ISSN 1070-3632, Russian Journal of General Chemistry, 2018, Vol. 88, No. 9, pp. 1938–1940. © Pleiades Publishing, Ltd., 2018. Original Russian Text © M.N. Dimukhametov, G.A. Ivkova, Kh.R. Khayarov, R.Z. Musin, V.F. Mironov, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 9, pp. 1570–1572.

Dedicated to the 110th anniversary of M.I. Kabachnik's birth

Trimethylchlorosilane-Catalyzed Intramolecular Cyclization of 2-(2-Benzylideneaminoethyloxy)-1-phenylbenzo[*e*]-1,3,2-azaoxaphosphorin-4-one

M. N. Dimukhametov^a, G. A. Ivkova^{a,b}, Kh. R. Khayarov^b, R. Z. Musin^a, and V. F. Mironov^{a,b}*

^a Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, ul. Akademika Arbuzova 8, Kazan, Tatarstan, 420088 Russia

* e-mail: mironov@iopc.ru

^b Kazan (Volga Region) Federal University, Kazan, Tatarstan, Russia

Received June 21, 2018

Abstract—A catalytic effect of trimethylchlorosilane on the intramolecular cyclization of 2-(2-benzylideneaminoethyloxy)-1-phenylbenzo[e]-1,3,2-azaoxaphosphorin-4-one into 3,4-benzo-5,10-diphenyl-1,5-diaza-7-oxabicyclo[4.3.1^{1.6}]decane-2,6-dione, formed as two diastereomers in a 1 : 1 ratio, was studied.

Keywords: oxazaphosphorin, benzylideneaminoethanol, cage aminophosphonate, trimethylchlorosilane

DOI: 10.1134/S1070363218090311

1-Aminophosphonic acids derivatives are of interest due to their diverse biological activity [1, 2] and complexing properties [3]. Various approaches have been used for the synthesis of these compounds, based on the Kabachnik–Fields and Pudovik reactions [4–7]. We have previously proposed to use the ring expansion reaction of 2-R-benzo[d]-1,2,3-dioxaphosphorin-4-ones by imines to produce 1-aminophosphonic acid esters. The reaction led to the formation of 2-R-benzo[f]-1,4,2-oxazaphosphorin-2,5-diones with high stereoselectivity [8–10]. Later, an intramolecular version of this reaction has been carried out using 2-(2-arylideneaminophenoxy)benzo[d]-1,2,3-dioxaphosphorin-

4-ones, which underwent cyclization into the cage 1-aminophosphonates [11]. Here this approach to the synthesis of cage aminophosphonates was extended to 2-(2-benzylideneaminoethyloxy)-1-phenylbenzo[e]-1,3,2-azaoxaphosphorin-4-one**2**obtained by reacting benzylideneaminoethanol with 1-phenyl-2-chlorobenzo[e]-1,3,2-azaoxaphosphorin-4-one**1**in the presence of a base to avoid the opening of the anhydride moiety. Compound**2**is stable at 25°C and does not show any tendency to intramolecular transformations (Scheme 1).

We found that in the presence of trimethylchlorosilane as a catalyst the intramolecular cyclization into

Scheme 1.

1938

the cage aminophosphonate **3** occurred readily in a benzene–dichloromethane mixture at 25° C within 5–7 h. It should be noted that catalytic effect of trimethylchlorosilane has been previously observed in the addition reactions of diethylphosphite [12] and triethyl phosphite [13–16] to carbonyl compounds and imines. However, an equimolar or rather significant amount of trimethylchlorosilane was used; in some cases the process was carried out by boiling in polar acetonitrile.

The structure of the resulting mixture of diastereomers was established from ¹H, ¹³C, ³¹P NMR and mass spectra. The large difference in the chemical shifts of the carbon of the phenyl substituent at the C¹⁰ atom is apparently due to the magnetic anisotropy of the 3,4-benzo fragment in one of the isomers in which this phenyl substituent is close to the benzo fragment.

In conclusion, we developed a mild method for the synthesis of cage aminophosphonates through the intramolecular interaction of an imino group with a P(III) atom promoted with trimethylchlorosilane.

