

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

НАБЕРЕЖНОЧЕЛНИНСКИЙ ИНСТИТУТ

Выполнение контрольных работ по дискретной математике

Методические указания к выполнению контрольных работ по дисциплине «ДИСКРЕТНАЯ МАТЕМАТИКА»

Набережные Челны 2018 Выполнение контрольных работ по дискретной математике Методические указания к выполнению контрольных работ по дисциплине «Дискретная математика»/ Хузятова Л.Б., Гибадуллина Γ .Р. — Набережные Челны: Изд.-полигр.центр НЧИ $K(\Pi)\Phi Y$, 2018.-55 с.

Метолические указания разработаны кафедре «Информационные системы» И предназначены ДЛЯ самостоятельной работы студентов дневного и заочного отделения по курсу «Дискретная математика» основной профессиональной образовательной программы направления 09.03.01 Информатика и вычислительная техника, 09.03.04 Программная инженерия. В работе даны примеры решения типовых задач по основным разделам изучаемого предмета – отношения и операции, теории графов.

Рецензент: к.т.н., доцент Хамадеев Шамиль Актасович

Печатается по решению Учебно-методической комиссии отделения информационных технологий и энергетических систем Набережночелнинского института (филиала) ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

[©] КФУ, 2018

[©] Хузятова Л.Б., Гибадуллина Г.Р

Содержание.

1 Отношения и операции.	4
2. Декартово произведение, функции, правые	
и левые области отношений.	15
3. Свойства отношений.	23
4 Теория графов.	36
5. Литература.	54

1. Отношения и операции

№ 1.1

Пусть M равно $\{2,5,-7,9,12,-15\}$. Составить матрицы и списки пар отношений $R_1, R_2 \in M^2$.

Если R_1 – «иметь сумму больше десяти», R_2 – «иметь разность больше нуля».

Решение:

Список пар — это перечисление пар, для которых это отношение выполняется. Матрица — это квадратная матрица, по вертикали и горизонтали которой перечисляются элементы множества и в которой элемент C_{ij} , стоящий на пересечении i-ой строки и j-го столбца, равен единице, если между соответствующими элементами имеет место отношение R, или 0, если оно отсутствует.

$$R_1 = \{ (2,9), (2,12), (5,9), (5,12), (9,9), (9,12), (12,12) \}.$$

 $R_2 = \{ (2,-7), (2,-15), (5,2), (5,-7), (5,-15), (-7,-15), (9,2), (9,5), (9,-7), (9,-15), (12,2), (12,5), (12,-7), (12,9), (12,-15) \}.$

№ 1.2

Пусть $M=\{1,2,3,4,5,6,7\}$. Составить матрицы отношений R1, R2, R3 \subseteq M*M, если R1 – «быть остатком от деления на 3», R2 – «в сумме давать 9», R3 – «произведение должно быть больше 7»

Решение:

	1	2	3	4	5	6	7
1	1	0	0	1	0	0	1
2	0	1	0	0	1	0	0
3	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0

	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1
3	0	0	0	0	0	1	0
4	0	0	0	0	1	0	0
5	0	0	0	1	0	0	0
6	0	0	1	0	0	0	0
7	0	1	0	0	0	0	0
	•		•	•	•		
	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0
2	0	0	0	1	1	1	1
3	0	0	1	1	1	1	1
4	0	1	1	1	1	1	1
5	0	1	1	1	1	1	1
6	0	1	1	1	1	1	1
7	0	1	1	1	1	1	1

№ 1.3

Пусть M={1,2,3,4,5,6,7,8,9}. Составить матрицу отношения $R_1,\,R_2\subseteq M$ х M если

- 1. R_1 «быть наибольшим простым множителем для четных чисел» (нельзя делить число на само себя и единиц).
- 2. R_2 «быть наименьшим простым множителем для нечетных чисел» (нельзя делить число на само себя).

Решение:

Onp. Отношение – один из способов задания взаимосвязей между элементами множества.

Onp. Бинарное отношение – используется для определения каких-то взаимосвязей, которыми характеризуются пары элементов в множестве М.

Отношения, определенные на конечных множествах, можно задать матрицей — бинарному отношению $R \subseteq MxM$, где $M = \{a_1, a_2, ..., a_n\}$ соответствует квадратная матрица порядка n, в которой элемент c_{ij} , стоящий на пересечении i-ой строки и j-го столбца, равен 1, если между a_i и a_j имеет место отношение R, или нулю, если оно отсутствует.

Рассмотрим случай 1, где R означает «быть наибольшим простым множителем для четных чисел». Отношение задается так: $R=\{(a,b),\ b/a,\ rдe\ a$ наибольший простой множитель (НПМ) $\}$. Т.е., например, для $b=8,\ b/a=8/2=4\ 8/4=2$, т.е. получаем, что НПМ для 8 является 4, поэтому на пересечении 4 и 8 ставим 1.

1.									
	1	2	3	4	5	6	7	8	9
1	1	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0
3	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	0	0	1	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

Рассмотрим случай 2, где R означает «быть наименьшим простым множителем для нечетных чисел». Отношение задается так: $R=\{(a,b),\ b/a,\ rдe\ a$ наименьшим простой множитель (НПМ) $\}$. Т.е., например, для b=9, b/a=9/3=3, т.е. получаем, что НПМ для 9 является3, поэтому на пересечении 3 и 9 ставим 1.

	1	2	3	4	5	6	7	8	9
1	1	0	1	0	1	0	1	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	3
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

№ 1.4

Составить матрицу отношений, заданных на системе множеств $\alpha(F)$, где $F=\{1,2,3,4\}$; R- «пересекаться с ...».

Решение:

Матрица отношений — это квадратная матрица, по вертикали и горизонтали которой перечисляются элементы множества.

 $\alpha(F) = \{ \{\emptyset\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}.$

R	Ø	1	2	3	4											7
						1,2	1,3	1,4	2,3	2,4	3,4	1,2,3	1,2,4	1,3,4	2,3,4	1,2,3,4
							,	,	,	,		I,	I,	1,	2,	1,2
Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1
2	0	0	1	0	0	1	0	0	1	1	0	1	1	0	1	1
3	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1
4	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1
1,2	0	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1
1,3	0	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1
1,4	0	1	0	0	1	1	1	1	0	1	1	1	1	1	1	1
2,3	0	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1
2,4	0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1
3,4	0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1
<i>1,2</i> , <i>3</i>	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
1,2 ,4	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1,3 ,4	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
2,3 ,4	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1,2 ,3, 4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

№1.5

Пусть М={1,2,3,4,5,6,7}. Составить матрицы отношений R_1 , R_2 , $R_3 \subseteq M$ х M, если

 R_1 – «иметь один и тот же остаток от деления на 7»;

 R_2 –«быть равным»;

 R_3 – «быть не меньше»

Решение: R₁ -«иметь один и тот же остаток от деления на 7»

R_1	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	0	1	0	0	0	0	0
3	0	0	1	0	0	0	0
4	0	0	0	1	0	0	0
5	0	0	0	0	1	0	0
6	0	0	0	0	0	1	0
7	0	0	0	0	0	0	1
Aı	налс	ГИЧ	но Б	\mathbf{R}_2 и	R_3 :	-	-

На пересечении і-ой строки и јого столбца ставим «1», если отношение R_1 выполняется и «0» - если невыполняется. Например: a_1 =1; a_2 =2

$$\frac{1}{7} \neq \frac{2}{7} = \rangle C_{1,2} = 0$$

R_2	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	0	1	0	0	0	0	0
3	0	0	1	0	0	0	0
4	0	0	0	1	0	0	0
5	0	0	0	0	1	0	0
6	0	0	0	0	0	1	0
7	0	0	0	0	0	0	1

R_3	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0
4	1	1	1	1	0	0	0
5	1	1	1	1	1	0	0
6	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1

№ 1.6

Пусть $M=\{1,2,3,4,5,6,7\}$. Составить матрицу отношения R, если $R=\{(a,B)(a+1-B)-$ четное $\}$

Решение:

R	1	2	3	4	5	6	7
1	0	1	0	1	0	1	0
2	1	0	1	0	1	0	1
3	0	1	0	1	0	1	0
4	1	0	1	0	1	0	1
_5	0	1	0	1	0	1	0
<u>5</u>	0	1	0	1	0	1	0

Замечание: условно полагаем, что 0 — четное число

.**№** 1.7

Пусть $M=\{1,2,3,4,5,6,7\}$. Составить матрицу отношения R, если:

 $R = \{(a, B) : (a+B) - \text{нечетное}\}$

Решение:

R	1	2	3	4	5	6	7
1	0	1	0	1	0	1	0
2	1	0	1	0	1	0	1
3	0	1	0	1	0	1	0
4	1	0	1	0	1	0	1
5	0	0 1	0	0 1	0	0 1	0
	1 0 1						

№ 1.8

Пусть M={1,2,3,4,5,6}. Составить матрицу отношения $R_1,\,R_2$ \subset M x M если

- 1. R_1 {(a, b): a+b делитель a*b}.
- 2. R_2 {(a,b): b/a делитель a+b}.

