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Abstract: Band-resolved frequency modulation spectroscopy is a common method to measure
weak signals of radiative ensembles. When the optical depth of the medium is large, the signal
drops exponentially and the technique becomes ineffective. In this situation, we show that a
signal can be recovered when a larger modulation index is applied. Noticeably, this signal can be
dominated by the natural linewidth of the resonance, regardless of the presence of inhomogeneous
line broadening. We implement this technique on a cesium vapor, and then explore its main
spectroscopic features. This work opens the road towards measurement of cooperative emission
effects in bulk atomic ensemble.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Band-resolved frequency modulation (FM) spectroscopy was proposed in 1980 by G. Bjorklund,
as a sensitive method to measure absorption and dispersion of weak transmission signals [1].
Here, the carrier frequency of a laser is scanned across the resonance of the transition under
investigation. In the weak modulation index limit, the amplitude and phase modification of the
carrier component are encoded in the beat note with the first sidebands. Band-resolved FM
spectroscopy and its variants like the Pound-Drever-Hall technique [2,3], or the modulation
transfer spectroscopy [4–6] are key laser spectroscopic techniques for numerous applications
such as laser frequency stabilization [7,8], Doppler-free spectroscopy [9–11], detection of gases
[12–16], magnetometers [17] and strain sensors [18,19].
At large optical depth (OD), the carrier is strongly absorbed and the usual transmission

FM spectroscopy method is ineffective. Thus, FM spectroscopy measurements on strongly
absorbing media are usually performed using thin penetration layers, such as in selective reflection
spectroscopy [20], where measurements of collisional broadening [21,22] and atom-surface
interaction have been reported [23,24]. In addition, cooperative atomic emissions have been
investigated in dense atomic media, using both cold atomic gases [25–31] and hot atomic vapors
[32–34]. In the latter, large absorption of the transmitted signal is avoided using nano-cells [35].
However, it is challenging to discern between the bulk cooperative properties and finite-size
effects coming from atom-surface interactions [36], non-Maxwellian velocity distributions [37]
or Dicke-like narrowing [38].
In this article, we explore a new FM spectroscopic method that has a good sensitivity when

applied on a medium with large OD. We perform FM at large modulation index to suppress
the strongly absorbed on-resonance carrier component. As a result, the on-resonance signal is

#373827 https://doi.org/10.1364/OE.27.032323
Journal © 2019 Received 30 Jul 2019; revised 28 Sep 2019; accepted 9 Oct 2019; published 23 Oct 2019

https://orcid.org/0000-0002-6458-5736
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.032323&amp;domain=pdf&amp;date_stamp=2019-10-23


Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 32324

dominated by the weakly absorbed sidebands, which probe the tails of the resonance dominated
by the slow algebraic decay of the homogeneous linewidth, rather than the faster exponential
decay of some frequency broadening mechanisms (e.g. Doppler effect). For a large OD medium,
we show that the frequency sensitivity of this technique is comparable to the standard FM
spectroscopy at low temperature. Importantly at high temperature, the sensitivity of the new
method remains unchanged because it is not affected by Doppler broadening.

2. Experimental study

2.1. Experimental setup and parameters

The experiment is performed as follow: A 852 nm laser is scanned across the F = 4→ F′ = 3, 4, 5
hyperfine transitions of the cesium D2 line (natural linewidth: Γ/2π = 5.2MHz). The optical
frequency is calibrated on a standard saturated absorption spectroscopy setup. The laser beam is
sent on a single passage to another L = 7 cm long cesium vapor cell, heated to a temperature
in the range of 20–85 ◦C, resulting in an OD in the range of b0 = 3–700 [see Fig. 1(a)]. A
local oscillator of frequency Ω = 2π × 706.8MHz = 135.9Γ, generated by a voltage controlled
oscillator of maximum frequency 750 MHz, drives an electro-optic modulator (EOM) to generate
the phase modulation with a large modulation index of β = 2.14(10). Using a fast detector, a
mixer, and a low-pass filter, the transmitted signal is demodulated at the reference frequency Ω.
With a fixed delay line of 5π/2, we extract the full demodulated signal ID = IP + iIQ, where IP
and IQ are in-phase and in-quadrature components, respectively (see Appendix A for a theoretical
description of these components). We used an amplitude modulated signal to calibrate the
overall transfer gain of our detection scheme. This allows for a direct comparison between the
experimental data and theoretical predictions, without any amplitude fitting parameter.