3,4-Benzo-5,10-diphenyl-1,5-diaza-7-oxa-6-phosphabicyclo[4,3,1^{1,6}]decane-2,6-dione (3). A solution of 2.18 g (7.85 mmol) of 4,5-benzo-2-chloro-3-phenyl-6-oxo-1,3,2-oxazaphosphorin 1 in 10 mL of anhydrous dichloromethane was added to a mixture of 1.17 g (7.85 mmol) of 2-benzylideneaminoethanol and 0.86 g (8.51 mmol) of triethylamine in 20 mL of anhydrous benzene at 10°C under argon atmosphere. The precipitate was filtered off, and 0.085 g (0.79×10^{-3} mmol) of trimethylchlorosilane was added to the filtrate containing compound 2 (δ_P 120.3 ppm, ${}^3J_{PH} = 8.0$ Hz). After 1 day, the solvent was removed in a vacuum, and the residue was treated with diethyl ether. Yield 2.48 g (81%), pale red powder, mp 257-261°C (mixture of diastereomers d_1 : $d_2 = 1$: 1). ¹H NMR spectrum (400 MHz), δ , ppm (*J*, Hz): 3.26 d.d.d (1H, NCH, ²*J*_{HH} = 14.2, ${}^{3}J_{\rm HH} = 12.9$, ${}^{3}J_{\rm HH} = 3.7$), 3.57 d.d.d (1H, NCH, $^{2}J_{\text{HH}} = 14.0, \ ^{3}J_{\text{HH}} = 12.2, \ ^{3}J_{\text{HH}} = 3.7), \ 4.04 \ \text{d.d.d} \ (1\text{H}, 1\text{H})$ POCH, ${}^{3}J_{PH} = 19.5$, ${}^{2}J_{HH} = 11.3$, ${}^{3}J_{HH} = 3.7$), 4.20 d.d.d (1H, POCH, ${}^{3}J_{PH} = 20.2$, ${}^{2}J_{HH} = 11.4$, ${}^{3}J_{HH} = 3.7$), 4.10– 4.30 m (2H, POCH, NCH), 4.88 d.d (1H, NCH, ${}^{2}J_{HH} =$ 14.2, ${}^{3}J_{\text{HH}} = 2.9, d_1$), 5.38 d (1H, PCH, ${}^{2}J_{\text{PH}} = 21.0, d_2$), 5.49 d (1H, PCH, ${}^{2}J_{PH} = 12.1, d_{1}$); 6.84 m, 6.96 m, 7.01 m, 7.12 m, 7.19 m, 7.30–7.34 m, 7.38–7.45 m (28H, H^{11-14} , H^{16-20} , H^{22-26}). ¹³C{¹H} NMR spectrum (100.6 MHz), δ_{C} , ppm (*J*, Hz): 40.55 br.t.d.t (d) (C⁹, ${}^{1}J_{HC} = 142.1, {}^{3}J_{HC} = 3.5, {}^{2}J_{HC} = 3.5, {}^{2}J_{PC} = 1.5), 50.53$ br.t.t (s) (C⁹, ${}^{1}J_{HC} = 142.0, {}^{2}J_{HC} = 2.7), 55.77$ d.d.m (d) (C¹⁰, ${}^{1}J_{HC} = 137.0, {}^{1}J_{PC} = 126.0, {}^{3}J_{HC} = 4.9), 62.28$ d.d.m (d) (C¹⁰, ${}^{1}J_{HC} = 128.0, {}^{1}J_{PC} = 125.1, {}^{3}J_{HC} = 4.9),$