Решение:

Onp. Отношение — один из способов задания взаимосвязей между элементами множества.

Onp. Бинарное отношение – используется для определения каких-то взаимосвязей, которыми характеризуются пары элементов в множестве М.

Отношения, определенные на конечных множествах, можно задать матрицей — бинарному отношению $R \subseteq MxM$, где $M = \{a_1, a_2, ..., a_n\}$ соответствует квадратная матрица порядка n, в которой элемент c_{ij} , стоящий на пересечении i строки и j столбца, равен 1, если между a_i b a_j имеет место отношение R, или нулю, если оно отсутствует.

Рассмотрим случай 1. $R=\{(a,b): a*b/a+b\}$. Например, получаем a=2,b=2, тогда 2*2/2+2=1, т.е. у данного отношения получаем целый результат, значит, отношение выполняется. На пересечении 2 и2 ставим 1.

	l.					
	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	1	0	0	0	0
3	0	0	0	0	0	1
4	0	0	0	1	0	0
5	0	0	0	0	0	0
6	0	0	1	0	0	1

2. Рассмотрим случай 1. $R=\{(a,b): (a+b)/(b/a)\}$. Например, получаем a=1,b=2, тогда (2+2)/(2/2)=4, т.е. у данного отношения получаем целый результат, значит, отношение выполняется. На пересечении 1 и2 ставим 1.

	1	2	3	4	5	6
1	1	1	1	1	1	1
2	0	1	0	1	0	1
3	0	0	1	0	0	1
4	0	1	0	1	0	1
5	0	0	0	0	1	0
6	0	0	0	0	0	1

№ 1.9

Из данных примеров выбрать те, в которых выполняется данное отношение:

 R_1 – «быть строго больше».

 R_2 – «иметь четную сумму».

 R_3 – «иметь общий четный делитель».

Примеры: (1,3), (2,5), (8,3), (9,5), (7,9), (3,4), (2,4), (5,5), (3,6), (7,3), (8,2), (3,9), (1,7), (2,6), (1,5).

Решение:

$$R_1 = \{ (8,3), (9,5), (7,3), (8,2) \}.$$

 $R_2 = \{ (1,3), (9,5), (7,9), (5,5), (7,3), (8,2), (2,4), (3,9), (1,7), (2,6), (1,5) \}.$
 $R_3 = \{ (2,4), (8,2), (2,6) \}.$

№ 1.10

Пусть А – алфавит (множество всех букв в русском алфавите). Задано множество $M = \{a, \delta, B, \Gamma, J, e, \mu, \kappa, J\}$ – подмножество множества А. Задать матрицей следующее отношение:

$$R = \{(x,y) : x - coгласная, y - гласная\}$$

Решение:

По определению:
$$C_{I,J} = \{ \begin{array}{l} 1, \ \text{если xRy;} \\ 0 - \text{в противном случае} \end{array} \}$$

Тогда имеем:										
R	a	б	В	Γ	Д	e	И	К	Л	
a	0	0	0	0	0	0	0	0	0	
б	1	0	0	0	0	1	1	0	0	
В	1	0	0	0	0	1	1	0	0	
Γ	1	0	0	0	0	1	1	0	0	
Д	1	0	0	0	0	1	1	0	0	
e	0	0	0	0	0	0	0	0	0	
И	0	0	0	0	0	0	0	0	0	
К	1	0	0	0	0	1	1	0	0	
Л	1	0	0	0	0	1	1	0	0	

№ 1.11

Пусть M= $\{1,2,3,4,5,6,7\}$. Составить матрицу отношения R, если: R= $\{(a,B):(a+1)$ — делитель $(a+B)\}$

Решение:

R	1	2	3	4	5	6	7
1	1	0	1	0	1	0	1
2	1	0	0	1	0	0	1
3	1	0	0	0	1	0	0
4	1	0	0	0	0	1	0
5	1	0	0	0	0	0	1
6	1	0	0	0	0	0	0
7	1	0	0	0	0	0	0

$$(a+1)$$
 — делитель $(a+B) = \rangle$ - это
значит, что $\left(\frac{a+e}{a+1}\right)$ - целое
число

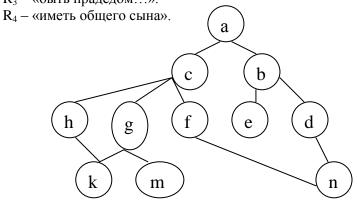
№ 1.12

На рисунке представлено множество элементов. Задать списком пар отношения $R_1,\,R_2,\,R_3,\,R_4.$ Если

 R_1 – «быть внуком...».

 R_2 – «быть двоюродными братьями».

 R_3 – «быть прадедом...».



Решение:

Список пар – это перечисление пар, для которых это отношение выполняется.

```
R_1 = \{ (h,a), (g,a), (f,a), (e,a), (d,a), (n,b), (n,c), (m,c), (k,c) \}.

R_2 = \{ (f,e), (f,d), (g,e), (g,d), (h,e), (h,d), (k,m) \}.

R_3 = \{ (a,k), (a,m), (a,n) \}.

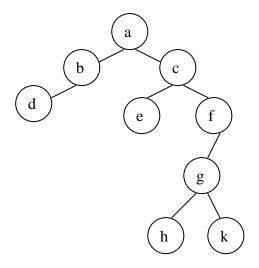
R_4 = \{ (h,g), (f,d) \}.
```

№ 1.13

По данным отношениям R_1 , R_2 , R_3 , R_4 составить структуру множества элементов. Если R_1 – «быть родными братьями», R_2 – «быть дедом...», R_3 – «быть дядей...», R_4 – быть прадедом...».

```
\begin{split} &R_1 \!\!=\!\! \{\; (b,c),\, (e,f),\, (h,k)\; \}. \\ &R_2 \!\!=\!\! \{\; (a,d),\, (c,g),\, (f,h),\, (f,k),\, (a,f),\, (a,e)\; \}. \\ &R_3 \!\!=\!\! \{\; (c,d),\, (b,e),\, (b,f),\, (e,g)\; \}. \\ &R_4 \!\!=\!\! \{\; (a,g),\, (c,h),\, (c,k)\; \}. \end{split}
```

Решение:



№ 1.14

Привести пять примеров пар отношений, для которых выполняются все три отношения, указанные ниже: R_1 – «иметь общий нечетный делитель, лежащий в интервале (1,10)».

 R_2 – «иметь четную сумму, лежащую в интервале (0,30)».

 R_3 – «2а – делитель (a+b), если $R=\{(a,b):a,b\in M\}$ ».

