
r−2∑
i=1

∫ xqi

x0
qi

aqi
(x0

1, . . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qi−1−1, xqi−1
,

x0
qi−1+1, . . . , x0

qi−1, αqi
, x0

qi+1, . . . , x0
n) dαqi

]
= R(x0

1, . . . , x0
q1−1, xq1

,

x0
q1+1, . . . , x0

qr−2−1, xqr−2
, x0

qr−2+1, . . . , x0
qr−1, xqr

, x0
qr+1, . . . , x0

n,

x0
1, . . . , x0

n) = exp

( r−2∑
i=1

∫ xqi

x0
qi

aqi
(x0

1, . . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qi−1−1,
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xqi−1
, x0

qi−1+1, . . . , x0
qi−1, αqi

, x0
qi+1, . . . , x0

n) dαqi
+

∫ xqr

x0
qr

aqr
(x0

1, . . .

. . . , x0
q1−1, xq1

, x0
q1+1, . . . , x0

qr−2−1, xqr−2
, x0

qr−2+1, . . . , x0
qr−1, αqr

,

x0
qr+1, . . . , x0

n) dαqr

)
.

Отсюда
∫ xqr

x0
qr

exp

(
−

∫ βqr

x0
qr

aqr
dαqr

)
ϕr−1dβqr

= 0.

Так как это равенство справедливо при любом значении верх-
него предела внешнего интеграла, то его подынтегральное выражение
равно нулю. Экспонента в нуль не обращается, следовательно ϕr−1 ≡ 0.

Полагая последовательно xqr−2
= x0

qr−2
, . . . , xq1

= x0
q1
аналогич-

ным образом найдем ϕi ≡ 0, i = 1, r − 2. В результате, подставляя
функции ϕi, i = 1, r, в (3.76), получаем формулу (3.73) при x1 = x0

1, . . . ,
xq1−1 = x0

q1−1, xq1+1 = x0
q1+1, . . . , xqr−1 = x0

qr−1, xqr+1 = x0
qr+1, . . . , xn = x0

n.
Так как набор (q1, . . . , qr) был выбран произвольно, то (3.73) верна для
p = r. Следовательно, по индукции (3.73) справедлива и для p = n.

Утверждение доказано.
Как и в пространствах размерности 3 и 4, можно выделить еще

n! − 1 аналогичных случаев явного построения функции Римана. По-
кажем, как это можно сделать [64].

Обозначим (h1, . . . , hn) некоторую перестановку (1, . . . , n).
Если

ahq1
...hqk

= (ahq1
...hqk−1

)xhqk
+ ahq1

...hqk−1
ahqk

, (q1, . . . , qk) ∈ Qk,n, k = 2, n,

то функция Римана уравнения (3.47) имеет вид

R(x1, . . . , xn, x
0
1, . . . , x0

n) = exp
n∑

i=1

∫ xhi

x0
hi

ahi

∣∣∣ xhi
=αhi

xhj
=x0

hj
, j=i+1,n

dαhi
.

Доказательство проводится индукцией по числу k переменных
xj, отличных от x0

j . Для этого в уравнении (3.48) фиксируются xpi
= x0

pi
,

{pi | 1 6 i 6 n− k} = {p | 1 6 p 6 n} \ {
hqj

| 1 6 j 6 k
}
для всех Qk,n и

полученные уравнения дифференцируются по xhq1
, . . . , xhqk

. Каждое из
этих уравнений имеет вид(

∂

∂xhq1

− ahq1

)(
∂

∂xhq2

− ahq2

)
. . .

(
∂

∂xhqk

− ahqk

)
v = 0

93



и, следовательно, решается в квадратурах.

2.4. Об интегральных уравнениях для функции Римана.
Пусть (r1, . . . , rn) — некоторая перестановка (1, . . . , n) и

hrq1
...rqk−1

,rqk
≡ 0, (q1, . . . , qk) ∈ Qk,n, k = 2, n− 1. (3.77)

Тогда интегральное уравнение для функции Римана имеет вид [48]:

v(x1, . . . , xn, x
0
1, . . . , x0

n) = Rr1...rn
(x0

1, . . . , x0
n, x1, . . . , xn) +

+ (−1)n

∫ x1

x0
1

. . .

∫ xn

x0
n

Rr1...rn
(α1, . . . , αn, x1, . . . , xn)×

× hr1...rn−1,rn
(α1, . . . , αn)v(α1, . . . , αn, x

0
1, . . . , x0

n)dαn . . . dα1,

Rr1...rn
(x1, . . . , xn, x

0
1, . . . , x0

n) = exp

( n∑
i=1

∫ x0
ri

xri

ari
(x1, . . . ,

xri−1, αri
, xri+1, . . . , xn)

∣∣∣
xri+1

=x0
ri+1

. . .
∣∣∣
xrn=x0

rn

dαri

)
. (3.78)

Покажем это. При условии (3.77) сопряженное к (3.70) уравнение
записывается в виде

(
∂

∂xr1

− ar1

)
. . .

(
∂

∂xrn

− arn

)
v = (−1)nhr1...rn−1,rn

v.

Это доказывается так же, как и формула (3.72).
Функция Римана для (3.72) при условии hr1...rn−1,rn

≡ 0 известна
(см. п. 2.3):

R = Rr1...rn
(x1, . . . , xn, x

0
1, . . . , x0

n) = exp
n∑

i=1

∫ x0
ri

xri

ari
(x1, . . . ,

xri−1, αri
, xri+1, . . . , xn)

∣∣∣
xri+1

=x0
ri+1

. . .
∣∣∣
xrn=x0

rn

dαri
.

Видим, что она совпадает с (3.78). Запишем решение уравнения (3.72),
считая это уравнение неоднородным с правой частью (−1)nhr1...rn−1,rn

v:

v(x1, . . . , xn) =
n−1∑

k=0

(−1)k
∑

Qk,n

∫ xq1

x0
q1

. . .

∫ xqk

x0
qk

(n−k∑
m=1

(−1)m+1×
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×
∑

Hm,n

v(x1, . . . , xh1−1, x
0
h1

, xh1+1, . . . , xq1−1, αq1
, xq1+1, . . . ,

xqk−1, αqk
, xqk+1, . . . , xhm−1, x

0
hm

, xhm+1, . . . , xn)×
×Aq1...qk

(x1, . . . , xh1−1, x
0
h1

, xh1+1, . . . , xq1−1, αq1
, xq1+1, . . . , xqk−1,

αqk
, xqk+1, . . . , xhm−1, x

0
hm

, xhm+1, . . . , xn, x1, . . . , xn)

)
dαqk

. . . dαq1
+

+(−1)n

∫ x1

x0
1

. . .

∫ xn

x0
n

R(α1, . . . , αn, x1, . . . , xn)hr1...rn−1,rn
(α1, . . . , αn)×

×v(α1, . . . , αn)dαn . . . dα1, (3.79)

Aq1...qk
(α1, . . . , αn, x1, . . . , xn) =

=
k∑

m=0

(−1)m
∑

Hm
k

(a∗h1...hm
(α1, . . . , αn)R(α1, . . . , αn, x1, . . . , xn))αhm+1

...αhk
.

Введем обозначение

f(α1, . . . , αn)
∣∣∣
x1

x0
1

. . .
∣∣∣
xn

x0
n

=
n∑

k=0

∑

Qk,n

(−1)kf(x1, . . . , xn)
∣∣∣
xq1

=x0
q1

. . .
∣∣∣
xqk

=x0
qk

.

Освободимся теперь в (3.79) от производных функции R с помо-
щью интегрирования по частям. Например, для слагаемого, соответ-
ствующего некоторому элементу из Hm,n (аргументы в записи опуска-
ем), это делается так

∫ xq1

x0
q1

∫ xq2

x0
q2

. . .

∫ xqk

x0
qk

Aq1...qk
vdαqk

. . . dαq2
dαq1

=

=
[
Rv

∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqk

x0
qk

−
∫ xq1

x0
q1

Rvαq1

∣∣∣
xq2

x0
q2

. . .
∣∣∣
xqk

x0
qk

dαq1
− . . .−

−
∫ xqk

x0
qk

Rvαqk

∣∣∣
xq1

x0
q1

∣∣∣
xq2

x0
q2

. . .
∣∣∣
xqk−1

x0
qk−1

dαqk
+ . . . +

+(−1)k

∫ xq1

x0
q1

∫ xq2

x0
q2

. . .

∫ xqk

x0
qk

Rvαq1
...αqk

dαqk
. . . dαq2

dαq1

]
−

−
∫ xq1

x0
q1

[
a∗q1

Rv
∣∣∣
xq2

x0
q2

. . .
∣∣∣
xqk

x0
qk

−
∫ xq2

x0
q2

a∗q1
Rvαq2

∣∣∣
xq3

x0
q3

. . .
∣∣∣
xqk

x0
qk

dαq2
− . . .−
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−
∫ xqk

x0
qk

a∗q1
Rvαqk

∣∣∣
xq2

x0
q2

. . .
∣∣∣
xqk−1

x0
qk−1

dαqk
+ . . . +

+(−1)k

∫ xq2

x0
q2

∫ xq3

x0
q3

. . .

∫ xqk

x0
qk

a∗q1
Rvαq2

...αqk
dαqk

. . . dαq3
dαq2

]
dαq1

− . . .−

−
∫ xqk

x0
qk

[
a∗qk

Rv
∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqk−1

x0
qk−1

−
∫ xq1

x0
q1

a∗qk
Rvαq1

∣∣∣
xq2

x0
q2

. . .
∣∣∣
xqk−1

x0
qk−1

dαq1
− . . .−

−
∫ xqk−1

x0
qk−1

a∗qk
Rvαqk−1

∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqk−2

x0
qk−2

dαqk−1
+ . . . +

+(−1)k

∫ xq1

x0
q1

∫ xq2

x0
q2

. . .

∫ xqk−1

x0
qk−1

a∗qk
Rvαq1

...αqk−1
dαqk−1

. . . dαq2
dαq1

]
dαqk

+ . . . +

+(−1)k

∫ xq1

x0
q1

∫ xq2

x0
q2

. . .

∫ xqk

x0
qk

a∗q1...qk
Rvdαqk

. . . dαq2
dαq1

. (3.80)

Подставив (3.80) в (3.79), получаем формулу для v:

v(x1, . . . , xn) = R(x0
1, . . . , x0

n, x1, . . . , xn)v(x0
1, . . . , x0

n)+

+
n−1∑

k=1

∑

Qk,n

∫ xq1

x0
q1

. . .

∫ xqk

x0
qk

R(x0
1, . . . , x0

q1−1, αq1
, x0

q1+1, . . . , x0
qk−1,

αqk
, x0

qk+1, . . . , x0
n, x1, . . . , xn)

{ k∑
m=0

∑

Hm
k

a∗h1...hm
(x0

1, . . . , x0
q1−1,

αq1
, x0

q1+1, . . . , x0
qk−1, αqk

, x0
qk+1, . . . , x0

n)vαhm+1
...αhk

(x0
1, . . . , x0

q1−1,

αq1
, x0

q1+1, . . . , x0
qk−1, αqk

, x0
qk+1, . . . , x0

n)

}
dαqk

. . . dαq1
+

+(−1)n

∫ x1

x0
1

. . .

∫ xn

x0
n

R(α1, . . . , αn, x1, . . . , xn)×

×hr1...rn−1,rn
(α1, . . . , αn)v(α1, . . . , αn)dαn . . . dα1. (3.81)

Покажем это. Условимся не записывать аргументы функций R,
u, поскольку, в соответствии с (3.79), элементы из Hm,n, по которым
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производится суммирование, вполне определяют эти аргументы. Най-
дем внеинтегральный член в (3.81), исходя из (3.79) с учетом (3.80):

n−1∑

k=0

(−1)k
∑

Qk,n

n−k∑
m=1

(−1)m+1
∑

Hm,n

Rv
∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqk

x0
qk

=

= (−1)n−1
∑

Qn−1,n

∑

Hm,n

Rv
∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqn−1

x0
qn−1

+

+(−1)n−2
∑

Qn−2,n

2∑
m=1

(−1)m+1
∑

Hm,n

Rv
∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqn−2

x0
qn−2

+

+(−1)n−3
∑

Qn−3,n

3∑
m=1

(−1)m+1
∑

Hm,n

Rv
∣∣∣
xq1

x0
q1

. . .
∣∣∣
xqn−3

x0
qn−3

+ . . .−

−
∑

Q1,n

n−1∑
m=1

(−1)m+1
∑

Hm,n

Rv
∣∣∣
xq1

x0
q1

+
∑

Q0,n

n∑
m=1

(−1)m+1
∑

Hm,n

Rv. (3.82)

Воспользуемся формулой (3.82) для подсчета числа слагаемых N0 вида
R(x0

1, . . . , x0
n, x1, . . . , xn)v(x0

1, . . . , x0
n). Число таких слагаемых в сумме

(3.82) при k = n− 1 будет Cn−1
n , при k = n− 2 — Cn−2

n и так далее. С
учетом знака получаем

N0 = (−1)2nCn−1
n + (−1)2n−1Cn−2

n + (−1)2n−2Cn−3
n + . . . +

+ (−1)n−2C1
n + (−1)n+1C0

n = 1. (3.83)

Формула (3.83) является известным выражением для биномиальных
коэффициентов, которое может быть получено из суммы (1− 1)n.

Подсчитаем теперь с учетом знака число Nr слагаемых ви-
да R(X, x1, . . . , xn)v(X), X = (x1, . . . , xp1−1, x

0
p1

, xp1+1, . . . , xpn−r−1, x
0
pn−r

,
xpn−r+1, . . . , xn), 1 6 r 6 n− 1, 1 6 pi 6 n:

Nr = (−1)2n(Cn−1
n − C1

r ) + (−1)2n−1(Cn−2
n − C2

r ) + . . . +

+ (−1)2n+1−r(Cn−r
n − Cr

r ) + (−1)2n−rCn−r−1
n + . . . + (−1)n+1C0

n = 0.

Совершенно аналогично находим число элементов Nk,r вида
∫ xq1

x0
q1

. . .

∫ xqk

x0
qk

a∗q1...qt
(X1)R(X, x1, . . . , xn)vαqt+1

...αqk
(X1)dαqk

. . . dαq1
,
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X1 = X
∣∣∣
xq1

=αq1

. . .
∣∣∣
xqk

=αqk

, 0 6 t 6 k, 1 6 k 6 n− 1,

которое равно

(−1)2n(Cn−k−1
n−k − C1

r ) + (−1)2n−1(Cn−k−2
n−k − C2

r ) + . . . +

+ (−1)2n+1−r(Cn−k−r
n−k − Cr

r ) + (−1)2n−rCn−k−r−1
n−k +

+ . . . + (−1)n+k+1C0
n−k =

{
1, r = 0,

0, r 6= 0.
(3.84)

Формула (3.84) означает, что не входящие в (3.81) интегральные
слагаемые взаимно уничтожаются. Тем самым формула (3.81) доказа-
на.

Сравнивая интегральное уравнение для функции Римана (3.48)
и (3.81), видим, что все выражения в фигурных скобках в (3.81) тож-
дественно равны нулю. Таким образом, при условиях (3.77) получаем
интегральное уравнение для v вида

v(x1, . . . , xn, x
0
1, . . . , x0

n) = R(x0
1, . . . , x0

n, x1, . . . , xn) +

+ (−1)n

∫ x1

x0
1

. . .

∫ xn

x0
n

R(α1, . . . , αn, x1, . . . , xn)×

× hr1...rn−1,rn
(α1, . . . , αn)v(α1, . . . , αn, x

0
1, . . . , x0

n)dαn . . . dα1. (3.85)

При записи (3.85) учтено, что v(x0
1, . . . , x0

n, x
0
1, . . . , x0

n) = 1. Таких урав-
нений n!, каждому из них соответствует своя R = Rr1...rn

.
Используем полученный результат для построения функций Ри-

мана в явном виде.
1. Если выполняются условия (3.77), коэффициенты ai имеют

структуру

ai = a0
i (xi) + λ

∏
16j6n,

j 6=i

xj, i = 1, n, λ = const, (3.86)

и

hr1...rn−1,rn
= (−1)n

∏
16j6n

θj(xj), (3.87)
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то функция Римана для (3.70) имеет вид

v(x1, . . . , xn, x
0
1, . . . , x0

n) =

= 0Fn−1

(
1, . . . , 1; (−1)n

∏
16j6n

∫ xj

x0
j

θj(αj)dαj

)
×

× exp

( n∑
i=1

∫ xi

x0
i

a0
i (αi)dαi + λ

( ∏
16j6n

xj −
∏

16j6n

x0
j

))
, (3.88)

0Fn−1(1, . . . , 1; σ) =
∞∑

k=0

1

[(1)k]n−1

σk

k!
.

Действительно, если выполняется (3.86), то функция Rr1...rn
из

(3.78) записывается в форме

Rr1...rn
(x1, . . . , xn, x

0
1, . . . , x0

n) =

= exp

( n∑
i=1

∫ x0
i

xi

a0
i (αi)dαi + λ

( ∏
16j6n

x0
j −

∏
16j6n

xj

))
.

Обозначим

ω = Tv, T (x1, . . . , xn) = exp

( n∑

i=1

∫ 0

xi

a0
i (αi)dαi − λ

∏

16j6n

xj

)
.

При этом (3.85) принимает вид

ω(x1, . . . , xn) = T (x0
1, . . . , x0

n) +

+ (−1)n

∫ x1

x0
1

. . .

∫ xn

x0
n

hr1...rn−1,rn
(α1, . . . , αn)ω(α1, . . . , αn)dαn . . . dα1.

Данное уравнение эквивалентно задаче Гурса для уравнения

ωx1...xn
− (−1)nhr1...rn−1,rn

ω = 0 (3.89)

с условиями

ω |x1=x0
1
= ω |x2=x0

2
= . . . = ω |xn=x0

n
= T (x0

1, . . . , x0
n).

При условии (3.87) функция Римана для (3.89) известна
[16, c. 10–12]. Вычислив ω и возвратившись снова к функции v, полу-
чим (3.88).
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2. Если коэффициенты ai имеют структуру

ai =
∂ ln w

∂xi
, i = 1, n, w =

n∑

k=1

∑

Qk,n

pq1...qk
(xq1

, . . . , xqk
) 6= 0, (3.90)

и

hr1...rn−1,rn
= (−1)n

∏
16j6n

θj(xj), (3.91)

то функция Римана для (3.70) имеет вид

v(x1, . . . , xn, x
0
1, . . . , x0

n) =

= 0Fn−1

(
1, . . . , 1; (−1)n

∏
16j6n

∫ xj

x0
j

θj(αj)dαj

)
w(x1, . . . , xn)

w(x0
1, . . . , x0

n)
. (3.92)

Очевидно, что условия (3.77) выполняются, функция Римана
строится по схеме случая 1.
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Глава 2. Характеристические
задачи с нормальными

производными в граничных
условиях

Здесь для уравнения (2) исследуются задачи, отличающиеся от
задачи Гурса тем, что вместо искомой функции u на характеристиках
(или их части) задаются значения нормальных производных от u.

§ 4. Задачи на плоскости и в трехмерном
пространстве

В данном параграфе рассматриваются задачи с нормальными
производными на характеристиках для уравнения (2) при n = 2, 3. Пер-
вой известной авторам публикацией, где встречается подобное гранич-
ное условие, является работа Л.М. Невоструева [53]. Однако речь там
идет о задаче для уравнения смешанного типа, а ситуация с нормаль-
ной производной на характеристике носит вспомогательный характер
и исследуется лишь в той мере, в которой это необходимо для основной
задачи из [53]. Имеется также цикл работ С.С. Харибегашвили [78] –
[84], в которых для уравнения (4), в том числе векторно-матричного,
изучаются задачи в характеристических и нехарактеристических об-
ластях с граничными условиями вида

αux + βuy + γu = f. (4.1)

Очевидно, если (4.1) задано на характеристике x = const, и (напри-
мер) α ≡ 1, β ≡ γ ≡ 0, то это есть граничное условие обсуждаемого
вида, представляющее собой как бы предельный случай общей поста-
новки задачи. С.С. Харибегашвили применяет к исследованию задач
методы функционального анализа, выделяя лишь случаи однозначной
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разрешимости (существование единственного решения в определенном
функциональном классе).

Таким образом указанные граничные условия в упомянутых ра-
ботах играют эпизодическую или вспомогательную роль. Предметом
специального изучения эта задача стала в работе [130], в которой для
(4) предложен метод редукции рассматриваемых задач к задаче Гур-
са. Этот метод позволяет более полно исследовать задачи: не только
доказать существование решения, но и записать его либо с помощью
резольвент интегральных уравнений Вольтерра (в общем случае), ли-
бо в явном виде (в ряде частных случаев). При этом устанавливаются
условия не только однозначной разрешимости, но и разрешимости с
точностью до определенного количества произвольных констант.

Отметим, что такие задачи не всегда содержательны. В качест-
ве примера рассмотрим трехмерное уравнение

uxyz = 0. (4.2)

Поставим для него задачу Гурса следующим образом: найти в парал-
лелепипеде D = {0 < x < x1, 0 < y < y1, 0 < z < z1} непрерывно
продолжимое на границу D решение, удовлетворяющее условиям

u
∣∣
X

= ϕ1(y, z), u
∣∣
Y
= ϕ2(x, z), u

∣∣
Z
= ϕ3(x, y) , (4.3)

где X, Y , Z — грани D при x = 0, y = 0, z = 0 соответственно.
Проинтегрировав (4.2) с учетом (4.3), получим

u = ϕ1(y, z)+ϕ2(x, z)+ϕ3(x, y)−ϕ1(y, 0)−ϕ2(0, z)−ϕ3(x, 0)+ϕ1(0, 0).

(4.4)

При произвольных ϕk можно рассматривать здесь правую часть в ка-
честве структурной формулы решений нашего уравнения подобно то-
му, как это делается в [2, c. 66] для уравнения uxy + aux + buy + cu = 0.
Теперь поставим для (4.2) задачу с краевыми условиями

∂u

∂x

∣∣∣∣
X

= ψ1(y, z), u
∣∣
Y
= 0, u

∣∣
Z
= 0. (4.5)

Если, пользуясь (4.4), попытаться добиться для u выполнения (4.5), то
придем к требованию ψ1(y, z) ≡ 0, делающему задачу обсуждаемого
типа тривиальной. Подобные случаи далее исключаются из рассмот-
рения.
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Заметим, что появление только что указанных случаев зависит
от характера коэффициентов рассматриваемого уравнения. Таким об-
разом, речь идет о выявлении условий на эти коэффициенты, которые
обеспечивали бы определенный уровень содержательности рассматри-
ваемых задач.

1. Плоский случай

Речь идет об уравнении

uxy + aux + buy + cu = 0, (4.6)

которое мы будем рассматривать в характеристическом прямоуголь-
нике D = {0 < x < x1, 0 < y < y1}. Стороны D при x = 0, y = 0
обозначим X, Y соответственно. Будем рассматривать задачи, полу-
чаемые из задачи Гурса заменой хотя бы одного из граничных значений
u значением ее нормальной производной из набора

∂u

∂x

∣∣∣∣
X

= ψ1(y),
∂u

∂y

∣∣∣∣
Y

= ψ2(x). (4.7)

Здесь, как обычно, X означает замыкание множества X. Условия типа
Гурса обозначим через Γ, а типа (4.7) — через N . Если не считать
варианты задач, получающихся переменой ролей носителей, то, оче-
видно, получим две задачи, которые естественно обозначить ΓN, NN .

Конечно, мы считаем искомую функцию непрерывно продолжи-
мой на X ∪Y , а участвующие в граничных условиях производные пер-
вого порядка непрерывно продолжимыми на ту часть границы D, на
которой задано граничное значение этой производной.

Обозначим

u
∣∣
X

= ϕ1(y), u
∣∣
Y

= ϕ2(x). (4.8)

Сформулируем задачи с нормальными производными.
Задача ΓN : найти решение уравнения (4.6), удовлетворяющее

условиям

u
∣∣
X

= ϕ1(y),
∂u

∂y

∣∣∣∣
Y

= ψ2(x).
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Задача NN : найти решение уравнения (4.6), удовлетворяющее
условиям

∂u

∂x

∣∣∣∣
X

= ψ1(y),
∂u

∂y

∣∣∣∣
Y

= ψ2(x).

Решения ищутся в классе C(1,1)(D)∩C(D). При этом гладкость
коэффициентов определяется условиями

a ∈ C(1,0), b ∈ C(0,1), c ∈ C(0,0), (4.9)

имеющими место в замкнутой области D. Здесь, как уже указывалось
ранее, класс C(k,l) означает существование непрерывных производных
∂r1+r2

∂xr1∂yr2
для всех r1 6 k, r2 6 l.

Также считаем, что

ϕ1 ∈ C1(X), ϕ2 ∈ C1(Y ), ψ1 ∈ C1(X), ψ2 ∈ C1(Y ). (4.10)

Далее предлагается метод редукции рассматриваемых задач с
нормальными производными к задаче Гурса.

Рассмотрим множество X. Проинтегрировав (4.6) по y в преде-
лах (ε2, y), ε2 > 0, и перейдя затем к пределу при ε2 → 0, получим

b(0, y)ϕ1(y)−
∫ y

0
[bβ(0, β)− c(0, β)]ϕ1(β)dβ = Ω1(y), (4.11)

Ω1(y) = b(0, 0)ϕ1(0)− ψ1(y) + ψ1(0)−
∫ y

0
a(0, β)ψ1(β)dβ.

Очевидно, при известной ψ1 можно (4.11) рассматривать как
интегральное уравнение для ϕ1(y). Ясно, что значение ϕ1(0) не мо-
жет быть определено исходя из (4.11) (при y = 0 (4.11) обращается в
тождество), и в дальнейшем, если не представится возможности опре-
делить его из других соображений, ϕ1(0) рассматривается как произ-
вольная постоянная.

Условия гладкости позволяют продифференцировать (4.11) и по-
лучить уравнение

b(0, y)ϕ′1(y) + c(0, y)ϕ1(y) = A(y), (4.12)

A(y) = −ψ′1(y)− a(0, y)ψ1(y).

Выделим следующие два случая.
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1) b(0, y) 6= 0. Тогда

ϕ1(y) = exp

(∫ 0

y

c(0, β)

b(0, β)
dβ

)
ϕ1(0)−

−
∫ y

0
exp

(∫ y

β

c(0, β1)

b(0, β1)
dβ1

)(
ψ′1(β) + a(0, β)ψ1(β)

b(0, β)

)
dβ. (4.13)

Функция ϕ1(y) определяется с точностью до одной произвольной по-
стоянной.

2) b(0, y) ≡ 0, c(0, y) 6= 0. В этом случае сразу получаем одно-
значно определяемую функцию ϕ1(y) = A(y)/c(0, y). При этом следует
потребовать, чтобы было ψ′1, a, c ∈ C1(X).

Перейдем теперь к множеству Y. Роль (4.12) играет

a(x, 0)ϕ′2(x) + c(x, 0)ϕ2(x) = B(x), (4.14)

B(x) = −ψ′2(x)− b(x, 0)ψ2(x).

Варианты 1) – 2) имеют следующий вид.
1) a(x, 0) 6= 0. В этом случае

ϕ2(x) = exp

(∫ 0

x

c(α, 0)

a(α, 0)
dα

)
ϕ2(0)−

−
∫ x

0
exp

(∫ x

α

c(α1, 0)

a(α1, 0)
dα1

)(
ψ′2(α) + b(α, 0)ψ2(α)

a(α, 0)

)
dα. (4.15)

Функция ϕ2(x) определяется с точностью до одной произвольной по-
стоянной.

2) a(x, 0) ≡ 0, c(x, 0) 6= 0. Получаем однозначно определяемую
функцию ϕ2(x) = B(x)/c(x, 0). Требуем выполнения условий ψ′2, b, c ∈
C1(Y ).

Вернемся к задачам ΓN и NN с целью выяснить возможность
и характер их редукции к задаче Гурса для (4.6). Определив по нор-
мальной производной граничное значение искомой функции на харак-
теристике, можно записать решение с помощью формулы (1.20). При
рассмотрении задач используем варианты 1) – 2). Упоминание соот-
ветствующего случая означает выполнение всех содержащихся в нем
требований.

1. В задаче ΓN известны ϕ1, ψ2. Если на Y выполняется 1), то ре-
шение задачи ΓN при выполнении условия согласования ϕ1(0) = ϕ2(0)
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определяется однозначно. Если же имеет место 2), то решение опреде-
ляется однозначно, и, кроме того, возникает дополнительное условие
согласования ϕ1(0) = B(0)/c(0, 0).

2. Задача NN . Заданы ψ1, ψ2. Будем комбинировать варианты
на множествах X и Y . Если на X и на Y имеет место 1), то решение
определяется с точностью до одной произвольной постоянной. Если на
X реализуется 1), а на Y — 2), то решение определяется однозначно.
Если же 2) имеет место и на X и на Y , то при ϕ1(0) = ϕ2(0) решение
также определяется однозначно. Во всех этих случаях никаких допол-
нительных условий согласования не возникает.

2. Переход в трехмерное пространство

Здесь речь пойдет о задачах для уравнения

uxyz + auxy + buyz + cuxz + dux + euy + fuz + gu = 0, (4.16)

которое будет рассматриваться в характеристическом параллелепипе-
де D = {0 < x < x1, 0 < y < y1, 0 < z < z1}. Грани D при x = 0, y = 0,
z = 0 обозначим X, Y, Z соответственно. Целью данного параграфа яв-
ляется рассмотрение задач, получаемых из задачи Гурса заменой хотя
бы одного из граничных значений u значением ее нормальной произ-
водной из набора

∂u

∂x

∣∣∣∣
X

= ψ1(y, z),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z),
∂u

∂z

∣∣∣∣
Z

= ψ3(x, y). (4.17)

Здесь X означает замыкание множества X. Условия типа Гурса обо-
значим через Γ, а типа (4.17) — через N, причем носители этих усло-
вий всегда будем брать в последовательности X, Y, Z. Если не считать
варианты задач, получающихся переменой ролей носителей, то, оче-
видно, получим три задачи, которые обозначим ΓΓN, ΓNN, NNN.

Считаем искомую функцию непрерывно продолжимой на X ∪
Y ∪Z, а участвующие в граничных условиях производные первого по-
рядка непрерывно продолжимыми на ту часть границы D, на которой
задано граничное значение этой производной. При этом гладкость ко-
эффициентов определяется включениями

a ∈ C(1,1,0), b ∈ C(0,1,1), c ∈ C(1,0,1), d ∈ C(1,0,0),

e ∈ C(0,1,0), f ∈ C(0,0,1), g ∈ C(0,0,0),
(4.18)
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имеющими место в замкнутой области D. Здесь, как обычно,
класс C(k,l,m) означает существование непрерывных производных

∂r1+r2+r3

∂xr1∂yr2∂zr3
для всех r1 6 k, r2 6 l, r3 6 m.

Обозначим

u
∣∣
X

= ϕ1(y, z), u
∣∣
Y

= ϕ2(x, z), u
∣∣
Z

= ϕ3(x, y) . (4.19)

Сформулируем задачи с нормальными производными.
Задача ΓΓN : найти решение уравнения (4.16), удовлетворяю-

щее условиям

u
∣∣
X

= ϕ1(y, z), u
∣∣
Y

= ϕ2(x, z),
∂u

∂z

∣∣∣∣
Z

= ψ3(x, y).

Задача ΓNN : найти решение уравнения (4.16), удовлетворя-
ющее условиям

u
∣∣
X

= ϕ1(y, z),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z),
∂u

∂z

∣∣∣∣
Z

= ψ3(x, y).

Задача NNN : найти решение уравнения (4.16), удовлетворя-
ющее условиям

∂u

∂x

∣∣∣∣
X

= ψ1(y, z),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z),
∂u

∂z

∣∣∣∣
Z

= ψ3(x, y).

Принадлежность решения задачи Гурса классу C(1,1,1)(D)∩C(D)
обеспечивается, если

ϕ1 ∈ C(1,1)(X), ϕ2 ∈ C(1,1)(Y ), ϕ3 ∈ C(1,1)(Z), (4.20)

и выполняются условия согласования на ребрах D:

ϕ2(x, 0) = ϕ3(x, 0), ϕ1(y, 0) = ϕ3(0, y), ϕ1(0, z) = ϕ2(0, z). (4.21)

Общие значения функций из (4.21) далее обозначаем λ(y), µ(x), ν(z).
При постановке задач ΓΓN , ΓNN , NNN подразумевается вы-

полнение условий гладкости (4.18) и (4.20).Кроме того, требуем, чтобы

ψ1 ∈ C(1,1)(X), ψ2 ∈ C(1,1)(Y ), ψ3 ∈ C(1,1)(Z).

Далее предлагается метод редукции рассматриваемых задач с
нормальными производными к задаче Гурса.
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2.1. Интегральные уравнения для граничных значений
Гурса. Сначала займемся ситуацией на X. Проинтегрировав (4.16) по
второму и третьему аргументам в пределах (ε2, y), (ε3, z), εi > 0, и
перейдя затем к пределу при ε2 → 0, ε3 → 0 с учетом (4.17), (4.19),
получим

b(0, y, z)ϕ1(y, z)−
∫ y

0
[bη − f ](0, η, z)ϕ1(η, z)dη −

−
∫ z

0
[bζ − e](0, y, ζ)ϕ1(y, ζ)dζ +

+

∫ y

0

∫ z

0
[bηζ − eη − fζ + g](0, η, ζ)ϕ1(η, ζ)dζdη = Ω1(y, z), (4.22)

Ω1(y, z) = b(0, y, 0)λ(y) + b(0, 0, z)ν(z)− δb(0, 0, 0)−

−
∫ y

0
[bη − f ](0, η, 0)λ(η)dη −

∫ z

0
[bζ − e](0, 0, ζ)ν(ζ)dζ−

−ψ1(y, z) + ψ1(y, 0) + ψ1(0, z)− ψ1(0, 0)−
∫ y

0
[c(0, η, z)ψ1(η, z)−

−c(0, η, 0)ψ1(η, 0)]dη −
∫ z

0
[a(0, y, ζ)ψ1(y, ζ)− a(0, 0, ζ)ψ1(0, ζ)]dζ+

+

∫ y

0

∫ z

0
[aη(0, η, ζ) + cζ(0, η, ζ)− d(0, η, ζ)]ψ1(η, ζ)dζdη.

