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Abstract: Noise is considered one of the most critical envi-
ronmental issues because it endangers the health of living
organisms. For this reason, up-to-date knowledge seeks to
find the causes of noise in various industries and thus pre-
vent it as much as possible. Considering the development
of railway lines in underdeveloped countries, identifying
and modeling the causes of vibrations and noise of rail
transportation is of particular importance. The evaluation
of railway performance cannot be imagined without mea-
suring and managing noise. This study tried to model the
maximum A-weighted noise pressure level with the infor-
mation obtained from field measurements by Emotional
artificial neural network (EANN) models and compare the
results with linear and logarithmic regression models. The
results showed the high efficiency of EANNmodels in noise
prediction so that the prediction accuracy of 95.6% was
reported. The results also showed that in noise prediction
based on the neural network-based model, the indepen-
dent variables of train speed and distance from the center
of the route are essential in predicting.
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1 Introduction
The uncontrolled population growth combined with the in-
dustrial development and technology ofmetropolitan areas
brings many problems for urban dwellers, of which envi-
ronmental pollution is one of the most important. Noise
pollution as one of the most important environmental pol-
lutants in creating such problems in large cities has played
a significant role. Noise pollution is directly related to tech-
nology (especially industrial technology), in other words,
along with the growth and development of technology, the
problem of noise pollution also becomes more widespread
and causes more problems. The problem of this type of pol-
lution in most industrialized countries is considered as one
of the most important environmental issues. In a way that
even in metropolitan management, the interior architec-
ture of health centers, educational-research, residential-
commercial as well as the design of industrial machinery
has received special attention. The most common sources
of noise pollution in the urban environment are the railway
system and airports. If the noise of these systems does not
exceed a certain level, it will have adverse and sometimes ir-
reversible psychological effects on the people living around
these sound sources. Therefore, the noise caused by the
movement of trains in urban areas is one of the hazards that
can always endanger human health.Therefore, the noise
caused by the movement of trains in urban areas is one of
the hazards that can always endanger human health. In
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the field of noise pollution caused by train traffic in urban
areas, many studies have been done, which shows the im-
portance of this source of pollution as one of the problems
of urban life.

Asmentioned earlier, noise has harmful effects in three
areas: mental, safety, and health [1]. According to studies,
railway noise is more annoying and destructive than road
traffic noise [2]. One of the most important effects in the
rail transport sector is its effects on staff health and passen-
ger sleep [3, 4]. For this reason, the study of noise and its
amount in railways and rail transport and ways to reduce it
is of great importance. The main reasons for noise propaga-
tion in railways arewheelwearwith rails, tractionnoise and
auxiliary systems at low speeds, and aerodynamic noise at
speeds above 200 km/h [5]. In addition to stopping time,
braking, and acceleration, train noise is also transmitted
by maneuvering activities usually performed locally [6].

In designing highways, ordinary roads and evaluating
existing or anticipated changes, traffic noise prediction
models greatly help designers. Logically, the above defini-
tion is applicable in railway design. Undoubtedly, railway
traffic noise prediction models can play a decisive role in
assessing and monitoring the impact of noise on railway
development projects [6]. The railway traffic noise is recog-
nized as a complex systemdue to the interaction of different
spatio-temporal factors. Both distributed and lumped mod-
els can simulate the railway traffic noise through different
approaches. In practice, conceptual/physical-based mod-
els require enormous volume of data and calculations. On
the other hand, black box models have recently become a
popular choice

Artificial neural network (ANN) is one of the black box
modeling methods that has been used in recent decades [7,
8]. For example, Cammarata and colleagues developed a
post-diffusion neural network in 1995 to predict maximum
A-weighted noise pressure level (LAeq) by measuring noise
in Italy [9]. They compared neural network predictions with
several conventional models. Hamoda also developed the
general regression neural network (GRNN) and the back-
propagation neural network (BPNN) in 2008 to predict the
structure of construction noise to assess environmental im-
pacts [10]. The results showed that the predictions of the
GRNNaremore accurate than the BPNN. These results show
the ability of neural networks to predict the structure of
noise.