Решение:

 R_1 , R_2 , $R_3 = \{ (3,15), (7,21), (3,9), (9,9), (3,3), (5,5) \}.$

2. Декартовое произведение, функции, правые и левые области отношений

№ 2.1

Выписать все элементы декартового произведения множеств А и В, если

$$A=\{a,B,c,d,e\}$$

 $B=\{1,2,3\}$

Решение:

Декартовое произведение множеств A и B представляет собой множество всевозможных упорядоченных пар, в которых первые элементы \in A, а вторые - B:

A x B =
$$\{(a,1), (a,2), (a,3), (B,1), (B,2), (B,3), (c,1), (c,2), (c,3), (d,1), (d,2), (d,3), (e,1), (e,2), (e,3)\}$$

№2.2

Найти декартовое произведение множеств A и B, если $A=\{a,b,d\}$, $B=\{f,d,e\}$.

Решение:

Декартово произведение множеств A и B представляет собой множество всевозможных упорядоченных пар, в которых первые элементы принадлежат множеству A, а вторые элементы принадлежат множеству B, следовательно, $A \times B = \{ (a,f), (a,d), (a,e), (b,f), (b,d), (b,e), (d,f), (d,d), (d,e) \}.$

.Nº2.3

Найти все элементы множества F, если $A=\{a,b,c,k\}$, $B=\{b,d,e,h\}$,

 $C=\{ e,f,h,k \}, \quad U=\{ a,b,c,d,e,f,h,k \}, F=(U\backslash A)\cup (A\cap (B\cup C)).$

Решение:

 $F = (\{a,b,c,d,e,f,h,k\} \setminus \{a,b,c,k\}) \cup (\{a,b,c,k\} \cap \{b,d,e,h\} \cup \{e,f,h,k\}) = \{d,e,f,h\} \cup \{\{a,b,c,k\} \cap \{b,d,e,f,h,k\}\} = \{d,e,f,h\} \cup \{b,k\} = \{b,d,e,f,h,k\}.$

.No 2.4

Выписать все элементы декартового произведения множество А и В, если:

 $A=\{a,B,c\};$ $B=\{1,2,3,4,5\}$

Решение:

декартовое произведение множеств A и B представляет собой множество всевозможных упорядоченных пар, в которых первые элементы $\in A$, вторые -B.

A x B = $\{(a,1), (a,2), (a,3), (a,4), (a,5), (B,1), (B,2), (B,3), (B,4), (B,5), (c,1), (c,2), (c,3), (c,4), (c,5)\}.$

№ 2.5

Выписать все элементы декартового произведения множество AxBxC, если:

 $A=\{1,2\}, B=\{a,b,c\}, C=\{k,l,m\}.$

Решение: декартовым произведением AxBxC называется множество:

 $AxBxC = \{(m_A, m_B, m_C) / m_A \in A, m_B \in B, m_C \in C\}$

Элементами декартового произведения AxBxC являются всевозможные последовательности, каждая из которых состоит из 3-х элементов, причем первый элемент \in множеству M_A , второй – M_B , третий – M_C .

Имеем:

 $AxBxC=\{(1,a,k), (1,a,l), (1,a,m), (1,B,k), (1,B,l), (1,B,m), (1,c,k), (1,c,l), (1,c,m), (2,a,k), (2,a,l), (2,a,m), (2,B,k), (2,B,l), (2,B,m), (2,c,k), (2,c,l), (2,c,m)\}$

No 2.6

Выписать все элементы декартового произведения множеств A и B, если $A=\{1,2,3\}$, $B=\{a,c,e\}$

Решение:

$$A*B=\{(1;a),(1;c),(1;e),(2;a),(2;c),(2;e),(3;a),(3;c),(3;e)\}$$

No 2.7

Пользуясь методом математической дедукции написать все элементы декартового произведения множеств $M_1 \times M_2 \times M_3 \dots \times M_n = \prod_{i=1}^n M_i$, порождающей процедурой.

Решение: Элементами декартового произведения M_1 х M_2 х M_3 ... х M_n являются всевозможные последовательности, каждая из которых состоит из n элементов, причем первый элемент принадлежит множеству M_1 , второй — множеству M_2 , n-ый элемент — множеству M_n . Таким образом, имеем:

$$\mathbf{M} = \{(\mathbf{m}_{i1}, \mathbf{m}_{i2}, \dots \mathbf{m}_{in}) / \mathbf{m}_{i1} \in \mathbf{M}_1, \mathbf{m}_{i2} \in \mathbf{M}_2, \dots, \mathbf{m}_{in} \in \mathbf{M}_n\},$$
где $i = \overline{1, n}$

№ 2.8

Выписать все элементы множества M^2 , если $M = \{a, B, c\}$

Решение: M^2 - вторая степень множества M.

По определению имеем:

 $M^2=M \times M = \{a,B,c\} \times \{a,B,c\} = \{(a,a), (a,B), (a,c), (B,a), (B,B), (B,c), (c,a), (c,B), (c,c)\}.$

 M^2 часто также называют декартовым квадратом множества M.

№ 2.9

Найти правую и левую область отношения:

$$R=\{(1,2), (2,1), (3,1), (1,3), (3,5)\}$$

Решение: Левой областью \mathcal{J}_l отношения R называется множество всех первых элементов пар, принадлежащих R, правой областью \mathcal{J}_r — множество всех вторых элементов этих же пар.

Следовательно, имеем:

№ 2.10

Найти правую и левую область отношения $R=\{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

Решение:

$$Д_r = \{2,3,1\}, \quad д_l = \{1,2,3\}$$

№ 2.11

Найти правую и левую область отношения:

$$R = \{(a,b), (c,d), (e,f)\}$$

Решение:

$$\Pi_{R} = \{B,d,f\}, \Pi_{l} = \{a,c,e\}$$

№ 2.12

Найти правую и левую область отношения:

$$R=\{(1,a), (2,B), (3,c), (4,d), (5,f)\}$$

Решение:

№ 2.13

Найти правую и левую область отношения:

$$R=\{(a,1), (2,e), (c,3), (g,9), (7,e), (5,k)\}$$

Решение: [см. № 2.11]

Следовательно, имеем в областях отношения R двухсортные множества (множества областей состоят как из цифр, так и из букв).

№ 2.14

Является ли отношение

$$R = \{(a,2), (B,3), (c,4), (d,5)\},\$$

определенное на декартовом произведении множеств:

$$A=\{a, B, c, d\},$$
 $B=\{2,3,4,5\}$ функцией?

Решение: Поскольку каждому элементу множества А соответствует единственный элемент множества В, то можно утверждать, что данное отношение является функцией.

№ 2.15

Является ли отношение R:

$$R = \{2,a\}, (1,a), (3,B), (4,B), (5,c),$$

определенное на декартовом произведении множеств:

$$A=\{1,2,3,4,5\},$$
 $B=\{a,B,c\}$ функцией?

Решение: Да, т.к. каждому элементу из множества A соответствует единственный элемент множества B, то можно утверждать, что данное отношение является функцией (если множество A является областью определения функции, а множество B – областью значений, но не наоборот).

№ 2.16

Является ли отношение R:

$$R=\{(1,a), (1,B), (3,d), (5,c), (5,d),$$

определенное на декартовом произведении множеств

$$A=\{1,3,5\},$$
 $B=\{a,B,c,d\}$ функцией?

Решение: Нет, т.к. существуют такие элементы множества A, которым соответствуют более одного элемента из множества B: например, (1,a) и (1,b); (5,c) и (5,d).

.No 2.17

Пусть отношение R задано на декартовом произведении множеств P и N, где P- множество всех паспортов некоторой страны, а N — множество всех номеров этих паспортов, служащих для идентификации.

Является ли отношение R функцией?

Ответ: Данное отношение является функцией, т.к. каждому паспорту однозначно соответствует его идентификационный номер.

№ 2.18

Пусть множество R задано на декартовом произведении множеств K и P: KxP, где K – множество ключевых слов для поиска в Интернете, а P – множество Web-страниц. Пара (x,y)

принадлежит R, только если ключевое слово x содержится на странице у. Является ли R функцией?

Ответ: Не является, т.к. одно и то же ключевое слово может содержаться на различных Web-страницах $=\rangle$ условие однозначности не выполняется.