Здесь δ = λ(0) = µ(0) = ν(0).
Очевидно, при известной ψ1 можно (4.22) рассматривать как

интегральное уравнение для ϕ1(y, z). Непосредственно усматривается,
что λ(y) и ν(z) не могут быть найдены из (4.22) и в дальнейшем, если
не представится возможности их определить из других соображений,
должны рассматриваться как произвольные функции.

Предположения (4.18) и ψ1 ∈ C(1,1)(X) позволяют продифферен-
цировать (4.22) и получить уравнение

b(0, y, z)ϕ1yz + e(0, y, z)ϕ1y + f(0, y, z)ϕ1z + g(0, y, z)ϕ1 = A(y, z),
(4.23)

A(y, z) = −ψ1yz(y, z)− c(0, y, z)ψ1z(y, z)−
− a(0, y, z)ψ1y(y, z)− d(0, y, z)ψ1(y, z).
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Вместе с условиями ϕ1(y, 0) = λ(y), ϕ1(0, z) = ν(z) (4.23) представляет
собой обычную задачу Гурса на плоскости (y, z). Выпишем следующие
варианты ее решения.

1) b(0, y, z) 6= 0. При отсутствии других предположений единст-
венное решение в терминах функции Римана уравнения (4.23) можно
записать по формуле (1.20).

2) Пусть имеют место представления

e

b
= p(z) + σy,

f

b
= q(y) + σz,

g

b
− ef

b2 − σ = m(y)n(z), σ = const,
(4.24)

или выполняется хоть одно из тождеств

eyb− eby + ef − bg ≡ 0, fzb− fbz + ef − bg ≡ 0. (4.25)

Коэффициенты (4.16) в (4.24) – (4.25) зависят от (0, y, z), причем b 6= 0.
Здесь ϕ1(y, z) записывается через λ(y), ν(z) в явном виде. В случае
(4.24) это делается опять по формулe (1.20), но уже с известной (см.
(1.41)) функцией Римана

R(y, z, τ, θ) = v(y, z, τ, θ)J0

(
2
[∫ y

τ

m(η)dη

∫ z

θ

n(ζ)dζ
] 1

2

)
, (4.26)

v = exp

(∫ y

τ

q(η)dη +

∫ z

θ

p(ζ)dζ + σ(yz − τθ)

)
,

а при (4.25) обращается в нуль хоть один из инвариантов уравнения
(4.23), и задача Гурса для него решается в квадратурах даже без ис-
пользования функции Римана (см. п. 3.1 § 1). Функции λ(y), ν(z) в
условиях 1) – 2) являются произвольными.

Результаты п. 3 § 1 позволяют аналогично выделить и другие
случаи, когда ϕ1 может быть найдена в явном виде.

3) b(0, y, z) ≡ f(0, y, z) ≡ 0, e(0, y, z) 6= 0. Уравнение (4.23) интег-
рируется непосредственно, причем для обеспечения первого условия из
(4.20) следует дополнительно к (4.18) наложить требования ψ1yz, a, d,
e, g ∈ C(0,1)(X) при x = 0. Функция ϕ1(y, z) определяется лишь через
ν(z), а

λ(y) =

{
ν(0) +

∫ y

0

A(η, 0)

e(0, η, 0)

[
exp

∫ η

0

g(0, η1, 0)

e(0, η1, 0)
dη1

]
dη

}
×

× exp

∫ 0

y

g(0, η, 0)

e(0, η, 0)
dη. (4.27)
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Таким образом, ϕ1 определяется на X с точностью до одной произволь-
ной функции ν(z).

4) b(0, y, z) ≡ e(0, y, z) ≡ 0, f(0, y, z) 6= 0. Этот случай совершен-
но аналогичен предыдущему. Мы его выделяем лишь потому, что это
требуется далее при рассмотрении граничных задач. ϕ1(y, z) определя-
ется с точностью до одной произвольной функции λ(y), при этом роль
(4.27) играет

ν(z) =

{
λ(0) +

∫ z

0

A(0, ζ)

f(0, 0, ζ)

[
exp

∫ ζ

0

g(0, 0, ζ1)

f(0, 0, ζ1)
dζ1

]
dζ

}
×

× exp

∫ 0

z

g(0, 0, ζ)

f(0, 0, ζ)
dζ. (4.28)

Функции ψ1yz, c, d, f, g ∈ C(1,0)(X) при x = 0.
5) b(0, y, z) ≡ e(0, y, z) ≡ f(0, y, z) ≡ 0, g(0, y, z) 6= 0. Тогда

из (4.23) сразу имеем однозначно определяемую функцию ϕ1(y, z) =
A(y, z)/g(0, y, z), при этом следует требовать, чтобы для x = 0 было
ψ1yz, a, c, d, g ∈ C(1,1)(X).

Перейдем теперь к ситуации на Y. Роль (4.23) играет

c(x, 0, z)ϕ2xz + d(x, 0, z)ϕ2x + f(x, 0, z)ϕ2z + g(x, 0, z)ϕ2 = B(x, z),
(4.29)

B(x, z) = −ψ2xz(x, z)− a(x, 0, z)ψ2x(x, z)−
− b(x, 0, z)ψ2z(x, z)− e(x, 0, z)ψ2(x, z). (4.30)

Варианты 1) – 5) здесь следующие.
1) c(x, 0, z) 6= 0. ϕ2(x, z), зависящая от произвольных функций

µ(x), ν(z), определяется в терминах функции Римана уравнения (4.29).
2) Пусть при y = 0 c 6= 0,

d

c
= p(z) + σx,

f

c
= q(x) + σz,

g

c
− df

c2 − σ = m(x)n(z),

где σ — постоянная, или имеет место хоть одно из тождеств

dxc− dcx + df − cg ≡ 0, fzc− fcz + df − cg ≡ 0.

Тогда ϕ2(x, z) записывается через произвольные µ(x), ν(z) в явном ви-
де.
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3) c(x, 0, z) ≡ d(x, 0, z) ≡ 0, f(x, 0, z) 6= 0. Если при y = 0 функ-
ции ψ2xz, b, e, f, g ∈ C(1,0)(Y ), то ϕ2(x, z) явно определяется через про-
извольную µ(x), а

ν(z) =

{
µ(0) +

∫ z

0

B(0, ζ)

f(0, 0, ζ)

[
exp

∫ ζ

0

g(0, 0, ζ1)

f(0, 0, ζ1)
dζ1

]
dζ

}
×

× exp

∫ 0

z

g(0, 0, ζ)

f(0, 0, ζ)
dζ. (4.31)

4) c(x, 0, z) ≡ f(x, 0, z) ≡ 0, d(x, 0, z) 6= 0 и ψ2xz, a, d, e, g ∈
C(0,1)(Y ) при y = 0. ϕ2(x, z) явно записывается через произвольную
ν(z), а роль (4.31) играет

µ(x) =

{
ν(0) +

∫ x

0

B(ξ, 0)

d(ξ, 0, 0)

[
exp

∫ ξ

0

g(ξ1, 0, 0)

d(ξ1, 0, 0)
dξ1

]
dξ

}
×

× exp

∫ 0

x

g(ξ, 0, 0)

d(ξ, 0, 0)
dξ. (4.32)

5) Для y = 0 имеют место условия c ≡ d ≡ f ≡ 0, g 6= 0, ψ2xz, a,

b, e, g ∈ C(1,1)(Y ). Имеем единственную ϕ2(x, z) = B(x, z)/g(x, 0, z).
Наконец, на Z уравнение для ϕ3 есть

a(x, y, 0)ϕ3xy + d(x, y, 0)ϕ3x + e(x, y, 0)ϕ3y + g(x, y, 0)ϕ3 = C(x, y),
(4.33)

C(x, y) = −ψ3xy(x, y)− b(x, y, 0)ψ3x(x, y)−
− c(x, y, 0)ψ3y(x, y)− f(x, y, 0)ψ3(x, y),

со следующими вариантами разрешимости.
1) a(x, y, 0) 6= 0. ϕ3(x, y), записывается в терминах функции Ри-

мана уравнения (4.33) через произвольные µ(x), λ(y).
2) Пусть при z = 0 a 6= 0,

d

a
= p(y) + σx,

e

a
= q(x) + σy,

g

a
− de

a2 − σ = m(x)n(y), σ = const,

или выполняется хоть одно из тождеств

dxa− dax + de− ag ≡ 0, eya− eay + de− ag ≡ 0.
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Тогда ϕ3(x, y) определяется через произвольные µ(x), λ(y) в явном ви-
де.

3) При z = 0 a ≡ d ≡ 0, e 6= 0, ψ3xy, b, e, f, g ∈ C(1,0)(Z). ϕ3(x, y)
записывается явно через произвольную µ(x), и

λ(y) =

{
µ(0) +

∫ y

0

C(0, η)

e(0, η, 0)

[
exp

∫ η

0

g(0, η1, 0)

e(0, η1, 0)
dη1

]
dη

}
×

× exp

∫ 0

y

g(0, η, 0)

e(0, η, 0)
dη. (4.34)

4) При z = 0 a ≡ e ≡ 0, d 6= 0, ψ3xy, c, d, f, g ∈ C(0,1)(Z). ϕ3(x, y)
явно выражается через произвольную λ(y), и

µ(x) =

{
λ(0) +

∫ x

0

C(ξ, 0)

d(ξ, 0, 0)

[
exp

∫ ξ

0

g(ξ1, 0, 0)

d(ξ1, 0, 0)
dξ1

]
dξ

}
×

× exp

∫ 0

x

g(ξ, 0, 0)

d(ξ, 0, 0)
dξ. (4.35)

5) Для z = 0 a ≡ d ≡ e ≡ 0, g 6= 0, ψ3xy, b, c, f, g ∈ C(1,1)(Z).
Полностью известна ϕ3(x, y) = C(x, y)/g(x, y, 0).

2.2. Условия и характер разрешимости задач. Обратимся
теперь к задачам ΓΓN, ΓNN, NNN с целью выяснить возможность
и характер их редукции к задаче Гурса для (4.16). При рассмотрении
задач используются варианты 1) – 5). Упоминание соответствующе-
го случая означает выполнение всех содержащихся в нем требований:
тождества, неравенства, утверждения, формулы типа (4.27), (4.28),
(4.31), (4.32), (4.34), (4.35), условия гладкости.

1. Задача ΓΓN . Известны ϕ1, ϕ2, ψ3. Перебирая все варианты на
Z, убеждаемся, что справедливы следующие выводы. Решение задачи
ΓΓN во всех вариантах 1) – 5) при выполнении условия согласования
ϕ1(0, z) = ϕ2(0, z) определяется однозначно. В первом варианте реше-
ние записывается в терминах функции Римана, в остальных — в яв-
ном виде. В условиях 3) и 4) возникает по одному дополнительному
условию согласования, вытекающему из (4.34) и (4.35). В случае 5) к
согласованию на (0, z1) добавятся еще два:

ϕ2(x, 0) = C(x, 0)/g(x, 0, 0), ϕ1(0, y) = C(0, y)/g(0, y, 0).

2. Задача ΓNN . Заданы ϕ1, ψ2, ψ3. Здесь требуется комбиниро-
вать варианты 1) – 5) на Y и Z. Всего их тринадцать: 11, 12, 13, 14,
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15, 22, 23, 24, 25, 33, 35, 44, 55 (пишем номера вариантов подряд без
скобок и отбрасываем комбинации, получающиеся переменой ролей со-
ответствующих случаев на Y, Z). Отметим особо, что варианты 34,
45 неосуществимы (возникает противоречие с непрерывностью коэф-
фициентов; например, в случае 34 d 6= 0 при z = 0 и d ≡ 0 при y = 0).
Каждый из реализуемых вариантов 11, . . . , 55 характеризуют наличие
произвольных функций и условий согласования при редукции к задаче
Гурса. Выпишем эти особенности, характеризующие случаи 11, . . . ,
55, в виде таблицы.

Комбинации Произвольные Условия
функции согласования

11 µ(x) отсутствуют
12 µ(x) отсутствуют
13 µ(x) ϕ1(y, 0) = ϕ3(0, y)

14 однозначная отсутствуют
редукция

15 однозначная ϕ1(y, 0) = ϕ3(0, y)
редукция

22 µ(x) отсутствуют
23 µ(x) ϕ1(y, 0) = ϕ3(0, y)

24 однозначная отсутствуют
редукция

25 однозначная ϕ1(y, 0) = ϕ3(0, y)
редукция

33 µ(x) ϕ1(y, 0) = ϕ3(0, y)
ϕ1(0, z) = ϕ2(0, z)

35 однозначная ϕ1(y, 0) = ϕ3(0, y)
редукция ϕ1(0, z) = ϕ2(0, z)

44 однозначная ϕ2(x, 0) = ϕ3(x, 0)
редукция

55 однозначная ϕ2(x, 0) = ϕ3(x, 0)
редукция ϕ1(y, 0) = ϕ3(0, y)

ϕ1(0, z) = ϕ2(0, z)

Приходим к следующим выводам. Если в комбинации участвует
“1”, то редукция к задаче Гурса осуществляется в терминах функций
Римана, если не участвует — в явной форме.

3. Задача NNN . По известным ψ1, ψ2, ψ3 нужно найти ϕ1, ϕ2,
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ϕ3. Имеем 35 комбинаций: 111, 112, 113, 114, 115, 122, 123, 124, 125,
133, 134, 135, . . . , 555. Из них может быть реализовано 22 комбинации:
111, 112, 113, 114, 115, 122, 123, 124, 125, 133, 135, 144, 155, 222, 223,
224, 225, 233, 235, 244, 245, 255, 444, 555. Остальные 13 комбинаций
неосуществимы.

Снова, как и в случае задачи ΓNN, путем перебора всех комби-
наций получаем таблицу, характеризующую каждый из 22 осуществи-
мых вариантов 111, 112, . . . , 555.

Комбинации Произвольные Условия
функции согласования

111 µ(x), λ(y), ν(z) отсутствуют
112 µ(x), λ(y), ν(z) отсутствуют
113 µ(x), ν(z) отсутствуют
114 λ(y), ν(z) отсутствуют
115 ν(z) отсутствуют
122 µ(x), λ(y), ν(z) отсутствуют
123 µ(x), ν(z) отсутствуют
124 λ(y), ν(z) отсутствуют
125 ν(z) отсутствуют
133 µ(x) отсутствуют
135 однозначная отсутствуют

редукция
144 λ(y), ν(z) ϕ2(x, 0) = ϕ3(x, 0)

155 однозначная ϕ2(x, 0) = ϕ3(x, 0)
редукция

222 µ(x), λ(y), ν(z) отсутствуют
223 µ(x), ν(z) отсутствуют
224 λ(y), ν(z) отсутствуют
225 ν(z) отсутствуют
233 µ(x), отсутствуют
235 однозначная отсутствуют

редукция
244 λ(y), ν(z) ϕ2(x, 0) = ϕ3(x, 0)

255 однозначная ϕ2(x, 0) = ϕ3(x, 0)
редукция
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Комбинации Произвольные Условия
функции согласования

555 однозначная ϕ2(x, 0) = ϕ3(x, 0)
редукция ϕ1(y, 0) = ϕ3(0, y)

ϕ1(0, z) = ϕ2(0, z)

Очевидно, и здесь участие “1” приводит к редукции в терми-
нах функций Римана, а отсутствие “1” — к явной редукции. Харак-
тер определения ϕk колеблется от однозначного до наличия в них трех
произвольных функций (с дополнительными условиями в начале ко-
ординат, либо без них). При этом на ребрах D, исходящих из начала
координат, может потребоваться до трех условий согласования.

В заключение отметим, что несимметричность таблиц по отно-
шению к λ, µ, ν объясняется тем, что были отброшены комбинации,
получаемые из перечисленных перестановкой чисел в соответствую-
щих тройках.

§ 5. Распространение результатов на случай
любого конечного числа измерений

1. Четырехмерное пространство

Рассмотрим теперь характеристические задачи с нормальными
производными первого порядка для уравнения четвертого порядка

uxyzt + auxyz + buxyt + cuxzt + duyzt + euxy + fuxz + guxt +

+ huyz + kuyt + suzt + mux + nuy + puz + qut + ru = 0, (5.1)

которое мы будем рассматривать в области D = {0 < x < x1,
0 < y < y1, 0 < z < z1, 0 < t < t1}. Рассуждения в этом параграфе
излагаются аналогично тому, как это делалось в § 4. Здесь рассматри-
ваются задачи, получающиеся из задачи Гурса заменой хотя бы одного
из граничных значений u значением ее нормальной производной из на-
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бора

∂u

∂x

∣∣∣∣
X

= ψ1(y, z, t),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z, t),

∂u

∂z

∣∣∣∣
Z

= ψ3(x, y, t),
∂u

∂t

∣∣∣∣
T

= ψ4(x, y, z),

(5.2)

где X, Y, Z, T — грани D при x = 0, y = 0, z = 0, t = 0 соответственно.
Снова условия типа Гурса обозначим через Γ, а типа (5.2) —

через N, причем носители этих условий всегда будем брать в после-
довательности X, Y, Z, T. Если не считать варианты задач, получаю-
щихся переменой ролей носителей, то, очевидно, получим четыре за-
дачи, которые естественно обозначить ΓΓΓN, ΓΓNN, ΓNNN, NNNN.

Как и в § 4, считаем, что искомая функция непрерывно продолжима
на X ∪ Y ∪ Z ∪ T , а участвующие в граничных условиях производные
первого порядка непрерывно продолжимыми на ту часть границы D,
на которой задано граничное значение этой производной. Дадим фор-
мулировки этих задач.

Задача ΓΓΓN : найти решение уравнения (5.1), удовлетворяю-
щее условиям

u
∣∣
X

= ϕ1(y, z, t), u
∣∣
Y

= ϕ2(x, z, t),

u
∣∣
Z

= ϕ3(x, y, t),
∂u

∂t

∣∣∣∣
T

= ψ4(x, y, z).

Задача ΓΓNN : найти решение уравнения (5.1), удовлетворя-
ющее условиям

u
∣∣
X

= ϕ1(y, z, t), u
∣∣
Y

= ϕ2(x, z, t),

∂u

∂z

∣∣∣∣
Z

= ψ3(x, y, t),
∂u

∂t

∣∣∣∣
T

= ψ4(x, y, z).

Задача ΓNNN : найти решение уравнения (5.1), удовлетворя-
ющее условиям

u
∣∣
X

= ϕ1(y, z, t),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z, t),

∂u

∂z

∣∣∣∣
Z

= ψ3(x, y, t),
∂u

∂t

∣∣∣∣
T

= ψ4(x, y, z).
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Задача NNNN. Найти решение уравнения (5.1), удовлетворя-
ющее условиям

∂u

∂x

∣∣∣∣
X

= ψ1(y, z, t),
∂u

∂y

∣∣∣∣
Y

= ψ2(x, z, t),

∂u

∂z

∣∣∣∣
Z

= ψ3(x, y, t),
∂u

∂t

∣∣∣∣
T

= ψ4(x, y, z).

В процессе исследования мы будем редуцировать эти задачи к
задаче Гурса.

Условия Гурса имеют вид

u
∣∣
X

= ϕ1(y, z, t), u
∣∣
Y

= ϕ2(x, z, t), u
∣∣
Z

= ϕ3(x, y, t), u
∣∣
T

= ϕ4(x, y, z).

(5.3)

Решение задачи Гурса отыскивается в классе C(1,1,1,1)(D)∩C(D),
при этом коэффициенты (5.1) должны удовлетворять следующим усло-
виям:

a ∈ C(1,1,1,0)(D), b ∈ C(1,1,0,1)(D), c ∈ C(1,0,1,1)(D),

d ∈ C(0,1,1,1)(D), e ∈ C(1,1,0,0)(D), f ∈ C(1,0,1,0)(D),

g ∈ C(1,0,0,1)(D), h ∈ C(0,1,1,0)(D), k ∈ C(0,1,0,1)(D),

s ∈ C(0,0,1,1)(D), m ∈ C(1,0,0,0)(D), n ∈ C(0,1,0,0)(D),

p ∈ C(0,0,1,0)(D), q ∈ C(0,0,0,1)(D), r ∈ C(0,0,0,0)(D).

(5.4)

Кроме того, требуем, чтобы выполнялись условия гладкости

ϕ1 ∈ C(1,1,1)(X), ϕ2 ∈ C(1,1,1)(Y ), ϕ3 ∈ C(1,1,1)(Z), ϕ4 ∈ C(1,1,1)(T ),
(5.5)

и условия согласования

ϕ1(0, z, t) = ϕ2(0, z, t) = λ12(z, t),
ϕ1(y, 0, t) = ϕ3(0, y, t) = λ13(y, t),
ϕ1(y, z, 0) = ϕ4(0, y, z) = λ14(y, z),
ϕ2(x, 0, t) = ϕ3(x, 0, t) = λ23(x, t),
ϕ2(x, z, 0) = ϕ4(x, 0, z) = λ24(x, z),
ϕ3(x, y, 0) = ϕ4(x, y, 0) = λ34(x, y).

(5.6)

При постановке задач ΓΓΓN, ΓΓNN, ΓNNN, NNNN счита-
ем, что выполняются условия гладкости (5.4), (5.5). Помимо этого ψk

должны удовлетворять условиям

ψ1 ∈ C(1,1,1)(X), ψ2 ∈ C(1,1,1)(Y ), ψ3 ∈ C(1,1,1)(Z), ψ4 ∈ C(1,1,1)(T ).
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1. Выведем интегральное уравнение, связывающее ϕk и ψk. Рас-
смотрим грань X. Проинтегрировав (5.1) по второму, третьему и чет-
вертому аргументам в пределах (ε2, y), (ε3, z), (ε4, t), εi > 0, и перейдя
затем к пределу при ε2 → 0, ε3 → 0, ε4 → 0 с учетом (5.2), (5.3),
получим

d(0, y, z, t)ϕ1(y, z, t) +

∫ y

0
[s− dβ](0, β, z, t)ϕ1(β, z, t)dβ+

+

∫ z

0
[k − dγ](0, y, γ, t)ϕ1(y, γ, t)dγ +

∫ t

0
[h− dδ](0, y, z, δ)ϕ1(y, z, δ)dδ+

+

∫ y

0

∫ z

0
[q − kβ − hγ + dβγ](0, β, γ, t)ϕ1(β, γ, t)dγdβ+

+

∫ y

0

∫ t

0
[p− hβ − sδ + dβδ](0, β, z, δ)ϕ1(β, z, δ)dδdβ+

+

∫ z

0

∫ t

0
[n− hγ − kδ + dγδ](0, y, γ, δ)ϕ1(y, γ, δ)dδdγ+

+

∫ y

0

∫ z

0

∫ t

0
[r − nβ − pγ − qδ + hβγ + kβδ+

+sγδ − dβγδ](0, β, γ, δ)ϕ1(β, γ, δ)dδdγdβ = Ω1(y, z, t), (5.7)

Ω1(y, z, t) = d(0, 0, z, t)λ12(z, t) + d(0, y, 0, t)λ13(y, t)+

+d(0, y, z, 0)λ14(y, z) + d(0, 0, 0, t)λ12(0, t)−
−d(0, 0, z, 0)λ12(z, 0)− d(0, y, 0, 0)λ13(y, 0) + d(0, 0, 0, 0)ω+

+

∫ y

0
[(s(0, β, z, 0)− dβ(0, β, z, 0))λ14(β, z) + (s(0, β, 0, t)−

−dβ(0, β, 0, t))λ13(β, t)− (s(0, β, 0, 0)− dβ(0, β, 0, 0))λ13(β, 0)]dβ+

+

∫ z

0
[(k(0, y, γ, 0)− dγ(0, y, γ, 0))λ14(y, γ) + (k(0, 0, γ, t)−

−dγ(0, 0, γ, t))λ12(γ, t)− (k(0, 0, γ, 0)− dγ(0, 0, γ, 0))λ12(γ, 0)]dγ+

+

∫ t

0
[(h(0, y, 0, δ)− dδ(0, y, 0, δ))λ13(y, δ) + (h(0, 0, z, δ)−

−dδ(0, 0, z, δ))λ12(z, δ)− (h(0, 0, 0, δ)− dδ(0, 0, 0, δ))λ12(0, δ)]dδ+

+

∫ y

0

∫ z

0
[q(0, β, γ, 0)− kβ(0, β, γ, 0)− sγ(0, β, γ, 0)+
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+dβγ(0, β, γ, 0)]λ14(β, γ)dγdβ +

∫ y

0

∫ t

0
[p(0, β, 0, δ)− hβ(0, β, 0, δ)−

−sδ(0, β, 0, δ) + dβδ(0, β, 0, δ)]λ13(β, δ)dδdβ +

∫ z

0

∫ t

0
[n(0, 0, γ, δ)−

−hγ(0, 0, γ, δ)− kδ(0, 0, γ, δ) + dγδ(0, 0, γ, δ)]λ12(γδ)dδdγ−
−ψ1(y, z, t) + ψ1(0, z, t) + ψ1(y, 0, t) + ψ1(y, z, 0)− ψ1(0, 0, t)−

−ψ1(0, z, 0)− ψ1(y, 0, 0) + ψ1(0, 0, 0)−
∫ y

0
[c(0, β, z, t)ψ1(β, z, t)−

−c(0, β, 0, t)ψ1(β, 0, t)− c(0, β, z, 0)ψ1(β, z, 0) + c(0, β, 0, 0)ψ1(β, 0, 0)]dβ−

−
∫ z

0
[b(0, y, γ, t)ψ1(y, γ, t)− b(0, 0, γ, t)ψ1(0, γ, t)− b(0, y, γ, 0)ψ1(y, γ, 0)+

+b(0, 0, γ, 0)ψ1(0, γ, 0)]dγ −
∫ t

0
[a(0, y, z, δ)ψ1(y, z, δ)−

−a(0, 0, z, δ)ψ1(0, z, δ)− a(0, y, 0, δ)ψ1(y, 0, δ) + a(0, 0, 0, δ)ψ1(0, 0, δ)]dδ−

−
∫ y

0

∫ z

0
[(g(0, β, γ, t)− bβ(0, β, γ, t)− cγ(0, β, γ, t))ψ1(β, γ, t)−

−(g(0, β, γ, 0)− bβ(0, β, γ, 0)− cγ(0, β, γ, 0))ψ1(β, γ, 0)]dγdβ−

−
∫ y

0

∫ t

0
[(f(0, β, z, δ)− aβ(0, β, z, δ)− cδ(0, β, z, δ))ψ1(β, z, δ)−

−(f(0, β, 0, δ)− aβ(0, β, 0, δ)− cδ(0, β, 0, δ))ψ1(β, 0, δ)]dδdβ−

−
∫ z

0

∫ t

0
[(e(0, y, γ, δ)− aγ(0, y, γ, δ)− bδ(0, y, γ, δ))ψ1(y, γ, δ)−

−(e(0, 0, γ, δ)− aγ(0, 0, γ, δ)− bδ(0, 0, γ, δ))ψ1(0, γ, δ)]dδdγ−

−
∫ y

0

∫ z

0

∫ t

0
[m(0, β, γ, δ)− eβ(0, β, γ, δ)− fγ(0, β, γ, δ)− gδ(0, β, γ, δ)+

+aβγ(0, β, γ, δ) + bβδ(0, β, γ, δ) + cγδ(0, β, γ, δ)]ψ1(0, β, γ, δ)dδdγdβ.

Здесь ω = λij(0, 0, 0) — одна и та же постоянная для любого набора
i, j.

Далее мы не будем рассматривать интегральное уравнение, а
воспользовавшись тем, что предположения относительно гладкости ко-
эффициентов уравнения (5.1) и условие ψ1 ∈ C(1,1,1)(X) позволяют про-
дифференцировать (5.7), перейдем к дифференциальному уравнению

dϕ1yzt + hϕ1yz + kϕ1yt + sϕ1zt + nϕ1y + pϕ1z + qϕ1t + rϕ1 = B1, (5.8)
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B1 = −ψ1yzt − aψ1yz − bψ1yt − cψ1zt − eψ1y − fψ1z − gψ1t −mψ1,

коэффициенты в (5.8) и в записи B1 зависят от (0, y, z, t).
Уравнение (5.8) вместе с условиями

ϕ1(0, z, t) = λ12(z, t), ϕ1(y, 0, t) = λ13(y, t), ϕ1(y, z, 0) = λ14(y, z),
(5.9)

представляет собой трехмерную задачу Гурса. Выпишем ряд вариан-
тов ее разрешимости.

1) Пусть d 6= 0 в X. Тогда решение (5.8) можно, следуя п. 3 § 2,
записать в терминах функции Римана.

Заметим, что о построении функции Римана в трехмерном про-
странстве в явном виде говорится в п. 5 § 2. Остановимся лишь на
одном таком случае.

Пусть выполняются условия

h

d
= µ(t) + ρyz,

k

d
= ν(z) + ρyt,

s

d
= η(y) + ρzt, ρ = const,

и

hyd− hdy + hs− pd ≡ 0, hzd− hdz + hk − nd ≡ 0,
kyd− kdy + ks− qd ≡ 0, nyd− ndy + sn− rd = d2θ1(y)θ2(z)θ3(t).

Тогда функция Римана R(y, z, t, y0, z0, t0) для (5.8) запишется в явном
виде:

R(y, z, t, y0, z0, t0) = exp

(∫ y

y0

η(β)dβ +

∫ z

z0

ν(γ)dγ+

+

∫ t

t0

µ(δ)dδ + ρ(yzt− y0z0t0)

)
0F2(1, 1; σ),

σ = −
∫ y

y0

θ1(β)dβ

∫ z

z0

θ2(γ)dγ

∫ t

t0

θ3(δ)dδ.

Тем самым мы получаем по заданным λ1j, j = 2, 4, функцию ϕ1 в явном
виде.

2) d ≡ h ≡ k ≡ n ≡ 0, s 6= 0. В этом случае единственное
решение уравнения (5.8) можно записать в терминах функции Римана
по формулe (1.20). Роль данных Гурса играют λ13(y, t) и λ14(y, z).
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Пусть имеют место представления

p

s
= µ(y, t) + σz,

q

s
= ν(y, z) + σt,

r

s
− pq

s2 − σ = η(y, z)ρ(y, t), σ = σ(y),
(5.10)

или выполняется хоть одно из тождеств

pzs− psz + pq − sr ≡ 0, qts− qst + pq − sr ≡ 0. (5.11)

Коэффициенты в (5.10), (5.11) зависят от (0, y, z, t).
Тогда ϕ1 записывается через λ13(y, t) и λ14(y, z) в явном виде (см.

п. 3 § 1). В случае (5.10) это делается по формуле (1.20) с известной
функцией Римана

R(y, z, t, ζ, τ) = v(y, z, t, ζ, τ)J0

(
2
[∫ z

ζ

η(y, γ)dγ

∫ t

τ

ρ(y, δ)dδ
] 1

2

)
,

v = exp

(∫ z

ζ

ν(y, γ)dγ +

∫ t

τ

µ(y, δ)dδ + σ(y)(zt− ζτ)

)
,

а при выполнении (5.11) двумерная задача Гурса для (5.8) будет ре-
шаться в квадратурах.

Случаи
3) d ≡ h ≡ s ≡ p ≡ 0, k 6= 0;
4) d ≡ k ≡ s ≡ q ≡ 0, h 6= 0;

аналогичны рассмотренному выше 2). При этом для 3) произвольны-
ми функциями являются λ12(z, t), λ14(y, z), а для 4) таковыми будут
λ12(z, t), λ13(y, t). Очевидно, что ψ1yzt, a, b, c, e, f, g, m должны при-
надлежать классу C(1,0,0)(X) в случае 2), классу C(0,1,0)(X) в случае 3),
и, наконец, классу C(0,0,1)(X) в случае 4).

5) d ≡ h ≡ k ≡ s ≡ n ≡ p ≡ 0, q 6= 0. Уравнение (5.8) интегриру-
ется непосредственно, причем для того, чтобы имело место первое из
условий (5.5), следует потребовать, чтобы ψ1yzt, a, b, c, e, f, g, m были
из C(1,1,0)(X). Функция ϕ1(y, z, t) определяется через λ14(y, z), а λ12 и
λ14 однозначно находятся, исходя из полученной ϕ1.

Совершенно аналогичны 5) случаи 6) и 7).
6) d ≡ h ≡ k ≡ s ≡ n ≡ q ≡ 0, p 6= 0. Здесь ψ1yzt, a, b, c, e,

f, g, m из C(1,0,1)(X), ϕ1(y, z, t) определяется через λ13(y, t), а λ12 и λ14

известны.
7) d ≡ h ≡ k ≡ s ≡ p ≡ q ≡ 0, n 6= 0. Функции ψ1yzt, a, b, c, e, f,

g, m берутся из C(0,1,1)(X); ϕ1 зависит от λ12(z, t), а λ13 и λ14 известны.
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8) d ≡ h ≡ k ≡ s ≡ n ≡ p ≡ q ≡ 0, r 6= 0. В этом случае из
(5.8) сразу получаем однозначно определяемую функцию ϕ1(y, z, t) =
= B1(y, z, t)/r(0, y, z, t). При этом требуем, чтобы ψ1yzt, a, b, c, e, f, g,

m принадлежали классу C(1,1,1)(X).
Перейдем к описанию ситуации на Y. Роль (5.8) здесь играет

cϕ2xzt + fϕ2xz + gϕ2xt + sϕ2zt + mϕ2x + pϕ2z + qϕ2t + rϕ2 = B2, (5.12)

B2 = −ψ2xzt − aψ2xz − bψ2xt − dψ2zt − eψ2x − hψ2z − kψ2t − nψ2.