Nassiri et al. (2007) developed an equation that calcu-
lates the LAmax of the Tehran-Karaj local train (4GE diesel
model) [5]. The proposed model form is derived from the
LAmax prediction equations for single locomotive trains.
This model is provided in the US Federal Transportation
Manual and in the French Rail Noise Prediction Model. Gi-

vargis and Karimi (2009) developed three mathematical,
statistical, and neural models to compare the LAmax of the
Tehran-Karaj express train [6]. The results of these three
modelswere satisfactorywithout statistically significant dif-
ferences. However, the authors emphasize that more work
is needed to develop and evaluate complex heterogeneous
models.

The artificial intelligence approaches applied for noise
modeling in the previous papers, particularly the classi-
cal ANN method which is the most popular artificial intel-
ligence method used for noise modeling, are sometimes
confront with different shortcomings such as incapability
to offer probabilistic forecasting, low generalization abil-
ity, underestimation, overfitting in fore-casting, and the
need to apply external data pre-processing methods (such
as wavelet transform) outside the framework of the model
due to insufficient data samples for model training or non-
stationary data samples with high seasonal variations.

It is obvious that to recognize the noise, a reliable and
appropriate model must be achieved. By analyzing the
model, it is possible to identify the noise and the factors
involved in it and reduce these factors as much as possi-
ble. Considering the shortcomings mentioned in the previ-
ous paragraph about classical ANN method, the authors
have motivated to use the Emotional ANN (EANN) model
which is an advanced ANN approach combining ANN with
artificial emotions. In this paper, after stating the impor-
tance of studying noise prediction models, the study area
is introduced according to sampling, and in the next stage,
statistical analysis is performed.

2 Materials and method

2.1 Sampling

Trans-siberian railway (located in Russia) was selected as
the test area since it possesses all of the features to sat-
isfy the requirements of ISO 3095 (a flat site, free of sound-
reflecting objects and free of sound-absorbing covering).
The Bruel and Kjaer-2230, sound level meter, was installed
alternately at the height of 1.5 meters and at distances of
25, 35, 45, 55, and 65 meters from the axis of symmetry. At
each of these points, LAmax values for ten passing trains (a
total of 50 samples) were measured. The train speed was
calculated by using the measured pass-by time of the train
from buffer to buffer and the length of the train. Table 1
shows these data.
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Table 1: The specifications of the samples

Samples Sampling stations Distance from the centre of the track (m) Train speed (km/h) Measured LAmax
1 1 25 61.2 80.5
2 1 25 73.6 83.6
3 1 25 77.2 82.7
4 1 25 80.1 86.4
5 1 25 65.4 81.1
6 1 25 72.9 82.3
7 1 25 63.8 81.6
8 1 25 80.6 82.5
9 1 25 71.2 83.6
10 1 25 73.6 86.1
11 2 35 81.3 85.5
12 2 35 82.6 83.2
13 2 35 78.8 82.4
14 2 35 76.9 85.4
15 2 35 83.4 84.7
16 2 35 87.6 88.2
17 2 35 80.4 83.1
18 2 35 71.3 81.6
19 2 35 72.8 85.4
20 2 35 89.4 88.5
21 3 45 66.8 80.3
22 3 45 76.4 82.2
23 3 45 79.6 83.5
24 3 45 83.4 85.4
25 3 45 77.7 81.5
26 3 45 79.2 82.1
27 3 45 80.1 82.9
28 3 45 88.7 87.9
29 3 45 93.4 88.8
30 3 45 85.5 82.3
31 4 55 89.6 84.6
32 4 55 94.2 86.8
33 4 55 89.3 85.6
34 4 55 95.1 86.7
35 4 55 78.9 82.2
36 4 55 81.5 83.4
37 4 55 76.8 81.2
38 4 55 90.3 86.8
39 4 55 93.1 87.5
40 4 55 82.7 82.7
41 5 65 88.6 85.2
42 5 65 97.6 88.4
43 5 65 93.4 87.9
44 5 65 90.5 87.1
45 5 65 83.4 82.3
46 5 65 85.1 83.4
47 5 65 79.4 82.1
48 5 65 89.1 84.5
49 5 65 75.6 82.5
50 5 65 77.9 83.4
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2.2 ANN model

Neural networks are generally nonlinear learning mathe-
matical systems [11]. The way these networks work is mod-
eled on how the human brain works. In fact, neural net-
works are a machine for building a model that can be sim-
ulated by hardware or software. Unlike digital computers,
which require very explicit instructions, a neural network
does not require pure mathematical models but, like hu-
mans, can learn from a number of specific examples [12, 13].
Each neural network goes through three stages of training,
validation, and execution. In fact, neural networks can be
used to solve problems that do not have precise mathemat-
ical relationships between inputs and outputs.