2.2. Experimental results

The blue curves in Figs. 1(b) and 1(c) are typical experimental curves for the magnitude |ID |
and the phase φD = arg{ID} of the demodulated signal, at a vapor temperature of 53 ◦C,
corresponding to b0 = 75 (other spectra at different temperatures are plotted in Appendix D).
The red curves are the theoretical predictions that take into account the hyperfine structures of
the excited state and Doppler broadening, but leave out the Zeeman manifold (see Appendix E.
for the complete derivation). The theoretical curves capture well the qualitative behavior of the
experimental signals. Far away from the spectrum center, we observe a small frequency shift in
the spectroscopic features, between theory and experimental data. This could be due to a slight
nonlinearity in the scan of the laser frequency that is not captured by a linear calibration of the
frequency axis. Residual amplitude modulation (RAM) of the probe beam, which modifies the
sideband spectrum, can result from the modulator. The RAM is known to affect the modulation
transfer spectroscopic technique [39,40]. For our setup, however, we checked theoretically that
the RAM level induced by our EOM does not significantly alter the spectroscopic signals, and
can be disregarded in our analysis.

To understand the key characteristics of those spectra, we show in Fig. 1(d) the expected signal
for a two-level medium, calculated at the same density and temperature of Figs. 1(b) and 1(c). Its
behavior is similar to the demodulated signal observed for the cesium D2 line, indicating that the
hyperfine structure does not play a major role in the overall structure of the spectra. However,
due to an exact cancellation of the contribution from the negative and the positive sidebands, the
signal drops to zero for the two-level case at the spectrum center ∆c = 0. Since the in-phase and
in-quadrature components are anti-symmetric in detuning ∆ (see Appendix A), the phase of the
demodulated signal experiences an abrupt π shift at resonance.

When several atomic transitions contribute to FM spectroscopy signal, such as in the cesium D2
line, the spectrum becomes asymmetric and there is nomore exact cancellation of the contributions
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Fig. 1. (a) The experimental setup and the relevant cesium energy level. (b)–(c) A
comparison between experimental results (blue curve) and theoretical predictions (red curve)
for the magnitude and the phase of the demodulated signals at T = 53 ◦C. The detuning ∆ is
measured from the F = 4 → F′ = 5 transition. In (b), the minimum of the demodulated
signal, indicated by the black dashed line, is identified as the spectrum center ∆c. In (c), the
center occurs at the black dashed line, when φD rapidly changes by π. (d) The theoretically
calculated magnitude (black curve) and the phase (green curve) of the demodulated signal
for a two-level medium at the same density and temperature with (b) and (c). (e) A zoom
around ∆c showing the I′p component of the demodulated signal, which has the full slope of
the demodulated signal at ∆c (see text for more details). I0 is the incident laser intensity.
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of the negative and positive sidebands. Nevertheless, the magnitude of the demodulated signal
still exhibit a minimum that we take as the spectrum center ∆c [black dashed line in Figs. 1(b)
and 1(c)]. ∆c also coincides with a rapid change of the phase by π, as for the two-level case.

A striking feature of the amplitude spectrum is its narrow peak at the spectrum center. Since the
Doppler broadening rms value is about 30Γ, this narrow peak is clearly sub-Doppler. Furthermore,
this peak becomes narrower as the OD increases, as shown in the plot of the demodulated
component I ′p for several ODs in Fig. 1(e). This component is defined by I ′P = Re

{
IDeiϕ

}
, where

ϕ = −arg
{
dID/d∆|∆=∆c

}
. Physically, by applying a phase rotation of ϕ, we transfer fully the

slope at ∆c of the demodulated signal to the component I ′P. Consequently, the component I ′Q
which is in quadrature to I ′P, has a slope dI

′
Q/d∆|∆=∆c = 0. I ′P shows a dispersive-like behavior

at the vicinity of ∆c, similar to the usual FM spectroscopy technique [1]. Since the dominant
sidebands of the probe laser are off-resonance, and explore the slow decay tails of the absorption
window, this narrow structure could not come from the absorptive response of the atomic vapour.
They rather come from the rapid variation of the phase of the first sidebands as they propagate
through the medium. This phase variation increases with the OD leading to the sub-Doppler
structures at large OD, as observed in Figs. 1(b)–1(e).