Для (5.12) имеют место аналоги записанных нами для (5.8) вариан-
тов разрешимости 1) – 8). Мы ограничимся лишь тем, что выпишем
в виде таблицы характеризующие каждый из этих вариантов условия
равенства и неравенства нулю коэффициентов (5.12). Все остальные
условия, налагаемые на (5.12) в каждом из этих случаев, могут быть
записаны по аналогии с уже рассмотренным уравнением (5.8) и поэто-
му опускаются.

Условия, определяющие Произвольные функции,
характер разрешимости от которых зависит
уравнения (5.12) ϕ2(x, z, t)

1) c 6= 0 λ12(z, t), λ23(x, t), λ24(x, z)

2) c ≡ f ≡ g ≡ m ≡ 0, s 6= 0 λ23(x, t), λ24(x, z)

3) c ≡ f ≡ s ≡ p ≡ 0, g 6= 0 λ12(z, t), λ24(x, z)

4) c ≡ g ≡ s ≡ q ≡ 0, f 6= 0 λ12(z, t), λ23(x, t)

5) c ≡ f ≡ g ≡ s ≡ m ≡ p ≡ 0, q 6= 0 λ24(x, z)

6) c ≡ f ≡ g ≡ s ≡ m ≡ q ≡ 0, p 6= 0 λ23(x, t)

7) c ≡ f ≡ g ≡ s ≡ p ≡ q ≡ 0, m 6= 0 λ12(z, t)

8) c ≡ f ≡ g ≡ s ≡ m ≡ p ≡ q ≡ 0, ϕ2 определяется
r 6= 0 однозначно

Для плоскостей Z и T изложение построим так же, как и для Y.

Уравнение, связывающее на Z ϕ3(x, y, t) и ψ3(x, y, t) имеет вид

bϕ3xyt + eϕ3xy + gϕ3xt + kϕ3yt + mϕ3x + nϕ3y + qϕ3t + rϕ3 = B3, (5.13)

B3 = −ψ3xyt − aψ3xy − cψ3xt − dψ3yt − fψ3x − hψ3y − sψ3t − pψ3.

Таблица, описывающая условия разрешимости (5.13) выглядит следу-
ющим образом:
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Условия, определяющие Произвольные функции,
характер разрешимости от которых зависит
уравнения (5.13) ϕ3(x, y, t)

1) b 6= 0 λ13(y, t), λ23(x, t), λ34(x, y)

2) b ≡ e ≡ g ≡ m ≡ 0, k 6= 0 λ23(x, t), λ34(x, y)

3) b ≡ e ≡ k ≡ n ≡ 0, g 6= 0 λ13(y, t), λ34(x, y)

4) b ≡ g ≡ k ≡ q ≡ 0, e 6= 0 λ13(y, t), λ23(x, t)

5) b ≡ e ≡ g ≡ k ≡ m ≡ n ≡ 0, q 6= 0 λ34(x, y)

6) b ≡ e ≡ g ≡ k ≡ m ≡ q ≡ 0, n 6= 0 λ23(x, t)

7) b ≡ e ≡ g ≡ k ≡ n ≡ q ≡ 0, m 6= 0 λ13(y, t)

8) b ≡ e ≡ g ≡ k ≡ m ≡ n ≡ q ≡ 0, ϕ3 определяется
r 6= 0 однозначно

Наконец, запишем аналог (5.8) для плоскости T :

aϕ4xyz + eϕ4xy + fϕ4xz + hϕ4yz + mϕ4x + nϕ4y + pϕ4z + rϕ4 = B4,

(5.14)

B4 = −ψ4xyz − bψ4xy − cψ4xz − dψ4yz − gψ4x − kψ4y − sψ4z − qψ4.

Соответствующая таблица, описывающая варианты разрешимости
(5.14), такова:

Условия, определяющие Произвольные функции,
характер разрешимости от которых зависит
уравнения (5.14) ϕ4(x, y, z)

1) a 6= 0 λ14(y, z), λ24(x, z), λ34(x, y)

2) a ≡ e ≡ f ≡ m ≡ 0, h 6= 0 λ24(x, z), λ34(x, y)

3) a ≡ e ≡ h ≡ n ≡ 0, f 6= 0 λ14(y, z), λ34(x, y)

4) a ≡ f ≡ h ≡ p ≡ 0, e 6= 0 λ14(y, z), λ24(x, z)

5) a ≡ e ≡ f ≡ h ≡ m ≡ n ≡ 0, p 6= 0 λ34(x, y)

6) a ≡ e ≡ f ≡ h ≡ m ≡ p ≡ 0, n 6= 0 λ24(x, z)

7) a ≡ e ≡ f ≡ h ≡ n ≡ p ≡ 0, m 6= 0 λ14(y, z)

8) a ≡ e ≡ f ≡ h ≡ m ≡ n ≡ p ≡ 0, ϕ4 определяется
r 6= 0 однозначно

2. Обратимся теперь к задачам с нормальными производными
с целью указать характер их редукции к задаче Гурса для (5.1). В
целях удобства дальнейшего изложения объединим условия разреши-
мости уравнений, связывающих значения ϕi и ψi из пункта 2.1 (их мы
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обозначили 1) – 8)), в группы следующим образом: группа 1 — вари-
ант 1); группа 2 — варианты 2) – 4); группа 3 — 5) – 7); группа 4 —
8). Упоминание соответствующей группы означает, что реализуется
один из подслучаев, входящих в нее (со всеми содержащимися в нем
требованиями).

При рассмотрении задач с нормальными производными возни-
кают условия согласования на тех же двумерных многообразиях, что
и у задачи Гурса. Если задача из числа описываемых ниже не реду-
цируется однозначно к задаче Гурса, то редукция осуществляется с
участием произвольных функций из числа λij, i < j.

Задача ΓΓΓN. Известны ϕ1, ϕ2, ϕ3, ψ4. Перебирая все варианты
условий 1) – 8) на T, убеждаемся, что решение задачи ΓΓΓN при всех
вариантах групп условий 1 – 4 определяется однозначно. При этом воз-
никает в случае 1 — три условия согласования, в случае 2 — четыре,
3 — пять, 4 — шесть условий согласования.

Задача ΓΓNN. Заданы ϕ1, ϕ2, ψ3, ψ4. Будем комбинировать ва-
рианты на Z и T. Всего их 10: 11, 12, 13, 14, 22, 23, 24, 33, 34, 44
(пишем номера групп условий и отбрасываем комбинации, получаю-
щиеся переменой ролей случаев на Z и T ). Число произвольных функ-
ций, задаваемых в процессе редукции к задаче Гурса, и число условий
согласования дает таблица

Число произвольных Комбинации вариантов
функций (число условий согласования)
Однозначная редукция 12(1), 13(2), 14(3), 22(2), 23(3),
(произвольных функций нет) 24(4), 33(4), 34(5), 44(6).

Одна 11(1), 12(2), 13(3), 22(3), 23(4),
33(5).

Видим, что одна и та же комбинация, например 12, может дать раз-
личные картины разрешимости задачи ΓΓNN. Это связано с наличием
подслучаев внутри каждой группы 1 – 4.

Задача ΓNNN. Задаются функции ϕ1, ψ2, ψ3, ψ4. Имеем 19 ком-
бинаций групп условий, которые могут быть реализованы: 111, 112,
113, 114, 122, 123, 124, 133, 134, 144, 222, 223, 224, 233, 234, 244, 333,
334, 444. Картина разрешимости задачи ΓNNN дается таблицей
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Число произвольных Комбинации вариантов
функций (число условий согласования)
Однозначная редукция 123(0), 124(1), 133(1), 134(2),
(произвольных функций нет) 144(3), 223(1), 224(2), 234(3),

244(4), 333(3), 334(4), 444(6).

Одна 113(0), 114(1), 122(0), 123(1)
124(2), 133(2), 224(3), 233(3).

Две 112(0), 113(1), 122(1), 123(2),
133(3), 222(2), 223(3), 233(4).

Три 111(0), 112(1), 122(2), 222(3).

Задача NNNN. Заданы ψ1, ψ2, ψ3, ψ4. Все реализуемые комби-
нации для этой задачи указаны в таблице

Число произвольных Комбинации вариантов
функций (число условий согласования)
Однозначная редукция 1234(0), 1244(1), 1334(1), 1444(3),
(произвольных функций нет) 2234(1), 3334(3), 2244(2), 4444(6).

Одна 1134(0), 1144(1), 1224(0), 1233(0),
2233(1).

Две 1124(0), 1133(0), 1223(0), 1233(1),
1224(1).

Три 1114(0), 1123(0), 1133(1), 1222(0),
1223(1), 1333(3).

Четыре 1113(0), 1122(0), 1222(1), 2222(2).

Пять 1112(0), 1122(1).

Шесть 1111(0).

2. Размерность n > 4

В области D = {x0
1 < x1 < x1

1, . . . , x0
n < xn < x1

n} рассматрива-
ется уравнение

ux1x2...xn
+ L(u) = ux1x2...xn

+
n∑

k=1

∑

Qk
n

aq1...qk
uxqk+1

...xqn
= 0, (5.15)

Qk
n = {(q1, . . . , qn) | {qj | 1 6 j 6 n} = {p | 1 6 p 6 n},

q1 < . . . < qk, qk+1 < . . . < qn}.
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Введем следующее обозначение. Символом [α] будем обозначать
число компонент вектора α = (p1, . . . , pk), то есть [α] = k.

В § 3 получено решение задачи Гурса в терминах функции Ри-
мана для (5.15) с условиями

u(x1, . . . , xi−1, x
0
i , xi+1, . . . , xn) = ϕi(x1, . . . , xi−1, xi+1, . . . , xn), (5.16)

заданными на гранях

Πi = [x0
1, x

1
1]× . . .× [x0

i−1, x
1
i−1]× {x0

i} × [x0
i+1, x

1
i+1]×× . . .× [x0

n, x
1
n],

i = 1, n.

При этом коэффициенты удовлетворяют условиям гладкости

aq1...qk
∈ Cα(D), α = (p1, . . . , pn), (5.17)

где pi = 0, если i ∈ {qj | j = 1, k}, pi = 1, если i 6∈ {qj | j = 1, k}, и
выполняются условия согласования

ϕj(x1, . . . , xj−1, xj+1, . . . , xk−1, x
0
k, xk+1, . . . , xn) =

= ϕk(x1, . . . , xj−1, x
0
j , xj+1, . . . , xk−1, xk+1, . . . , xn), j < k. (5.18)

Общие значения функций из (5.18) далее обозначим λjk(x1, . . . , xj−1,
xj+1, . . . , xk−1, xk+1, . . . , xn).

Принадлежность решения задачи Гурса для (5.15) классу
C(1,1,... ,1)(D) ∩ C(D) обеспечивается, если

ϕi ∈ Cβ(Πi), [β] = n− 1, β = (1, 1, . . . , 1), i = 1, n. (5.19)

Здесь мы будем исследовать характер разрешимости задач, по-
лучаемых заменой в (5.16) хотя бы одного значения функции u значе-
нием ее нормальной производной из набора

uxi
(x1, . . . , xi−1, x

0
i , xi+1, . . . , xn) =

= ψi(x1, . . . , xi−1, xi+1, . . . , xn), i = 1, n. (5.20)

Иначе говоря, требуется найти решение уравнения (5.15), удовлетво-
ряющее на характеристических многообразиях Πi условиям

u
∣∣
xi=x0

i
= ϕi(x1, . . . , xi−1, xi+1, . . . , xn), i = 1, k,

∂u

∂xi

∣∣∣∣
xi=x0

i

= ψi(x1, . . . , xi−1, xi+1, . . . , xn), i = k + 1, n.
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С точностью до перестановки порядка носителей краевых условий на
Πi получаем n различных вариантов подобных задач. Мы считаем ис-

комую функцию непрерывно продолжимой на
n⋃

i=1
Πi, а участвующие в

граничных условиях производные первого порядка непрерывно продол-
жимыми на ту часть границы D, на которой задано граничное значе-

ние этой производной (то есть каждая из производных
∂u

∂xi
, i = 1, k,

непрерывно продолжима на соответствующую характеристику Πi).
При этом ψi задаются на Πi, удовлетворяют тем же условиям

гладкости, что и ϕi в (5.19), решение ищется в классе Cω(D)∩C(
n⋃

i=1
Πi∪

D), ω = (1, 1, . . . , 1), [ω] = n.
Введем обозначения, сокращающие дальнейшее изложение. Нам

понадобятся множества

A = {(q1, . . . , qk) | k = 0, n, 1 6 q1 < q2 < . . . < qk 6 n},
Aα = {(q1, . . . , qk) | (q1, . . . , qk) ∈ A, k = 0, n− [α],

qi 6= pj, i = 1, k, j = 1, [α]}, α = (p1, . . . , p[α]) ∈ A.

Все множества Aα содержат пустую строку (при k = 0). Определим
сумму мультииндексов α = (p1, . . . , pk) ∈ A, β = (q1, . . . , ql) ∈ A. А
именно, α + β = γ, γ = (r1, . . . , rm) ∈ A, m = k + l, ri ∈ {ps | s =
1, k} ∪ {qt | t = 1, l}, i = 1,m. При этом должно выполняться условие
{ps | s = 1, k}∩{qt | t = 1, l} = ∅. Теперь определим операции, в записи
которых участвует α = (p1, . . . , pk):

Dαf(x1, . . . , xn) =
∂kf(x1, . . . , xn)

∂xp1
∂xp2

. . . ∂xpk

,

Iαf(x1, . . . , xn) =

∫ xp1

x0
p1

∫ xp2

x0
p2

. . .

∫ xpk

x0
pk

f(x1, . . . , xp1−1, ξp1
, xp1+1 . . . ,

xp2−1, ξp2
, xp2+1, . . . , xpk−1, ξpk

, xpk+1, . . . , xn)dξpk
. . . dξp2

dξp1
.

Вектор Xα = (y1, . . . , ym−1, ym+1, . . . , yn), α ∈ A(m), определим так:

yi = x0
i , если i = pt; yi = xi, если i 6= pt; t = 1, [α]. Считая, что коэффи-

циент aq1...qk
в записи (5.15) определяется мультииндексом (q1, . . . , qk),

перепишем это уравнение в виде∑

α∈A

∑

β∈Aα

[α+β]=n

aαDβu = 0, a ≡ 1. (5.21)
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Далее мы не будем делать различий в записи индексов и мультииндек-
сов там, где это не вызывает путаницы.

Выясним связь между ϕi и ψi. Проделаем это для Π1. Про-
интегрировав (5.21) по всем аргументам, кроме первого, в пределах
(x0

i + εi, xi), εi > 0, i = 2, n, перейдя затем к пределу при εi → 0,
получим

I(2,... ,n)
∑

α∈A

∑

β∈Aα,
[α+β]=n

aαDβu =

=
∑

α∈A(1), β∈A(1)+α,
γ∈A(1)+α+β

(−1)[β]+[γ]Iα+β

(
Dβ[a(1)+α(x0

1, Xγ)]u(x0
1, Xγ)

)
+

+
∑

α∈A(1), β∈A(1)+α,
γ∈A(1)+α+β

(−1)[β]+[γ]Iα+β

(
Dβ[aα(x0

1, Xγ)]ux1
(x0

1, Xγ)

)
.

С учетом (5.16) и (5.20) можем записать

a1 |x1=x0
1
ϕ1 +

∑

α∈A(1)

Iα(bαϕ1) = Ω1(x2, . . . , xn), (5.22)

bα =
∑

β+γ=(1)+α

(−1)[γ]Dγaβ |x1=x0
1
, α, γ ∈ A(1), [α] 6= 0,

Ω1(x2, . . . , xn) =
∑

α∈A(1),
β∈A(1)+α

(−1)[β]+[γ]+1×

×Iα+β

( ∑

γ∈A(1)+α+β

Dβ

[
aα(x0

1, Xγ)

]
ψ1(Xγ)

)
+

+
∑

α∈A(1), [α]<n−1,
β∈A(1)+α

(−1)[β]+[γ]+1×

×Iα+β

( ∑

γ∈A(1)+α+β ,
[γ]6=0

Dβ

[
a(1)+α(x0

1, Xγ)

]
ϕ1(Xγ)

)
.

В более подробной записи (5.22) имеет вид

(a1u)(x0
1, x2, . . . , xn) +

∫ x2

x0
2

(b2u)(x0
1, ξ2, x3, . . . , xn)dξ2+
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+ . . . +

∫ xn

x0
n

(bnu)(x0
1, x2, . . . , xn−1, ξn)dξn+

+

∫ x2

x0
2

∫ x3

x0
3

(b23u)(x0
1, ξ2, ξ3, x4, . . . , xn)dξ3dξ2 + . . . +

+

∫ xn−1

x0
n−1

∫ xn

x0
n

(bn−1 nu)(x0
1, x2, . . . , xn−2, ξn−1, ξn)dξndξn−1 + . . . +

+

∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

(b23...nu)(x0
1, ξ2, . . . , ξn)dξn . . . dξ3dξ2 = Ω1(x2, . . . , xn).

Коэффициенты (5.22) выписываются следующим образом:

b2 = −a1x2
+ a12, b3 = −a1x3

+ a13, . . . , bn = −a1xn
+ a1n,

b23 = a1x2x3
− a12x3

− a13x2
+ a123, . . . , bn−1 n = a1xn−1xn

−
−a1 n−1 xn

− a1nxn−1
+ a1n−1 n, . . . , b23...n = (−1)n−1(a1x2...xn

−
−a12x3...xn

− a13x2x4...xn
− . . .− a1nx2...xn−1

+ . . . + (−1)n−1a12...n).

Очевидно, (5.22) представляет собой интегральное уравнение для оп-
ределения ϕ1, если ψ1 задана. Функции λ1i, i = 2, n, не могут быть
определены из (5.22), и, если нет возможности определить их из других
соображений, рассматриваются как произвольные.

Отметим, что условия гладкости, налагаемые на ψ1 и коэффи-
циенты (5.15), позволяют рассматривать не интегральное уравнение
(5.22), а получающееся из него последовательным дифференцировани-
ем по x2, . . . , xn дифференциальное уравнение. Вместе с условиями

ϕ1 |xi=x0
i
= λ1i, i = 2, n,

это дифференциальное уравнение дает задачу Гурса. Здесь мы будем
все же рассматривать именно интегральные уравнения, непосредствен-
но получающиеся из (5.22).

Выпишем ряд вариантов разрешимости уравнения (5.22).
1) a1 6= 0 в Π1. Тогда решение (5.22) зависит от n−1 произволь-

ной функции λ1i, i = 2, n.

2) a1 ≡ 0, a1n 6= 0, bα ≡ 0 для всех α ∈ A(1,n), [α] > 0, в Π1. Эти
условия равносильны следующим: a1 ≡ 0, a1n 6= 0, a(1)+α ≡ 0 для всех
α ∈ A(1,n), [α] > 0. B этом случае получаем из (5.22) уравнение

a1n |x1=x0
1
ϕ1 +

∑

α∈A(1,n)

Iα(bα+(n)ϕ1) = Ω1xn
. (5.23)
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Исходя из записи Ω1, видим, что (5.23) имеет решение, зависящее от
n− 2 произвольных функций λ1i, i = 2, n− 1.

Аналогичным образом рассматриваются еще n−2 случая, соот-
ветствующих условиям a1 ≡ 0, a1i 6= 0, a(1)+α ≡ 0 для всех α ∈ A(1,i),

[α] > 0, i = 2, n− 1, в Π1. В каждом из этих случаев решение интег-
рального уравнения зависит от λ1j, j ∈ M \ {i}.

3) Положим теперь a1 ≡ 0, bn−1 n 6= 0, bα ≡ 0 при [α] = 1, bβ ≡ 0
для всех β ∈ A(1,n−1,n), [β] > 1, в Π1. В терминах коэффициентов (5.15)
это условие перепишется так: a1n−1 n 6= 0, a(1)+α ≡ 0 для всех [α] 6 1,
a(1)+β ≡ 0 для всех β ∈ A(1,n−1,n), [β] > 1. Уравнение (5.22) тогда
преобразуется к виду

a1n−1 n |x1=x0
1
ϕ1 +

∑

α∈A(1,n−1,n)

Iα(bα+(n−1,n)ϕ1) = Ω1xnxn−1
.

Теперь ϕ1 зависит от n − 3 произвольных функций λ1i, i = 2, n− 2.
Аналогичных вышеизложенному случаев, соответствующих условиям
a1k1k2

6= 0, (k1, k2) ∈ A(1), a(1)+α ≡ 0, для всех [α] 6 1, a(1)+β ≡ 0, при β ∈
A(1,k1,k2), [β] > 1, заданным на Π1, будет еще C2

n−1−1. Соответствующее
уравнение имеет вид

a1k1k2
|x1=x0

1
ϕ1 +

∑

α∈A(1,k1,k2)

Iα(bα+(k1,k2)ϕ1) = Ω1xk2
xk1

.

Его решение зависит от λ1j, j ∈ M \ {k1, k2}.
Продолжая рассуждения в соответствии с обозначенной выше

схемой получения вариантов разрешимости (5.22), получим в пункте
k), 3 < k 6 n, следующую картину. Зафиксируем γ ∈ A(1), [γ] = k − 1.
Тогда, если

a(1)+γ 6= 0, a(1)+α ≡ 0, α ∈ A(1), [α] < k − 1,

a(1)+β ≡ 0, β ∈ A(1)+γ, [β] ≥ k − 1,

то (5.22) приводится к виду

a(1)+γ |x1=x0
1
ϕ1 +

∑

δ∈Aγ

Iδ(bδ+γϕ1) = DγΩ1. (5.24)

Здесь имеет место зависимость ϕ1 от n − k произвольных функций, а
именно, от λ(1)+ε, ε ∈ Aγ, [ε] = 1. Число различных вариантов (5.24) —
Ck−1

n−1.
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Отметим, что при k = n получаем

a123...nϕ1 = Ω1x2x3...xn
.

Это уравнение однозначно определяет ϕ1.
Пункты 1) – n) объединяют в общей сложности 2n−1 различных

уравнений для ϕ1.

Совершенно аналогичным образом могут быть рассмотрены
уравнения для определения ϕi на гранях Πi, i = 2, n.

Возвращаясь к задачам с нормальными производными, видим,
что они могут быть редуцированы к задаче Гурса. Например, решение
задачи, получающейся заменой всех условий (5.16) на (5.20), может за-
висеть от всех произвольных функций λjk, j < k, j = 1, n− 1, k = 2, n,

вместе с тем оно может вовсе не зависеть ни от одной из λjk. Число

произвольных функций λjk, j < k, равно Cn−2
n =

n(n− 1)

2
. Следова-

тельно число произвольных функций ν, от которых зависит решение
задачи (5.15), (5.20), удовлетворяет условию

0 6 ν 6 n(n− 1)

2
.

131



Глава 3. Более сложные уравнения

В этой главе изучаются уравнения вида (2), но при этом опе-
ратор D, определяемый формулой (1), заменяется производной от него
по одной или двум независимым переменным. Рассматриваются также
полилинейные уравнения (подобные полигармоническим, поливолно-
вым, поликалорическим) с итерациями операторов (1) или других, в
определенном смысле близких к D по своим свойствам.

§ 6. Уравнения с кратным дифференцированием

Мы ограничимся здесь случаями лишь двух и трех независимых
переменных. Следующий пункт посвящен наиболее простому предста-
вителю указанных уравнений.

1. Уравнение третьего порядка с двумя
независимыми переменными

Рассмотрим уравнение с переменными коэффициентами

L(u) ≡ uxxy + auxx + buxy + cux + duy + eu = 0. (6.1)

Частным его случаем является уравнение Аллера

ut = (αux + βuxt)x,

встречающееся при моделировании процесса переноса почвенной вла-
ги в зоне аэрации [52]. Уравнение (6.1) изучалось в работах Д. Колто-
на [101], У. Ранделла и М. Стечера [122], У. Ранделла [123] – [125],
М.Х. Шханукова [91] – [93], А.П. Солдатова, М.Х. Шханукова [66],
В.А. Водаховой [12] – [13], О.М. Джохадзе [18].
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Остановимся сначала на задаче Гурса: найти в прямоуголь-
нике D = {x0 < x < x1, y0 < y < y1} решение уравнения (6.1), удовле-
творяющее условиям:

u(x0, y) = ϕ(y), ux(x0, y) = ϕ1(y),
y ∈ p = [y0, y1], ϕ, ϕ1 ∈ C1(p),

u(x, y0) = ψ(x), x ∈ q = [x0, x1], ψ ∈ C2(q),
(6.2)

где ϕ, ϕ1, ψ — известные функции, удовлетворяющие в точке (x0, y0)
условиям согласования

ϕ(y0) = ψ(x0), ψ′(x0) = ϕ1(y0). (6.3)

На коэффициенты уравнения (6.1) налагаются условия гладкос-
ти a ∈ C(2,0)(D), b ∈ C(1,1)(D), c ∈ C(1,0)(D), d ∈ C(0,1)(D), e ∈ C(0,0)(D),
где класс C(k,l) определяется по аналогии с п. 1 § 2: существуют не-

прерывные производные ∂r+s

∂xr∂ys (r = 0, . . . , k; s = 0, . . . , l). Решение

класса C(2,1) называется регулярным.
В перечисленных выше работах рассматривалась, в частности,

и сформулированная задача. При построении решения там использу-
ется вариант метода Римана, в котором функция Римана v(x, y, ξ, η)
определяется [92] тоже как решение задачи Гурса:

L∗(u) ≡ vxxy − (av)xx − (bv)xy + (cv)x + (dv)y − ev = 0, (6.4)

v
∣∣
x=ξ

= 0, vx

∣∣
x=ξ

= exp

(∫ y

η

a(ξ, β)dβ

)
, v

∣∣
y=η

= ω(x, η). (6.5)

В свою очередь ω(x, η) есть решение задачи Коши:

ωxx − b(x, η)ωx + d(x, η)ω = 0, ω(ξ, η) = 0, ωx(ξ, η) = 1. (6.6)

Доказаны существование и единственность v. Вопрос о явном постро-
ении функции Римана не рассматривался.

Ниже предлагается другой вариант метода Римана [36], основан-
ный на развитии идеи из §§ 1 – 3. А именно, функцией Римана будем
называть решение интегрального уравнения

v(x, y)−
∫ y

η

a(x, β)v(x, β)dβ −
∫ x

ξ

[b(α, y)− (x− α)d(α, y)]v(α, y)dα +

+

∫ x

ξ

∫ y

η

[c(α, β)− (x− α)e(α, β)]v(α, β)dβdα = 1. (6.7)
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Его решение существует и единственно (см. п. 1 § 1). Как функцию
четырех переменных обозначим v через R(x, y, ξ, η). Заметим, что v,
определяемая из (6.4) – (6.6), отличается от v из (6.7). А именно, из
(6.7) следует, что R(x, y, x, y) = 1, а из (6.4) – (6.6) — R(x, y, x, y) = 0
(см. предпоследнюю формулу (6.6)). В это же время v(x, y) остается
решением сопряженного к (6.1) уравнения (6.4).

Будем искать решение сформулированной задачи в классе
C(2,1)(D) ∩ C(1,0)(D ∪ p) ∩ C(0,0)(D ∪ q). Для любой функции u(x, y) из
этого класса имеет место тождество:

(uR)xxy ≡ RL(u) + [u(Rx − bR)]xy + [u(Ry − aR)]xx −
− {u[Rxy − (aR)x − (bR)y + cR]}x −
− {u[Rxx − (bR)x + dR]}y + [uyRx + u(aR)x]x. (6.8)

Оно проверяется непосредственно. При этом используется, что R удов-
летворяет уравнению (6.4).

Обозначим

M = Rx − bR, N = Ry − aR,

P = Rxy − (aR)x − (bR)y + cR, Q = Rxx − (bR)x + dR,
(6.9)

где аргументами у a, b, c, d являются (x, y), а у R и ее производных —
(x, y, ξ, η). Из (6.7) легко усматривается, что

M(x, y, x, y) ≡ N(x, y, x, η) ≡ P (x, y, x, η) ≡ Q(x, y, ξ, y) ≡ 0. (6.10)

Поменяем в (6.8) ролями переменные x с ξ, y c η и вычислим от правой
и левой части двойной интеграл в пределах x0 < ξ < x, y0 < η < y,
считая при этом u(x, y) решением уравнения (6.1). Учитывая формулу

∫ x

x0

∫ y

y0

∂2ω

∂ξ∂η
dηdξ = ω(x, y)− ω(x0, y)− ω(x, y0) + ω(x0, y0),

граничные условия (6.2) и соотношения (6.7), (6.10), находим

ux(x, y) = R(x, y0, x, y)ψ′(x) + R(x0, y, x, y)ϕ1(y)−M(x, y0, x, y)ψ(x)−
−M(x0, y, x, y)ϕ(y) + M(x0, y0, x, y)ψ(x0)−R(x0, y0, x, y)ψ′(x) +

+

∫ y

y0

[P (x0, β, x, y)ϕ(β)−N(x0, β, x, y)ϕ1(β)]dβ +

+

∫ x

x0

Q(α, y0, x, y)ψ(α)dα. (6.11)
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Отсюда решение задачи (6.1) – (6.2) получается в виде

u(x, y) = ϕ(y) +

∫ x

x0

h(α, y)dα, (6.12)

где h(x, y) есть правая часть (6.11).
Если бы мы рассматривали неоднородное уравнение L(u) =

f(x, y), то в правой части (6.12) добавилось бы слагаемое

u0(x, y) =

∫ x

x0

∫ ξ

x0

∫ y

y0

R(α, β, ξ, y)f(α, β)dβdαdξ.

Очевидно, формулы (6.11) – (6.12) дают решение задачи (6.1) –
(6.2) в квадратурах, если известен явный вид функции R. Приведем
некоторые такие случаи, полученные путем непосредственного реше-
ния интегрального уравнения (6.7).

а) a ≡ c ≡ e ≡ b + xd ≡ 0, d 6= 0,

R = 1− x

∫ x

ξ

d(α, y)

[
exp

∫ α

x

α1d(α1, y)dα1

]
dα;

б) a ≡ b ≡ c ≡ d ≡ 0, e(x, y) = e(y) 6= 0,

R =
∞∑

k=0

1

k!

[∫ y

η

e(β)dβ

]k
(x− ξ)2k

(2k)!
;

в) a ≡ b ≡ d ≡ 0, c(x, y) ≡ xe(x, y) ≡ m(x)n(y),

R = 1− J0

(
2
[∫ x

ξ

m(α)dα

∫ y

η

n(β)dβ
] 1

2

)
−

−
∫ x

ξ

∫ y

η

J0

(
2
[∫ x

α

m(α1)dα1

∫ y

β

n(β1)dβ1

] 1
2

)
m(α)n(β)dβdα;

г) d ≡ e ≡ 0, a = a1(y)+λx, b = b1(x)+λy, c−ab−λ = m(x)n(y),
λ = const,

R = J0

(
2
[∫ x

ξ

m(α)dα

∫ y

η

n(β)dβ
] 1

2

)
×

× exp

(∫ x

ξ

b1(α)dα +

∫ y

η

a1(β)dβ + λ(xy − ξη)

)
.

При получении R в случаях в) – г) использованы результаты из п. 3
§ 1.
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Другой подход к выявлению случаев явного решения задачи Гур-
са может быть основан на расщеплениях оператора, стоящего в левой
части уравнения (6.1).

Путем непосредственного вычисления нетрудно убедиться, что
при условиях

bx + ab− a2 − ax − d ≡ 0,
cx + ac− axx − 3aax − a3 − e ≡ 0

(6.13)

указанный оператор можно представить в форме

L(u) ≡
(

∂

∂x
+ a

)(
∂2u

∂x∂y
+ a1

∂u

∂x
+ b1

∂u

∂y
+ c1u

)
,

где a = a1, b1 = b − a, c1 = c − ax − a2. Поэтому задача (6.1) – (6.2)
распадается на две последовательно решаемые задачи:

wx + aw = 0, w(x0, y) = ϕ∗(y), (6.14)

ϕ∗(y) = ϕ′1(y) + a(x0, y)ϕ1(y) + [b(x0, y)− a(x0, y)]ϕ′(y) +

+ [c(x0, y)− ax(x0, y)− a2(x0, y)]ϕ(y);

uxy + a1ux + b1uy + c1u = w,

u(x0, y) = ϕ(y), u(x, y0) = ψ(x), ϕ(y0) = ψ(x0).
(6.15)

Задача (6.14) решается, очевидно, в квадратурах, а (6.15) есть случай,
изученный в § 1 (о явном решении см. п. 3).

Аналогично при условиях

ax + ab− a2 − d ≡ 0,
axy + aax − ayb− 2aay + ac− a3 − e ≡ 0

рассматриваемая задача расщепляется на две:

wxy + a1wx + b1wy + c1w = 0,
w(x0, y) = ϕ1(y) + a(x0, y)ϕ(y), w(x, y0) = ψ′(x) + a(x, y0)ψ(x),

и
ux + au = w, u(x0, y) = ϕ(y).

Для отыскания вариантов эффективного решения снова следует ис-
пользовать результаты п. 3 § 1.
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Подобным же образом можно использовать расщепления вида

L(u) ≡
(

∂

∂x
+ b

)(
∂2u

∂x∂y
+ a

∂u

∂x
− (ax + ab− c)u

)
,

L(u) ≡
(

∂2

∂x∂y
+ a

∂

∂x
− (by + ab− c)

)(
∂u

∂x
+ bu

)
.