ANNs are a very large set of parallel processors called
neurons that work in unison to solve problems and trans-
mit information through synapses (electromagnetic con-
nections). In these networks, if one cell is damaged, other
cells can compensate for its absence and also participate
in its reconstruction. These networks are able to learn. For
example, by injecting tactile nerve cells, the cells learn not
to go to the hot body, and with this algorithm, the system
learns to correct its error [14]. Learning in these systems is
adaptive; that is, using parables, the weight of the synapses
changes in such a way that the system produces the correct
response if new inputs are given. Learning to see neural
networks is nothing more than adjusting the communica-
tion weights of neurons in exchange for different examples

so that the network output converges to the desired out-
put [15].

In a multilayer ANN model, each layer has its own spe-
cific weight matrix W, its own bias vector b, its own input n
vector, and its own specific output vector a. Different layers
can have different numbers of neurons. It is important to
mention that the number of neurons to be used in the input
layers and in the output one strictly depends on the num-
ber of inputs and outputs. Multilayer networks are more
powerful than single-layer networks [16]. Figure 1 shows
the structure of a multilayer ANN model.

Feed-forward neural network (FFNN) models are
among the most commonly used neural network-based
models that are extensively applied to model different pro-
cesses. In FFNN, some adjusted weights are initialized de-
pending on the data pattern and multiplied by the inputs,
which are then summed up and passed through an activa-
tion function that handles the nonlinearity of the model to
provide output. It should be noted that in the current study
the Levenberg-Marquardt backpropagation algorithm was
used for the training process of FFNN model.

2.3 EANN model

The FFNN model with three layers (hidden, input, and out-
put layers), trained by the backpropagation algorithm, has
indicated suitable efficiency in nonlinear modeling tasks.

Figure 1: The structure of a multilayer ANN model
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Figure 2: The three-layer FFNN model

Figure 3: The EANN structure [19, 20]

On the other hand, an EANN model is the improved ver-
sion of conventional ANN-basedmodels, including an emo-
tional system that emits artificial hormones to modulate
the operation of each neuron, and in a feedback loop, the
hormonal parameters are also adjusted by inputs and out-
put of the neuron [17–19]. The schematic of an inner neuron
from FFNN and EANN has been showed in Figures 2 and 3.

By comparing these two Figures (Figures 2 and 3), it
is deduced that in contrast to the FFNN in which the in-
formation flows only in the forward direction, a neuron of
EANN can reversibly get and give information from inputs
and outputs and also can provide hormones (e.g., Hc, Hb,
and Ha) [21–24]. The output of ith neuron in an EANN with
three hormonal glands of Ha; Hb and Hc can be computed

as:

Yi = (𝛾 i +
∑︁
h

∂i,hHh)⏟  ⏞  
1

×f
(︃∑︁

j

[︁
(βi +

∑︁
h

χi,hHh)⏟  ⏞  
2

(1)

× (αi,j +
∑︁
h

Φi,j,kHh)Xi,j⏟  ⏞  
3

) + (µi +
∑︁
h

ψi,hHh)
]︁)︃

⏟  ⏞  
4

As the artificial hormones calculated as:

Hh =
∑︁
i
Hi.h (h = a, b, c) (2)

In Eq. (1), the implemented weight to the target (f ) is de-
picted by (1). It incorporates the permanent neural influ-
ence such as the dynamic hormonal weight of

∑︀
h ∂i,hHh.

The implemented weight to the gathering (net) function is
given by Term (2), the employed weight to the Xi,j (an input
from j the node of the former layer) is confirmed by Term (3),
and the preference of the summation purpose is indicated
by Term (4).