№ 2.19

В водоёме два пескаря, два карася и одна щука. Зная, что карась и щука — хищные рыбы (щука может съесть карася), выяснить бинарное отношение «R — быть съеденным» (т.е. быть пищей) с помощью матрицы.

Решение:

Onp. Отношение – один из способов задания взаимосвязей между элементами множества.

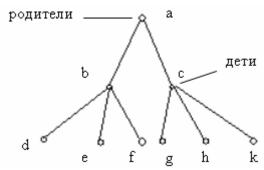
Onp. Бинарное отношение – используется для определения каких-то взаимосвязей, которыми характеризуются пары элементов в множестве М.

Т.к. пескарь не является хищной рыбой, он себя не ест, и караси и щуки тоже не едят себя, но щука ест карася, а карась щуку есть не может, то получаем матрицу бинарного отношения.

	пескарь	пескарь	карась	карась	щука
пескарь	0	0	1	1	1
пескарь	0	0	1	1	1
карась	0	0	0	0	1
карась	0	0	0	0	1
щука	0	0	0	0	0

№ 2.20

Для указанных ниже отношений привести примеры пар, для которых выполняются отношения. Отношения заданы на множестве элементов структуры гносеологического дерева.



Следующие отношения:

 R_1 – «быть родителем»

 R_2 – «быть внуком»

R₃ – «быть сыном (дочерью) »

R₄ – «быть братом или сестрой»

 R_5 – «быть дядей или тетей»

R₆ – «быть двоюродными сестрами или братьями»

Решение:

Onp. Отношение – один из способов задания взаимосвязей между элементами множества.

Onp. Бинарное отношение – используется для определения каких-то взаимосвязей, которыми характеризуются пары элементов в множестве М.

Onp. Задать отношение списком пар означает перечислить все пары элементов, для которых это отношение выполняется.

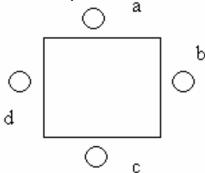
- 1. $R_1 = \{(a, b), (a, c), (b, d), (b, e), (b, f), (c, g), (c, h), (c, k)\}$
- 2. $R_2 = \{(d, a), (e, a), (f, a), (g, a), (h, a), (k, a)\}$
- 3. $R_3 = \{(b, a), (c, a), (d, b), (e, b), (f, b), (g, c), (h, c), (k, c)\}$
- 4. $R_4 = \{(b, c), (d, e), (d, f), (e, f), (e, d), (f, d), (f, e), (g, h), (g, k), (h, g), (h, k), (k, g), k, h)\}$
- 5. $R_5 = \{(b, g), (b, h), (b, k), (c, d), (c, e), (c, f)\}$
- 6. $R_6 = \{(d, g), (d, h), (d, k), (e, g), (e, h), (e, k), (f, g), (f, h), (f, k), (g, d), (g, e), (g, f), (h, d), (h, e), (h, f), (k, d), (k, e), k, f\}$

№ 2.21

Друзья сидят за квадратными столом. Привести примеры пар, для которых следующие отношения выполняются:

 R_1 – быть соседом

 R_2 – сидеть напротив



Решение:

Onp. Отношение — один из способов задания взаимосвязей между элементами множества.

Onp. Бинарное отношение – используется для определения каких-то взаимосвязей, которыми характеризуются пары элементов в множестве М.

Onp. Задать отношение списком пар означает перечислить все пары элементов, для которых это отношение выполняется.

1.
$$R_1 = \{(a, b), (b, a), (b, c), (c, b), (d, c), (c, d), (a, d), (d, a)\}$$

2.
$$R_2 = \{(a, c), (c, a), (b, d), (d, b)\}$$

3. Свойства отношений

№ 3.1

Каковы свойства отношений, заданных: на множестве людей: $R = \{(a,b): a-c \text{ын } b\}$?

Решение:

- 1) Не рефлексивно, антирефлексивно, так как ни для каких а не выполняется: а сын а;
- 2) Не симметрично, антисимметрично, поскольку ни для каких $a \neq b$ не выполняется: $a \cosh b$ и $b \cosh a$;
- 3) Не транзитивно, так как если a сын b и b сын c,то a не сын c.

№ 3.2

Каковы свойства отношений, заданных: на множестве людей: $R = \{(a,b): a \text{ живет в одном горде c b}\}$?

Решение:

- 1) Рефлексивно, не антирефлексивно, так как aRa для всех а;
- 2) Симметрично, поскольку для любых a, b, если aRb, то bRa;
- 3) Не антисимметрично, так имеет место aRb и bRa для $a \neq b$;
- 4) Транзитивно, поскольку для всех a, b, c, если aRb и bRc, то aRc.

No 3.3

Каковы свойства отношений, заданных: на множестве людей:

 $R = \{(a,b): a - \delta par b\}$?

Решение:

- 1) Не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех а;
- 2) Не симметрично, так как в общем случае между братом а и сестрой b имеет место aRb, но не bRa;

- 3) Не антисимметрично, так как если а и b братья, то aRb и bRa, но $a \neq b$;
- 4) Транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Каковы свойства отношений, заданных на множестве точек окружности, лежащих на дуге этой окружности. R- быть соседней точкой.

Решение:

Опр. Свойства бинарных отношений:

- а). R рефлексивно, если имеет место aRa для любого $a \in M$ (Например, отношение «жить в одном городе» рефлексивно).
- б). R антирефлексивно, если ни для какого $a, a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).
- г). R антисимметрично, если aRb и bRa влечет a=b, т.е. ни для каких различающихся элементов а и b ($a\neq b$) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влечет aRc (например, «быть моложе», «быть братом» транзитивно).
 - 1. симметрично, т.е. aRb влечет bRa, т.е. a и b соседние точки.
 - 2. не антисимметрично, т.к. aRb и bRa не влечет a=b, т.е. а и b не одни и те же точки.
 - 3. не рефлексивно, т.к. aRa не может быть соседней точкой для самой себя.
 - 4. антирефлексивно, т.к не может быть, чтобы он был сам себе соседом.
 - 5. не транзитивно, т.к aRb и bRc не влечет за собой aRc, т.е. а и с не являются соседними точками.

№ 3.5

Пусть дано уравнение $y=x^2$. Каковы свойства отношения R – «являться решением уравнения», т.е xRy.

Решение:

Опр. Свойства бинарных отношений:

- а). R рефлексивно, если имеет место aRa для любого a ∈
- \in М (Например, отношение «жить в одном городе» рефлексивно).
- б). R антирефлексивно, если ни для какого $a, a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).
- г). R антисимметрично, если aRb и bRa влечет a=b, т.е. ни для каких различающихся элементов а и b ($a\neq b$) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влечет aRc (например, «быть моложе», «быть братом» транзитивно).
 - 1. не симметрично, т.к. xRy и yRx не будут иметь одинаковые корни.
 - 2. не антисимметрично, т.к. xRy и yRx не влечет x=y.
 - 3. не рефлексивно, т.к. xRx не имеет место в данном уравнении.
 - 4. антирефлексивно, т.к. ни для какого x не выполняется xRx.
 - 5. не транзитивно, т.к. xRy , yRf не влечет за собой xRf, т.е. может быть $f \! = \! y^3$.

No 3.6

В водоёме плавают пескари и караси. Зная, что караси – хищные рыбы, выяснить свойства бинарного отношения R – «быть съеденным» (т.е. быть пищей).

Решение:

Опр. Свойством бинарного отношения являются:

a). R – рефлексивно, если имеет место aRa для любого a ∈

- \in М (Например, отношение «жить в одном городе» рефлексивно).
- б). R антирефлексивно, если ни для какого a, $a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).
- г). R антисимметрично, если aRb и bRa влечет a=b, т.е. ни для каких различающихся элементов а и b ($a\neq b$) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влечет aRc (например, «быть моложе», «быть братом» транзитивно).