Первое имеет место при

d ≡ 0, b(ax + ab− c)− (ax + ab− c)x − e ≡ 0,

а второе — при

bx − d ≡ 0, dy + ad− e− b(by + ab− c) ≡ 0.

Уделим еще некоторое внимание аналогам ситуаций главы 2,
связанных с повышением порядка нормальных производных в гранич-
ных условиях. Речь идет о задачах, получающихся заменой в (6.1) –
(6.2) по крайней мере одного граничного условия на его нормальную
производную. Как и задача из § 4, они при определенных условиях мо-
гут быть редуцированы к задаче Гурса. Остановимся на одной из них.

Задача: найти функцию u ∈ C(2,1)(D)∩C(1,0)(D∪p)∩C(0,1)(D∪q),
являющуюся в D регулярным решением уравнения (6.1), удовлетворя-
ющую первым двум соотношениям (6.2) и условию

uy(x, y0) = ψ0(x), ψ0 ∈ C2(q).

Проинтегрируем (6.1) дважды по x в пределах от x∗ до x

((x∗, x) ∈ D), затем в полученном соотношении устремим x∗ к x0, а
y — к y0. Учитывая граничные условия, получим интегральное урав-
нение

a(x, y0)ψ(x) +

∫ x

x0

[(x− α)A(α) + B(α)]ψ(α)dα = r(x), (6.16)

A(x) = axx(x, y0)− cx(x, y0) + e(x, y0), B(x) = c(x, y0)− 2ax(x, y0),

r(x) =

∫ x

x0

{(x− α)[bα(α, y0)− d(α, y0)]− b(α, y0)}dα− ψ0(x) +

+ (x− x0)[a(x0, y0)ϕ1(y0) + b(x0, y0)ϕ
′(y0) + c(x0, y0)ϕ(y0) +

+ ax(x0, y0)ϕ(y0)] + ϕ′(y0) + a(x0, y0)ϕ(y0).
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Здесь ψ(x) — функция из третьего условия в (6.2). Из уравнения
(6.16) непосредственно усматривается, что если коэффициенты урав-
нения (6.1) принадлежат классу искомых решений и, кроме того,
a(x, y0) 6= 0, a ∈ C(2,0)(D ∪ q), b, c ∈ C(1,0)(D ∪ q), то рассматрива-
емая задача однозначно редуцируется к задаче Гурса. При этом ψ(x)
записывается через резольвенту уравнения (6.16).

Если к предыдущим условиям добавить любое из тождеств
A(x) ≡ 0, B(x)− xA(x) ≡ 0, то ψ(x) записывается в квадратурах.

В случае первого тождества

ψ(x) =
r(x)

a(x, y0)
− 1

a(x, y0)

∫ x

x0

B(α)r(α)

a(α, y0)

[
exp

∫ α

x

B(α1)

a(α1, y0)
dα1

]
dα,

а в случае второго —

ψ(x) =
r(x)

a(x, y0)
− x

a(x, y0)

∫ x

x0

A(α)r(α)

a(α, y0)

[
exp

∫ α

x

α1A(α1)

a(α1, y0)
dα1

]
dα.

При a(x, y0) ≡ 0 тоже имеются две возможности явного решения
(6.16). Первый вариант получается, если c(x, y0) 6= 0, d ∈ C(1,0)(D ∪ q),
b, c ∈ C(2,0)(D ∪ q), ψ0 ∈ C3(q). Тогда

ψ(x) =
1

c(x, y0)

{
r′(x)−

∫ x

x0

T (α, y0)r
′(α)

[
exp

∫ α

x

T (α1, y0)dα1

]
dα

}
.

Вторая возможность обеспечивается требованиями: c(x, y0) ≡ 0,
e(x, y0) 6= 0, b ∈ C(3,0)(D ∪ q), d, e ∈ C(2,0)(D ∪ q), ψ0 ∈ C4(q). Здесь
ψ(x) = r′′(x)/e(x, y0).

Условия принадлежности всех коэффициентов уравнения (6.1)
классу искомых решений должны сохраняться.

Аналогично устанавливаются условия, обеспечивающие одно-
значную разрешимость задач, получающихся заменой в (6.1) – (6.2)
первого или второго граничного значения на

uxx(x0, y) = ϕ2(y), ϕ2(y) ∈ C1(p).

При этом интегральные уравнения для функций ϕ(y) и ϕ1(y) оказыва-
ются разрешимыми в явном виде. Если в (6.2) заменяются два условия,
то либо ϕ(y), либо ϕ1(y) могут определяться с точностью до произволь-
ной постоянной. Подробное исследование указанных и ряда других ва-
риантов проведено Е.А. Уткиной [73].
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2. Об одном плоском уравнении четвертого порядка

Здесь мы остановимся на уравнении

L(u) ≡ uxxyy + a21uxxy + a12uxyy + a11uxy + a20uxx + a02uyy +

+ a10ux + a01uy + a00u = 0, aij ∈ C(i,j)(D). (6.17)

К этому виду относится уравнение Буссинеска — Лява

uttxx + uxx − utt = 0,

описывающее продольные волны в тонком упругом стержне с учетом
эффектов инерции [66, формула (20)]. Частные случаи (6.17) исследова-
лись Д.Манжероном и М. Огюсторели [110], [113], [119], С. Еасвараном
[104], [105], В. Радочовой [120], Р.С. Жамаловым [21], общий случай
рассматривался А.П. Солдатовым и М.Х. Шхануковым [66].

Задача Гурса в данном случае состоит в отыскании функции
u(x, y) класса C(2,2)(D) ∩ C(1,0)(D ∪ p) ∩ C(0,1)(D ∪ q), являющейся в D

решением (6.17) и удовлетворяющей условиям

u(x0, y) = ϕ(y), ux(x0, y) = ϕ1(y), y ∈ p, ϕ, ϕ1 ∈ C2(p),
u(x, y0) = ψ(x), uy(x, y0) = ψ1(x), x ∈ q, ψ, ψ1 ∈ C2(q),

ϕ′(y0) = ψ1(x0), ϕ(y0) = ψ(x0),
ψ′(x0) = ϕ1(y0), ψ′1(x0) = ϕ′1(y0).

(6.18)

В указанной выше работе [66] предложен вариант распростра-
нения методики из [92] на данный случай. Нашей же целью являет-
ся развитие идей предыдущего пункта, так как получаемые при этом
результаты и здесь оказываются предпочтительными с точки зрения
отыскания решения в явном виде.

Функцию Римана определим как решение интегрального урав-
нения

v(x, y)−
∫ y

η

[a21(x, β)− (y − β)a20(x, β)]v(x, β)dβ −

−
∫ x

ξ

[a12(α, y)− (x− α)a02(α, y)]v(α, y)dα +

+

∫ x

ξ

∫ y

η

[a11(α, β)− (x− α)a01(α, β)− (y − β)a10(α, β) +

+ (x− α)(y − β)a00(α, β)]v(α, β)dβdα = 1. (6.19)
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Как и (6.7) это уравнение есть частный случай (1.1). Поэтому
v(x, y) существует и единственна. Очевидно, v(x, y) удовлетворяет со-
пряженному с (6.17) уравнению

L∗(v) ≡ vxxyy − (a21v)xxy − (a12v)xyy + (a11v)xy + (a20v)xx +

+ (a02v)yy − (a10v)x − (a01v)y + a00v = 0. (6.20)

Как функцию четырех переменных обозначаем решение (6.19)
R(x, y, ξ, η).

Аналогом тождества (6.8) здесь является

(uR)xxyy ≡ RL(u) + [u(Ry − a21R)]xxy + [u(Rx − a12R)]xyy−
−{u[Ryy − (a21R)y + a20R]}xx − {u[Rxx − (a12R)x + a02R]}yy−

−{u[Rxy − (a21R)x − (a12R)y + a11R]}xy+

+{u[Rxyy − (a21R)xy − (a12R)yy + (a11R)y + (a20R)x − a01R]}x+

+{u[Rxxy − (a21R)xx − (a12R)xy + (a11R)x + (a02R)y − a01R]}y+

+[uy(a21R)x]x + [ux(a12R)y]y + [u(a20R)x]x+

+[u(a02R)y]y + (uxRy)xy + (uyyRx)x + (uRxxy)y. (6.21)

При этом u(x, y) — любая функция из C(2,2)(D). Соотношение (6.21)
можно проверить непосредственно, учитывая, что v удовлетворяет
уравнению (6.20).

Введем обозначения

N = Rx − a12R, P = Ry − a21R, K = Nx + a02R,

Q = Py + a20R, T = Rxy − (a21R)x − (a12R)y + a11R,
F1 = Ty + (a20R)x − a10R, F2 = Tx + (a02R)y − a01R.

(6.22)

Из (6.19) следуют тождества

N(x, y, x, y) ≡ P (x, y, x, y) ≡ T (x, y, x, y) ≡ 0,
K(x, y, ξ, y) ≡ Q(x, y, x, η) ≡ F1(x, y, x, η) ≡ F2(x, y, ξ, y) ≡ 0.

(6.23)

В обозначениях (6.22) соотношение (6.21) приобретает вид

(uR)xxyy ≡ RL(u) + (uP )xxy + (uN)xyy − (uQ)xx − (uK)yy − (uT )xy +

+ (uF1)x + (uF2)y + (uRy)xxy + (uRx)xyy − (uRxy)xy −
− (uPx)xy − (uNy)xy + (uQx)x + (uKy)y. (6.24)
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Перейдем непосредственно к вычислению u(x, y), считая эту
функцию решением уравнения (6.17). Поменяем в (6.24) ролями пе-
ременные x с ξ, y c η и вычислим от правой и левой части двойной
интеграл в пределах x0 < ξ < x, y0 < η < y:

(uR)xy(x, y)− (uR)xy(x, y0)− (uR)xy(x0, y) + (uR)xy(x0, y0) =

= (uP )x(x, y)− (uP )x(x0, y)− (uP )x(x, y0) + (uP )x(x0, y0)+

+(uN)y(x, y)− (uN)y(x0, y)− (uN)y(x, y0) + (uN)y(x0, y0)−

−
∫ y

y0

(uQ)x(x, β)dβ +

∫ y

y0

(uQ)x(x0, β)dβ−

−
∫ x

x0

(uK)y(α, y)dα +

∫ x

x0

(uK)y(α, y0)dα+

+(uT )(x0, y) + (uT )(x, y0)− (uT )(x0, y0)−

−
∫ y

y0

(uF1)(x0, β)dβ −
∫ x

x0

(uF2)(α, y0)dα+

+(uRy)x(x, y)− (uRy)x(x0, y)− (uRy)x(x, y0) + (uRy)x(x0, y0)+

+(uRx)y(x, y)− (uRx)y(x0, y)− (uRx)y(x, y0) + (uRx)y(x0, y0)+

−uRxy(x, y) + uRxy(x0, y) + uRxy(x, y0)− uRxy(x0, y0)−
−uPx(x, y) + uPx(x0, y) + uPx(x, y0)− uPx(x0, y0)−
−uNy(x, y) + uNy(x0, y) + uNy(x, y0)− uNy(x0, y0)+

+

∫ y

y0

(uQx)(x, β)dβ −
∫ y

y0

(uQx)(x0, β)dβ+

+

∫ x

x0

(uKy)(α, y)dα−
∫ x

x0

(uKy)(α, y0)dα. (6.25)

Здесь выписаны лишь первые два аргумента из четырех (вторая па-
ра есть всегда x, y). Указанное дифференцирование тоже проводится
только по первым аргументам, например

(uR)xy(x0, y) =
∂2

∂ξ∂η
[u(ξ, η)R(ξ, η, x, y)]

∣∣∣ξ=x0,
η=y

.

Кроме того учтено, что T (x, y, x, y) ≡ 0.
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Используя тождества (6.23) и подставляя граничные значения
из (6.18), перепишем (6.25) в форме

uxy(x, y) = ψ′1(x)R(x, y0) + ϕ′1(y)R(x0, y)− ϕ′1(y0)R(x0, y0)−
−ϕ1(y)P (x0, y)− ψ′(x)P (x, y0) + ϕ1(y0)P (x0, y0)−
−ϕ′(y)N(x0, y)− ψ1(x)N(x, y0) + ψ1(x0)N(x0, y0)+

+ϕ(y)T (x0, y) + ψ(x)T (x, y0)− ϕ(y0)T (x0, y0)−

−
∫ y

y0

[ϕ(β)F1(x0, β)− ϕ1(β)Q(x0, β)]dβ−

−
∫ x

x0

[ψ(α)F2(α, y0)− ψ1(α)K(α, y0)]dα.

Здесь тоже выписаны лишь первые два аргумента. Добавляя остаю-
щуюся пару, обозначим правую часть как h(x, y, x, y). После этого не-
посредственным интегрированием получим решение задачи Гурса:

u(x, y) = ϕ(y) + ψ(x)− ϕ(y0) +

∫ x

x0

∫ y

y0

h(α, β, α, β)dβdα. (6.26)

В случае неоднородного уравнения L(u) = f(x, y) к правой части
(6.26) следует добавить слагаемое

∫ x

x0

∫ y

y0

∫ α

x0

∫ β

y0

R(α1, β1, α, β)f(α1, β1)dβ1dα1dβdα.

Когда R(x, y, ξ, η) известна в явном виде, формула (6.26) дает ре-
шение рассматриваенмой задачи в квадратурах. Некоторые такие слу-
чаи можно получить путем непосредственного решения интегрального
уравнения (6.19). Ряд случаев решения задачи в квадратурах указан
Е.А. Уткиной [73]. Ею исследованы также задачи с заданием на гра-
нице D нормальных производных искомого решения второго и более
высокого порядка.
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3. Трехмерные уравнения

3.1. Сначала в параллелепипеде D = {x0 < x < x1, y0 < y < y1,
z0 < z < z1} рассмотрим трехмерный аналог уравнения (6.1):

L(u) ≡ uxxyz + a210uxxy + a201uxxz + a111uxyz + a200uxx + a110uxy +

+ a101uxz + a011uyz + a100ux + a010uy + a001uz + a000u = 0, (6.27)

aklm ∈ C(k,l,m)(D).

Пусть X, Y , Z — грани D при x = x0, y = y0, z = z0 соответственно.
Задача (Гурса): найти в классе C(2,1,1)(D) ∩ C(1,0,0)(D ∪ X) ∩

C(0,0,0)(D∪Y )∩C(0,0,0)(D∪Z) решение уравнения (6.27), удовлетворя-
ющее условиям

u
∣∣
X

= ϕ(y, z), u
∣∣
Y

= ψ(x, z), u
∣∣
Z

= θ(x, y), ux

∣∣
X

= ϕ1(y, z). (6.28)

Полагаем, что ϕ, ψ, θ ∈ C(2,1) на X, Y , Z соответственно, ϕ1 ∈
C(1,1)(X), а на ребрах D эти функции непрерывно склеиваются:

ϕ(y0, z) = ψ(x0, z), ϕ(y, z0) = θ(x0, y), ψ(x, z0) = θ(x, y0),

причем их общие значения непрерывно дифференцируемы.
Предлагаемое решение задачи основано на развитии мето-

да предыдущих пунктов. А именно, назовем функцией Римана
R(x, y, z, ξ, η, ζ) решение интегрального уравнения

v(x, y, z)−
∫ z

ζ

a210(x, y, γ)v(x, y, γ)dγ −
∫ y

η

a201(x, β, z)v(x, β, z)dβ−

−
∫ x

ξ

[a111(α, y, z)− (x− α)a011(α, y, z)]v(α, y, z)dα+

+

∫ y

η

∫ z

ζ

a200(x, β, γ)v(x, β, γ)dγdβ+

+

∫ x

ξ

∫ z

ζ

[a110(α, y, γ)− (x− α)a010(α, y, γ)]v(α, y, γ)dγdα+

+

∫ x

ξ

∫ y

η

[a101(α, β, z)− (x− α)a001(α, β, z)]v(α, β, z)dβdα−
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−
∫ x

ξ

∫ y

η

∫ z

ζ

[a100(α, β, γ)− (x− α)a000(α, β, γ)]v(α, β, γ)dγdβdα = 1.

(6.29)

Решение (6.29) существует и единствено (см. п. 1 § 2).
Имеет место следующий аналог тождеств (6.8), (6.21):

(uR)xxyz ≡ RL(u) + [u(Rz − a210R)]xxy + [u(Ry − a201R)]xxz+

+[u(Rx − a111R)]xyz − {u[Ryz − (a210R)y − (a201R)z + a200R]}xx−
−{u[Rxz − (a210R)x − (a111R)z + a110R]}xy−
−{u[Rxy − (a201R)x − (a111R)y + a101R]}xz−

−{u[Rxx − (a111R)x + a011R]}yz+

+{u[Rxyz − (a210R)xy − (a201R)xz − (a111R)yz + (a200R)x+

+(a110R)y + (a101R)z − a100R]}x + {u[Rxxz − (a210R)xx−
−(a111R)xz + (a110R)x + (a011R)z − a010R]}y + {u[Rxxy−
−(a201R)xx − (a111R)xy + (a101R)x + (a011R)y − a001R]}z+

+[uyzRx + uy(a210R)x + uz(a201R)x + u(a200R)x]x. (6.30)

Проще всего (хоть и несколько утомительно) убедиться в выполнении
записанного тождества непосредственной проверкой.

Введем обозначения:

P1 = Rz − a210R, P2 = Ry − a201R, P3 = Rx − a111R,

Q1 = Ryz − (a210R)y − (a201R)z + a200R,

Q2 = Rxz − (a210R)x − (a111R)z + a110R,

Q3 = Rxy − (a201R)x − (a111R)y + a101R,

Q4 = Rxx − (a111R)x + a011R, (6.31)

S1 = Rxyz − (a210R)xy − (a201R)xz − (a111R)yz+

+(a200R)x + (a110R)y + (a101R)z − a100R,

S2 = Rxxz − (a210R)xx − (a111R)xz + (a110R)x + (a011R)z − a010R,

S3 = Rxxy − (a201R)xx − (a111R)xy + (a101R)x + (a011R)y − a001R.
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Из интегрального уравнения (6.29) нетрудно вывести тождест-
ва:

P1(x, y, ζ, x, y, z) ≡ P2(x, η, z, x, y, z) ≡ P3(x, y, z, x, y, z) ≡
≡ Q1(x, η, ζ, x, y, z) ≡ Q2(x, y, ζ, x, y, z) ≡ Q3(x, η, z, x, y, z) ≡
≡ Q4(ξ, y, z, x, y, z) ≡ S1(x, η, ζ, x, y, z) ≡ S2(ξ, y, ζ, x, y, z) ≡

≡ S3(ξ, η, z, x, y, z) ≡ 0, R(x, y, z, x, y, z) ≡ 1

(6.32)

Меняя местами переменные (x, ξ), (y, η), (z, ζ) и принимая во
внимание обозначения (6.31), перепишем (6.30) в виде

(uR)ξξηζ ≡ (P1u)ξξη + (P2u)ξξζ + (P3u)ξηζ − (Q1u)ξξ − (Q2u)ξη −
− (Q3u)ξζ − (Q4u)ηζ + (S1u)ξ + (S2u)η + (S3u)ζ +

+ [Rξuηζ + (a210R)ξuη + (a201R)ξuζ + (a200R)ξu]ξ. (6.33)

При этом мы еще считаем, что u(x, y, z) является решением уравнения
(6.27).

Интегрируя (6.33) в пределах x0 6 ξ 6 x, y0 6 η 6 y, z0 6 ζ 6 z

и учитывая при этом граничные значения (6.28) и тождества (6.32),
получаем

ux(x, y, z) = R(x0, y, z)ϕ1(y, z)−R(x0, y0, z)ϕ1(y0, z)−
−R(x0, y, z0)ϕ1(y, z0) + R(x0, y0, z0)ϕ1(y0, z0) + R(x, y0, z)ψx(x, z)−
−R(x, y0, z0)ψx(x, z0) + R(x, y, z0)θx(x, y)− P3(x0, y, z)ϕ(y, z)−
−P3(x, y, z0)θ(x, y)− P3(x, y0, z)ψ(x, z) + P3(x0, y, z0)ϕ(y, z0)+

+P3(x, y0, z0)ψ(x, z0) + P3(x0, y0, z)ϕ(y0, z)− P3(x0, y0, z0)ϕ(y0, z0)+

+

∫ x

x0

[Q4(α, y0, z)ψ(α, z) + Q4(α, y, z0)θ(α, y)−Q4(α, y0, z0)ψ(α, z0)]dα+

+

∫ y

y0

[P2(x0, β, z0)ϕ1(β, z0)− P2(x0, β, z)ϕ1(β, z)− P2(x, β, z0)θx(x, β)+

+Q3(x0, β, z)ϕ(β, z) + Q3(x, β, z0)θ(x, β)−Q3(x0, β, z0)ϕ(β, z0)]dβ+

+

∫ z

z0

[P1(x0, y0, γ)ϕ1(y0, γ)− P1(x0, y, γ)ϕ1(y, γ)− P1(x, y0, γ)ψx(x, γ)+

+Q2(x0, y, γ)ϕ(y, γ) + Q2(x, y0, γ)ψ(x, γ)−Q2(x0, y0, γ)ϕ(y0, γ)]dγ−

−
∫ x

x0

∫ y

y0

S3(α, β, z0)θ(α, β)dβdα−
∫ x

x0

∫ z

z0

S2(α, y0, γ)ψ(α, γ)dγdα−
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−
∫ y

y0

∫ z

z0

[S1(x0, β, γ)ψ(β, γ)−Q1(x0, β, γ)ϕ1(β, γ)]dγdβ.

Здесь у R, P1, . . . , S3 выписана лишь первая тройка аргументов, вторая
всегда (x, y, z). Обозначая правую часть данной формулы с добавлен-
ной второй тройкой как функцию шести аргументов H(x, y, z, x, y, z) и
интегрируя затем по x, находим решение задачи

u(x, y, z) = ϕ(y, z) +

∫ x

x0

H(α, y, z, α, y, z)dα. (6.34)

Если бы вместо однородного уравнения (6.27) рассматривалось
неоднородное L(u) = f(x, y, z), то в правой части (6.34) появилось бы
дополнительное слагаемое

∫ x

x0

∫ ξ

x0

∫ y

y0

∫ z

z0

R(α, β, γ, ξ, y, z)f(α, β, γ)dγdβdαdξ.

Формула (6.34) дает решение задачи (6.27) – (6.28) в явном ви-
де, если функция R известна. Ряд случаев записи R в замкнутой фор-
ме можно выделить путем непосредственного решения интегрального
уравнения (6.29).

Например, пусть все коэффициенты уравнения (6.27) равны
нулю, кроме a100, который представляет собой произведение вида
λ(x)µ(y)ν(z). Преобразуя интегральное уравнение (6.29) с помощью
подстановок

x̃ =

∫ x

x0

λ(α)dα, ỹ =

∫ y

y0

µ(β)dβ, z̃ =

∫ z

z0

ν(γ)dγ

и решая его затем обычным образом с помощью ряда, получим после
возвращения к исходным переменным

v = 0F2

(
1, 1;

∫ x

ξ

λ(α)dα

∫ y

η

µ(β)dβ

∫ z

ζ

ν(γ)dγ
)
,

где 0 F2 — обобщенная гипергеометрическая функция [1, c. 183]. Дру-
гой пример: среди коэффициентов в (6.27) отличен от нуля лишь
a000 = µ(y)ν(z). Только что указанным способом (при этом достаточно
заменить лишь y, z) функция Римана вычисляется в виде

v = 1 +
∞∑

k=1

(−1)k(x− ξ)

(k!)3(k + 1)

[
(x− ξ)

∫ y

η

µ(β)dβ

∫ z

ζ

ν(γ)dγ

]k

.
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Еще более просто получаются следующие формулы (в каждом случае
указываем лишь вид единственного отличного от нуля коэффициента
уравнения (6.27) и функцию Римана):

1) a101 = λ(x, z)µ(y, z), v = J0

(
2
[∫ x

ξ

λ(α, z)dα

∫ y

η

µ(β, z)dβ
] 1

2

)
, J0 —

функция Бесселя первого рода нулевого порядка;

2) a001 = µ(y, z), v = 1 +
∞∑

k=1

(x− ξ)

(k!)2(k + 1)

[
x− ξ

∫ y

η

µ(β, z)dβ

]k

;

3) a110 = λ(x, y)ν(y, z), v = J0

(
2
[∫ x

ξ

λ(α, y)dα

∫ z

ζ

ν(y, γ)dγ
] 1

2

)
;

4) a200 = µ(x, y)ν(x, z), v = J0

(
2
[∫ y

η

µ(x, β)dβ

∫ z

ζ

ν(x, γ)dγ
] 1

2

)
;

5) a010 = ν(y, z), v = 1 +
∞∑

k=1

x− ξ

(k!)2(k + 1)

[
(x− ξ)

∫ z

ζ

ν(y, γ)dγ

]k

;

6) a011 = a011(y, z), v = exp[(x− ξ)a011(y, z)];

7) a111 6≡ 0, v = exp

∫ x

ξ

a111(α, y, z)dα;

8) a201 6≡ 0, v = exp

∫ y

η

a201(x, β, z)dβ;

9) a210 6≡ 0, v = exp

∫ z

ζ

a210(x, y, γ)dγ.

Кроме того, можно использовать результаты главы 1. Если сре-
ди коэффициентов отличны от нуля лишь три: либо a201, a111, a101, либо
a210, a201, a200, либо a210, a111, a110, следует воспользоваться материалом
из п. 3 § 1. Например, пусть (см. формулы (1.33) и далее)

a111 = B(x, z) + λ(z)y, a201 = A(y, z) + λ(z)x,

a101 − a210a111 − λ(z) = ϕ(x, z)ψ(y, z),

где A, B, λ, ϕ, ψ — некоторые функции указанных аргументов. Тогда

v = Ω(x, y, z, ξ, η) exp

(∫ x

ξ

B(α, z)dα +

∫ y

η

A(β, z)dβ + λ(z)(xy − ξη)

)
,

Ω = J0

(
2
[∫ x

ξ

ϕ(α, z)dα

∫ y

η

ψ(β, z)dβ
] 1

2

)
.

Естественно, что можно применить и более общие варианты типа фор-
мул (1.44) – (1.48). Если же в (6.27) тождественными нулями являются
только a011, a010, a001, a000, нужно обратиться к результатам п. 5 § 2.
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Наконец, явные формулы решения задачи Гурса могут быть по-
лучены при расщеплении оператора в левой части уравнения (6.27).
Например, пусть χ(x, y, z) — дифференцируемая по x функция, а опе-
раторы Lx, Lxyz определяются формулами:

Lx(w) ≡ wx + χw,

Lxyz(w) ≡ wxyz + a1wxy + b1wyz + c1wxz + d1wx + e1wy + f1wz + g1w = 0,

a1 = a210, b1 = a111 − χ, c1 = a201, d1 = a200,

e1 = a110 − (a210)x − χa210, f1 = a101 − (a201)x − χa201,

g1 = a100 − (a200)x − χa200.

Тогда непосредственной проверкой нетрудно убедиться, что при усло-
виях

b1x + χb1 − a011 ≡ 0, e1x + χe1 − a010 ≡ 0,

f1x + χf1 − a001 ≡ 0, g1x + χg1 − a000 ≡ 0,

исходное уравнение представляется в форме

LxLxyz(u) = 0.

Чтобы коэффициенты операторов Lx, Lxyz записывались в терминах ко-
эффициентов исходного уравнения, удобно полагать, например, χ рав-
ной a210, a201 или a111. Рассматриваемая ситуация редуцируется к двум
последовательно решаемым задачам:

Lx(w) = 0, w|X = ω(y, z); (6.35)

Lxyz(u) = w, u|X = ϕ(y, z), u|Y = ψ(x, z), u|Z = θ(x, y). (6.36)

Граничное условие ω(y, z) очевидным образом вычисляется с помощью
(6.28). Задача Коши (6.35) решается непосредственным интегрирова-
нием уравнения по x, а (6.36) есть задача Гурса из § 2, где, в частности,
указан ряд случаев ее решения в явном виде.

Очевидно, можно аналогичным образом использовать запись ис-
ходного уравнения в форме

(
∂

∂z
+ a210

)(
uxxy + a201uxx + a111uxy + a101ux + a011uy + a000u

)
= 0,
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имеющей место при выполнении тождеств

(a210)z + a210a201 − a200 ≡ 0, (a111)z + a210a111 − a110 ≡ 0,
(a101)z + a210a101 − a100 ≡ 0, (a011)z + a210a011 − a010 ≡ 0,

(a001)z + a210a001 − a000 ≡ 0.
(6.37)

В этом случае вместо материала из § 2 нужно использовать результаты
из п. 1 настоящего параграфа. Нетрудно также найти тождества, иг-

рающие роль (6.37) в расщеплении L на оператор
∂

∂y
+ a201 и оператор

третьего порядка по x, z.

3.2. Остановимся кратко еще на уравнении

2∑

k,l=0

1∑
m=0

aklm(x, y, z)
∂k+l+mu

∂xk∂yl∂zm
= 0, (6.38)

a221 ≡ 1, aklm ∈ C(k,l,m)(D),

где D — тот же параллелепипед, что и для (6.27).
Задача Гурса в данном случае получается путем добавления к

(6.28) еще одного значения:

uy

∣∣
Y
= ψ1(x, y). (6.39)

Решение в классе C(2,2,1) строится по только что изложенной
схеме. Интегральным уравнением для функции Римана является

v(x, y, z)−
∫ z

ζ

[a220v](x, y, γ)dγ −
∫ y

η

{[a211 − (y − β)a201]v}(x, β, z)dβ−

−
∫ x

ξ

{[a121 − (x− α)a021]v}(α, y, z)dα +

∫ x

ξ

∫ y

η

{[a111 − (y − β)a101−

−(x− α)a011 + (x− α)(y − β)a001]v}(α, β, z)dβdα+

+

∫ x

ξ

∫ z

ζ

{[a120 − (x− α)a020]v}(α, y, γ)dγdα+

+

∫ y

η

∫ z

ζ

{[a210 − (y − β)a200]v}(x, β, γ)dγdβ−

−
∫ x

ξ

∫ y

β

∫ z

ζ

{[a110 − (y − β)a100 − (x− α)a010+
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+(x− α)(y − β)a000]v}(α, β, γ)dγdβdα = 1. (6.40)

Здесь аргументы относятся ко всем aklm в соответствующих скоб-
ках, например, {[a120 − (x − α)a020]v}(α, y, γ) ≡ [a120(α, y, γ) − (x −
−α)a020(α, y, γ)]v(α, y, γ). Далее обозначаем v = R(x, y, z, ξ, η, ζ). Ана-
логом (6.8), (6.21) будет тождество

(uR)xxyyz ≡ RL(u) + (A1u)xxyy + (A2u)xxyz + (A3u)xyyz−
−(B1u)xxy − (B2u)xxz − (B3u)xyy − (B4u)xyz − (B5u)yyz+

+(C1u)xy + (C2u)xz + (C3u)yz + (C4u)xx + (C5u)yy−
−(D1u)x − (D2u)y − (D3u)z + [u(a020R)y + uz(a021R)y+

+ux(a120R)y + uxz(a121R)y + uxx(a220R)y + uxxzRy]y+

+[u(a200R)x + uz(a201R)x + uy(a210R)x + uyz(a211R)x+

+uyy(a220R)x + uyyzRx]x + [u(a220R)xy + uzRxy]xy, (6.41)

где обозначено

A1 = Rz − a220R, A2 = Ry − a211R, A3 = Rx − a121R,

B1 = Ryz − (a220R)y − (a211R)z + a210R, B2 = Ryy − (a211R)y + a201R,

B3 = Rxz − (a220R)x − (a121R)z + a120R,

B4 = Rxy − (a211R)x − (a121R)y + a111R, B5 = Rxx − (a121R)x + a021R,

C1 = Rxyz − (a220R)xy − (a211R)xz − (a121R)yz+

+(a210R)x + (a120R)y + (a111R)z − a110R,

C2 = Rxyy − (a211R)xy − (a121R)yy + (a201R)x + (a111R)y − a101R,

C3 = Rxxy − (a211R)xx − (a121R)xy + (a111R)x + (a021R)y − a011R,

C4 = Ryyz − (a220R)yy − (a211R)yz + (a210R)y + (a201R)z − a200R,

C5 = Rxxz − (a220R)xx − (a121R)xz + (a120R)x + (a021R)z − a020R,

D1 = Rxyyz − (a220R)xyy − (a211R)xyz − (a121R)yyz+

+(a210R)xy + (a201R)xz + (a120R)yy + (a111R)yz−
−(a110R)y − (a101R)z − (a200R)x + a100R,

D2 = Rxxyz − (a220R)xxy − (a211R)xxz − (a121R)xyz+

+(a210R)xx + (a120R)xy + (a111R)xz + (a021R)yz−
150



−(a110R)x − (a011R)z − (a020R)y + a010R,

D3 = Rxxyy − (a211R)xxy − (a121R)xyy − (a201R)xx+

+(a111R)xy + (a021R)yy − (a101R)x − (a011R)y − a001R.

Роль (6.32) играют тождества (здесь, как и в следующей фор-
муле (6.42), не пишем для краткости у R, A1, . . . , D3 вторую тройку
аргументов, которая всюду есть (x, y, z)):

A1(x, y, ζ) ≡ A2(x, η, z) ≡ A3(ξ, y, z) ≡ B1(x, η, ζ) ≡
≡ B2(x, η, z) ≡ B3(ξ, y, ζ) ≡ B4(ξ, η, z) ≡ B5(ξ, y, z) ≡
≡ C1(ξ, η, ζ) ≡ C2(x, y, z) ≡ C3(x, y, z) ≡ C4(x, y, z) ≡

≡ C5(x, y, z) ≡ D1(x, y, z) ≡ D2(x, y, z) ≡ D3(x, y, z) ≡ 0,

R(x, y, z) ≡ 1.