The distribution of the overall hormonal level of EANN
(i.e., Hh) between the hormones must be verified by, and
circumstances, the ith node output (Yi) provide hormonal
feedback of Hi,h to the network as follows:

Hi,h = glandityi,h × Yi (3)

Where the glandity parameter can be calibrated in the train-
ing phase of the EANNmodel to find the appropriate hor-
mone size for the glands.
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2.4 Evaluation criteria

In order to evaluate the accuracy performance of the mod-
els, the root mean square error (RMSE) criteria (Eq. (4)) and
the correlation coefficient (R) (Eq. (5)) are used [25]:

RMSE =

⎯⎸⎸⎷1
n

n∑︁
i=1

(Pi − Oi)2 (4)

R =
∑︀n

i=1
(︀
Oi − Ō

)︀ (︀
Pi − P̄

)︀∑︀n
i=1
(︀
Oi − Ō

)︀2 *∑︀n
i=1
(︀
Pi − P̄

)︀2 (5)

In these equations, Oi and Ō are the observed values and
themean of these values, respectively. Also Pi and P̄ are the
computational values, respectively, and the mean of these
values, respectively. It should be noted that the n parameter
is the number of data.

3 Results and discussion
According to recent studies, in this paper, data set was
divided into two parts for AI models as training and veri-
fication; the first division as 75% of total data used as the
training set and the rest 25% data was used for the veri-
fication purpose. In other words, in predicting the FFNN
and EANNmodels, out of 50 samples, 37 were selected as
training samples, and 13 items were selected as test sam-
ples of the model. Also, it should be mentioned that the
higher values of maximum and standard deviation were
considered in the training data set, due to the fact that the
AI model can present accurate predictions for unseen data
if their interpolator systems are familiar with same patterns.
Thismeans that training and test datasets were not selected
completely randomly and a series ofmonitoringwas consid-
ered for dividing datasets. For example, it was tried to put
the maximum and minimum data in the training samples.

To speed up training systems, the inputs and output
data were normalized before entering into the training step.
Eq. (6) was applied to normalize all the data between values
of 0 and 1 in order to bring all the data into the same unit
and range. In this way, all the inputs can receive similar
attention in modeling the output. The data normalization
eliminates overshadowing the impact of the datawith lower
values by those with higher values [26, 27].

Vnorm = V − Vmin
Vmax − Vmin

(6)

WhereVnorm is the normalized data value,V is the observed
value, Vmax and Vmin are themaximum andminimumdata
values, respectively.

In the current study, the hidden neuron number is as-
sumed up to 4 times of the input layer, and then the best
number of the hidden neuron is selected by trial and error.
The results of FFNN and EANNmodels are demonstrated
in Table 2.

Table 2: The results of FFNN and EANN models

FFNN model
Train

RMSE 0.033
R 0.915

Training
Time

0:00:00.03

Test RMSE 0.078
R 0.893

EANN model
Train

RMSE 0.018
R 0.956

Training
Time

0:00:00.09

Test RMSE 0.049
R 0.908

As shown in Table 1, the EANNmodel is better than the
FFNN model in both training and test, so that the EANN
could outperform the FFNN model up to 45% and 37% in
terms of training and test efficiency criteria, respectively.

Figure 4 shows that in the EANN and FFNN models,
the independent variables of train speed (Km/h), sampling
station, and distance from the center of the route (Km) are
important in predicting, respectively. In other words, in the
neural network-based models, the most effective indepen-
dent variable in predicting LAmax is train speed (Km/h), and
distance from the center of the track (Km) has less effect
on LAmax prediction compared to the other three variables.
As a result, the neural network-based models use all in-
dependent variables to predict the dependent variable. It

Figure 4: The importance of each of the effective factors in noise
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should also be noted, given that it is strongly recommended
to normalize the data (because the data normalization can
effectively increase the training rate and performance of
FFNN and EANN models), data were normalized before
predicting LAmax using FFNN and EANN models.