71.54 t.d.d.d (d) (C^8 , ${}^1J_{HC} = 150.1$, ${}^2J_{PC} = 11.2$, ${}^2J_{HC} =$ 4.8, ${}^{2}J_{\text{HC}} = 2.4$), 71.65 t.d.d.d (d) (C⁸, ${}^{1}J_{\text{HC}} = 150.2$, ${}^{2}J_{\text{PC}} =$ 11.8, ${}^{2}J_{\text{HC}} = 4.3$, ${}^{2}J_{\text{HC}} = 2.3$), 172.32 m (s) and 172.73 m (s) (C²), 141.95 m (d) and 142.01 m (d) (C⁴, ${}^{2}J_{PC} =$ 1.8, 1.7), 138.58 m (d) and 141.27 m (d) (C¹⁵, ${}^{2}J_{PC} =$ 5.1, 3.7), 130.92 m (d) and 133.72 m (d) (C^{21} , ${}^{2}J_{PC}$ = 4.2, 2.0), 131.89 br.d.d (s) and 132.87 br.d.d (s) (C¹³, ${}^{1}J_{\text{HC}} = 164.1 \text{ and } 162.3, {}^{3}J_{\text{HC}} = 8.2 \text{ and } 8.5$, 124.49 d.m (d) and 125.15 d.m (d) (C^{16,20}, {}^{1}J_{\text{HC}} = 161.9 \text{ and } 161.4, {}^{3}J_{\text{HC}} = 7.5 \text{ and } 7.8, {}^{3}J_{\text{HC}} = 7.4, {}^{3}J_{\text{PC}} = 3.2 \text{ and } 3.0), 125.46 d.t (s) and 125.71 d.t (s) (C^{18} , ${}^{1}J_{HC} = 163.0$ and 162.5, ${}^{3}J_{HC} = 7.2$ and 7.5), 127.13 br.d.d (d) (C^{14} , ${}^{1}J_{HC} = 163.1$, ${}^{3}J_{HC} = 7.5$, ${}^{3}J_{PC} = 1.5$), 127.58 br.d.d (br.e) (C^{14} , ${}^{1}J_{HC} = 163.1$, ${}^{3}J_{HC} = 7.5$, ${}^{3}J_{PC} = 1.5$), 127.58 br.d.d (br.s) (C¹⁴, ¹ J_{HC} = 162.5, ³ J_{HC} = 7.7), 127.32 d.t (s) and 128.95 d.t (s) (C²⁴, ¹ J_{HC} = 161.3 and 162.0, ³ J_{HC} = 7.2), 128.07 br.d.d (s) and 128.29 br.d.d (s) (C^{12} , ${}^{1}J_{HC}$ = 162.5, ${}^{3}J_{\text{HC}} = 7.6$), 128.30 d.d (s) and 129.18 d.d (s) (C^{17,19}, ${}^{1}J_{\text{HC}} = 162.4$ and 160.4, ${}^{3}J_{\text{HC}} = 7.8$), 129.65 d.d (s) and 129.73 d.d (s) (C^{23,25}, ${}^{1}J_{\text{HC}} = 161.8$ and 161.9, ${}^{3}J_{\text{HC}} = 7.8$ and 8.1), 126.16 d.m (d) and 128.99 d.m (d) $(C^{22,26}, {}^{1}J_{HC} = 159.4 \text{ and } 162.2, {}^{3}J_{PC} = 7.8 \text{ and } 7.9).$ ${}^{31}P{}^{1}H{}^{1}H{}^{31}P{}^{1}H{}^{1}$ NMR spectrum (162.0 MHz), δ_{P} , ppm (*J*, Hz): 15.3 d.d (s) $(d_1, {}^{3}J_{PH} = 19.3, {}^{2}J_{PCH} = 12.5), 18.5$ d.d (s) $(d_2, {}^{3}J_{PH} = 21.1, {}^{2}J_{PH} = 20.2)$. Mass spectrum (EI), m/z (I_{rel} , %), m/z: 390 (83.9) [M]⁺⁺, 362 (19.4) [M- $C_2H_4]^+$, 313 (66.8) $[M - C_6H_5]^+$, 299 (18.6) $[M - C_6H_5]^+$ $P(O)OC_2H_4]^+$, 285 (2.9) $[C_{20}H_{17}N_2]^+$, 195 (100.0) $[C_8H_8N_2 \ O_2P]^+$, 167(58.9) $[C_7H_8N_2OP]^+$, 91 (23.5) $[C_6H_5CH_2]^+$, 77 (28.4) $[C_6H_5]^+$. Found, %: N 6.82; P 8.21. C₂₂H₁₉N₂O₃P. Calculated, %: N 7.18; P 7.95.

NMR spectra were recorded on a Bruker Avance-400 instrument [¹H, ¹³C, ¹³C{¹H}, DEPT, ³¹P] from CDCl₃ solutions. Mass spectrum was registered on a DFS Thermo Electron Corporation instrument (USA), the energy of ionizing electrons is 70 eV.

ACKNOWLEDGMENTS

The spectral studies were carried out with the financial support of the Ministry of Education and Science of the Russian Federation in the frame of the governmental task (no. 4.5888.2017/8.9).

CONFLICT OF INTERESTS

No conflict of interests was declared by the authors.

REFERENCES

 Orsini, F., Sello, G., and Sisti, M., *Curr. Med. Chem.*, 2010, vol. 17, no. 3, p. 264. doi 10.2174/ 092986710790149729