$R = \{(a,b): b \text{ может съесть } a \}$

- 1. не симметрично, т.к. aRb не влечет bRa, т.е. карась может съесть пескаря, а пескарь карася нет.
- 2. антисимметрично, т.к aRb и bRa не влекут a=b, т.к., например, пескарь не может съесть пескаря.
- 3. не рефлексивно, т.к. aRa не выполняется, т.е. пескарь не может съесть пескаря.
- 4. антирефлексивно, т.к. aRa не выполняется.
- 5. не транзитивно, т.к. aRb и bRc, т.к. например, карась может съесть пескаря, а пескарь съест водоросли, а карась не может есть водоросли.

.№ 3.7

Каковы свойства отношений, заданных на множестве действительных чисел. R — быть натуральным логарифмом, т.е. $a = \ln b$ (b > 1 и $b \neq 0$).

Решение:

Опр. Свойства бинарных отношений:

а). R – рефлексивно, если имеет место aRa для любого a \in \in M (Например, отношение «жить в одном городе» - рефлексивно).

- б). R антирефлексивно, если ни для какого a, $a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).
- г). R антисимметрично, если aRb и bRa влечет a=b, т.е. ни для каких различающихся элементов а и b ($a\neq b$) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влечет aRc (например, «быть моложе», «быть братом» транзитивно).
 - 1. не симметрично, т.к. для любого a и b a = ln b не влечет b = ln a.
 - 2. не антисимметрично, т.к. aRb и bRa не влекут a=b, например, не выполняется одновременно 2=ln3 и 3=ln2.
 - 3. не рефлексивно, т.к. aRa не выполняется, т.е. a $\sqrt[3]{c}$ ln a
 - 4. антирефлексивно, т.к. aRa не выполняется.
 - 5. транзитивно, т.к. aRb и bRc влечет aRc, a=ln b, b=ln c, то a=ln (ln c), например, если 2=lne² и $e^2 = \ln(e^{e^2})$, то

$$2 = \ln(\ln(e^{e^2})) = \ln(e^2 \cdot \ln e) = \ln e^2 + \ln(\ln e) = 2\ln e = 2.$$

Каковы свойства отношения R – быть кубом, т.е. $b=a^3$, заданного на множестве натуральных чисел?

Решение:

Опр. Свойства бинарных отношений:

- а). R рефлексивно, если имеет место aRa для любого a \in \in M (Например, отношение «жить в одном городе» рефлексивно).
- б). R антирефлексивно, если ни для какого $a, a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).

- г). R антисимметрично, если aRb и bRa влекут a=b, т.е. ни для каких различающихся элементов а и b (a \neq b) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влекут aRc (например, «быть моложе», «быть братом» транзитивно).
 - 1. не симметрично, т.к. $b=a^3$ не влечет $a=b^3$.
 - 2. не антисимметрично, т.к. $b=a^3$ и $a=b^3$ не влекут a=b.
 - 3. не рефлексивно, т.к. $a ≠ a^3$.
 - 4. антирефлексивно, т.к. aRa не выполняется, т.е. $a \ne a^3$.
 - 5. не транзитивно, т.к. $b = a^3$ и $c = b^3$ не влекут $c = a^3$, т.к. если $b = a^3$ и $c = b^3$, то $a^9 = c$.

Каковы свойства отношений, заданных на множестве натуральных чисел N, если R — «быть строго больше», то есть R ={ $\{(a,b): a>b\}$.

Решение:

Свойства бинарных отношений:

- 1)R рефлексивно, если имеет место aRa для любых $a \in M$.
- 2)R антирефлексивно, если ни для каких $a \in M$ не выполняется aRa.
- 3)R-симметрично, если aRb влечет bRa.
- 4)R антисимметрично, если aRb и bRa влекут b=a, то есть ни для каких различающихся элементов a и b не выполняется одновременно aRb и bRa.
- 5)R транзитивно, если aRb и bRc влекут за собой aRc.
- A) нерефлексивно, антирефлексивно, так как ни для какого $a \in \mathbb{N}$ не выполняется a > a, например, не выполняется 2 > 2.
- Б) несимметрично, так как a>b не влечет за собой b>a, например, 3>2, но не выполняется 2>3.
- B) не антисимметрично, так как не выполняется aRb и bRa, если a=b, например, не выполняется 2>2, но 2=2.
- Γ) транзитивно, так как если a>b и b>c, то a>c, например, если 5>3 и 3>1, то 5>1.

В вооруженных силах рота состоит из трех взводов, а взвод из трех отделений, в каждом отделении по 11 солдат и командирсержант, а взводом лейтенант, ротой капитан. Определить свойства бинарного отношения R – быть командиром роты.

Решение:

Опр. Свойством бинарного отношения являются:

- а). R рефлексивно, если имеет место aRa для любого a \in \in M (Например, отношение «жить в одном городе» рефлексивно).
- б). R антирефлексивно, если ни для какого $a, a \in M$, не выполняется aRa. (Например, отношение «быть сыном» антирефлексивно).
- в). R симметрично, если aRb влечет bRa (Например, отношение «работать на одной фирме» симметрично).
- г). R антисимметрично, если aRb и bRa влечет a=b, т.е. ни для каких различающихся элементов а и b ($a\neq b$) не выполняется одновременно aRb и bRa.(Например, отношение «быть сыном», «быть начальником» антисимметрично).
- д). R транзитивно, если aRb и bRc влекут aRc (например, «быть моложе», «быть братом» транзитивно).
 - 1. не симметрично, антисимметрично, т.к. aRb влечет bRa, т.к. капитан может командовать лейтенантом, а лейтенант капитаном нет.
 - 2. не рефлексивно, т.к. капитан не может командовать сам собой.
 - 3. антирефлексивно, т.к. aRa не выполняется.
 - 4. транзитивно, т.к. если капитан может командовать лейтенантом, а лейтенант сержантом, то капитан может командовать сержантом.

No 3.11

Охарактеризовать отношения, заданные на множестве натуральных чисел:

- а) R1 быть строго меньше
- б) R2 иметь общий делитель

в) R3 – быть не меньше

Решение

- a) R1 не рефлексивно, антирефлексивно, не симметрично, не антисимметрично, транзитивно.
- б) R2 рефлексивно, не антирефлексивно, симметрично, не антисимметрично, не транзитивно (точнее, не всегда транзитивно).
- в) R3 рефлексивно, не антирефлексивно, не симметрично, антисимметрично, транзитивно.

№ 3.12

Каковы свойства отношения, заданного на множестве натуральных чисел N, если R – «быть не меньше».

Решение: $R - \ll 6$ ыть не меньше» = \rangle математически это запишется как >.

- 1) рефлексивно, не антирефлексивно, т.к. выполняется $a \ge a$ для $\forall \ a \in \mathbb{N}$:
- 2) не симметрично, т.к. например $5 \ge 3$, но не верно обратное $(3 \ge 5)$.
- 3) антисимметрично, т.к. если выполняется одновременно aRв и вRa, то = \rangle a=в.
- 4) транзитивно, т.к. если $a \ge B$ и $B \ge c$, то $a \ge c$.

В справедливости некоторых из вышеуказанных свойств можно наглядно убедиться, построив матрицу для данного отношения и помня следующие правила:

- **1.** Главная диагональ матрицы <u>рефлексивного</u> отношения содержит только единицы.
- **2.** Главная диагональ матрицы <u>антирефлексивного</u> отношения содержит только нули.
- **3.** В матрице <u>симметричного</u> отношения $C_{i,j} = C_{j,i}$, т.е. матрица симметрична относительно главной диагонали.
- **4.** В матрице <u>антисимметричного</u> отношения отсутствуют единицы, симметричные относительно главной диагонали.

Например, построив для данного отношения матрицу, предварительно задав произвольное количество элементов

множества N, убедимся в справедливости вышеуказанных свойств.