Записывая аналог тождества (6.33) и последовательно интегрируя его
по ξ, η, ζ в пределах (x0, x), (y0, y), (z0, z) соответственно, считая при
этом u(x, y, z) решением уравнения (6.38) и учитывая граничные усло-
вия (6.28), (6.39), придем к формуле

uxy = ϕ1y(y, z)R(x0, y, z) + ψ1x(x, z)R(x, y0, z)−
−ϕ1y(y0, z)R(x0, y0, z) + θxy(x, y)R(x, y, z0)− ϕ1y(y, z0)R(x0, y, z0)−
−ψ1x(x, z0)R(x, y0, z0) + ϕ1y(y0, z0)R(x0, y0, z0)− ϕ1(y, z)A2(x0, y, z)−
−ψx(x, z)A2(x, y0, z) + ϕ1(y0, z)A2(x0, y0, z)− θx(x, y)A2(x, y, z0)+

+ϕ1(y, z0)A2(x0, y, z0) + θx(x, y0)A2(x, y0, z0)− ϕ1(y0, z0)A2(x0, y0, z0)−
−ϕy(y, z)A3(x0, y, z)− ψ1(x, z)A3(x, y0, z) + ψ1(x0, z)A3(x0, y0, z)−
−θy(y, z)A3(x, y, z0) + ϕy(y, z0)A3(x0, y, z0) + ψ1(x, z0)A3(x, y0, z0)−
−ψ1(x0, z0)A3(x0, y0, z0) + ϕ(y, z)B4(x0, y, z) + ψ(x, z)B4(x, y0, z)−
−ϕ(y0, z)B4(x0, y0, z) + θ(x, y)B4(x, y, z0)− ϕ(y, z0)B4(x0, y, z0)−

−θ(x, y0)B4(x, y0, z0) + ϕ(y0, z0)B4(x0, y0, z0)+

+

∫ x

x0

[ψ1(ξ, z)B5(ξ, y0, z) + θy(ξ, y)B5(ξ, y, z0)− ψ1(ξ, z0)B5(ξ, y0, z0)−

−ψ(ξ, z)C3(ξ, y0, z)− θ(ξ, y)C3(ξ, y, z0) + ψ(ξ, z0)C3(ξ, y0, z0)]dξ+

+

∫ y

y0

[ϕ1(η, z)B2(x0, η, z) + θx(x, η)B2(x, η, z0)− ψ1(η, z0)B2(x0, η, z0)−
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−θ(x, η)C2(x, η, z0)− ϕ1(η, z)C2(x0, η, z) + ψ(ξ, z0)C2(x0, η, z0)]dη+

+

∫ z

z0

[−ϕ1y(y, ζ)A1(x0, y, ζ)−ψ1x(x, ζ)A1(x, y0, ζ)+ϕ1y(y0, ζ)A1(x0, y0, ζ)+

+ϕ1(y, ζ)B1(x0, y, ζ) + ψx(x, ζ)B1(x, y0, ζ)− ϕ1(y0, ζ)B1(x0, y0, ζ)+

+ϕy(y, ζ)B3(x0, y, ζ) + ψ1(x, ζ)B3(x, y0, ζ)− ψ1(x0, ζ)B3(x0, y0, ζ)−
−ϕ(y, ζ)C1(x0, y, ζ)− ψ(x, ζ)C1(x, y0, ζ) + ϕ(y0, ζ)C1(x0, y0, ζ)]dζ+

+

∫ x

x0

∫ y

y0

θ(ξ, η)D3(ξ, η, z0)dηdξ+

+

∫ x

x0

∫ z

z0

[−ψ1(ξ, ζ)C5(ξ, y0, ζ) + ψ(ξ, ζ)D2(ξ, y0, ζ)]dζdξ+

+

∫ y

y0

∫ z

z0

[−ϕ1(η, ζ)C4(x0, η, ζ) + ϕ(η, ζ)D1(x0, η, ζ)]dζdη. (6.42)

Обозначив правую часть (6.42) с добавленной второй тройкой
аргументов как H(x, y, z, x, y, z) и взяв двойной интеграл, приходим к
решению рассматриваемой задачи (6.38), (6.28), (6.39):

u(x, y, z) = ϕ(y, z) + ψ(x, z)− ϕ(y0, z) +

∫ x

x0

∫ y

y0

H(α, β, z, α, β, z)dβdα.

(6.43)

Если бы уравнение (6.38) было неоднородным с правой частью
f(x, y, z), то к функции u(x, y, z), определяемой (6.43), добавилось бы
слагаемое

∫ x

x0

∫ α

x0

∫ y

y0

∫ β

y0

∫ z

z0

R(t1, t2, γ, α, β, γ)f(t1, t2, γ)dγdt2dβdt1dα.

Подобно тому, как это было сделано для уравнения (6.27), мож-
но указать целый ряд возможностей записать функцию R(x, y, z, ξ, η, ζ)
в явном виде. Ограничимся для примера лишь одним случаем, когда
в (6.38) все коэффициенты, кроме a000 = a000(z) и a221 ≡ 1, равны тож-
дественно нулю. Тогда

R =
∞∑

k=0

1

k! [(2k)!]2

[
(x− ξ)2(y − η)2

∫ z

ζ

a000(γ)dγ

]
.

Изложенное исследование уравнений (6.27), (6.38) проведено пер-
вым из авторов книги совместно с Е.А. Уткиной.
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§ 7. Уравнения с итерациями некоторых
операторов

Здесь мы будем рассматривать уравнения

Lnu + a1L
n−1u + . . . + anu = 0, (7.1)

Lk ≡ L(Lk−1), L0u ≡ u, ak = const.

Линейный оператор L будем называть образующим. В случаях, когда
L совпадает с эллиптическим оператором Лапласа, оператором теп-
лопроводности, или волновым, данное уравнение изучалось И.Н. Ве-
куа [10], М. Николеску [117], М.Н. Олевским [54], Г.Н. Сулханишви-
ли [69], Я.В. Быковым, А.И. Боташевым, Р. Назаровым [8] – [9], и
др. В соответствии с образующим оператором авторы называли (7.1)
n-метагармоническим, поликалорическим, или поливолновым уравне-
нием. Когда L является поливибрационным оператором вида (1) или
получается из него дополнительным дифференцированием (в послед-
нем случае будем называть оператор обобщенным поливибрационным),
уравнение (7.1) было предметом исследования в работах Р.М. Бреневой
[7], Б.А. Бондаренко, Д.Манжерона,М.Н. Огюсторели и др. [96] – [100],
[111] – [115], [118], [44], [30]. Операторы других видов встречаются в ра-
ботах Н.Р. Раджабова [59] – [60], А.Б. Шабата [90] и др. [22] – [26], [55].

В некоторых из процитированных работ уравнения вида (7.1)
назывались полилинейными [96] – [98], [100].

Нашей основной целью является получение структурных фор-
мул для решений рассматриваемых уравнений. При этом мы сущест-
венно опираемся на идеи статьи И.Н. Векуа [10].

1. Случай обобщенного поливибрационного
образующего оператора

Полагаем в уравнении (7.1)

L ≡ ∂p

∂xp1

1 . . . ∂xpm
m

, (7.2)
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p = p1 + . . . + pm, ps > 1.

Мы покажем, что любое решение уравнения (7.1) можно записать через
решения уравнений вида

Lu + λu = 0 (7.3)

с различными значениями числового параметра λ. Решение уравне-
ния (7.3) будем обозначать u(x, λ), x = (x1, . . . , xn), а решение (7.1) —
u(x,A), где под A понимается совокупность коэффициентов a1, . . . , an.

Поскольку в левой части (7.1) стоит операторный полином, то
это уравнение можно записать в виде

Lk(L + λ1)
k1 . . . (L + λκ)

kκu = 0. (7.4)

Очевидно, λ1, . . . , λκ — корни уравнения

λn − a1λ
n−1 + . . . + (−1)nan = 0 (7.5)

с кратностями k1, . . . , kκ соответственно, k — кратность корня λ = 0.
Рассмотрим последовательно три возможности.
1) k = 0, ks = 1, s = 1, . . . , n, то есть (7.5) имеет лишь простые

ненулевые корни. Уравнение тогда имеет вид

(L + λ1) . . . (L + λn)u = 0. (7.6)

Так как (L + λk)uk(x, λk) ≡ 0 и скобки в (7.6) можно менять местами,
то сумма

u = u1(x, λ1) + . . . + un(x, λn) (7.7)

удовлетворяет уравнению (7.6). Покажем, что любое решение дается
формулой (7.7), если под u(x, λk) понимать общее решение уравнения
Lu + λku = 0. Используем индукцию по числу множителей в (7.6). Для
n = 1 соотношение (7.7), очевидно, справедливо. Пусть это имеет место
для n = k, и рассмотрим уравнение

(L + λ1) . . . (L + λk+1)u = 0, (7.8)

эквивалентное системе

(L + λ1) . . . (L + λk)u = v, (7.9)

Lv + λk+1v = 0. (7.10)
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Обозначая v(x, λk+1) общее решение (7.10), перепишем (7.9) так

(L + λ1) . . . (L + λk)u = v(x, λk+1). (7.11)

Общее решение (7.11) есть сумма некоторого частного решения и об-
щего решения соответствующего однородного уравнения. Последнее,
по предположению индукции, есть

u1(x, λ1) + . . . + uk(x, λk).

Частное же решение будем искать в виде

u∗ = cv(x, λk+1), c = const.

Подставляя u∗ в (7.11) и пользуясь тем, что

(L + λs)u∗ ≡ cLv + λscv ≡ c(λs − λk+1)v,

получим

c
k∏

s=1

(λs − λk+1)v = v.

Это значит, при c =
k∏

s=1

(λs − λk+1)
−1 функция u∗ действительно есть

решение (7.11). В силу произвольности решения v(x, λk+1) u∗ тоже яв-
ляется произвольным решением (7.3) при λ = λk+1. Таким образом,
общее представление решений для (7.11) имеет вид

u1(x, λ1) + . . . + uk+1(x, λk+1).

Отсюда по индукции заключаем о справедливости представления (7.7)
для любого n.

Покажем еще, что функции uk в (7.7) однозначно определяются,
если известна функция u(x,A). Мы можем, очевидно, считать, что в
левой части (7.7) стоит как раз u(x,A). Применяя к левой и правой
части этого равенства операторы L, L2, . . . , Ln−1, получаем

Lku = (−1)k(λk
1u1 + . . . + λk

nun), k = 1, . . . , n− 1. (7.12)

Вместе с (7.7) эти соотношения дают систему алгебраических урав-
нений для определения u1, . . . , un. Ее определитель с точностью до
знака совпадает с определителем Вандермонда, который равен w =
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(λ2−λ1)(λ3−λ1) . . . (λn−λn−1). Так как все λk различны, то w 6= 0. По
формулам Крамера однозначно вычисляются

uk = αk0u + αk1Lu + . . . + αk,n−1L
n−1u, k = 1, . . . , n. (7.13)

Нетрудно, поступив несколько иначе, записать (7.13) с фактически яв-
ными значениями αks. А именно, применив к левой и правой части (7.7)
операцию

(L + λ1) . . . (L + λs−1)(L + λs+1) . . . (L + λn),

найдем

uk =
n∏

j=1
j 6=k

L + λj

λj − λk
u(x,A). (7.14)

Очевидно, все приведенные рассуждения сохраняются, если одно
из λk равно нулю. Этот случай исключен по чисто формальным сооб-
ражениям, ибо его более удобно включить в вариант 3), излагаемый
далее. Ясно также, что структура (7.2) в данном случае не использо-
валась, в силу чего результат имеет гораздо более общий характер.

2) k = 0, k1, . . . , kκ — произвольные натуральные числа, лишь
бы их сумма равнялась n. Уравнение имеет вид

(L + λ1)
k1 . . . (L + λκ)

kκu = 0. (7.15)

Здесь существенную роль играют операторы

Dα ≡
∑ α! xα1

1 . . . xαm
m ∂α

α1! . . . αm! ∂xα1

1 . . . ∂xαm
m

, α = 1, 2, . . . , (7.16)

где символ
∑
понимается как в обобщенной формуле бинома Ньютона:

нужно взять сумму всевозможных слагаемых указанного вида, причем
α1 + . . . + αm = α. Полагаем D0 равным оператору тождественного
преобразования, D−αu ≡ 0. Непосредственной проверкой могут быть
установлены тождества

Dα ≡ (D1 − α + 1)Dα−1, LD1 ≡ (D1 + p)L. (7.17)

Применяя первую из этих формул к самой себе, получим

Dα ≡ D1(D1 − 1) . . . (D1 − α + 1), (7.18)
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откуда следует, что

Dα
1 ≡ Dα + γ1Dα−1 + . . . + γn−1D1, α = 1, 2, . . . . (7.19)

Очевидно, γ1, . . . , γn−1 — вполне определенные постоянные. Пусть те-
перь v(x, λ) — решение уравнения (7.3). С учетом (7.17) – (7.19) вы-
числяем

(L + λ)Dαv(x, λ) ≡ λ[D1(D1 − 1) . . . (D1 − α + 1)−
− (D1 + p)(D1 + p− 1) . . . (D1 + p− α + 1)]v(x, λ) ≡
≡ (−λpαDα−1 + ω2Dα−2 + . . . + ωα−1D1 + ωα)v(x, λ), (7.20)

где постоянные ωs определяются однозначно. Применяя последнее со-
отношение α раз, приходим к формуле

(L + λ)αDαv(x, λ) ≡ (−pλ)αα! v(x, λ). (7.21)

Перейдем теперь к доказательству общего представления реше-
ний, которое в данном случае имеет вид

u(x,A) =
κ∑

r=1

kr−1∑

j=0

Djurj(x, λr), (7.22)

где urj удовлетворяют уравнениям

Lu + λru = 0, r = 1, . . . ,κ. (7.23)

Опять рассуждаем методом индукции. Согласно случаю 1), представ-
ление (7.22) имеет место при всех kr = 1. Пусть оно верно для rs = βs,
s = 1, . . . , κ. Возьмем r1 = β1 + 1, rs = βs, s = 2, . . . , κ. Очевидно, (7.1)
эквивалентно уравнению

(L + λ1)
β1 . . . (L + λκ)

βκu = v(x, λ1), (7.24)

где v(x, λ1) — произвольное решение (7.23) при r = 1. Ищем част-
ное решение для (7.24) в виде cDβ1

v(x, λ1) с подлежащей определению
постоянной “c”. Подстановка этой функции в (7.24) с учетом (7.21) по-
казывает, что при

c = [(−pλ1)
β1β1! (λ2 − λ1)

β2 . . . (λκ − λ1)
βκ ]−1

она действительно удовлетворяет данному уравнению. Обозначив cv =
u1,β1

(x, λ1) и приняв во внимание наше предположение относительно
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rs = βs, получим решение вида (7.22) при k1 = β1 + 1, kr = βr, r =
2, . . . , κ. Отсюда по индукции заключаем, что (7.22) верно для любых
натуральных k1, . . . , kκ.

Как и в случае 1), функции urj в формуле (7.22) однозначно опре-
деляются через u(x,A). Для этой цели нужно к обеим частям (7.22)
применить операторы

Frs(L) ≡ (L + λr)
s

(−λrp)ss!

κ∏
σ=1
σ 6=r

(
L + λσ

λσ − λr

)kσ

. (7.25)

Учитывая (7.20) и получающиеся оттуда тождества

(L + λ)α+lDαv(x, λ) ≡ 0, l > 1,

находим

urs(x, λr) = Frs(L)u(x,A)− Frs(L)

kr−1∑
σ=s+1

Dσurσ(x, λr), (7.26)

r = 1, . . . ,κ; s = 0, . . . , kr − 1.

Полагая здесь s = kr − 1, имеем

ur,kr−1(x, λr) = Fr,kr−1(L)u(x,A). (7.27)

Затем при r = kr − 2 получим

ur,kr−2(x, λr) = Fr,kr−2(L)u(x,A)− Fr,kr−2(L)ur,kr−1(x, λr).

Второе слагаемое известно из (7.27), поэтому ur,kr−2 тоже определяются
через u(x,A). Продолжая процесс (s = kr − 3, . . . , 0), найдем последо-
вательно все urj(x, λr).

3) Общий случай: k, k1, . . . , kκ — любые натуральные, отличные
от нуля числа. Уравнение имеет вид (7.4). Относительно Lku это есть
уравнение (7.15). Поэтому (см. (7.22))

Lku =
κ∑

r=1

kr−1∑
j=0

Djurj(x, λr). (7.28)

Докажем, что (7.28) имеет частное решение того же вида, что и его
правая часть. Отсюда в силу свойств линейных уравнений будет следо-
вать, что общее представление решений рассматриваемого уравнения
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дается формулой

u(x,A) = v(x) +
κ∑

r=1

kr−1∑
j=0

Djurj(x, λr). (7.29)

где v(x) есть решение для

Lkv = 0. (7.30)

Итак, будем искать частное решение (7.28) в виде его правой части.
Очевидно, достаточно рассмотреть частный случай, когда эта правая
часть есть

k−1∑

j=0

Djuj(x, λ), λ 6= 0. (7.31)

Следовательно, речь идет о частном решении вида

u∗ =
k−1∑
j=0

Djuj(x, λ).

Для подстановки в (7.28) вычисляем Lku∗. Так как (см. (7.20))

LDjvj ≡ −λDjvj + β11Dj−1vj + . . . + β1jvj,

L2Djvj ≡ λ2Djvj + β21Dj−1vj + . . . + β2jvj,

. . . . . . . . . . . . . . . . . .

LkDjvj ≡ (−λ)kDjvj + βk1Dj−1vj + . . . + βkjvj,

то
Lku∗ ≡ Lkv0 + LkD1v1 + . . . + LkDk−1vk−1 ≡

≡ (−λ)kv0 + (−λ)kD1v1 + γ1
k1v1 + (−λ)kD2v2 + γ2

k1D1v2+

+γ2
k2v2 + . . . + (−λ)kDk−2vk−2 + γk−2

k1 Dk−3vk−2 + . . . +

+γk−2
k,k−2vk−2 + (−λ)kDk−1vk−1 + γk−1

k,1 Dk−2vk−1 + . . . + γk−1
k,k−1vk−1,

при этом над γ стоят не степени, а индексы. Для того, чтобы выписан-
ное выражение равнялось (7.31), достаточно

(−λ)kv0 + γ1
k1v1 + γ2

k2v2 + . . . + γk−1
k,k−1vk−1 = u0,

(−λ)kv1 + γ2
k1v2 + . . . + γk−1

k,k−2vk−1 = u1,

. . . . . . . . . . . . . . . . . .

(−λ)kvk−2 + γk−1
k1 vk−1 = uk−2,

(−λ)kvk−1 = uk−1.
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Так как λ 6= 0, отсюда все vs определяются. Итак, действительно, об-
щее представление решений имеет вид (7.29).

Как и в предыдущих случаях, нетрудно показать, что v и urj

в формуле (7.29) однозначно определяются, если известна u(x,A). Для
этого следует применить к обеим частям операторы

Lk

(−λr)k
Frs(L),

где Frs определяются формулами (7.25). В результате получим

urs =
Lk

(−λr)k
Frs(L)u(x,A)− Lk

(−λr)k
Frs(L)

kr−1∑
σ=s+1

Dσurσ(x, λr),

r = 1, . . . ,κ; s = 0, . . . , kr − 1.

Полагая последовательно s = kr − 1, kr − 2, . . . , 0, вычислим все urs.
После того как все они найдены, из формулы (7.29) определим v(x).

Итак, доказан следующий результат: любое регулярное решение
уравнений (7.1) – (7.2) имеет вид (7.29), где v, urj удовлетворяют со-
ответственно уравнениям (7.30), (7.23) и однозначно определяются
через u(x,A).

Данный результат позволяет расщеплять некоторые граничные
задачи на более простые. Например, возьмем задачу Гурса об отыска-
нии в области x0

k < xk < x1
k (k = 1, . . . , m) функции u, удовлетворяю-

щей уравнению (7.1) – (7.2) и условиям

∂su

∂xs
k

∣∣∣∣
xk=x0

k

= γks(x1, . . . , xk−1, xk+1, . . . , xm),

k = 1, . . . , m; s = 0, . . . , npk − 1.

(7.32)

Указанная процедура определения urj, v по u(x,A) позволяет редуци-
ровать эту задачу к серии задач для более простых уравнений (7.23)
и одной задаче для уравнения (7.30). Граничные условия получаемых
задач тоже будут относиться к виду (7.32).

Задача для (7.30) решается непосредственным интегрировани-
ем. Формальное же интегрирование уравнения (7.23) с учетом гранич-
ных условий приводит к уравнению

ϕ(x1, . . . , xm) = f(x1, . . . , xm)−

− λr

∫ x1

x0
1

. . .

∫ xm

x0
m

m∏

k=1

(xk − tk)
pk−1

(pk − 1)!
ϕ(t1, . . . , tm)dtm . . . dt1,
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где f — известная функция. Резольвента данного уравнения получа-
ется с помощью стандартной процедуры и имеет вид

λr

∞∑
i=0

(−λr)
i

m∏

k−1

(xk − tk)
ipk+pk−1

(ipk + pk − 1)!
.

Если все pk = 1, это есть умноженная на λr обобщенная гипергеомет-
рическая функция

1Fm

(
1; 1, . . . , 1;−λr

m∏

k=1

(xk − tk)
)

в обозначениях из [1, с. 183].
Предыдущий текст представляет собой изложение статьи [30].

Работа в данном направлении была продолжена автором. В частности
обнаружилось, что аналогичные рассуждения могут быть проведены в
пространстве Em+s с координатами (x, t) = (x1, . . . , xm, t1, . . . , ts), при
этом оператор L вместо (7.2) дается формулой

Lu ≡
∑

cp1...pm
(t)Lp1...pm

∂pu

∂xp1

1 . . . ∂xpm
m

, p > 1. (7.33)

Символ
∑
здесь означает сумму всевозможных слагаемых указанно-

го вида при фиксированном значении p, Lp1...pm
— линейные диффе-

ренциальные операторы конечного порядка по переменным t1, . . . , ts,
функции cp1...pm

(t) принадлежат классу гладкости регулярных решений
уравнения (7.1). В процессе рассуждений изменятся лишь вычисления
при выводе второго тождества (7.17). Представление же решений (7.29)
и оператор Dα остаются без изменений. Сохраняются и формулы, поз-
воляющие выделять v, urj по известной функции u. Естественно, что u,
v, urj будут здесь зависеть от t, а не только от x. Затем Ю.В. Малы-
шев предложил распространение полученных результатов на случай
уравнения

Lnu +
n∑

k=1

akL
n−kMku = 0, (7.34)

где L дается формулой (7.33), а M определяется аналогично:

Mu ≡
∑

bq1...qm
(t)Mq1...qm

∂qu

∂xq1

1 . . . ∂xqm
m

. (7.35)
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Вместо p > 1 требуется p + q > 1. Вместо соотношений (7.4), (7.172) и
(7.21) следует использовать соответственно

Lk(L + λ1M)k1 . . . (L + λκM)kκu = 0,

(L + λM)D1 ≡ (D1 + p)L + λ(D1 + q)M,

(L + λM)αDαv(x, t, λ) ≡ [λ(q − p)]αα! Mαv(x, t, λ),

где v(x, t, λ) — решение уравнения Lv + λMv = 0, а λk — те же са-
мые, что в (7.4). Правая часть (7.29), где v по-прежнему удовлетворяет
Lkv = 0, а urj — уравнениям

Lurj + λrMurj = 0, (7.36)

будет решением уравнения (7.34), (7.33), (7.35).
К сожалению, вопрос об однозначном определении urj, v через

u(x, t, A) удалось решить лишь в случаях, когда urj наряду с (7.36)
удовлетворяют еще уравнениям

Mβurj − µrurj = 0

с константами β, µr, определяемыми через p, q, λr [33].

2. Образующий оператор фуксова типа

Пусть L — линейный оператор вида

L ≡ tα+ν ∂ν

∂tν
+ tα+ν−1L1

∂ν−1

∂tν−1 + . . . + tα+1Lν−1
∂

∂t
+ tαLν, (7.37)

действующий в некоторой области (m + 1)-мерного пространства с ко-
ординатами (x, t) = (x1, . . . , xm, t), α = const, Lk (k = 1, . . . , ν) —
произвольные линейные операторы по переменным x1, . . . , xm, коэффи-
циенты которых не зависят от t. Некоторые авторы [121], [127], [128]
называют конструкции, подобные (7.37), операторами фуксова типа.

Речь идет об уравнении (7.1) с оператором L вида (7.37). Уравне-
ние по-прежнему можно записать в форме (7.4) и рассуждать по схеме
предыдущего пункта. Будем при этом различать два случая: α 6= 0 и
α = 0.

Пусть α 6= 0 и рассматриваются варианты 1) – 3) для λk. Все
рассуждения варианта 1) проходят без каких-либо изменений, приводя
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к представлению вида (7.7). В варианте 2) вместо оператора (7.16)
следует взять

Dj ≡ tj
∂j

∂tj
(j = 1, 2, . . . ), D0u ≡ u, D−ju ≡ 0. (7.38)

Подобно (7.17), имеют место тождества

Dj ≡ (D1 − j + 1)Dj−1, LD1 ≡ (D1 − α)L,

с помощью которых приходим к аналогу (7.21):

(L + λ)jDjv(x, t, λ) ≡ (αλ)jj! v(x, t, λ),

где v(x, t, λ) — решение уравнения Lv+λv = 0. Все остальное в рассуж-
дениях и этого, и следующего варианта 3), остается в силе и приводит
к формуле

u(x, t, A) = v(x, t) +
κ∑

r=1

kr−1∑

j=0

tj
∂jurj(x, t, λr)

∂tj
,

причем v, urj удовлетворяют уравнениям Lkv = 0, Lurj + λrurj = 0
и однозначно вычисляются через u(x, t, A) [23] по тем же формулам
с операторами Frs(L), что и в предыдущем пункте, только следует
вместо −p положить α и считать L, Dσ заданными с помощью (7.37),
(7.38).

В случае α = 0 оператор (7.37) имеет по переменной t струк-
туру дифференциального оператора из уравнения Эйлера, который с
помощью подстановки t = eτ приводится к виду

∂ν

∂τ ν
+ L∗1

∂ν−1

∂τ ν−1 + . . . + L∗ν,

L∗k — операторы по x. Далее снова обозначим τ через t и уберем звез-
дочки над Lk. Иначе говоря, будем рассматривать уравнение (7.1) с
оператором

L ≡ ∂ν

∂tν
+ L1

∂ν−1

∂tν−1 + . . . + Lν. (7.39)

Здесь нет особого смысла выделять в рассуждениях корень λ = 0 урав-
нения (7.5), поэтому сразу будем считать, что среди λ1, . . . , λκ может
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оказаться и равный нулю. Если все эти корни простые, то, как и в
предыдущих аналогичных случаях,

u(x, t, A) =
n∑

k=1

u(x, t, λk), Luk + λkuk ≡ 0,

u(x, t, λk) =
n∏

j=1
j 6=k

(λj − λk)
−1(L + λj)u(x, t, A).

(7.40)

Пусть теперь корни λk могут быть кратными, но ν = 1. Общее
представление решений имеет в этом случае вид

u(x, t, A) =
κ∑

r=1

kr−1∑
j=0

tjurj(x, t, λr), (L + λr)urj ≡ 0. (7.41)

Для доказательства опять используется метод индукции. На основании
(7.40) формула (7.41) верна при ks = 1 (s = 1, . . . ,κ). Пусть она имеет
место для ks = βs (s = 1, . . . ,κ − 1), kκ = βκ + 1. Соответствующее
уравнение можно записать в форме

(L + λ1)
β1 . . . (L + λκ)

βκu = v(x, t, λκ), (L + λκ)v ≡ 0. (7.42)

Как и в случае уравнения (7.24) убеждаемся, что существует частное
решение (7.42) вида ctβκv(x, t, λκ), где

c = [βκ! (λ1 − λκ)
β1 . . . (λκ−1 − λκ)

βκ−1]−1.

Отсюда, на основании свойств линейных уравнений и в силу индукции
заключаем о справедливости представления (7.41) для любых нату-
ральных ks.

Применяя к обеим частям (7.41) несколько более простые, чем
(7.25), операторы

Frs(L) ≡ (L + λr)
s

s!

κ∏
σ=1
σ 6=r

(λσ − λr)
−kσ(L + λσ)

kσ ,

получим

urs = Frs(L)u(x, t, A)− Frs(L)

kr−1∑
σ=s+1

tσurσ(x, t, λr). (7.43)
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Полагая s = kr − 1, kr − 2, . . . , 0, найдем последовательно все функции
urj, если известна u(x, t, A).

Остановимся, наконец, на общем случае, когда k1, kκ, . . . , ν —
произвольные натуральные числа. Покажем, что представление (7.41)
имеет место, если операторы Lk в (7.39) коммутируют между собой, а
уравнение

Tu ≡ ν
∂ν−1u

∂tν−1 + (ν − 1)L1
∂ν−2u

∂tν−2 + . . . + Lν−1u = f, (7.44)

где f удовлетворяет уравнению Lf + λf = 0, допускает решение, тоже
являющееся решением уравнения для f .

Получим сначала одну вспомогательную формулу. Пусть
u(x, t, λ) есть решение уравнения Lu + λu = 0. Вычисляем

(L + λ)tku = tk
∂νu

∂tν
+ kC1

ν t
k−1∂

ν−1u

∂tν−1 + . . . +

+L1

(
tk

∂ν−1u

∂tν−1 + kC1
ν−1t

k−1∂
ν−2u

∂tν−2 + . . .

)
+ Lν(t

ku) + λtku =

= tk(L + λ)u + ktk−1
(

ν
∂ν−1u

∂tν−1 + (ν − 1)L1
∂ν−2u

∂tν−2 . . . + Lν−1u

)
+

+k(k − 1)tk−2
(

C2
ν

∂ν−2u

∂tν−2 + C2
ν−1L1

∂ν−3u

∂tν−3 + . . . + Lν−2u

)
+

+ . . . + k(k − 1) . . . (k − s + 1)tk−s

(
Cs

ν

∂ν−su

∂tν−s
+

+Cs
ν−1L1

∂ν−s−1u

∂tν−s−1 + . . . + Lν−su

)
+ . . . . (7.45)

При k > ν последнее слагаемое в правой части соотношения (7.45) есть
k(k − 1) . . . (k − ν + 1)tk−νu, а при ν > k

k!

(
Ck

ν

∂ν−ku

∂tν−k
+ Ck

ν−1L1
∂ν−k−1u

∂tν−k−1 + . . . + Lν−ku

)
.

Обозначив операторы при степенях ts (s = 0, . . . , k−2) через Ls,1 и при-
няв во внимание, что оператор при tk−1 есть kT (см. (7.44)), перепишем
(7.45) так

(L + λ)tku = ktk−1Tu + tk−2Lk−2,1u + . . . + L0,1u. (7.46)
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Очевидно, при k > ν имеем Ls,1u ≡ 0 (s = 0, . . . , k−ν−1). Ясно также,
что T , Lk (k = 1, . . . , ν) и Ls,1 (s = 0, . . . , k − 2) перестановочны с
L и друг с другом, и что все они принадлежат к виду (7.39). Отсю-
да, в частности следует, что если Lu + λu ≡ 0, то Tu и Ls,1u тоже
удовлетворяют этому уравнению. Учитывая это, получаем из (7.46)

(L + λ)2tku = k(k − 1)tk−2T 2u + tk−3Lk−3,2u + . . . + L0,2u,

где Ls,2 обладают теми же свойствами, что Ls,1. Поэтому мы можем
продолжить процесс вычисления (L + λ)σtku. На k-ом шаге найдем

(L + λ)ktku(x, t, λ) = k! T ku(x, t, λ). (7.47)

С помощью этой формулы непосредственной проверкой убежда-
емся, что правая часть равенства (7.41) действительно является ре-
шением уравнения (7.1). Заметим, что до сих пор мы использовали
лишь коммутативность Lk. Докажем теперь. что все решения дают-
ся формулой (7.41). Как в предыдущем варианте, рассуждаем методом
индукции. При этом до получения уравнения (7.42) все повторяется.
Будем искать частное решение этого уравнения в виде

tβκu∗(x, t, λκ).

Учитывая соотношение (7.47), возможность перестановки
операторов-сомножителей в левой части (7.42), а также тот факт,
что Rβκu∗ является решением для Lu + λκu = 0, находим

Rβκu∗ = v0(x, t, λκ),

причем v0 отличается от v лишь числовым множителем. Пусть реше-
ние уравнения (7.44), удовлетворяющее уравнению для f , записыва-
ется с помощью операции Qλ, применяемой к f . Тогда легко видеть,
что функция u∗ = Qβκ

λ v0 будет одновременно удовлетворять (7.44) и
уравнению для f , то есть обладает нужными нам свойствами. Отсюда
на основании индукции и свойств линейных уравнений снова делаем
вывод о справедливости представления (7.41).

В том, что (7.44) может иметь решение, удовлетворяющее одно-
временно уравнению для f , можно убедиться на частном случае

L ≡ ∂2

∂t2
+ 2b

∂

∂t
+ M, (7.48)
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где b = const, M — линейный дифференциальный оператор по x. К
этому случаю относятся наиболее известные уравнения математичес-
кой физики. В данном случае

T ≡ 2
∂

∂t
+ 2b,

и уравнение (7.44) имеет вид

∂u

∂t
+ bu =

1

2
v(x, t, λ).