In Fig. 2(a), the spectrum centers∆c, measured at various temperatures are shown as green open
circles. Due to the excited state hyperfine structure, ∆c does not coincide with the F = 4→ F′ = 5
transition, for which ∆ = 0. The horizontal axis variable

b1 = b0Γ2/(4Ω2) (1)

is the OD of the first sideband when ∆ = ∆c [41]. The experimental data are in good agreement
with the theoretically calculated value (blue curve). We note that the value of ∆c varies for
small and large value of b1 (b1<0.05 and b1>1 in this case), which might prevent us to use this
medium for accurate frequency reference. Moreover, the value of ∆c does not correspond to
any physical relevant quantity of the system, since it results from a subtle balance between the
contribution of the positive and negative sidebands on the asymmetric spectrum. In contrast, for

Fig. 2. (a) The center of the cesium D2 line, and (b) the magnitude of the slope at the
spectrum center plotted against b1, which is the average OD of the first sidebands, when
the carrier is tuned to the line center. The blue curves are the theoretical predictions. The
green open circles are the experimental values. In (a), the black dashed line indicates the
geometrical center of the three allowed transitions. The red curve is calculated for an OD that
is ten times larger, with a larger modulation frequency of 2 GHz. The error bars represent
the statistical errors of one standard deviation computed during the fitting procedure. Hence,
the error bars do not take into account the shot to shot fluctuations in the experiment.
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larger modulation frequency such that the excited state hyperfine splitting becomes negligible
with respect to Ω, the center value becomes independent of b1 [see the red curve in Fig. 2(a)]. In
this situation, the spectrum center has a clear physical meaning; it corresponds to the geometrical
center defined as

∑
i Si∆i/

∑
i Si, where Si is the transition strength factor and ∆i is the frequency

splitting of the hyperfine excited state Zeeman manifold i [see dashed line in Fig. 2(a)].
The dimensionless maximal slope of the demodulated signal at the spectrum center,
ΓI−10 |dI

′
P/d∆|∆=∆c is shown in Fig. 2(b). This slope is used as a figure-of-merit for the frequency

sensitivity of the spectroscopic method. The experimentally measured values of the slope [see
green open circles in Fig. 2(b)] are in good agreement with the calculated ones (blue curve). The
sensitivity increases with b1 and reaches a maximum value of ∼ 0.05 for b1 ' 2. For media with
higher OD, the sensitivity is expected to decrease due to an increase in the absorption of the first
sidebands that leads to an overall reduction of the transmitted signal. Nevertheless, according to
Eq. (1), one can increase the modulation frequency to prevent a large value of b1. In this context,
we can show numerically that the sensitivity can be further increased.

3. Discussions

Now, we discuss the frequency sensitivity of the large OD FM spectroscopic technique, more
precisely, on how the slope at spectrum center depends on experimental parameters. As shown in
Fig. 1, the main spectroscopic features are well captured by a two-level medium. Hence, for the
sake of simplicity, we center our discussions only on a two-level medium.

We first consider the large OD FM spectroscopy applied to a two-level medium at T = 0. In the
limit of Ω � Γ that brings the sidebands into the tail of the resonance, the following expression
is found for the slope at ∆c (see details of the derivation in Appendix B),

ΓI−10 |dI
′
P/d∆|∆=∆c ≈

3
2
J1(β)J2(β)b1 exp

(
−
5
8
b1

)
. (2)

where Jn(x) is the n-th order Bessel function of the first kind. We consider only the first and
second sidebands, the others are supposed to be too weak or too detuned to give a noticeable
contribution. A maximal sensitivity of ∼ 0.2 is obtained for b1 = 8/5, and β = 2.4. We note
that the experiment [see Fig. 2(b)] gives a sensitivity around 4 times smaller than the prediction
of Eq. (2). This lower value is due to the residual effects of Doppler broadening and hyperfine
structure in the experiment. The lower value of β = 2.14 used in our experiment, leads only to a
4% reduction in the sensitivity of the spectroscopic technique. Numerical simulations show that
the maximal sensitivity is obtained when b0 & 2000, which is about 10 times larger than the
experimental maximal OD.