The fitted model, based on the first and second layers,
is as follows:
First layer:

LAmax = 0.62 + 0.95 Sampling station + 0.28 Distance
− 0.11 Trainspeed

Second layer:

LAmax = 0.39 + 0.14 Sampling station + 0.43 Distance
− 0.58 Trainspeed

In order to compare the predicted model based on the neu-
ral network, in this section, we will predict the noise based
on the regression model. Like the neural network-based
models (FFNN and EANN), in the regression model, we
assume that three independent variables of train speed
(km/h), sampling station, and distance from the center of
the route (km) are involved in predicting LAmax.

According to Table 2, since the value of the significant
level of Fisher statistic is equal to 0.000 and this value is
less than the significant level of the test (<0.05), the model
is approved. Also, according to Table 3, the model determi-
nation coefficient is equal to 0.826. 82.6% of the changes
in LAmax with two variables of train speed (km/h) and dis-
tance from the center of the route (km) are expressed in the

model, which is a reason to confirm the hypothesis. Also,
the statistic value of the Watson camera is equal to 1.59.
Because this value is in the range of 1.5 to 2.5, there is no
reason for the correlation of errors. Therefore, the multiple
linear regression model is as follows:

LAmax = 82.18 − 0.17 Distance + 0.099 Trainspeed

In the following, the results of logarithmic regression
are examined. According to the multiple regression output,
the effective parameters of LAmax are estimated based on
the factors presented in Table 3. The logarithmic regression
model is as follows:

Log (LAmax) = 1.556 − 0.029 Sampling station
− 0.009 Distance + 0.098 Trainspeed

According to Table 4, since the value of the significant
level of Fisher statistic is equal to 0.000 and this value is
smaller than the significant level of the test (0.005), the
model is approved. Also, according to Table 4, the indepen-
dent variables of sampling station, distance from the center
of the route (km), and train speed (km/h) is involved in
predicting the LAmax variable. As can be seen in this Table,
the determination coefficient of the model is 0.889. That is,
88.9%of the changes in the LAmax variable are expressed by
the three variables of train speed (km/h) and distance from
the center of the route (km) and the sampling station in the
model, and this is a reason to confirm the hypothesis. Also,
the value of theWatson camera statistic is 2.28 because this

Table 3: Linear regression results

Variable Coeflcients of
variables

The standard
deviation

τ Statistic Level of significance of
the test

Effective or not

Constant 82.18 0.920 87.502 0.000 effective
Distance (km) −0.17 0.006 −21.060 0.000 effective

Train speed (km/h) +0.099 0.012 8.514 0.000 effective
R = 0.826 Watson camera = 1.59 Level of significance = 0.00
RMSE = 0.079

Table 4: Logarithmic regression results

Variable Coeflcients of
variables

The standard
deviation

τ Statistic Level of significance of
the test

Effective or not

Constant 1.556 0.028 46.128 0.000 effective
Sampling station −0.029 0.014 −2.196 0.027 effective
Distance (km) −0.009 0.024 −0.496 0.610 effective

Train speed (km/h) 0.098 0.008 12.462 0.000 effective
R = 0.889 Watson camera = 2.09 Level of significance = 0.00
RMSE = 0.053
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value is in the range of 1.5 to 2.5. As has been concluded
in previous studies with comparing Tables 2, 3, and 4, it
is obvious that the EANN model has better performance
in predicting LAmax than others (FFNN, Linear regression,
and Logarithmic regression) [17].

4 Conclusions
The results show that in noise prediction based on the
EANN model, independent variables of train speed (km/h),
sampling station, and distance from the center of the route
(km) are important in forecasting and the accuracy of this
model, respectively. The prediction accuracy of this model
is 95.6%. In the linear regression method, the variables of
train speed and distance from the center of the route are
effective in predicting noise. The prediction accuracy of this
model is 82.6%. In the logarithmic regression, the indepen-
dent variables of sampling station, distance from the center
of the route, and train speed are involved in predicting the
LAmax variable. The prediction accuracy of this model is
0.889. Therefore, in this study, it was found that the EANN
model offers more favorable results compared to FFNN, log-
arithmic regression, and linear regression models.

In future research, with the help of experimental de-
sign techniques, the causes of each type of noise can be
identified and intensified. Experts believe that efforts can
be made to reduce the noise caused by wheel and rail wear,
and by analyzing the received noise, the type of possible
errors such as wear or corrosion of wheels or rails can be
determined.
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