Его общее решение дается формулой

u = e−bt

[
c(x) +

1

2

∫ t

0
ebτv(x, τ, λ)dτ

]
,

где c(x) — произвольная функция. Требуя, чтобы u(x, t) удовлетворяла
уравнению Lv + λv = 0, получаем

(M + λ− b2)

[
c(x) +

1

2

∫ t

0
ebτv(x, τ, λ)dτ

]
+

+
ebt

2

[
∂v(x, t, λ)

∂t
+ bv(x, t, λ)

]
= 0. (7.49)

В силу уравнения для v и линейности M по x имеем

(M + λ)

∫ t

0
ebτv(x, τ, λ)dτ = −

∫ t

0
ebτ

(
∂2v

∂τ 2 + 2b
∂v

∂τ

)
dτ =

= −ebt

[
∂v(x, t, λ)

∂t
+ bv(x, t, λ)

]
+

∂v(x, 0, λ)

∂t
+

+ bv(x, 0, λ) + b2
∫ t

0
ebtv(x, τ, λ)dτ.

Поэтому соотношение (7.49) переходит в

(M + λ− b2)c(x) +
1

2

∂v(x, 0, λ)

∂t
+

b

2
v(x, 0, λ) = 0. (7.50)

Таким образом, вопрос о существовании оператора Qλ свелся к реше-
нию уравнения (7.50) относительно функции c(x).

Существование оператора Qλ дает возможность вычислять
функции urj(x, t, λr) через u(x, t, A). Соответствующие формулы (ана-
логичные формулам (7.43)) и с теми же Frs имеют вид

urs = Qs
λrFrs(L)u(x, t, A)−Qs

λrFrs(L)

kr−1∑
σ=s+1

tσurσ(x, t, λr),
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r = 1, . . . ,κ; s = 0, . . . , kr.

Но однозначности определения urs здесь гарантировать в общем слу-
чае нельзя, так как этот вопрос связан с однозначностью определения
операции Qλ.

Изложенные результаты позволяют расщеплять некоторые гра-
ничные задачи для уравнения (7.1) на задачи для более простых урав-
нений подобно тому, как это указано в п. 1 в случае условий (7.32).
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Глава 4. Общая
характеристическая задача
для системы уравнений
в частных производных

первого порядка

§ 8. Система двух уравнений на плоскости

1. Постановка задачи и ее редукция к интегральным
уравнениям. Условия однозначной разрешимости

1.1. Постановка задачи. В прямоугольнике D = {x0 < x < x1,
y0 < y < y1}, где x, y — декартовы координаты, рассмотрим систему
уравнений

∂u1

∂x
= a11(x, y)u1 + a12(x, y)u2 + f1(x, y),

∂u2

∂y
= a21(x, y)u1 + a22(x, y)u2 + f2(x, y),

(8.1)

с непрерывными вD коэффициентами. Решение класса u1, u2, u1x, u2y ∈
C(D) будем называть регулярным в D.

Задача 1. Требуется найти регулярное в D решение системы
(8.1), непрерывно продолжимое на ∂D и удовлетворяющее условиям:

α11(y)u1(x0, y) + α12(y)u2(x0, y) = m1(y),
α21(x)u1(x, y0) + α22(x)u2(x, y0) = m2(x),

x0 6 x 6 x1, y0 6 y 6 y1.

(8.2)

Предполагаем, что выполняются условия гладкости α11, α12,
m1 ∈ C[y0, y1], α21, α22, m2 ∈ C[x0, x1], причем

α2
11 + α2

12 6= 0, α2
21 + α2

22 6= 0. (8.3)
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Очевидно, неравенства (8.3) обеспечивают содержательность соотно-
шений (8.2), ибо в противном случае эти граничные условия просто
исчезают.

В случае α11 ≡ α22 ≡ 1, α12 ≡ α21 ≡ 0 мы будем записывать (8.2)
в виде

u1(x0, y) = φ1(y), u2(x, y0) = φ2(x). (8.4)

Задача Гурса (8.1), (8.4), исследованная в работах [87] – [88], является
однозначно разрешимой. В общей же постановке задача (8.1), (8.2), как
это уже указано в предисловии, является некорректной вплоть до по-
явления в ее решении произвольных функций. Одна из основных целей
данного параграфа — получение условий, обеспечивающих либо одно-
значную разрешимость данной задачи, либо ее разрешимость с точ-
ностью до одной произвольной постоянной. Другая цель — выделение
случаев решения задачи в явном виде.

Линейное преобразование искомых функций (см. [87]) приводит
(8.1) к случаю, когда

a11 ≡ a22 ≡ 0. (8.5)

Поэтому далее будем считать эти не нарушающие общности рассуж-
дений тождества выполненными.

1.2. Редукция задачи к интегральным уравнениям.
Условия ее однозначной разрешимости. Решение задачи Гурса
с условиями (8.4) имеет вид [88, с. 15–22]:

u1(x, y) = φ1(y) +

∫ y

y0

φ1(τ)L(x, y, x0, τ)dτ +

+

∫ x

x0

φ2(t)K(x, y, t, y0)dt +

∫ x

x0

f1(t, y)dt +

+

∫ x

x0

∫ y

y0

[L(x, y, t, τ)f1(t, τ) + K(x, y, t, τ)f2(t, τ)]dτdt, (8.6)

u2(x, y) = φ2(x) +

∫ y

y0

φ1(τ)M(x, y, x0, τ)dτ +

+

∫ x

x0

φ2(t)N(x, y, t, y0)dt +

∫ y

y0

f2(x, τ)dτ +

+

∫ x

x0

∫ y

y0

[M(x, y, t, τ)f1(t, τ) + N(x, y, t, τ)f2(t, τ)]dτdt, (8.7)
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где L, K, M, N определяются через коэффициенты a12, a21 в виде рав-
номерно сходящихся рядов и удовлетворяют соотношениям

K(x, y, t, τ) = a12(t, y) +

∫ x

t

a12(ξ, y)N(ξ, y, t, τ)dξ,

L(x, y, t, τ) =

∫ x

t

a12(ξ, y)M(ξ, y, t, τ)dξ,

M(x, y, t, τ) = a21(x, τ) +

∫ y

t

a21(x, η)L(x, η, t, τ)dη,

N(x, y, t, τ) =

∫ y

τ

a21(x, η)K(x, η, t, τ)dη.

(8.8)

Считая теперь φ1, φ2 произвольными функциями, мы можем рас-
сматривать (8.6) – (8.7) как общее представление решений нашей сис-
темы уравнений. Требуя для (8.6) – (8.7) удовлетворения граничных
условий (8.2), получаем

α11(y)φ1(y) + α12(y)

[
φ2(x0)+

+

∫ y

y0

φ1(τ)M(x0, y, x0, τ)dτ +

∫ y

y0

f2(x0, τ)dτ

]
= m1(y),

α21(x)

[
φ1(y0) +

∫ x

x0

φ2(t)K(x, y0, t, y0)dt+

+

∫ x

x0

f1(t, y0)dt

]
+ α22(x)φ2(x) = m2(x).

(8.9)

Полагая в (8.2) x = x0, y = y0, придем к системе алгебраических
уравнений для φ1(y0), φ2(x0), которая при выполнении неравенства

det ‖αik(x0, y0)‖ 6= 0 (8.10)

однозначно разрешима. Вследствие этого (8.9) превращаются в два ин-
тегральных уравнения

α11(y)φ1(y) + α12(y)

∫ y

y0

φ1(τ)M(x0, y, x0, τ)dτ = ω1(y),

α22(x)φ2(x) + α21(x)

∫ x

x0

φ2(t)K(x, y0, t, y0)dt = ω2(x)

(8.11)
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с известными правыми частями

ω1(y) = m1(y)− α12(y)

[
φ2(x0) +

∫ y

y0

f2(x0, τ)dτ

]
,

ω2(x) = m2(x)− α21(x)

[
φ1(y0) +

∫ x

x0

f1(t, y0)dt

]
.

Это есть уравнения Вольтерра, однозначно разрешимые при условиях
α11(y) 6= 0, α22(x) 6= 0. Их решения нетрудно получить в явном виде.

Действительно, рассмотрим первое из этих уравнений, предпо-
лагая

α11(y) 6= 0. (8.12)

Обозначив

θ(y) =

∫ y

y0

φ1(τ)M(x0, y, x0, τ)dτ (8.13)

и приняв во внимание вытекающее из (8.8) соотношение

M(x0, y, x0, y) = a21(x0, y), (8.14)

найдем

θ′(y) = a21(x0, y)φ1(y). (8.15)

Поэтому первое уравнение (8.11) после его умножения на a21(x0, y) и
деления на α11(y) принимает вид

θ′(y) +
α12(y)

α11(y)
a21(x0, y)θ(y) =

a21(x0, y)

α11(y)
ω1(y).

Учитывая получающееся из (8.13) условие θ(y0) = 0, находим

θ(y) =

∫ y

y0

a21(x0, η)

α11(η)
ω1(η) exp

[∫ η

y

α12(τ)a21(x0, τ)

α11(τ)
dτ

]
dη.

Продифференцировав теперь это соотношение и сравнив результат с
правой частью (8.15), определим φ1(y):

φ1(y) =
ω1(y)

α11(y)
−

− α12(y)

α11(y)

∫ y

y0

ω1(η)

α11(y)
a21(x0, η) exp

[∫ η

y

α12(τ)a21(x0, τ)
dτ

α11(τ)

]
dη. (8.16)
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Если же

α11(y) ≡ 0, (8.17)

то в силу (8.3) α12(y) 6= 0, и первое соотношение превращается в урав-
нение Вольтерра первого рода. Дифференцируя его и используя (8.14),
найдем

φ1(y)a21(x0, y) =

[
ω1(y)

α12(y)

]′
.

При условии

a21(x0, y) 6= 0 (8.18)

отсюда следует

φ1(y) = [a21(x0, y)]−1
[

ω1(y)

α12(y)

]′
. (8.19)

Ясно, что дифференцирование в (8.19) возможно при дополнительных
предположениях (см. формулы для правых частей (8.11))

m1(y), α12(y) ∈ C1[y0, y1]. (8.20)

Аналогично решается второе уравнение (8.11). Там вместо (8.13)
следует обозначить

V (x) =

∫ x

x0

φ2(t)K(x, y0, t, y0)dt,

а вместо (8.14) использовать вытекающее из (8.8) условие

K(x, y0, x, y0) = a12(x, y0).

В результате при

α22(x) 6= 0 (8.21)

найдем

φ2(x) =
ω2(x)

α22(x)
−

− α21(x)

α22(x)

∫ x

x0

ω2(t)

α22(t)
a12(t, y0) exp

[∫ t

x

α21(ξ)

α22(ξ)
a12(ξ, y0)dξ

]
dt. (8.22)

173



Если же

α22(x) ≡ 0, a12(x, y0) 6= 0, (8.23)

то при дополнительном предположении

m2(x), α21(x) ∈ C1[x0, x1] (8.24)

получим

φ2(x) =

[
a12(x, y0)

]−1[
ω2(x)

α21(x)

]′
. (8.25)

На основании вышеизложенного сформулируем выводы.
Плоская задача (8.1), (8.2), (8.5) однозначно разрешима при вы-

полнении неравенств (8.3), (8.10) с добавлением к ним любого из четы-
рех вариантов условий:

1) α11(y)α22(x) 6= 0;
2) α11(y) ≡ 0, a21(x0, y)α22(x) 6= 0;
3) α22(x) ≡ 0, α11(y)a12(x, y0) 6= 0;
4) α11(y) ≡ α22(x) ≡ 0, a21(x0, y)a12(x, y0) 6= 0.

(8.26)

При этом она редуцируется к задаче Гурса, граничные значения φ1,
φ2 которой даются в порядке следования вариантов (8.26) парами фор-
мул (8.16), (8.22); (8.19), (8.22); (8.16), (8.25); (8.19), (8.25). В случаях,
когда используются формулы (8.19), (8.25), требуется еще дополни-
тельная гладкость исходных данных, определяемая из (8.20) и (8.24)
соответственно. Окончательное решение задачи получается по форму-
лам (8.6) – (8.7).

Очевидно, варианты (8.26) отражают требования соотношений
(8.12), (8.17), (8.18), (8.21) и (8.23).

Заметим еще, что неравенства (8.3) можно заменить добавлени-
ем к 2) – 4) в (8.26) соответственно условий

α12(y) 6= 0, α21(x) 6= 0, α12(y)α21(x) 6= 0.
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2. Связь с одним уравнением второго порядка

Речь по-прежнему идет о задаче (8.1), (8.2) в предположениях
(8.3) и (8.5). Дополнительно будем еще считать, что в (8.1) f1 ≡ f2 ≡ 0.
Это не нарушает общности рассуждений: они все проходят и при от-
личных от нуля f1, f2. Данное предположение лишь несколько упро-
щает формулы.

Здесь при решении задачи используется связь системы (8.1) с
уравнением вида

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0. (8.27)

Задача из § 1 редуцируется к задаче Гурса для уравнения (8.27). Име-
ется два варианта такой редукции. Рассмотрим их последовательно.

2.1. Уравнение для u1. Если продифференцировать первое
уравнение (8.1) по y и заменить в полученном соотношении u2, u2y на их
значения, найденные из исходной системы, то получим для u = u1(x, y)
уравнение (8.27) с коэффициентами

a = −a12y

a12
, b ≡ 0, c = −a12a21. (8.28)

Естественно, для обеспечения указанных действий мы полагаем, что

a12(x, y) 6= 0, a12, a12y ∈ C(D). (8.29)

Пусть

u(x0, y) = ϕ(y), u(x, y0) = ψ(x), ϕ(y0) = ψ(x0) (8.30)

есть граничные условия задачи Гурса для уравнения (8.27). Решение
такой задачи дается формулой (1.20) из § 1:

u(x, y) = R(x, y0, x, y)ψ(x) + R(x0, y, x, y)ϕ(y)−R(x0, y0, x, y)ψ(x0) +

+

∫ x

x0

[
b(α, y0)R(α, y0, x, y)− ∂

∂α
R(α, y0, x, y)

]
ψ(α)dα +

+

∫ y

y0

[
a(x0, β)R(x0, β, x, y)− ∂

∂β
R(x0, β, x, y)

]
ϕ(β)dβ +

+

∫ x

x0

∫ y

y0

R(α, β, x, y)f(α, β)dβdα. (8.31)

175



Здесь R — функция Римана рассматриваемого уравнения (8.27). По-
этому для определенных выводов, связанных с отысканием функции
u(x, y), нам следует выяснить возможности получения функций ϕ и ψ

из соотношений (8.2), которые можно переписать в форме

α11(y)ϕ(y) +
α12(y)

a12(x0, y)
ν(y) = m1(y),

α21(x)ψ(x) +
α22(x)

a12(x, y0)
ψ′(x) = m2(x).

(8.32)

При записи (8.32) мы воспользовались уравнениями системы (8.1), фор-
мулами (8.30) и ввели обозначение ν(y) = u1x(x0, y). Очевидно, в силу
первого уравнения (8.1) и сделанных выше предположений u1x непре-
рывно продолжима на характеристикy x = x0.

Таким образом, для ψ(x) мы имеем обыкновенное линейное диф-
ференциальное уравнение первого порядка. При α22(x) 6= 0, его реше-
ние записывается так:

ψ(x) =

{∫ x

x0

m2(t)a12(t, y0)

α22(t)

[
exp

∫ t

x0

α21(ξ)a12(ξ, y0)

α22(ξ)
dξ

]
dt+

+ ψ(x0)

}
exp

[
−

∫ x

x0

α21(t)a12(t, y0)

α22(t)
dt

]
. (8.33)

Значение ψ(x0) следует рассматривать как произвольную постоянную.
Если же α22(x) ≡ 0, то в силу (8.3) α21 6= 0, и ψ(x) определяется из
(8.32) однозначно:

ψ(x) =
m2(x)

α21(x)
. (8.34)

Для преобразования первого уравнения (8.32) воспользуемся свя-
зью между ϕ(y) и ν(y). О таких связях говорится в п. 1 § 4. С учетом
(8.28) имеем

ϕ(y) =
ν ′(y)− {ln[a12(x0, y)]}yν(y)

a21(x0, y)a12(x0, y)
. (8.35)

При этом дополнительно полагаем

a21(x0, y) 6= 0. (8.36)
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Производная ν ′(y) = u1xy(x0, y) существует, поскольку u1 удовлетво-
ряет уравнению вида (8.27) с непрерывными в D коэффициентами и
b ≡ 0. Непрерывность же входящей в уравнение (8.27) функции u1x

в области D следует из первого соотношения (8.1). Подставляя (8.35)
в (8.32), опять приходим к линейному уравнению для ν(y), решение
которого при α11(y) 6= 0 есть

ν(y) =

{∫ y

y0

m1(τ)a21(x0, τ)

α11(τ)

[
exp

∫ τ

y0

α12(η)a21(x0, η)

α11(η)
dη

]
dτ+

+
ν(y0)

a12(x0, y0)

}
a12(x0, y) exp

[
−

∫ y

y0

α12(τ)a21(x0, τ)

α11(τ)
dτ

]
. (8.37)

Здесь ν(y0) при α12(y0) 6= 0 вычисляется из (8.32) по формуле

ν(y0) =
a12(x0, y0)

α12(y0)
[m1(y0)− α11(y0)ϕ(y0)],

то есть правая часть (8.37) зависит от произвольной постоянной ϕ(y0).
Когда же α12(y0) = 0, из (8.32) получается

ϕ(y0) =
m1(y0)

α11(y0)
.

Но в этом случае ν(y0) остается неопределенной величиной, и ее следует
рассматривать как произвольную константу. Итак, в любом случае,
связанном с предположением α11(y) 6= 0, результат подстановки (8.37) в
(8.35) определяет ϕ(y) с точностью до одной произвольной постоянной.
Наконец, при α11 ≡ 0 мы сразу из (8.32) имеем

ν(y) =
m1(y)a12(x0, y)

α12(y)
,

где знаменатель отличен от нуля в силу (8.3). В этом случае ϕ(y) опре-
деляется из (8.35) однозначно.

Нам еще следует учесть равенство ϕ(y0) = ψ(x0) из (8.30),
обеспечивающее непрерывность граничных значений u1(x, y) в точке
(x0, y0). Подставляя в него функции из (8.33) и (8.35), (8.37), мы опре-
делим ψ(x0) через ϕ(y0) или ν(y0). Таким образом, ϕ(y) и ψ(x) при
α11α22 6= 0 определяются с точностью до одной произвольной посто-
янной, общей для обеих этих функций. Она войдет и в формулу вида
(8.31) для u1(x, y). В случаях же α11 ≡ 0, α22 6= 0 и α11 6= 0, α22 ≡ 0
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условие ϕ(y0) = ψ(x0) приводит просто к вычислению указанной по-
стоянной, и, следовательно, к однозначности определения u1(x, y) по
формуле (8.31). Наконец, при α11 ≡ α22 ≡ 0 это же третье равенство из
(8.30) приводит к определенному равенству, связывающему исходные
данные задачи при x = x0, y = y0. Его естественно назвать условием
согласования.

После того как u1(x, y) вычислено, вторая искомая функция да-
ется формулой

u2(x, y) =
u1x(x, y)

a12(x, y)
.

Получаем следующий вывод: при условиях (8.29), (8.36) задача
(8.1) – (8.3) разрешима с точностью до одной произвольной постоян-
ной, если α11α22 6= 0. В случаях α11 ≡ 0, α22 6= 0 и α11 6= 0, α22 ≡ 0 она
разрешима безусловно и однозначно. В случае α11 ≡ α22 ≡ 0 эта за-
дача однозначно разрешима при выполнении дополнительного условия
согласования.

2.2. Аналогичный вариант для u2. С помощью дифферен-
цирования второго уравнения (8.1) по x получается соответствующее
уравнение вида (8.27) для u = u2(x, y), коэффициенты которого вместо
(8.28) записываются в виде

a ≡ 0, b = −a21x

a21
, c ≡ −a12a21. (8.38)

Роль соотношений (8.32) играют равенства

α11(y)

a21(x0, y)
ϕ′(y) + α12(y)ϕ(y) = m1(y),

α21(x)

a21(x, y0)
µ(x) + α22(x)ψ(x) = m2(x).

(8.39)

Решение первого из этих уравнений дается при α11(y) 6= 0 формулой

ϕ(y) =

{∫ y

y0

m1(τ)a21(x0, τ)

α11(τ)

[
exp

∫ τ

y0

a21(x0, η)α12(η)

α11(η)
dη

]
dτ+

+ϕ(y0)

}
exp

[
−

∫ y

y0

α12(τ)a21(x0, τ)

α11(τ)
dτ

]
,
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где ϕ(y0) играет роль произвольной постоянной. Вместо (8.35) для под-
становки во второе уравнение (8.39) используется соотношение из п. 1
§ 4, имеющее в данном случае вид

ψ(x) =
µ′(x)− {ln[a21(x, y0)]}xµ(x)

a21(x, y0)a12(x, y0)
, µ(x) = u2y(x, y0). (8.40)

После этого второе уравнение (8.39) решается при α22(x) 6= 0 по фор-
муле

µ(x) =

{∫ x

x0

m2(t)a12(t, y0)

α22(t)

[
exp

∫ t

x0

a21(ξ)a12(ξ, y0)dξ

α22(ξ)

]
dt+

+
µ(x0)

a21(x0, y0)

}
a21(x, y0) exp

[
−

x∫

x0

α21(t)a12(t, y0)

α22(t)
dt

]
.

Здесь µ(x0), как и ν(y0) в п. 2.1, либо определяется через ψ(x0), либо
нет. Функция же ψ(x) в (8.40) в любом из этих случаев зависит от
одной произвольной постоянной.

Когда же α11 ≡ 0 (α22 ≡ 0), то ϕ(µ) определяется однозначно.
В комбинациях α11 ≡ 0, α22 6= 0 и α11 6= 0, α22 ≡ 0 это ведет к одно-
значности определения ϕ и ψ, а при α11 ≡ α22 ≡ 0 к однозначности ϕ

и ψ добавляется дополнительное условие согласования. Вместо (8.29),
(8.36) для обоснования проводимых рассуждений достаточно требовать
выполнения условий:

a12(x1, x20)a21(x, y) 6= 0, a21, a21x ∈ C(D). (8.41)

Для отыскания u1 по u2 можно использовать формулу

u1(x, y) =
u2y(xy)

a21(x, y)
.

Из вышеизложенного следует, что в предположениях (8.41) за-
дача (8.1) – (8.3) разрешима при тех же комбинациях требований на
α11, α22, что и в п. 2.1. Характер разрешимости тоже совпадает с ука-
занным в п. 2.1.

Замечание. При добавлении к условиям (8.1) – (8.3) требования

det ‖αik‖
∣∣x=x0
y=y0

6= 0 (8.42)
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во всех отмеченных выше случаях решение задачи может быть лишь
единственным. Справедливость этого замечания следует из того, что
при (8.42) ϕ(y0), ψ(x0) всегда оказываются известными.

Отметим еще, что в случае α11 ≡ α22 ≡ 0 неравенство (8.42) в
силу (8.3) всегда имеет место.

3. О разрешимости в явном виде

Обратим теперь внимание на то, что функции ϕ(y) и ψ(x) опре-
деляются в пп. 2.1 – 2.2 через исходные данные рассматриваемой за-
дачи в явном виде. Поэтому во всех случаях, когда задача Гурса для
уравнения (8.27) решается в явном виде, в явном же виде решается и
задача (8.1) – (8.2).

3.1. Расщепление уравнений вида (8.27). Наиболее простые
из таких случаев связаны с обращением в нуль инвариантов

h = ax + ab− c, k = by + ab− c (8.43)

указанного уравнения (см. п. 3.1 § 1). При этом понятно, что в нашей
ситуации достаточно найти в явном виде лишь одну из функций u1, u2,
поскольку другая тогда может быть вычислена из уравнений (8.1), как
это делалось в пп. 2.1 – 2.2.

Для уравнения (8.27), (8.28)

h1 = a12a21 − (ln a12)xy, k1 = a12a21.

Из (8.29), (8.36) следует, что возможен лишь вариант h1 ≡ 0. Тогда
уравнение для u1 можно записать в форме

∂

∂x

(
∂u1

∂y
−

[
∂

∂y
ln a12(x, y)

]
u1

)
= 0,

откуда непосредственным интегрированием при условиях (8.30) нахо-
дим

u1(x, y) = ϕ(y) +
a12(x, y)

a12(x, y0)
[ψ(x)− ψ(x0)] +

+ a12(x, y)

∫ y

y0

ϕ(τ)

a12(x, τ)

∂

∂τ

[
ln

a12(x0, τ)

a12(x, τ)

]
dτ. (8.44)
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В случае уравнения (8.27), (8.38) формулы (8.43) дают

h2 = a12a21, k2 = a12a21 − (ln a21)xy.

В силу (8.41) здесь имеем вариант k2 ≡ 0, когда решение уравнения
для u2(x, y) записывается в виде

u2(x, y) = ψ(x) +
a21(x, y)

a21(x0, y)
[ϕ(y)− ϕ(y0)] +

+ a21(x, y)

∫ x

x0

ψ(t)

a21(t, y)

∂

∂t

[
ln

a21(t, y0)

a21(t, y)

]
dt. (8.45)

Можно указать некоторые структурные представления для a12, a21,
обеспечивающие выполнение условий h1 ≡ 0 или k2 ≡ 0. Так, первое
из них имеет место, если, например,

a12 = p(x) + q(y), a21 = − p′(x)q′(y)

[p(x) + q(y)]3
,

а для второго достаточно

a21 = p1(x) + q1(y), a12 = − p′1(x)q′1(y)

[p1(x) + q1(y)]3
,

В этом можно убедиться непосредственной подстановкой в уравнения
h1 = 0 и k2 = 0 соответственно.

Существуют и другие представления, в том числе и более об-
щие, чем только что указанные. Например, тоже непосредственным
вычислением можно убедиться, что коэффициенты вида

a12 = p(x) + q(y) + r(x)s(y),

a21 =
r′s′

[p + q + rs]2
− [p′ + r′s][q′ + rs′]

[p + q + rs]3

(8.46)

обеспечивают выполнение условия h1 = 0, а

a21 = p1(x) + q1(y) + r1(x)s1(y),

a12 =
r′1s

′
1

[p1 + q1 + r1s1]2
− [p′1 + r′1s1][q

′
1 + r1s

′
1]

[p1 + q1 + r1s1]3

(8.47)

дают k2 = 0.
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Сопоставляя содержание пп. 1 – 2 и только что полученные ре-
зультаты, приходим к следующему утверждению.

При комбинациях требований на α11, α22, указанных в п. 2.1,
исходная задача разрешима в явном виде, если выполнен любой из двух
наборов условий:

1) h1 = a12(x, y)a21(x, y)− [ln a12(x, y)]xy ≡ 0,

a12(x, y)a21(x0, y) 6= 0, a12, a12y ∈ C(D);
(8.48)

2) k2 = a12(x, y)a21(x, y)− [ln a21(x, y)]xy ≡ 0,

a12(x, y0)a21(x, y) 6= 0, a21, a21x ∈ C(D).
(8.49)

Характер разрешимости совпадает с сформулированным в п. 1. Тож-
дества (8.48), (8.49) обеспечиваются, соответственно, представления-
ми коэффициентов в видах (8.46), (8.47) с произвольными непрерывно
дифференцируемыми функциями p, q, r, s, p1, q1, r1, s1.

3.2. Использование каскадного интегрирования. Можно
продолжить только что проведенные рассуждения, используя методику
процесса каскадного интегрирования [71, с. 174]. А именно, если h1 6= 0,
то уравнение для u1(x, y) перепишется так:

[u1y − (ln a12)yu1]x = h1u1. (8.50)

Обозначая

u∗1 = u1y − (ln a12)yu1, (8.51)

найдем из (8.51)

u1(x, y) =
u∗1x

h1
. (8.52)

Исключая из двух последних соотношений u1 с помощью дифференци-
рования (8.52) по y, придем к уравнению

u∗1xy − (ln a12h1)yu
∗
1x − h1u

∗
1 = 0. (8.53)

Записав для него инвариант типа h из (8.43), найдем

h∗1 = h1 − (ln h1a12)xy.

Если h∗1 = 0, то (8.53) превращается в

∂

∂x
[u∗1y − (ln h1a12)yu

∗
1] = 0. (8.54)
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Условия u1(x0, y) = ϕ(y), u1(x, y0) = ψ(x) в соответствии с формулой
(8.51) перейдут в

u∗1(x0, y) = ϕ′(y)− [ln a12(x0, y)]yϕ(y) = ϕ∗(y),

u∗1(x, y0) = µ(x)−
[

∂

∂y
ln a12(x, y)

]

y=y0

ψ(x) = ψ∗(x).

(8.55)

При этом µ(x) = u1y(x, y0) вычисляется с помощью (8.31):

µ(x) = ψ(x)

[
∂R

∂y
(x, y0; x, y)

]

y=y0

+ ϕ(y0)

[
∂

∂y
R(x0, y; x, y)

]

y=y0

+

+R(x0, y0; x, y0)ϕ
′(y0)− ϕ(y0)

[
∂

∂y
R(x0, y0; x, y)

]

y=y0

+

+

∫ x

x0

{
b(t, y0)

[
∂

∂y
R(t, y0; x, y)

]

y=y0

−
[

∂2

∂t∂y
R(t, y0; x, y)

]

y=y0

}
ψ(t)dt+

+

{
a(x0, y0)R(x0, y0; x, y0)−

[
∂

∂τ
R(x0, τ ; x, y)

]

τ=y=y0

}
ϕ(y). (8.56)

Из интегрального уравнения для функции Римана (формула (1.17))
имеем

R(t, y0; x, y) =

∫ t

x

b(ξ, y0)R(ξ, y0; x, y)dξ −
∫ y

y0

a(t, η)R(t, η; x, y)dη −

−
∫ x

t

∫ y

y0

c(ξ, η)R(ξ, η; x, y)dηdξ + 1.

Поэтому

∂R(t, y0; x, y)

∂t
= b(t, y0)R(t, y0; x, y)−

∫ y

y0

[
at(t, η)R(t, η; x, y)+

+a(t, η)
∂R

∂t
(t, η; x, y)

]
dη +

∫ y

y0

c(t, η)R(t, η; x, y)dη,

[
∂2R(t, y0; x, y)

∂t∂y

]

y=y0

= b(t, y0)

[
∂R(t, y0; x, y0)

∂y

]

y=y0

−

− at(t, y0)R(t, y0; x, y0)− a(t, y0)
∂R(t, y0; x, y0)

∂t
+ +c(t, y0)R(t, y0; x, y0).

(8.57)
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Отсюда следует, что коэффициент при ψ(t) в (8.56) равен

[at(t, y0) + a(t, y0)b(t, y0)− c(t, y0)] exp
[∫ t

x

b(ξ, y0)dξ
]

=

= h(t, y0) exp
[∫ t

x

b(ξ, y0)dξ
]
. (8.58)

При этом в (8.57) предварительно сделана замена

∂R(t, y0; x, y0)

∂t
= b(t, y0)R(t, y0; x, y0) = b(t, y0) exp

[∫ t

x

b(ξ, y0)dξ
]

на основании формул (41), (44) из [3, с. 170–171]. Учитывая (8.58) и
еще некоторые соотношения для функции R из [3, с. 170–171], можем
переписать (8.56) в виде

µ(x) = −a(x, y0)ψ(x) +

{∫ x

x0

h(t, y0)
[
exp

∫ t

x0

b(ξ, y0)dξ
]
ψ(t)dt+

+a(x0, y0)ψ(x0) + ϕ′(y0)

}
exp

[∫ x

x0

b(ξ, y0)dξ
]
.

Остается вспомнить, что коэффициенты уравнения берутся из (8.28) и
h = h1. Итак,

µ(x) = −
[

∂

∂y
ln a12(x, y)

]

y=y0

ψ(x) +

∫ x

x0

{
a12(t, y0)a21(t, y0)−

−
[

∂2

∂x∂y
ln a12(x, y)

]

y=y0

ψ(t)

}
dt−

[
∂

∂y
ln a12(x, y)

]

y=y0

ψ(x0) + ϕ′(y0).

Подставляя это значение во вторую формулу (8.55), определим окон-
чательно ψ∗(x). Теперь можно проинтегрировать (8.54) с условиями
(8.55). Решение u∗1(x, y) получается с помощью (8.44), если положить
там ϕ = ϕ∗, ψ = ψ∗ и a12 заменить на h1a12. После этого u1(x, y) вы-
числяется из (8.52).

Если взять для (8.53) инвариант типа k из (8.43), то будет k∗1 =
h1. Следовательно, требование k∗1 = 0 лишь повторяет вариант из п. 3.1,
и ничего нового здесь не получается.

В соответствии с каскадным методом можно преобразовать
уравнение u1 еще одним способом. Так как k1 6= 0, то, переписав это
уравнение в форме

u1xy − (ln a12)yu1x = k1u1,
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и взяв вместо (8.51), (8.52) соотношения

ũ1 = u1x, u1 =
ũ1y − (ln a12)yũ1

k1
,

после исключения из них u1 найдем

ũ1xy − (ln a12)yũ1x −
− (ln k1)xũ1y + [(ln k1)x(ln a12)y − (ln a12)xy − k1]ũ1 = 0.

Инварианты этого уравнения есть

h̃1 = k1, k̃1 = k1 −
(

k1

a12

)

xy

.

Если во второе равенство подставить значение k1, то получится k̃1 =
k2. Следовательно, условия h̃1 = 0 и k̃1 = 0 возвращают нас к ситуаци-
ям п. 3.1, и новым по сравнению с п. 3.1 случаем является лишь уже
рассмотренное нами предположение h∗1 = 0. В исходных данных оно
имеет вид

a12a21 − (ln a12)xy − {ln a12[a12a21 − (ln a12)xy]}xy = 0. (8.59)

Все рассуждения, проведенные здесь с уравнением для u1(x, y), мож-
но совершенно аналогично осуществить для уравнения с функцией
u2(x, y). В уравнении типа (8.53) искомую функцию можно обозначить
u∗2(x, y). Вместо (8.44) придется использовать (8.45), а роль (8.59) будет
играть равенство:

a12a21 − (ln a21)xy − {ln a21[a12a21 − (ln a21)xy]}xy = 0. (8.60)

Описанный процесс можно продолжать и далее по схеме каскадного
метода, получая на каждом шаге новые пары условий типа h1 = 0,
h2 = 0 и (8.59), (8.60).