R	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0
4	1	1	1	1	0	0	0
5	1	1	1	1	1	0	0
6	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1

Пусть $A \subseteq N$ и $A = \{1,2,3,4,5,6,7\}$. Тогда отношение R:

- 1) На главной диагонали стоят единицы = > рефлексивно, не антирефлексивно;
- 2) $C_{i,j} \neq C_{j,I} = \rangle$ не симметрично;
- 3) отсутствуют единицы, симметричные относительно главной диагонали = \rangle антисимметрично
- 4) транзитивность данного отношения находим по определению.

№ 3.13

Каковы свойства отношения R – «быть кратным», заданного на множестве натуральных чисел N.

Решение: «быть кратным» - значит, делиться нацело. Если aRв, то в делится на а нацело.

1) рефлексивно, не антирефлексивно,

т.к. а/а=1 для Ұа∈ N;	R	1	2	3	4	5	6	7	
2) не симметрично,	1	1	1	1	1	1	1	1	
антисимметрично, т.к. а/в≠в/а,	2	0	1	0	1	0	1	0	
где а≠в;	3	0	0	1	0	0	1	0	
3) транзитивно, т.к., если	4	0	0	0	1	0	0	0	
$\frac{c}{-}, \frac{\theta}{-} \in N$, to $\frac{c}{-} = \frac{\theta}{-}, \frac{c}{-} \in N$.	5	0	0	0	0	1	0	0	
$-,-\in N$, $10-=-\cdot-\in N$.	6	0	0	0	0	0	1	0	
Для проверки приведем	7	0	0	0	0	0	0	1	
матрицу данного отношения (см. рис.)									

№ 3.14

Задать списком и матрицей, а также графически (орграфом) следующее бинарное отношение R.

Дж. фон Нейман (1903-1957) предложил блок-схему ЭВМ последовательного действия, которая состоит из множества устройств M:

$$M:=\{a, B, c, d, e\},\$$

где а – устройство ввода;

b – арифметическое устройство (процессор);

с – устройство управления;

d – запоминающее устройство;

е – устройство вывода.

Рассмотреть информационный обмен между устройствами m_i и m_j , которые находятся в отношении R, если из устройства m_i поступает информация в устройство m_i .

Решение:

Данное бинарное отношение R определяет 14 пар элементов (задание отношения R списком):

 $R = \{(a,b), (a,c), (a,d), (b,c), (b,e), (b,d), (c, a), (c,b), (c,d), (c,e), (d,b), (d,c), (d,e), (e,c)\}$

Матрица данного отношения имеет вид:

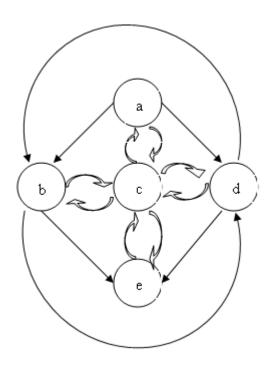
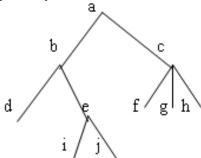


Рисунок 1-- Граф $G=\{M,R\}$, задающий это бинарное отношение R

R	a	b	c	d	e	f	g
a	0	0	0	0	0	0	0
b	1	0	0	0	0	0	0
c	1	0	0	0	0	0	0
d	1	0	0	0	0	0	0
e	1	1	1	0	0	0	0
f	1	0	1		0	0	0
g	1	0	0	1	0	0	0

Граф $G=\{M,R\}$, задающий это бинарное отношение R, представлен на рис. 1, где вершины обозначены кружками, а дуги –ориентированными линиями:

№ 3.15 Задана структура следующего вида:



Выписать пары, для которых выполняются отношения:

- A) R1 быть дедом
- Б) R2 быть дядей
- B) R3 быть двоюродным братом

Решение:

- A) $R1 = \{(a,d);(a,e);(a,f);(a,g);(a,h);(b,i);(b,j)\}$
- Б) $R2=\{(b,f;);(b,g);(b,h);(c,d);(c,e);(d,i);(d,j)\}$
- $B)R3 = \{(d,f);(d,g);(d,h);(e,f);(e,g);(e,h);(f,d);(f,e);(g,d);(g,e);(h,d) \\ ;(h,e)\}$

No 3.16

Каковы свойства отношения R – «быть частью целого», заданного на множестве элементов структуры? Задать данное отношение матрицей.

Решение:

Структура, задающая отношение R свидетельствует о том, что целое а состоит из 3-х частей: в, с и d, которые в свою очередь разделены на части e, f и д.

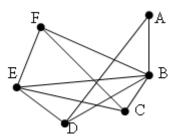
Зададим данное отношение матрицей:

- 1) не рефлексивно, антирефлексивно, т.к. aRa не имеет смысла (в матрице: на главной диагонали нули);
- 2) не симметрично, т.к. если верно aRв, то не верно вRa (матрица не симметрична);
- 3) не антисимметрично, т.к. не выполняется $aRb \rightarrow bRa$ (для \forall a, в) (в матрице: отсутствуют единицы, симметричные относительно главной диагонали);
- 4) транзитивно, т.к. например, если fRa и fRc, то верно cRa.

4. Теория графов

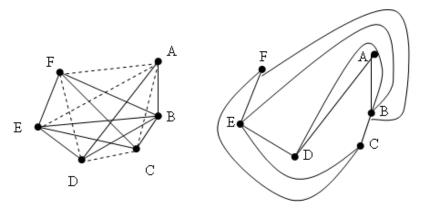
№ 4.1

Для данного графа нарисовать изоморфный граф таким образом, чтобы ребра между собой не пересекались, дорисовать до полного графа.



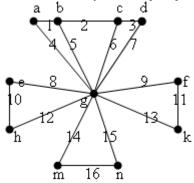
Решение:

Если графы G_1 и G_2 изоморфны, то они имеют одно и то же число вершин и для любых двух вершин графа G_1 (B_1 и C_1) соединенных ребром, соответствующие им вершины B_2 и C_2 графа G_2 тоже соединены ребром и обратно. Полный граф – это граф, в котором каждая пара вершин будет соединена ребром.



№ 4.2

Задать граф А, найти степени вершин и сумму всех степеней.



Решение:

А) Граф может быть полностью определен:

1)Множеством вершин: $V=\{a,b,c,d,e,f,g,h,k,m,n\}$.

Mножеством ребер: $E={}$

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 }.

2)Множеством ребер, каждое из которых

представлено парой вершин:

 $E_I = \{ (a,b), (b,c), (c,d), (a,g), (b,g), (c,g), (d,g), (e,g), (f,g), (e,h), (f,k), (h,g), (g,k), (m,g), (n,g), (m,n) \}.$

Б) В каждой не изолированной вершине некоторого графа G имеется одно или несколько ребер. Число таких ребер и называется степенью вершины.

$$\rho(a) = \rho(d) = \rho(e) = \rho(h) = \rho(f) = \rho(k) = \rho(m) = \rho(n) = 2.$$

$$\rho(b)=\rho(c)=3$$
.

$$\rho(g) = 10.$$

Сумма степеней вершин:

$$\sum \rho = \rho(a) + \rho(d) + \rho(c) + \rho(h) + \rho(f) + \rho(k) + \rho(m) + \rho(n) + \rho(b) + \rho(c) + \rho(g)$$
= 32.

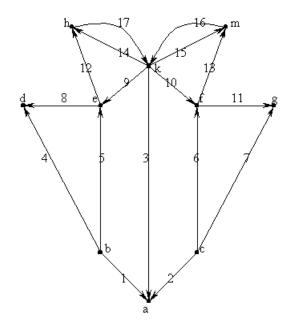
No 4.3

Задать граф матрицами смежности и инцидентности, списком ребер.

Матрица инцидентности — это матрица размера т×п, в которой по вертикали указываются вершины, а по горизонтали ребра, а на пересечении і-ой вершины и ј-ого ребра ставится «-1» если вершина является началом, «1» - вершина является концом, «0» - вершина и ребро не инцидентны. Матрица смежности — это квадратная матрица, в которой по горизонтали и по вертикали перечисляются только все вершины, а на пересечении к-ой и l-ой вершин ставиться число ребер с началом в к-ой вершине и концом в l-ой вершине. Список ребер графа представлен двумя столбцами, где в левом перечислены все ребра, а в правом перечисляются инцидентные им вершины.