Мы видим, что пара (8.59) – (8.60) имеет более сложный ха-
рактер, чем первая. Тем не менее, нетрудно и здесь указать варианты
структуры коэффициентов a12, a21, при которых эти условия выпол-
няются. Остановимся на (8.59). Пусть a12 есть произведение функции,
зависящей лишь от x, на функцию, зависящую лишь от y:

a12 = r(x)s(y).
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Так как ln a12 = ln r(x) + ln s(y), то (ln a12)xy ≡ 0, вследствие чего h1 =
rsa21, и (8.59) принимает вид

(ln h1)xy = h1.

Полагая h1 = ew, приходим к уравнению

wxy = ew.

Это есть известное уравнение Лиувилля. Оно имеет решение (см. [3],
формула (164) на с. 322)

ew =
2X ′(x)Y ′(y)

[X(x) + Y (y)]2
,

где X, Y — произвольные непрерывно дифференцируемые функции.
Таким образом, (8.59) выполняется, если a12, a21 имеют структуру

a12 = r(x)s(y), a21 =
2X ′(x)Y ′(y)

r(x)s(y)[X(x) + Y (y)]2
, (8.61)

Аналогично устанавливается, что выполнение (8.60) обеспечи-
вается структурными формулами

a21 = r1(x)s1(y), a12 =
2X ′

1(x)Y ′
1(y)

r1(x)s1(y)[X1(x) + Y1(y)]2
. (8.62)

Таким образом, если в условиях п. 2.1 или п. 2.2 коэффициен-
ты системы (8.1) удовлетворяют соответственно тождеству (8.59) или
(8.60), то исходная задача разрешима в явном виде. При этом для вы-
полнения (8.59) достаточно, чтобы a12, a21 имели структуру (8.61), а
для осуществления (8.60) — (8.62). Характер разрешимости, указан-
ный в пп. 2.1 – 2.2, сохраняется.

Напомним, что в правых частях (8.61) – (8.62) r, s, X, Y , r1, s1,
X1, Y1 являются произвольными функциями класса C1.

3.3. Варианты, связанные с построением функции Рима-
на в явном виде. Для уравнения (1.26) в п. 3 § 1 приведены случаи,
когда функция Римана в формуле (8.31) может быть записана явно
через функцию Бесселя J0(z). Например для уравнения

uxy + m(x)n(y)u = 0
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функция Римана дается формулой

R(x, y; t, τ) = J0

(
2
[∫ x

t

m(ξ)dξ

∫ y

τ

n(η)dη
] 1

2

)
, (8.63)

Данная ситуация получается в нашем случае, если коэффициенты сис-
темы (8.1) имеют представления

a12 = p(x), a21 = r(x)q(y), (8.64)

или

a21 = p1(y), a12 = q1(x)r1(y). (8.65)

Формулы (8.64) позволяют найти в явном виде u1(x, y) по формуле
(8.31), если положить в соответствии с (8.63)

R = J0

(
2
[
−

∫ x

t

p(ξ)r(ξ)dξ

∫ y

τ

q(η)dη
] 1

2

)
.

В условиях же (8.65) найдем функцию u2(x, y), если положим в (8.31)

R = J0

(
2
[
−

∫ x

t

q1(ξ)dξ

∫ y

τ

p1(η)r1(η)dη
] 1

2

)
.

Функция Римана известна также тогда, когда для коэффициен-
тов уравнения (8.27) выполнены условия

a = p(y) + λx, b = q(x) + λy, c− ab− λ = m(x)n(y), λ = const.

(8.66)

Так как в уравнении для u1(x, y) b ≡ 0, то q(x) ≡ 0, λ = 0, и соотноше-
ния (8.66) приобретают вид

−a12y

a12
= p(y), −a12a21 = m(x)n(y).

Если

a12 = M(x)N(y), a21 = M1(x)N1(y), (8.67)

то, очевидно, достаточно положить

p(y) = −N ′(y)

N(y)
, m(x) = M(x)M1(x), n(y) = −N(y)N1(y). (8.68)
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Остается воспользоваться формулой (1.41) из § 1 для (8.66):

R(x, y; t, τ) = J0

(
2
[∫ x

t

m(ξ)dξ

∫ y

τ

n(η)dη
] 1

2

)
σ(x, y; t, τ),

σ = exp
[∫ x

t

q(ξ)dξ +

∫ y

τ

p(η)dη + λ(xy − tτ)
]
.

С учетом (8.68) находим

R(x, y; t, τ) =
N(τ)

N(y)
J0

(
2
[
−

∫ x

t

M(ξ)M1(ξ)dξ

∫ y

τ

N(η)N1(η)dη
] 1

2

)
.

В случае же уравнения для u2(x, y) имеем

−a21x

a21
= q(x), −a12a21 = m(x)n(y), λ ≡ p(y) ≡ 0.

Поэтому для получения u2(x, y) достаточно положить

q(x) = −M ′
1(x)

M1(x)
, m(x) = M(x)M1(x), n(y) = −N(y)N1(y).

Тогда находим

R =
M1(t)

M1(x)
J0

(
2
[
−

∫ x

t

M(ξ)M1(ξ)dξ

∫ y

τ

N(η)N1(η)dη
] 1

2

)
.

Поскольку для решения задачи достаточно найти лишь одну из функ-
ций u1, u2 (см. пп. 2.1 – 2.2), то достаточно воспользоваться лишь одной
из двух последних формул для R.

Попробуем теперь применить только что проведенные рассуж-
дения к уравнению (8.53) для u∗1(x, y). Здесь b ≡ 0, a = −(ln h1a12)y,
−c = h1 = a12a21 − (ln a12)xy. Условия (8.64) приобретают вид

h1a12 = p(x), h1 = r(x)q(y).

Вычисляя a12 с учетом второго соотношения, видим, что (ln a12)xy ≡
0. Поэтому предыдущие соотношения принимают вид a2

12a21 = p(x),
a12a21 = r(x)q(y). Отсюда

a12 =
p(x)

r(x)q(y)
, a21 =

r2(x)q2(y)

p(x)
.

Переобозначив p(x) = C(x), A(x) =
p(x)

r(x)
, B(y) =

1

q(y)
, получим

a12 = A(x)B(y), a21 =
C(x)

A2(x)B2(y)
. (8.69)
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Данная структура коэффициентов позволяет определить явно u∗1, а, сле-
довательно, и u1(x, y).

Если рассмотреть подобным образом уравнение для u∗2 (мы его
не выписывали), то вместо (8.69) получим представления

a21 = A1(x)B1(y), a12 =
C1(y)

A2
1(x)B2

1(y)
. (8.70)

Если мы попытаемся для уравнения (8.53) использовать условия
(8.66), то получим

λ ≡ 0, q ≡ 0, (ln h1a12)y = p(y), h1 = m(x)n(y).

Отсюда легко вывести, что a12 = Φ(x)Φ1(y). В силу этого h1 = a12a21,
и, следовательно,

a21 =
m(x)n(y)

Φ(x)Φ1(y)
.

Очевидно, последние представления есть просто несколько иная запись
структурных формул (8.67). Таким образом, в данном случае мы воз-
вращаемся к уже изученной ситуации.

На основании всего изложенного в настоящем п. 3.3 справедливы
следующие утверждения.

1) Если в условиях п. 2.1 коэффициенты a12, a21 имеют представ-
ления хотя бы одного из двух видов

a) a12 = p(x), a21 = r(x)q(y),

б) a12 = A(x)B(y), a21 =
C(x)

[A(x)B(y)]2
,

то задача (8.1) – (8.3) разрешима в явном виде.
2) Если в условиях п. 2.2 a12, a21 записываются хотя бы в одном

из двух видов

а) a21 = p1(y), a12 = q1(x)r1(y),

б) a21 = A1(x)B1(y), a12 =
C1(y)

[A1(x)B1(y)]2
,

то исходная задача разрешима в явном виде.
3) В условиях любого из пп. 1 – 2 исходная задача разрешима в

явном виде, если имеют место структурные формулы

a12 = M(x)N(y), a21 = M1(x)N1(y).
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Характер разрешимости, указанный в пп. 1 – 2, сохраняется и
для только что сформулированных утверждений.

В заключение обратим внимание на многовариантность условий
разрешимости, содержащихся в утверждениях 1) – 3). Эта многова-
риантность порождается четырьмя случаями условий разрешимости,
содержащимися в пп. 1 – 2. Таким образом, например, в каждом из
утверждений 1) – 3) содержится по восемь вариантов разрешимости,
из которых: 2 варианта разрешимости с точностью до одной произ-
вольной постоянной, 4 варианта безусловной и однозначной разреши-
мости, 2 варианта разрешимости при одном дополнительном условии
согласования. Очевидно, предложение 3) содержит четыре варианта
разрешимости.

3.4. Примеры нарушения условий предыдущих теорем.
Изложенные выше результаты получены в предположениях (8.29),
(8.36) и (8.41), при этом из проведенных рассуждений следует, что
содержащиеся в указанных формулах неравенства носят характер до-
статочных для применяемого метода условий. Здесь мы на частных
случаях посмотрим, к чему может привести нарушение этих условий.

Пусть сначала a12(x, y) ≡ 0, a21(x0, y) 6= 0. Тогда система (8.1)
интегрируется непосредственно:

u1 = F1(y), u2 = F2(x) +

∫ y

y0

a21(x, τ)F1(τ)dτ.

Поэтому соотношения (8.2) приобретают вид

α11(y)F1(y) + α12(y)

[∫ y

y0

a21(x0, τ)F1(τ)dτ + F2(x0)

]
= m1(y),

α21(x)F1(y0) + α22(x)F2(x) = m2(x).

Задача состоит в том, чтобы отсюда определить функции F1, F2. Пер-
вое из записанных уравнений с помощью замены

θ(y) =

∫ y

y0

a21(x0, τ)F1(τ)dτ

приводится к линейному дифференциальному уравнению, и, следова-
тельно, решается в явном виде. Нетрудно убедиться, что здесь полу-
чаются следующие результаты, в зависимости от предположений, пе-
речисленных в пп. 1 – 2.
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1) α11α22 6= 0. Решение существует и зависит от одной произ-
вольной постоянной.

2) α11 ≡ 0, α22 6= 0. Решение определяется однозначно.
3) α22 ≡ 0. Как при α11 6= 0, так и при α11 ≡ 0 задача, вообще

говоря, неразрешима. Для ее разрешимости требуется дополнительное
предположение

m2(x)

α21(x)
= const. (8.71)

Решение в этом случае содержит произвольную функцию F2(x).
4) Если же a12(x, y) ≡ a21(x0, y) ≡ 0, то при α11α22 6= 0 задача

продолжает оставаться разрешимой с точностью до одной произволь-
ной постоянной.

В остальных случаях для разрешимости нужно требовать либо
(8.71), либо подобного условия на m1(y), либо обоих этих условий. При
этом решение содержит либо две произвольные функции F1, F2 (α11 ≡
α22 ≡ 0), либо одна из этих функций остается произвольной (α11 ≡ 0,
α22 6= 0 или α11 6= 0, α22 = 0).

Во всех перечисленных здесь вариантах решение, если оно су-
ществует, записывается в явном виде.

§ 9. Задача в трехмерном пространстве

Пусть в трехмерном евклидовом пространстве x = (x1, x2, x3) ∈
D = {x10 < x1 < x11, x20 < x2 < x21, x30 < x3 < x31}, а Ei — грани
xi = xi0 параллелепипеда D. Рассмотрим в D аналог системы (8.1),
имеющий вид

∂ui

∂xi
=

3∑

k=1

aik(x)uk + fi(x), i = 1, 2, 3, aik, fi ∈ C(D). (9.1)

Класс регулярных вD решений (9.1) определяется включениями

ui,
∂ui

∂xi
∈ C(D), i = 1, 2, 3.

Как и в (8.1), не нарушая общности рассуждений, будем считать, что

akk(x) ≡ 0, k = 1, 2, 3. (9.2)
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Задача 2. Найти регулярное в D решение системы (9.1) – (9.2),
непрерывно продолжимое на ∂D и удовлетворяющее условиям:

3∑

k=1

α1k(x2, x3)uk(x10, x2, x3) = m1(x2, x3),

3∑

k=1

α2k(x1, x3)uk(x1, x20, x3) = m2(x1, x3),

3∑

k=1

α3k(x1, x2)uk(x1, x2, x30) = m3(x1, x2),

αik, mi ∈ C(Ei), i = 1, 2, 3.

(9.3)

В случае единичной матрицы ‖αik(x)‖ условия (9.3) будем запи-
сывать в виде

u1(x10, x2, x3) = φ1(x2, x3), u2(x1, x20, x3) = φ2(x1, x3),
u3(x1, x2, x30) = φ3(x1, x2).

(9.4)

Этот частный случай (задача Гурса) исследован Т.В. Чекмаревым
[87], результаты которого существенно используются в нижеследую-
щих рассуждениях.

1. Редукция к задаче Гурса

1.1. Вывод системы нагруженных интегральных урав-
нений. Мы будем использовать решение задачи (9.1), (9.4) при произ-
вольных φ1, φ2, φ3 как общее представление решений рассматриваемой
системы уравнений. Нам потребуется подробная запись указанного ре-
шения. Развернув формулы (24) из [87], имеем:

u1(x) = φ1(x2, x3) +

∫ x1

x10

φ2(ξ1, x3)U
(12)
12 (x; ξ1, x20)dξ1+

+

∫ x1

x10

φ3(ξ1, x2)U
(13)
13 (x; ξ1, ξ30)dξ1 +

∫ x2

x20

φ1(ξ2, x3)U
(12)
11 (x; x10, ξ2)dξ2+

+

∫ x3

x30

φ1(x2, ξ3)U
(13)
11 (x; x10, ξ3)dξ3+
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+

∫ x2

x20

∫ x3

x30

φ1(ξ2, ξ3)U
(123)
11 (x; x10, ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x2

x20

φ3(ξ1, ξ2)U
(123)
13 (x; ξ1, ξ2, x30)dξ2dξ1+

+

∫ x1

x10

∫ x3

x30

φ2(ξ1, ξ3)U
(123)
12 (x; ξ1, x20, ξ3)dξ3dξ1+

+

∫ x1

x10

f1(ξ1, x2, x3)dξ1 +

∫ x1

x10

∫ x2

x20

f1(ξ1, ξ2, x3)U
(12)
11 (x; ξ1, ξ2)dξ2dξ1+

+

∫ x1

x10

∫ x3

x30

f1(ξ1, x2, ξ3)U
(13)
11 (x; ξ1, ξ3)dξ3dξ1+

+

∫ x1

x10

∫ x2

x20

f2(ξ1, ξ2, x3)U
(12)
12 (x; ξ1, ξ2)dξ2dξ1+

+

∫ x1

x10

∫ x3

x30

f3(ξ1, ξ2, x3)U
(13)
13 (x; ξ1, ξ3)]dξ3dξ1+

+

∫ x1

x10

∫ x2

x20

∫ x3

x30

[f1(ξ1, ξ2, ξ3)U
(123)
11 (x; ξ1, ξ2, ξ3)+

+f2(ξ1, ξ2, ξ3)U
(123)
12 (x; ξ1, ξ2, ξ3) + f3(ξ1, ξ2, ξ3)U

(123)
13 (x; ξ1, ξ2, ξ3)]dξ3dξ2dξ1,

u2(x) = φ2(x1, x3) +

∫ x2

x20

φ1(ξ2, x3)U
(12)
12 (x; x10, ξ2)dξ2+

+

∫ x2

x20

φ3(x1, ξ2)U
(23)
23 (x; ξ2, x30)dξ2 +

∫ x1

x10

φ2(ξ1, x3)U
(12)
22 (x; ξ1, x20)dξ1+

+

∫ x3

x30

φ2(x1, ξ3)U
(23)
22 (x; x20, ξ3)dξ3+

+

∫ x2

x20

∫ x3

x30

φ1(ξ1, ξ3)U
(123)
21 (x; x10, ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x2

x20

φ3(ξ1, ξ2)U
(123)
23 (x; ξ1, ξ2, x30)dξ2dξ1+

+

∫ x1

x10

∫ x3

x30

φ2(ξ1, ξ2)U
(123)
22 (x; ξ1, x20, ξ3)dξ3dξ1+

+

∫ x2

x20

f2(x1, ξ2, x3)dξ2 +

∫ x1

x10

∫ x2

x20

f1(ξ1, ξ2, x3)U
(12)
21 (x; ξ1, ξ2)dξ2dξ1+

+

∫ x2

x20

∫ x3

x30

f3(x1, ξ2, ξ3)U
(23)
23 (x; ξ2, ξ3)dξ3dξ2 + (9.5)
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+

∫ x1

x10

∫ x2

x20

f2(ξ1, ξ2, x3)U
(12)
22 (x; ξ1, ξ2)dξ2dξ1+

+

∫ x2

x20

∫ x3

x30

f2(x1, ξ2, ξ3)U
(23)
22 (x; ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x2

x20

∫ x3

x30

[f1(ξ1, ξ2, ξ3)U
(123)
21 (x; ξ1, ξ2, ξ3)+

+f2(ξ1, ξ2, ξ3)U
(123)
22 (x; ξ1, ξ2, ξ3)+

+f3(ξ1, ξ2, ξ3)U
(123)
23 (x; ξ1, ξ2, ξ3)]dξ3dξ2dξ1,

u3(x) = φ3(x1, x2) +

∫ x3

x30

φ1(x2, ξ3)U
(13)
31 (x; x10, ξ3)dξ3+

+

∫ x3

x30

φ2(x1, ξ3)U
(23)
32 (x; x20, ξ3)dξ3 +

∫ x1

x10

φ3(ξ1, x2)U
(13)
33 (x; ξ1, x30)dξ1+

+

∫ x2

x20

φ3(x1, ξ2)U
(23)
33 (x; ξ2, x30)dξ2+

+

∫ x2

x20

∫ x3

x30

φ1(ξ2, ξ3)U
(123)
31 (x; x10, ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x3

x30

φ2(ξ1, ξ3)U
(123)
32 (x; ξ1, x20, ξ3)dξ3dξ1+

+

∫ x1

x10

∫ x2

x20

φ3(ξ1, ξ2)U
(123)
33 (x; ξ1, ξ2, x30)dξ2dξ1+

+

∫ x3

x30

f3(x1, x2, ξ3)dξ3 +

∫ x1

x10

∫ x3

x30

f1(ξ1, x2, ξ3)U
(13)
31 (x; ξ1, ξ3)dξ3dξ1+

+

∫ x2

x20

∫ x3

x30

f2(x1, ξ2, ξ3)U
(23)
32 (x; ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x3

x30

f3(ξ1, x2, ξ3)U
(13)
33 (x; ξ1, ξ3)dξ3dξ1+

+

∫ x2

x20

∫ x3

x30

f3(x1, ξ2, ξ3)U
(23)
33 (x; ξ2, ξ3)dξ3dξ2+

+

∫ x1

x10

∫ x2

x20

∫ x3

x30

[f1(ξ1, ξ2, ξ3)U
(123)
31 (x; ξ1, ξ2, ξ3)+

+f2(ξ1, ξ2, ξ3)U
(123)
32 (x; ξ1, ξ2, ξ3)+

+f3(ξ1, ξ2, ξ3)U
(123)
33 (x; ξ1, ξ2, ξ3)]dξ3dξ2dξ1.
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Здесь функции U
(β)
α с верхними и нижними наборами индексов

удовлетворяют соотношениям, аналогичным (8.8), которые тоже пона-
добятся нам в подробной записи (см. формулы (20) – (21) из [87]):

U
(12)
11 (x; ξ1, ξ2) =

∫ x1

ξ1

a12(t1, x2, x3)U
(12)
21 (t1, x2, x3; ξ1, ξ2)dt1,

U
(13)
11 (x; ξ1, ξ2) =

∫ x1

ξ1

a13(t1, x2, x3)U
(13)
31 (t1, x2, x3; ξ1, ξ2)dt1,

U
(12)
12 (x; ξ1, ξ2) = a12(ξ1, x2, x3) +

∫ x1

ξ1

a12(t1, x2, x3)U
(12)
22 (t1, x2, x3; ξ1, ξ2)dt1,

U
(13)
13 (x; ξ1, ξ3) = a13(ξ1, x2, x3) +

∫ x1

ξ1

a13(t1, x2, x3)U
(13)
33 (t1, x2, x3; ξ1, ξ3)dt1,

U
(123)
11 (x; ξ1, ξ2, ξ3) =

∫ x1

ξ1

[a12(t1, x2, x3)U
(123)
21 (t1, x2, x3; ξ1, ξ2, ξ3)+

+a13(t1, x2, x3)U
(123)
31 (t1, x2, x3; ξ1, ξ2, ξ3)]dt1,

U
(123)
12 (x; ξ1, ξ2, ξ3) = a12(ξ1, x2, x3)U

(23)
22 (ξ1, x2, x3; ξ2, ξ3)+

+a13(ξ1, x2, x3)U
(23)
32 (ξ1, x2, x3; ξ2, ξ3)+

+

∫ x1

ξ1

[a12(t1, x2, x3)U
(123)
22 (t1, x2, x3; ξ1, ξ2, ξ3)+

+a13(t1, x2, x3)U
(123)
32 (t1, x2, x3; ξ1, ξ2, ξ3)]dt1,

U
(123)
13 (x; ξ1, ξ2, ξ3) = a12(ξ1, x2, x3)U

(23)
23 (ξ1, x2, x3; ξ2, ξ3)+

+a13(ξ1, x2, x3)U
(23)
33 (ξ1, x2, x3; ξ2, ξ3)+

+

∫ x1

ξ1

[a12(t1, x2, x3)U
(123)
23 (t1, x2, x3; ξ1, ξ2, ξ3)+

+a13(t1, x2, x3)U
(123)
33 (t1, x2, x3; ξ1, ξ2, ξ3)]dt1,

U
(12)
21 (x; ξ1, ξ2) = a21(x1, ξ2, x3)+

+

∫ x2

ξ2

a21(x1, t2, x3)U
(12)
11 (x1, t2, x3; ξ1, ξ2)dt2,

U
(12)
22 (x; ξ1, ξ2) =

∫ x2

ξ2

a21(x1, t2, x3)U
(12)
12 (x1, t2, x3; ξ1, ξ2)dt2,

U
(23)
22 (x; ξ2, ξ3) =

∫ x2

ξ2

a23(x1, t2, x3)U
(23)
32 (x1, t2, x3; ξ1, ξ2)dt2,
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U
(23)
23 (x; ξ2, ξ3) = a23(x1, ξ2, x3)+

+

∫ x2

ξ2

a23(x1, t2, x3)U
(23)
33 (x1, t2, x3; ξ2, ξ3)dt2,

U
(123)
21 (x; ξ1, ξ2, ξ3) = a21(x1, ξ2, x3)U

(13)
11 (x1, ξ2, x3; ξ1, ξ3)+

+a23(x1, ξ2, x3)U
(13)
31 (x1, ξ2, x3; ξ1, ξ3)+

+

∫ x2

ξ2

[a23(x1, t2, x3)U
(123)
31 (x1, t2, x3; ξ1, ξ2, ξ3) + (9.6)

+a21(x1, t2, x3)U
(123)
11 (x1, t2, x3; ξ1, ξ2, ξ3)]dt2,

U
(123)
22 (x; ξ1, ξ2, ξ3) =

∫ x2

ξ2

[a21(x1, t2, x3)U
(123)
12 (x1, t2, x3; ξ1, ξ2, ξ3)+

+a23(x1, t2, x3)U
(123)
32 (x1, t2, x3; ξ1, ξ2, ξ3)]dt2,

U
(123)
23 (x; ξ1, ξ2, ξ3) = a21(x1, ξ2, x3)U

(13)
13 (x1, ξ2, x3; ξ1, ξ3)+

+a23(x1, ξ2, x3)U
(13)
33 (x1, ξ2, x3; ξ1, ξ3)+

+

∫ x2

ξ2

[a21(x1, t2, x3)U
(123)
13 (x1, t2, x3; ξ1, ξ2, ξ3)+

+a23(x1, t2, x3)U
(123)
33 (x1, t2, x3; ξ1, ξ2, ξ3)]dt2,

U
(13)
31 (x; ξ1, ξ3) = a31(x1, x2, ξ3)+

+

∫ x3

ξ3

a31(x1, x2, t3)U
(13)
11 (x1, x2, t3; ξ1, ξ3)dt3,

U
(23)
32 (x; ξ2, ξ3) = a32(x1, x2, ξ3)+

+

∫ x3

ξ3

a32(x1, x2, t3)U
(23)
22 (x1, x2, t3; ξ2, ξ3)dt3,

U
(13)
33 (x; ξ1, ξ3) =

∫ x3

ξ3

a31(x1, x2, t3)U
(13)
31 (x1, x2, t3; ξ1, ξ3)dt3,

U
(23)
33 (x; ξ2, ξ3) =

∫ x3

ξ3

a32(x1, x2, t3)U
(23)
23 (x1, x2, t3; ξ2, ξ3)dt3,

U
(123)
31 (x; ξ1, ξ2, ξ3) = a31(x1, x2, ξ3)U

(12)
11 (x1, x2, ξ3; ξ1, ξ2)+

+a32(x1, x2, ξ3)U
(12)
21 (x1, x2, ξ3; ξ1, ξ2)+
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+

∫ x3

ξ3

[a31(x1, x2, t3)U
(123)
11 (x1, x2, t3; ξ1, ξ2, ξ3)+

+a32(x1, x2, t3)U
(123)
21 (x1, x2, t3; ξ1, ξ2, ξ3)]dt3,

U
(123)
32 (x; ξ1, ξ2, ξ3) = a31(x1, x2, ξ3)U

(12)
12 (x1, x2, ξ3; ξ1, ξ2)+

+a32(x1, x2, ξ3)U
(12)
22 (x1, x2, ξ3; ξ1, ξ2)+

+

∫ x3

ξ3

[a31(x1, x2, t3)U
(123)
12 (x1, x2, t3; ξ1, ξ2, ξ3)+

+a32(x1, x2, t3)U
(123)
22 (x1, x2, t3; ξ1, ξ2, ξ3)]dt3,

U
(123)
33 (x; ξ1, ξ2, ξ3) =

∫ x3

ξ3

[a31(x1, x2, t3)U
(123)
13 (x1, x2, t3; ξ1, ξ2, ξ3)+

+a32(x1, x2, t3)U
(123)
23 (x1, x2, t3; ξ1, ξ2, ξ3)]dt3.

Подставив теперь значения (9.5) в условия (9.3), получим

α11(x2, x3)φ1(x2, x3) + α12(x2, x3)×

×
[∫ x2

x20

U
(12)
21 (x10, x2, x3; x10, ξ2)φ1(ξ2, x3)dξ2+

+

∫ x2

x20

∫ x3

x30

U
(123)
21 (x10, x2, x3; x10, ξ2, ξ3)φ1(ξ2, ξ3)dξ3dξ2

]
+

+α13(x2, x3)

[∫ x3

x30

U
(13)
31 (x10, x2, x3; x10, ξ3)φ1(x2, ξ3)dξ3+

+

∫ x2

x20

∫ x3

x30

U
(123)
31 (x10, x2, x3; x10, ξ2, ξ3)φ1(ξ2, ξ3)dξ3dξ2

]
= γ1(x2, x3),

α22(x1, x3)φ2(x1, x3) + α21(x1, x3)×

×
[∫ x1

x10

U
(12)
12 (x1, x20, x3; ξ1, x20)φ2(ξ1, x3)dξ1+

+

∫ x1

x10

∫ x3

x30

U
(123)
12 (x1, x20, x3; ξ1, x20, ξ3)φ2(ξ1, ξ3)dξ3dξ1

]
+

+α23(x1, x3)

[∫ x3

x30

U
(23)
32 (x1, x20, x3; x20, ξ3)φ2(x1, ξ3)dξ3+

+

∫ x1

x10

∫ x3

x30

U
(123)
32 (x1, x20, x3; ξ1, x20, ξ3)φ2(ξ1, ξ3)dξ3dξ1

]
= γ2(x1, x3),

α33(x1, x2)φ3(x1, x2) + α31(x1, x2)×
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×
[∫ x1

x10

U
(13)
13 (x1, x2, x30; ξ1, x30)φ3(ξ1, x2)dξ1+

+

∫ x1

x10

∫ x2

x20

U
(123)
13 (x1, x2, x30; ξ1, ξ2, x30)φ3(ξ1, ξ2)dξ2dξ1

]
+

+α32(x1, x2)

[∫ x2

x20

U
(23)
23 (x1, x2, x30; ξ2, x30)φ3(x1, ξ2)dξ2+

+

∫ x1

x10

∫ x2

x20

U
(123)
23 (x1, x2, x30; ξ1, ξ2, x30)φ3(ξ1, ξ2)dξ2dξ1

]
= γ3(x1, x2),

γ1(x2, x3) = m1(x2, x3)− α12(x2, x3)

{
φ2(x10, x3)+

+

∫ x2

x20

[f2(x10, ξ2, x3) + U
(23)
23 (x10, x2, x3; ξ2, ξ30)φ3(x10, ξ2)]dξ2+

+

∫ x3

x30

U
(23)
22 (x10, x2, x3; x20, ξ3)φ2(x10, ξ3)dξ3+

+

∫ x2

x20

∫ x3

x30

[U
(23)
23 (x10, x2, x3; ξ2, ξ3)f3(x10, ξ2, ξ3)+

+U
(23)
22 (x10, x2, x3; ξ2, ξ3)f2(x10, ξ2, ξ3)]dξ3dξ2

}
− α13(x2, x3)

{
φ3(x10, x2)+

+

∫ x3

x30

[f3(x10, x2, x3) + U
(23)
32 (x10, x2, x3; x20, ξ3)φ2(x10, ξ3)]dξ3 + (9.7)

+

∫ x2

x20

∫ x3

x30

[U
(23)
33 (x10, x2, x3; ξ2, ξ3)f3(x10, ξ2, ξ3)+

+U
(23)
32 (x10, x2, x3; ξ2, ξ3)f2(x10, ξ2, ξ3)]dξ3dξ2

}
,

γ2(x1, x3) = m2(x1, x3)− α21(x1, x3)

{
φ1(x20, x3)+

+

∫ x1

x10

[f1(ξ1, x20, x3) + U
(13)
13 (x1, x20, x3; ξ1, x30)φ3(ξ1, x20)]dξ1+

+

∫ x3

x30

U
(13)
11 (x1, x20, x3; x10, ξ3)φ1(x20, ξ3)dξ3+

+

∫ x1

x10

∫ x3

x30

[U
(13)
11 (x1, x20, x3; ξ1, ξ2)f1(ξ1, x20, ξ3)+
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+U
(13)
13 (x1, x20, x3; ξ1, ξ2)f3(ξ1, x20, ξ3)]dξ3dξ1

}
− α23(x1, x3)

{
φ3(x1, x20)+

+

∫ x3

x30

[f3(x1, x20, ξ3) + U
(13)
31 (x1, x20, x3; x10, ξ3)φ1(x20, ξ3)]dξ3+

+

∫ x1

x10

∫ x3

x30

[U
(13)
31 (x1, x20, x3; ξ1, ξ3)f1(ξ1, x20, ξ3)+

+U
(13)
33 (x1, x20, x3; ξ1, ξ3)f3(ξ1, x20, ξ3)]dξ3dξ1

}
,

γ3(x1, x2) = m3(x1, x2)− α31(x1, x2)

{
φ1(x2, x30)+

+

∫ x1

x10

[f1(ξ1, x2, x30) + U
(12)
12 (x1, x2, x30; ξ1, x20)φ2(ξ1, x30)]dξ1+

+

∫ x2

x20

U
(12)
11 (x1, x2, x30; x10, ξ2)φ1(ξ2, x30)dξ2+

+

∫ x1

x10

∫ x2

x20

[U
(12)
11 (x1, x2, x30; ξ1, ξ2)f1(ξ1, ξ2, x30)+

+U
(12)
12 (x1, x2, x30; ξ1, ξ2)f2(ξ1, ξ2, x30)]dξ2dξ1

}
− α32(x1, x3)

{
φ2(x1, x30)+

+

∫ x2

x20

[f2(x1, ξ2, x30) + U
(12)
21 (x1, x2, x30; x10, ξ2)φ1(ξ2, x30)]dξ2+

+

∫ x1

x10

∫ x2

x20

[U
(12)
21 (x1, x2, x30; ξ1, ξ2)f1(ξ1, ξ2, x30)+

+U
(12)
22 (x1, x2, x30; ξ1, ξ2)f2(ξ1, ξ2, x30)]dξ2dξ1

}
.

Мы видим, что γk содержат значения φ1, φ2, φ3 при фиксиро-
ванных компонентах вектора x = (x1, x2, x3): таким образом, система
интегральных уравнений (9.7) оказывается нагруженной.

1.2. Условия, обеспечивающие однозначное определение
данных Гурса. Нетрудно получить ограничения на коэффициенты
граничных условий (9.3), при которых указанные значения φk одно-
значно определяются. Сначала, положив в (9.3) xi = xi0 (i = 1, 2, 3),
придем к системе алгебраических уравнений для отыскания значений
φ1, φ2, φ3 в точке x0 = (x10, x20, x30). Требование

det ‖αik(x0)‖ 6= 0 (9.8)
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обеспечивает однозначную разрешимость данной системы. Затем в
каждом из соотношений (9.7) фиксируем лишь одну из входящих туда
компонент x0. В результате получим три пары уравнений:

α11(x20, x3)φ1(x20, x3) + α12(x20, x3)φ2(x10, x3) = p1(x3),
α21(x10, x3)φ1(x20, x3) + α22(x10, x3)φ2(x10, x3) = q1(x3),
α11(x2, x30)φ1(x2, x30) + α13(x2, x30)φ3(x10, x2) = p2(x2),
α31(x10, x2)φ1(x2, x30) + α33(x10, x2)φ3(x10, x2) = q2(x2),
α22(x1, x30)φ2(x1, x30) + α23(x1, x30)φ3(x1, x20) = p3(x1),
α32(x1, x20)φ2(x1, x30) + α33(x1, x20)φ3(x1, x20) = q3(x1).