· · · · · · · · · · · · · · · · · · ·	
1	ba
2	ca
3	ka
4	bd
5	be
6	cf
7	cg
8	ed
9	ke
10	kf
11	fg
12	eh
13	fm
14	kh
15	km
16	mk
17	hk

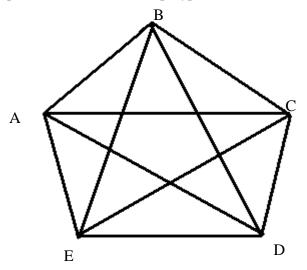
	a	b	c	d	e	f	g	h	k	m
а	0	0	0	0	0	0	0	0	0	0
b	1	0	0	1	1	0	0	0	0	0
c	1	0	0	0	0	1	1	0	0	0
d	0	0	0	0	0	0	0	0	0	0
e	0	0	0	1	0	0	0	1	0	0
f	0	0	0	0	0	0	1	0	0	1
g	0	0	0	0	0	0	0	0	0	0
h	0	0	0	0	0	0	0	0	1	0
k	1	0	0	0	1	1	0	1	0	1
m	0	0	0	0	0	0	0	0	1	0

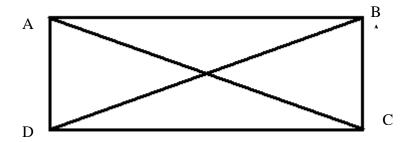


	I	2	3	4	5	9	7	8	6	10	II	12	13	14	15	91	17
а	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
b	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	1			1	1												
С	0	-	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0
		1				1	1										
d	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
e	0	0	0	0	1	0	0	-	1	0	0	-1	0	0	0	0	0
								1									
f	0	0	0	0	0	1	0	0	0	1	-1	0	-1	0	0	0	0
g	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
h	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	-
																	1
k	0	0	-	0	0	0	0	0	-	-1	0	0	0	-1	-1	1	1
			1						1								
m	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	-1	0

№ 4.4

Можно ли нарисовать данные фигуры, не отрывая руки и не проходя по одной линии фигуры дважды.





Решение:

Опр. Графом называется геометрическая схема.

Опр. Эйлеров граф называется граф имеющий Эйлеровый цикл.

Onp. Эйлеров цикл называется цикл графа содержащий все ребра графа.

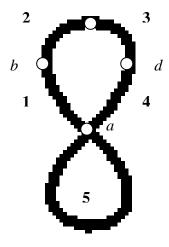
Onp. Цикл называется цепь начинающиеся и заканчивающаяся в одной и той же вершины.

Фигуру слева можно нарисовать не отрывая руки и не проходя по одному и тому же ребру более одного раза: BECADBCDEAB

Фигуру справа нельзя.

Nº 4.5

Задать матрицами смежности и инцидентности, а также списком следующий граф.



Решение:

Способы задания графов:

В общем виде задать граф — значит описать множество его вершин и ребер, а также отношение инцидентности. Для описания вершин и ребер достаточно их пронумеровать. Пусть $V_1,V_2,\ldots V_J,\ldots V_N$ — вершины графа G, $e_1,e_2,\ldots,e_i,\ldots,e_m$ — ребра графа G. Отношение инцидентности задается:

A) матрицей инцидентности $\|\epsilon_{ij}\|$

Размера m x n , в которой по вертикали указываются вершины, а по горизонтали ребра, а на пересечении i-ой

вершины и j-го ребра в случае неориентированного графа ставится 1, если они инцидентны, и 0 – в противном случае. в случае орграфа

- -1 если вершина является началом ребра,
- 1 если вершина является концом ребра,
- 0 если вершина и ребро не инцидентны,
- α (любое число) если e_{i} петля, а V_{j} инцидентная ей вершина.
- Б) списком ребер графа представленным 2мя столбцами, где в левом перечислены все ребра, а в правом перечисляются инцидентные ему вершины. Для н-графа порядок вершин в строке произволен, для орграфа первым стоит начало ребра.

B). Матрицей смежности $\|\delta_{ke}\|$

Квадратная матрица n x n = n^2 , в которой по горизонтали и по вертикали перечисляются только все вершины $V_i \in V$, а на пересечении к-ой и е-ой вершин в случае н-графа проставляется число, равное числу ребер, соединяющих эти вершины, а для орграфа $\delta_{\text{ке}}$ равно числу ребер с началом в к-ой вершине и концом в е-ой вершине.

Матрица смежности:

	a	b	c	d
a	1	1	0	1
b	1	0	1	0
С	0	1	0	1
d	1	0	1	0

Матрица инцидентности:

- Trumpin	1	2	3	4	5
a	1	0	0	1	1
b	1	1	0	0	0
c	0	1	1	0	0
d	0	0	1	1	0

Списком:

1	ab
2	bc
3	cd
4	da
5	aa

.**№** 4.6

Построить граф по матрице смежности, если этот граф является орграфом.

	a	b	c	d	e	f
a	0	1	0	0	0	1
b	0	0	1	1	0	0
c	0	0	0	1	0	1
d	0	0	0	0	1	0
e	0	0	0	0	0	1
f	0	1	0	1	0	0

Решение:

Способы задания графов:

В общем виде задать граф — значит описать множество его вершин и ребер, а также отношение инцидентности. Для описания вершин и ребер достаточно их пронумеровать. Пусть $V_1, V_2, \ldots V_J, \ldots V_N$ — вершины графа $G, e_1, e_2, \ldots, e_i, \ldots, e_m$ — ребра графа G. Отношение инцидентности задается:

A) матрицей инцидентности $\|\epsilon_{ii}\|$

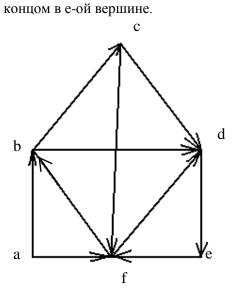
Размера m x n , в которой по вертикали указываются вершины, а по горизонтали ребра, а на пересечении i-ой вершины и j-го ребра в случае неориентированного графа ставится 1, если они инцидентны, и 0- в противном случае.

в случае орграфа:

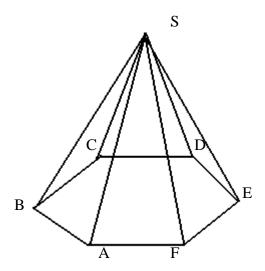
- -1 если вершина является началом ребра, 1 если вершина является концом ребра, 0 если вершина и ребро не инцидентны, α (любое число) если e_i петля, а V_j инцидентная ей вершина.
- Б) списком ребер графа представленным 2мя столбцами, где в левом перечислены все ребра, а в правом перечисляются инцидентные ему вершины. Для н-графа порядок вершин в

строке произволен, для орграфа первым стоит начало ребра.

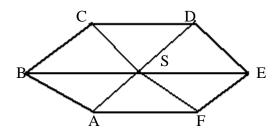
B). Матрицей смежности $\|\delta_{ke}\|$ Квадратная матрица $n \times n = n^2$, в которой по горизонтали и по вертикали перечисляются только все вершины $V_i {\in} V$, а на пересечении к-ой и е-ой вершин в случае н-графа проставляется число, равное числу ребер, соединяющих эти вершины, а для орграфа δ_{ke} равно числу ребер с началом в к-ой вершине и



№ 4.7 Постройте для данного графа изоморфный ему граф.

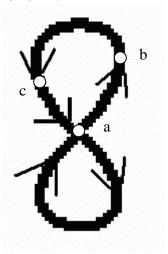


Onp. Два графа G_1 и G_2 изоморфны, если они отвечают одному и тому же списку проведенных игр. То есть если G_1 и G_2 графы изоморфны, то они имеют одно и то же число вершин и для любых двух вершин графа $G_1(B_1$ и $C_1)$, соединенных ребром соответствующие им вершины B_2 и C_2 графа G_2 тоже соединены ребром и обратно.



No 4.8

Пусть орграф задает отношение R. Каковы свойства этого отношения?



Решение:

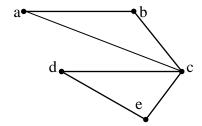
Отношение R определено на множестве V={a,b,c} и количество вершин |V|=3.

Свойство отношения:

- 1. Не рефлексивно, т.к. отношение cRc, bRb не выполняется.
- 2. Не антирефлексивно, т.к. имеет место aRa.
- 3. Не симметрично, т.к. это орграф.
- 4. Не антисимметрично, т.к. не выполняется например aRb и bRa, т.к. в данном случае орграф, а как видно на рисунке у нас направление от b к a нет, т.е. стрелка.
- 5. Не транзитивно, т.к. выполняется aRb, bRc но отсутствует aRc.

No 4.9

Для данного графа определить расстояние между вершинами, радиусы и центр.

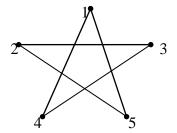


Расстояние $d(V^{l},V^{l})$ между вершинами V^{l} и V^{l} неориентированного графа называется минимальная длинна простой цепи с началом V^{l} и концом V^{l} . Центром называется вершина неориентированного графа, от которой максимальное из расстояний от других вершин являлось бы минимальным. Радиусом графа G называется максимальное расстояние от центра G до его вершины.

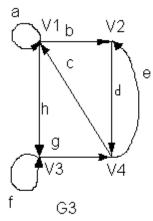
Расстояние между вершинами: d(b,a)=d(c,a)=d(c,b)=d(d,c)=d(d,e)=d(e,c)=1 d(d,a)=d(d,b)=d(e,a)=d(e,b)=2. Радиусы: r(a)=2, r(b)=2, r(c)=1, r(e)=2, r(d)=2. Центр: r(c)=1.

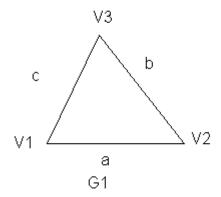
№ 4.10 По данной матрице смежности построить граф.

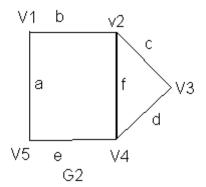
	1	2	3	4	5
1	0	0	0	1	1
2	0	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	0
5	1	1	0	0	0



№ 4.11 Для графов G1, G2, G3 построить матрицы инцидентности.







G1	a	b	c
1	1	0	1
2	1	1	0
3	0	1	1

G2	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	1	1	0	0	1
3	0	0	1	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0

G3	a	b	c	d	e	f	හු	h
1	2	-1	1	0	0	0	0	-1
2	0	1	0	-1	1	0	0	0
3	0	0	0	0	0	2	-1	1
4	0	0	-1	1	-1	0	1	0

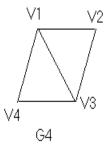
№ 4.12 Для графов G1, G2, G3 построить матрицы смежности.

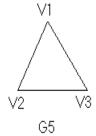
V	1	2	3
1	0	1	1
2	1	0	1
3	1	1	0

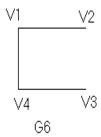
V	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	0
3	0	1	0	1	0
4	0	1	1	0	1
5	1	0	0	1	0

V	1	2	3	4
1	1	1	1	0
2	0	0	0	1
3	0	0	1	1
4	1	1	0	0

4.13 Определить степени вершин графов G4, G5, G6.







- 1) V1-3, V2-2, V3-3, V4-2.
- 2) V1-2, V2-2, V3-2.
- 3) V1-2, V2-1, V3-1, V4-2.

№ 4.14

Для графов G4, G5, G6 определить расстояния между вершинами, центры графов и их радиусы.

Решение

G1: d(V1,V2)=1; d(V1,V3)=1; d(V1,V4)=1; d(V2,V3)=1; d(V2,V4)=2; d(V3,V4)=1;

G2: d(V1,V2)=1; d(V1,V3)=1; d(V2,V3)=1;

G3: d(V1,V2)=1; d(V1,V3)=2; d(V1,V4)=1; d(V2,V3)=3; d(V2,V4)=2; d(V3,V4)=1;

G1: r(V1)=1; r(V2)=2; r(V3)=1; r(V4)=2;

G2: r(V1)=1; r(V2)=1; r(V3)=1;

G3: r(V1)=2; r(V2)=3; r(V3)=3; r(V4)=2;

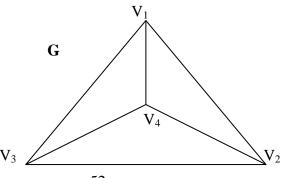
r(G1)=1; V1, V3 – центры

r(G2)=1; V1, V2, V3-центры

r(G3)=2; V1, V4 - центры

№ 4.15

Дан граф G. Для его вершин привести примеры эйлерова цикла, гамильтонова цикла, маршрута.



Эйлеров цикл — это цикл, содержащий все ребра графа по одному разу и все вершины графа, которые могут встречаться несколько раз, причем начало и конец в одной вершине. Именно поэтому данный граф не содержит эйлерова цикла.

 Γ амильтонов цикл – это простой цикл, содержащий все вершины графа (по одному разу), зато не обязательно содержит все ребра графа.

Примером гамильтонова цикла является: $(V_3, V_1, V_4, V_2, V_3)$;

 $\it Mapupym$ — последовательность ребер, в которой 2 соседних ребра имеют общую вершину (одно и тоже ребро может встречаться несколько раз). Примером маршрута может быть: ($V_1, V_2, V_4, V_3, V_1, V_4, V_2$).

No 4.16

По условию задачи составить дерево и определить, вершины каких типов оно содержит.

На склад Автосборочного завода поступают детали со всех прилегающих к нему заводов. Затем они распределяются на 2 производства: механообрабатывающее и механосборочное. Механообрабатывающее производство отправляет детали для дальнейшей обработки по цехам: картеров, передних осей, сборки мостов; а механосборочное – по цехам: карданных валов, шестерен, арматурным.

Решение:

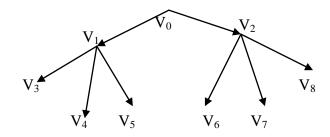
Корнем дерева (вершиной, от которой ориентируются все вершины дерева) будет являться склад, который обозначим, как \mathbf{V}_0 .

 V_0 – вершина максимального типа.

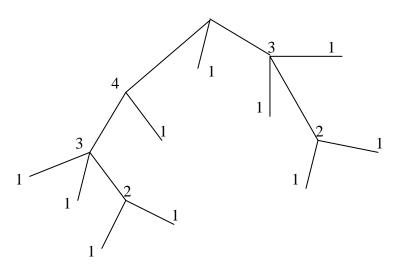
 V_1 и V_2 – вершины 2 типа (ими обозначим 2 производства).

 V_3 , V_4 , V_5 — (цеха механообрабатывающего производства), то есть вершины, инцидентные с вершиной V_1 , и вершины V_6 , V_7 , V_8 — (цеха механосборочного производства), инцидентные с вершиной V_2 , являются вершинами 1 типа, то есть концевыми вершинами.

Таким образом, граф типа дерева будет выглядеть следующим образом:



Теперь построим из n- графа ориентированное дерево с корнем, являющимся вершиной максимального типа (в нашем случае 4 типа) – правая вершина.



Литература

- 1. Г.И. Москинова. Дискретная математика. М.: Логос, 2002. 240c.
- 2. Г.Г. Асеев, О.М. Абрамов, Д.Э. Ситников. Дискретная математика. Ростов-наДону: Торсинг, 2003. 144с.
- 3. Ф.А. Новиков. Дискретная математика для программистов. СПб.: Питер, 2002. 304c.
- 4. Н.П. Редькин. Дискретная мтематика. СПб.: Лань, 2003. 96с.
- 5. В.А. Горбатов, А.В. Горбатов, М.В. Горбатов. Дискретная математика. М.: АСТ, Астрель, 2003. - 447с.