(9.9)

Здесь pk, qk зависят от однократных интегралов с теми же функциями
φk, которые уже имеются в соответствующих правых частях. Напри-
мер, p1, q1 содержат слагаемые∫ x3

x30

q31(x10, x20, ξ)φ1(x20, ξ)dξ,

∫ x3

x30

q32(x10, x20, ξ)φ2(x10, ξ)dξ.

В остальном при условии (9.8) pk, qk — полностью известные функ-
ции. Таким образом, (9.9) представляют собой три пары интегральных
уравнений. Следовательно, для однозначного определения всех φk при
одной фиксированной координате достаточно к (9.8) добавить требова-
ния:

α11(x20, x3)α22(x10, x3)− α12(x20, x3)α21(x10, x3) 6= 0,
α11(x2, x30)α33(x10, x2)− α13(x2, x30)α31(x10, x2) 6= 0,
α22(x1, x30)α33(x1, x20)− α23(x1, x30)α32(x1, x20) 6= 0.

(9.10)

Отметим, что условия (9.8), (9.10), определяя полностью γk, одновре-
менно превращают уравнения (9.7) в независимые друг от друга. При-
мечательным является также то, что функции U

(β)
α при указанных в

левых частях (9.7) значениях своих аргументов можно явно выразить
через коэффициенты исходной системы дифференциальных уравнений
(9.1). Для этого достаточно воспользоваться соотношениями (9.6). На-
пример, в первом уравнении для U

(12)
21 имеем

U
(12)
21 (x10, x2, x3; x10, ξ2) = a21(x10, ξ2, x3) +

+

∫ x2

ξ2

a21(x10, t2, x3)U
(12)
11 (x10, t2, x3; x10, ξ2)dt2.

Второй сомножитель под интегралом есть, в свою очередь, тоже ин-
теграл, но с совпадающими верхним и нижним пределами. Поэтому
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данная функция совпадает с первым слагаемым. Аналогично

U
(123)
21 (x10, x2, x3; x10, ξ2, ξ3) = a21(x10, ξ2, x3)U

(13)
11 (x10, ξ2, x3; x10, ξ3)+

+a23(x10, ξ2, x3)

[∫ x3

ξ3

a31(x10, ξ2, t3)U
(13)
11 (x10, ξ2, t3; x10, ξ3)dt3+

+a31(x10, ξ2, ξ3)

]
+

∫ x2

ξ2

[a23(x10, t2, x3)U
(123)
31 (x10, t2, x3; x10, ξ2, ξ3)+

+a21(x10, t2, x3)U
(123)
11 (x10, t2, x3; x10, ξ2, ξ3)]dt2.

Все входящие сюда U
(β)
α оказываются на основании (9.6) равными ну-

лю за счет совпадения пределов интегрирования, вследствие чего функ-
ция оказывается равной a31(x10, ξ2, ξ3)a23(x10, ξ2, x3). Рассуждая подоб-
ным образом и далее, после простых вычислений перепишем уравнения
(9.7) в форме:

α11(x2, x3)φ1(x2, x3) + α12(x2, x3)

[∫ x2

x20

a21(x10, ξ2, x3)φ1(ξ2, x3)dξ2+

+

∫ x2

x20

∫ x3

x30

a31(x10, ξ2, ξ3)a23(x10, ξ2, x3)φ1(ξ2, ξ3)dξ3dξ2

]
+

+α13(x2, x3)

[∫ x3

x30

a31(x10, x2, ξ3)φ1(x2, ξ3)dξ3+

+

∫ x2

x20

∫ x3

x30

a21(x10, ξ2, ξ3)a32(x10, x2, ξ3)φ1(ξ2, ξ3)dξ3dξ2

]
= γ1(x2, x3),

α21(x1, x3)

[∫ x1

x10

a12(ξ1, x20, x3)φ2(ξ1, x3)dξ1+

+

∫ x1

x10

∫ x3

x30

a13(ξ1, x20, x3)a32(ξ1, x20, ξ3)φ2(ξ1, ξ3)dξ3dξ1

]
+

+α22(x1, x3)φ2(x1, x3) + α23(x1, x3)

[∫ x3

x30

a32(x1, x20, ξ3)φ2(x1, ξ3)dξ3+

(9.11)

+

∫ x1

x10

∫ x3

x30

a12(ξ1, x20, ξ3)a31(x1, x20, ξ3)φ2(ξ1, ξ3)dξ3dξ1

]
= γ2(x1, x3),

α31(x1, x2)

[∫ x1

x10

a13(ξ1, x2, x30)φ3(x1, x2)dξ1+
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+

∫ x1

x10

∫ x2

x20

a12(ξ1, x2, x30)a23(ξ1, ξ2, x30)φ3(ξ1, ξ2)dξ2dξ1

]
+

+α32(x1, x2)

[∫ x2

x20

a23(x1, ξ2, x30)φ3(x1, ξ2)dξ2+

+

∫ x1

x10

∫ x2

x20

a21(x1, ξ2, x30)a13(ξ1, ξ2, x30)φ3(ξ1, ξ2)dξ2dξ1

]
+

+α33(x1, x2)φ3(x1, x2) = γ3(x1, x2).

Используя результаты п. 1 § 1, нетрудно убедиться, что для
однозначной разрешимости, например, первого из этих уравнений, до-
статочно выполнения любой из семи групп условий:
1) α11(x2, x3) 6= 0;
2) α11(x2, x3) ≡ a31(x10, x2, x3) ≡ 0, α12(x2, x3)a21(x10, x2, x3) 6= 0,

f3, α12, α13, α31, α32, α33, m1, m3 ∈ C1
x2

;
3) α11(x2, x3) ≡ a21(x10, x2, x3) ≡ 0, α13(x2, x3)a31(x10, x2, x3) 6= 0,

f2, α12, α21, α13, α22, α33, m1, m2 ∈ C1
x3

;
4) α11(x2, x3) ≡ α13(x2, x3) ≡ 0, α12(x2, x3)a21(x10, x2, x3) 6= 0,

m1, α12 ∈ C1
x2

;
5) α11(x2, x3) ≡ α12(x2, x3) ≡ 0, α13(x2, x3)a31(x10, x2, x3) 6= 0, (9.12)

m1, α13 ∈ C1
x3

;
6) α11(x2, x3) ≡ α13(x2, x3) ≡ a21(x10, x2, x3) ≡ 0,

α12(x2, x3)a31(x10, x2, x3)a23(x10, x2, x3) 6= 0,
m1, α12 ∈ C2

x2x3
, f2, a23, α31, α22, α23, m2 ∈ C1

x3
;

7) α11(x2, x3) ≡ α12(x2, x3) ≡ a31(x10, x2, x3) ≡ 0,
α13(x2, x3)a21(x10, x2, x3)a32(x10, x2, x3) 6= 0,
m1, α13 ∈ C2

x2x3
, f3, a32, α31, α32, α33, m3 ∈ C1

x2
.

Здесь включения f ∈ C1
xk

(f ∈ C2
xkxs

) означают f , ∂f/∂xk ∈ C (f ,
∂f/∂xk, ∂f/∂xs, ∂2f/∂xk∂xs ∈ C). К указанным условиям гладкости
приводит необходимость в соответствующих случаях дифференциро-
вать уравнение, а, следовательно, и его правую часть γ1, зависящую
от значений φk, определяемых из (9.9).

Для второго уравнения (9.11) роль, аналогичную (9.12), играют
группы требований:
1) α22(x1, x3) 6= 0,
2) α22(x1, x3) ≡ a32(x1, x20, x3) ≡ 0, α21(x1, x3)a12(x1, x20, x3) 6= 0,

f3, α21, α23, α31, α32, α33, m2, m3 ∈ C1
x1

;
3) α22(x1, x3) ≡ a12(x1, x20, x3) ≡ 0, α23(x1, x3)a32(x1, x20, x3) 6= 0,

f1, α11, α12, α21, α13, α23, m1, m2 ∈ C1
x3

;
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4) α22(x1, x3) ≡ α23(x1, x3) ≡ 0, α21(x1, x3)a12(x1, x20, x3) 6= 0,
m2, α21 ∈ C1

x1
;

5) α22(x1, x3) ≡ α21(x1, x3) ≡ 0, α23(x1, x3)a32(x1, x20, x3) 6= 0, (9.13)
m2, α23 ∈ C1

x3
;

6) α22(x1, x3) ≡ α23(x1, x3) ≡ a12(x1, x20, x3) ≡ 0,
α21(x1, x3)a13(x1, x20, x3)a32(x1, x20, x3) 6= 0,
m2, α21 ∈ C2

x1x3
, f1, a13, α11, α12, α13, m1 ∈ C1

x3
;

7) α22(x1, x3) ≡ α21(x1, x3) ≡ a32(x1, x20, x3) ≡ 0,
α23(x1, x3)a12(x1, x20, x3)a31(x1, x20, x3) 6= 0
m2, α23 ∈ C2

x1x3
, f3, a31, α31, α32, α33, m3 ∈ C1

x1
.

Аналогично для третьего уравнения (9.11) получим следующие
условия однозначной разрешимости:
1) α33(x1, x2) 6= 0,
2) α33(x1, x2) ≡ a23(x1, x2, x30) ≡ 0, α31(x1, x2)a13(x1, x2, x30) 6= 0,

f2, α21, α22, α23, α31, α32, m2, m3 ∈ C1
x1

;
3) α33(x1, x2) ≡ a13(x1, x2, x30) ≡ 0, α32(x1, x2)a23(x1, x2, x30) 6= 0,

f1, α11, α12, α13, α31, α32, m1, m3 ∈ C1
x2

;
4) α33(x1, x2) ≡ α32(x1, x2) ≡ 0, α31(x1, x2)a13(x1, x2, x30) 6= 0,

m3, α31 ∈ C1
x1

;
5) α33(x1, x2) ≡ α31(x1, x2) ≡ 0, α32(x1, x2)a23(x1, x2, x30) 6= 0, (9.14)

m3, α32 ∈ C1
x2

;
6) α33(x1, x2) ≡ α32(x1, x2) ≡ a13(x1, x2, x30) ≡ 0,

α31(x1, x2)a12(x1, x2, x30)a23(x1, x2, x30) 6= 0,
m3, α31 ∈ C2

x1x2
, f1, a12, α11, α12, α13, m1 ∈ C1

x2
;

7) α33(x1, x2) ≡ α31(x1, x2) ≡ a23(x1, x2, x30) ≡ 0,
α32(x1, x2)a13(x1, x2, x30)a21(x1, x2, x30) 6= 0,
m3, α32 ∈ C2

x1x2
, f2, a21, α21, α22, α23, m2 ∈ C1

x1
.

Взяв в (9.12) – (9.14) по одной из указанных семи групп и объ-
единив их друг с другом, получим 343 варианта условий однозначной
разрешимости системы интегральных уравнений (9.11).

1.3. Замечания о проведенных рассуждениях и форму-
лировка результатов. Очевидно, проведенные рассуждения имеют
смысл и без предположений о выполнении условий (9.8), (9.10). Но, ко-
нечно, условия совместимости систем алгебраических уравнений для
определения значений φk, входящих в правые части (9.11) (совпадение
рангов основных и расширенных матриц) должны быть выполнены,
иначе условия (9.3) будут взаимно противоречивыми. При этом часть
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значений φk, входящих в правые части (9.11), или даже все они, не опре-
деляются и должны рассматриваться как произвольные постоянные
или функции. Таким образом, решения интегральных уравнений (9.11)
могут содержать произвольные постоянные и произвольные функции,
зависящие от одной из переменных x1, x2, x3 (до шести функций).

Обратим внимание также на то, что требования на αik в
(9.12) – (9.14), начиная с четвертых групп, находятся в противоречии
с условиями (9.10). Для доведения изложенной схемы рассуждений до
конца следует исключить из (9.10) те требования, которые противоре-
чат условиям (9.12) – (9.14). Например, если вариант содержит чет-
вертую группу из (9.12), второе условие из (9.10) не может иметь мес-
та. При этом (если указанные выше условия совместности выполне-
ны) хотя бы одна из функций φ1(x2, x30), φ3(x10, x2) должна оставаться
произвольной. Следовательно, лишь комбинации групп 1) – 3) в (9.12)
– (9.14) дают вместе с (9.8), (9.10) условия однозначной разрешимос-
ти исходной задачи. Всего таких вариантов будет 27. Решение же в
остальных 316 случаях может быть лишь неединственным. В каждом
конкретном случае неединственности процесс выяснения числа произ-
вольных функций и констант не содержит принципиальных труднос-
тей, поскольку все сводится к рассмотрению различных систем алгеб-
раических линейных уравнений с двумя или тремя неизвестными.

Из вышеизложенного следует, что трехмерная задача 2 одно-
значно разрешима при выполнении неравенств (9.8), (9.10) с добав-
лением к ним любого из двадцати семи вариантов условий, каждый
из которых представляет собой объединение по одной из первых трех
групп требований в (9.12) – (9.14).

В заключение еще заметим, что нарушение условий вида 7) мо-
жет сделать исходную задачу существенно более неопределенной, чем в
указанных выше случаях. Например, при тождественном обращении в
нуль хотя бы одной из трех функций, которые в данных условиях пред-
полагаются отличными от нуля, происходит фактически исчезновение
одного из уравнений (9.11), если остальные требования соответствую-
щей группы 7) выполнены. Вследствие этого по крайней мере одна из
функций φ1(x2, x3), φ2(x1, x3), φ3(x1, x2) должна оставаться произволь-
ной.
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2. Частный случай

Очевидно, содержание п. 1 § 9 представляет собой распростране-
ние на трехмерный случай схемы рассуждений из п. 1 § 8. Естественно
возникает вопрос о подобном же развитии идеи из пп. 2 – 3 § 8. Основой
для рассуждений в п. 2 § 8 являются два обстоятельства: а) возмож-
ность редукции системы (8.1) к уравнению вида (8.27); б) возможность
получения из соотношений (8.2) граничных значений задачи Гурса для
(8.27). Если при n = 2 обе эти возможности были реализованы для
общей постановки задачи 1, то в случае задачи 2 подобное удалось сде-
лать лишь в весьма частном случае: во-первых, предполагается, что в
(9.1) входят лишь коэффициенты a12, a23, a31, а остальные тождествен-
но равны нулю; во-вторых, берется лишь случай, когда соотношения
(9.3) превращаются в условия (9.4) задачи Гурса для рассматриваемой
системы уравнений.

2.1. Редукция к одному уравнению третьего порядка.
Роль уравнения (8.27) при n = 3 играет

ux1x2x3
+ aux1x2

+ bux2x3
+ cux1x3

+ dux1
+ eux2

+ fux3
+ gu = 0. (9.15)

Попытки редуцировать к этому уравнению систему (9.1) лишь в пред-
положениях (9.2) с помощью идеи из п. 2 § 8 привели к появлению бес-
конечно повторяющихся циклических преобразований. Возможно, это
указывает на принципиальную неосуществимость обсуждаемой редук-
ции в общем случае. Появления циклов удалось избежать, оставив из
всех коэффициентов в (9.1) только a12, a23, a31. Функции fi(x) можно
было при этом сохранить, но мы их тоже будем считать далее нулями,
чтобы не усложнять формулы. Итак, пусть

a12a23a31 6= 0. (9.16)

Исключая из (9.1) искомые функции u2, u3 с помощью дифференциро-
вания первого уравнения по x1, x2, приходим для u = u1 к уравнению
(9.15) с коэффициентами

b ≡ e ≡ f ≡ 0, a = −[ln(a12a23)]x3
, c = −(ln a12)x2

,
d = (ln a12)x2

[ln(a12a23)]x3
− (ln a12)x2x3

, g = −a12a23a31.
(9.17)

Для обеспечения возможности указанных действий мы полагаем, что
существуют производные

∂a12

∂x2
,

∂a12

∂x3
,

∂a23

∂x3
,

∂2a12

∂x2∂x3
∈ C(D). (9.18)
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Аналогично получается, что для u2 и u3 коэффициенты уравнения
(9.15) определяются соответственно формулами:

c ≡ d ≡ f ≡ 0, a = −(ln a23)x3
, b = −[ln(a23a31)]x1

,

e = (ln a23)x3
[ln(a23a31)]x1

− (ln a23)x1x3
, g = −a12a23a31;

(9.19)

a ≡ d ≡ e ≡ 0, b = −(ln a31)x1
, c = −[ln(a12a31)]x2

,
f = (ln a31)x1

[ln(a12a31)]x2
− (ln a31)x1x2

, g = −a12a23a31.
(9.20)

При этом в случае (9.19) существуют производные

∂a23

∂x3
,

∂a31

∂x1
,

∂a23

∂x1
,

∂2a23

∂x1∂x3
∈ C(D), (9.21)

а в случае (9.20)

∂a31

∂x1
,

∂a12

∂x2
,

∂a31

∂x2
,

∂2a23

∂x1∂x2
∈ C(D). (9.22)

Заметим, что выполнение (9.16) гарантирует получение уравнения
(9.15) для всех функций u1, u2, u3. В то же время, нетрудно заметить,
что в случае уравнения для u = u1 достаточно, чтобы только a12a23 6= 0.
Аналогично, уравнения только для u2 и только для u3 обеспечиваются
соответственно неравенствами a23a31 6= 0 и a12a31 6= 0.

В соответствии со схемой рассуждений в п. 2 § 8 теперь нужно
получить из (9.3) значения искомой функции в (9.15) при xk = xk0, k =
1, 2, 3. В п. 2 § 8 для этого были использованы связи между значениями
решения (8.27) и его нормальной производной на характеристике.

Ограничимся случаем, когда (9.3) совпадают с (9.4). Итак, по-
лучим теперь для каждой из функций uk условия задачи Гурса, относя-
щиеся к уравнению (9.15). Это есть значения указанных функций при
фиксировании одной из переменных. Из (9.4) известно, что

u1(x10, x2, x3) = φ1(x2, x3). (9.23)

Интегрированием второго и третьего уравнений (9.1) нахoдим

u2(x10, x2, x3) = φ2(x10, x3) +

∫ x2

x20

a23(x10, ξ2, x3)u3(x10, ξ2, x3)dξ2, (9.24)

u3(x10, x2, x3) = φ3(x10, x2) +

∫ x3

x30

a31(x10, x2, ξ3)φ1(x2, ξ3)dξ3. (9.25)
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Подставляя (9.25) в (9.24), имеем:

u2(x10, x2, x3) = φ2(x10, x3) +

∫ x2

x20

a23(x10, ξ2, x3)φ3(x10, ξ2)dξ2 +

+

∫ x2

x20

∫ x3

x30

a23(x10, ξ2, x3)a31(x10, ξ2, ξ3)φ1(ξ2, ξ3)dξ3dξ2. (9.26)

Аналогично получаются условия типа (9.23) – (9.26) для фиксирован-
ных значений x20 и x30:

u1(x1, x20, x3) = φ1(x20, x3) +

∫ x1

x10

a12(ξ1, x20, x3)φ2(ξ1, x3)dξ1,

u2(x1, x20, x3) = φ2(x1, x3),

u3(x1, x20, x3) = φ3(x1, x20) +

∫ x3

x30

a31(x1, x20, ξ3)φ1(x20, ξ3)dξ3+

+

∫ x1

x10

∫ x3

x30

a31(x1, x20, ξ3)a12(ξ1, x20, ξ3)φ2(ξ1, ξ3)dξ3dξ1;

(9.27)

u1(x1, x2, x30) = φ1(x2, x30) +

∫ x1

x10

a12(ξ1, x2, x30)φ2(ξ1, x30)dξ1+

+

∫ x1

x10

∫ x2

x20

a12(ξ1, x2, x30)a23(ξ1, ξ2, x30)φ3(ξ1, ξ2)dξ2dξ1,

u2(x1, x2, x30) = φ2(x1, x30) +

∫ x2

x20

a23(x1, ξ2, x30)φ3(x1, ξ2)dξ2,

u3(x1, x2, x30) = φ3(x1, x2).

(9.28)

Соотношения (9.23) – (9.28) можно записать более компактно:

uk|xi=xi0
= φki(zi); k, i = 1, 2, 3. (9.29)

Здесь zi получается из (x1, x2, x3) отбрасыванием координаты с номе-
ром i, а через φki обозначены известные правые части предыдущих
формул.

Заметим, что (9.29) содержат граничные условия задачи Гурса
для трех функций. Для решения же исходной задачи в силу предполо-
жения (9.16) достаточно найти одну из них. Например, если мы найдем
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u1, то u2 и u3 даются формулами

u2 =
u1x1

a12
, u3 =

u1x1x2
− (ln a12)x2

u1x1

a12a23
,

непосредственно следующими из (9.1).
В терминах функции Римана R соответствующих уравнений

(2.15) функции u1, u2, u3 можно записать по формуле (2.19).
Таким образом, полученный в данном п. 2.1 результат, можно

рассматривать, как дополнение к статье Т.В.Чекмарева [87]: для од-
ного случая системы (9.1) установлена возможность записать решение
задачи Гурса в терминах функции Римана уравнения (9.15). Конечно,
было бы более интересно найти случаи записи решения этой же задачи
Гурса в явном виде. К этому мы и переходим.

2.2. О явном решении задачи Гурса. Первая возникающая
здесь мысль: проверить условия расщепления оператора в левой части
(9.15). Воспользуемся результатами из п. 5 § 2. А именно, пусть

h1 = ax + ab− e, h2 = ay + ac− d, h3 = by + bc− f,

h4 = bz + ab− e, h5 = cx + bc− f, h6 = cz + ac− d,
h7 = dx + bd− g, h8 = ey + ce− g, h9 = fz + af − g.

(9.30)

Если обозначить через M класс функций вида m1(x1)m2(x2)m3(x3), то
конструкции (9.15) порождают следующие шесть случаев явного по-
строения функций Римана R:

1) h1 ≡ h2 ≡ h5 ≡ 0, h7 ∈ M ; 2) h2 ≡ h3 ≡ h4 ≡ 0, h8 ∈ M ;
3) h4 ≡ h5 ≡ h6 ≡ 0, h9 ∈ M ; 4) h1 ≡ h5 ≡ h6 ≡ 0, h7 ∈ M ;
5) h1 ≡ h2 ≡ h3 ≡ 0, h8 ∈ M ; 6) h3 ≡ h4 ≡ h6 ≡ 0, h9 ∈ M.

(9.31)

При этом дополнительно предполагается, что коэффициенты
при вторых производных в (9.15) имеют представления

a = α(x3) + δx1x2, b = β(x1) + δx2x3,

c = γ(x2) + δx1x3, δ = const.
(9.32)

Рассмотрим случаи (9.31) – (9.32) последовательно.
Возьмем уравнение для u1. Непосредственно вычисляем с помо-

щью (9.17) и (9.30):

h3 ≡ h4 ≡ h6 ≡ 0, h8 ≡ h9 ≡ a12a23a31,

h1 = −[ln(a12a23)]x1x3
, h2 = −(ln a23)x2x3

, h5 = −(ln a12)x1x2
,

h7 = a12a23a31 − (ln a12)x1x2x3
+ {(ln a12)x2

[ln(a12a23)]x3
}x1

.
(9.33)
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Рассмотрим первый набор (9.31). Из (9.33) видно, что он прини-
мает вид

(ln a12)x1x2
= 0, (ln a23)x2x3

= 0, [ln(a12a23)]x1x3
= 0,

a12a23a31 ∈ M.
(9.34)

Из первых двух уравнений (9.34) получаем представления

a12 = F (x1, x3)Y (x2, x3), a23 = Φ(x1, x2)Q(x1, x3), (9.35)

FY ΦQ 6= 0, (9.36)

где F , Y , Φ, Q — произвольные функции своих аргументов. Подставляя
их в третье условие (9.34), получим

F (x1, x3)Q(x1, x3) = f1(x1)f2(x3) 6= 0 (9.37)

с произвольными функциями f1, f2. Поэтому

a12a23 = f1(x1)f2(x3)Φ(x1, x2)Y (x2, x3). (9.38)

Так как в (9.17) b ≡ 0, то в (9.32) β ≡ 0, δ = 0, и

ln f ′2(x3) + [ln Y (x2, x3)]x3
= α(x3), [ln Y (x2, x3)]x2

= γ(x2).

Из последних условий следует, что Y имеет представление

Y (x2, x3) = A2(x2)A3(x3) 6= 0. (9.39)

Из (9.35) – (9.39) выводим, что a12, a23 должны иметь представления

a12 = F (x1, x3)A2(x2)A3(x3), a23 = Φ(x1, x2)
f1(x1)f2(x3)

F (x1, x3)
, (9.40)

где справа все функции являются произвольными и не обращающими-
ся в нуль. Из последнего же условия (9.34) следует, что при этом a31

должна иметь вид

a31 =
ω(x1, x2, x3)

Φ(x1, x2)
, ω ∈ M. (9.41)

Нетрудно видеть, что функции a12, a23, a31, имеющие представления
(9.40) – (9.41), существуют (например, если они все принадлежат клас-
су M).
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Обратимся теперь к второму набору (9.31), который в данном
случае содержит лишь условия:

(ln a23)x2x3
= 0, a12a23a31 ∈ M. (9.42)

Отсюда ясно, что представление для a23 дается формулой

a23 = Φ(x1, x2)Q(x1, x3) 6= 0.

Представления (9.32) будут обеспечены, если дополнительно потребо-
вать, чтобы Q(x1, x3) зависела лишь от x3, а a12 = A2(x2)F (x1, x3).
Таким образом, здесь достаточно, чтобы a12, a23, a31 представлялись в
формах

a12 = A2(x2)F (x1, x3), a23 = Φ(x1, x2)Q3(x3),

a31 =
ω(x1, x2, x3)

F (x1, x3)Φ(x1, x2)
, ω ∈ M.

(9.43)

Требования (9.43) менее ограничительны, чем (9.40) – (9.41). Впрочем,
это видно и из сравнения (9.42) и (9.34): условия (9.42) получаются из
(9.34) отбрасыванием двух требований.

Указанным способом можно перебрать все шесть вариантов
(9.31). При этом оказывается, что последний вариант будет наименее
ограничительным, поскольку входящие в него тождества выполняются
автоматически. На коэффициенты будут накладываться лишь требо-
вания (9.32) и последнее из (9.42). Таким образом, достаточно, чтобы
коэффициенты системы (9.1) имели представления

a12 = H(x1, x3)h(x2), a23 =
L(x1, x2)l(x3)

H(x1, x3)h(x2)
,

a31 =
ω(x1, x2, x3)

L(x1, x2)
, ω ∈ M,

(9.44)

где H, L, h, l — произвольные, не обращающиеся в нуль, функции.
Если при этом ω = m1(x1)m2(x2)m3(x3), то функция Римана R

дается формулой

R(x1, x2, x3, λ, µ, ν) = 0F2(1, 1; θ) exp[h(x2) + l(x3)− h(µ)− l(ν)],

где 0F2 — обобщенная гипергеометрическая функция [1, c. 183], а

θ =

∫ λ

x1

m1(ξ1)dξ1

∫ µ

x2

m2(ξ2)h(ξ2)dξ2

∫ ν

x3

l(ξ3)m3(ξ3)dξ3.
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По изложенной выше схеме можно рассуждать и в случаях задач
для u2 и u3.

Если говорить об уравнении (9.15) для u2, то из (9.19) и (9.30)
находим

h1 ≡ h4 ≡ h5 ≡ h6 ≡ 0, h2 = −(ln a23)x2x3
,

h3 = −[ln(a23a31)]x1x2
, h7 ≡ h9 ≡ a12a23a31,

h8 = {(ln a23)x3
[ln(a23a31)]x1

− (ln a23)x1x3
}x2

+ a12a23a31.

Перебирая все случаи (9.31) – (9.32), получим в качестве наименее
ограничительных условий (9.32) и a12a23a31 ∈ M. Отсюда выводятся
представления, играющие роль (9.44):

a23 = H(x1, x2)h(x3), a31 =
L(x2, x3)l(x1)

H(x1, x2)h(x3)
,

a12 =
ω(x1, x2, x3)

L(x2, x3)
, ω ∈ M.

(9.45)

По сравнению с (9.44), здесь изменились аргументы у произвольных
функций в правых частях, а сами правые части определяют уже струк-
туру других коэффициентов.

Аналогичная ситуация будет и для уравнения (9.15) при u = u3.
Мы ограничимся лишь указанием формул типа (9.44) – (9.45). Они
имеют в данном случае вид

a31 = H(x2, x3)h(x1), a12 =
L(x1, x3)l(x2)

H(x2, x3)h(x1)
,

a23 =
ω(x1, x2, x3)

L(x1, x3)
, ω ∈ M.

(9.46)

Отметим, что формула решения задачи Гурса получена при
условии, что коэффициенты уравнения (9.15) удовлетворяют услови-
ям гладкости (2.11).

Таким образом, решение рассматриваемой задачи Гурса может
быть записано в явном виде при выполнении (9.16) и хотя бы одного из
трех наборов условий: а) (9.18), (9.44); б) (9.21), (9.45); в) (9.22), (9.46).
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3. Использование результатов предыдущего параграфа

Указанные результаты можно использовать в случаях, когда за-
дача 2 расщепляется на задачу 1 для двух искомых функций и задачу
Коши для третьей из этих функций.

Например, это происходит, если a13 ≡ a23 ≡ 0, α13 ≡ α23 ≡ 0.
Тогда для u1, u2 мы имеем задачу 1, где коэффициенты системы (8.1) и
соотношений (8.2) зависят от параметра x3, при этом можно в форму-
лах § 8 считать, что x = x1, y = x2. Когда u1, u2 из решения задачи 1
определены, их можно подставить в последнее соотношение (9.3), вы-
числив тем самым значение u3(x1, x2, x30). Очевидно, при этом следует
еще предполагать, что α33(x2, x3) 6= 0. Подстановка же u1, u2 в тре-
тью строку (9.1) дает уравнение для u3, которое вместе со значением
u3(x1, x2, x30) представляет собой вышеупомянутую задачу Коши. Она
решается непосредственным интегрированием уравнения для u3.

При осуществлении только что указанной схемы рассуждений
следует учитывать зависимость коэффициентов системы уравнений и
граничных условий от компоненты x3, которую на этапе решения за-
дачи 1 можно рассматривать как параметр. В условиях п. 2 характер
разрешимости задачи (однозначность) не меняется, но в рассуждени-
ях пп. 2 – 3 вместо произвольной постоянной φ(x20) = ψ(x10) появится
произвольная функция ψ(x20, x3) = ψ(x10, x3) = θ3(x3). В окончатель-
ные формулы решения задачи 2 войдет еще значение θ3(x30).

Приведем здесь утверждение, аналогичное тем выводам, кото-
рые были получены из п. 1.2.

При выполнении тождеств a13 ≡ a23 ≡ α13 ≡ α23 ≡ 0 и нера-
венств

α2
11(x2, x3) + α2

12(x2, x3) 6= 0, α2
21(x1, x3) + α2

22(x1, x3) 6= 0,

α11(x20, x3)α22(x10, x3)− α21(x10, x3)α12(x20, x3) 6= 0

задача 2 однозначно разрешима, если добавить к ним любой из четырех
наборов условий:
1) α11(x2, x3)α22(x1, x3) 6= 0;
2) α11(x2, x3) ≡ 0, α22(x1, x3)a21(x10, x2, x3) 6= 0;
3) α22(x1, x3) ≡ 0, α11(x2, x3)a12(x1, x20, x3) 6= 0;
4) α11(x2, x3) ≡ α22(x1, x3) ≡ 0, a21(x10, x2, x3)a12(x1, x20, x3) 6= 0.
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Подобным образом могут быть сформулированы утверждения,
аналогичные заключительным выводам из пп. 2.1 – 2.2, 3.1 – 3.3. При
этом, например, в п. 2.1 условия (8.29), (8.36) сводятся к требованиям

a21(x10, x2, x3)a12(x1, x20, x3) 6= 0, a12, a12x2
∈ C(D).

Структурные формулы типа (8.46), (8.47) и другие тоже будут
содержать компоненту x3. Так, например, роль представлений (8.61)
будут играть формулы (с произвольными функциями в правых частях)

a12 = r(x1, x3)s(x2, x3),

a21 =
2
∂X

∂x1
(x1, x3)

∂Y

∂x2
(x2, x3)

r(x1, x3)s(x2, x3)[X(x1, x3) + Y (x2, x3)]
2 .

Нетрудно видеть, что, кроме указанных условий расщепления
задачи 2, можно указать еще два набора подобных условий:

1) a12 ≡ a32 ≡ α12 ≡ α32 ≡ 0, α22 6= 0;

2) a21 ≡ a31 ≡ α21 ≡ α31 ≡ 0, α11 6= 0.

Очевидно, они получаются, если роль (x1, x2) играют соответственно
(x1, x3), (x2, x3). В формулах из пп. 3.1 – 3.3 появятся произвольные
функции θ2(x2) или θ1(x1) (в порядке следования вариантов 1) – 2)).
Правые же части структурных формул для коэффициентов системы
уравнений будут зависеть еще и от x2, x1 (в том же порядке).

Получены также определенные результаты по исследованию об-
суждаемой задачи в четырехмерном пространстве [40] – [41]. Из-за
большого объема вычислений мы их здесь не приводим.
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