Considering now the usual low-modulation-index FM spectroscopy at T = 0 [1], the sensitivity
is found to be (see also Appendix C)

ΓI−10 |dI
′
P/d∆|∆=∆c ≈ 2J0(β)J1(β)b0 exp

(
−
b0
2

)
, (3)

where we consider only the carrier and the first sidebands. A maximum sensitivity of 0.5 is found
for b0 = 2 and β = 1, which is larger but comparable to the high index case [see Eq. (2)]. Note
that there is an optimum OD of b0 = 2 for the low modulation index case, unlike in the high
modulation index case, where there is no OD limitation for optimum sensitivity, as long as Ω can
be adjusted to have b1 ' 8/5 [see Eqs. (1) and (2)].
A more complete numerical comparison of the sensitivities for the low and high modulation

index cases is presented in Figs. 3(a) and 3(b) in the form of 2D maps. Here, we consider a
two-level medium at T = 0, and include all the possible relevant sidebands. We plot on the
vertical axes the quantity 6πρL/k2, which corresponds to b0 at T = 0. ρ is the atomic density
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and k is the optical field wavenumber. The expressions of the sensitivity given by Eq. (2) and Eq.
(3) are represented by dotted and dashed curves, respectively. We note that those expressions
capture well the position and the value of the maximum sensitivity. In Figs. 3(c) and 3(d), we
extend the comparison to the finite temperature case. We consider a medium with a Doppler
width of kv̄/Γ = 30, similar to our experiment. Here, v̄ =

√
kBT/m is the thermal velocity, kB

is the Boltzmann constant and m is the atomic mass. At T , 0, the sensitivity of the standard
low OD FM spectroscopy is reduced by Doppler broadening [compare Figs. 3(a) and 3(c) in
the region where 6πρL/k2 ' 2]. In contrast, the maximal sensitivity of the high index FM
spectroscopy, for sufficiently large Ω, is still given by Eq. (2). This is shown in Fig. 3(d), where
the full sensitivity of the T = 0 case is recovered when Ω>150Γ. Here, Ω � kv̄, so the sidebands
probe the tails of the resonance that are dominated by the homogeneous line rather than the
Doppler broadening. Thus, the relevant parameter to compare the two temperature cases is indeed
6πρL/k2; the OD at T = 0. We note that for finite temperature, we get b0 = 6πρLg(kv̄/Γ)/k2

where g(x) =
√
π/8 exp

(
1/8x2

)
erfc

(
1/
√
8x

)
/x [42]. For large x, g(x) '

√
π/8/x, leading to a

substantial reduction of the OD (of a factor v kv̄/Γ) for the finite temperature medium compared
to the T = 0 case.

Fig. 3. 2D maps of the calculated sensitivities of FM spectroscopy applied to a two-level
system with (a) β = 1 at kv̄/Γ = 0, (b) β = 2.4 at at kv̄/Γ = 0, (c) β = 1 at kv̄/Γ = 30, and
(d) β = 2.4 at kv̄/Γ = 30. The dashed line in (a), at b0 = 2, identifies the maximal sensitivity
in the low modulation index case. In (b) and (d), the maximal sensitivity at high modulation
index of Eq. (2), is indicated by the dotted lines.

In Figs. 3(a) and 3(c), a signal is also present at large OD. Indeed, at β = 1, the second
sidebands of the modulation is not negligibly small, as J2(β = 1) = 0.11. Thus, while the
carrier component is absorbed at large OD, the second sidebands start to probe the tails of the
resonance, giving rise to a beat note with the first sidebands. Here, we have again the large OD
FM spectroscopic technique, but operating away from β = 2.4 where the sensitivity is optimum.
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4. Conclusion

In conclusion, we presented a sensitive FM spectroscopic technique that uses the detuned
sidebands to probe a large OD medium. When the modulation frequency becomes much larger
than the Doppler width, these sidebands probe the tails of the resonance, which are dominated
by the homogeneous response of the vapor. This leads to a Doppler-free technique with high
sensitivity at large OD. Applying the large OD FM spectroscopy on the cesium D2 line, we find
a good agreement with the calculated signal. Applications might be found in measurement of
cooperative emissions in dense atomic bulk medium where the spurious finite size effects shall
be weak. Finally, this technique should be applicable to other types of media with large OD,
such as dye or other molecular solutions, Mie scatterers ensemble, point-defects in diamond, and
heavily doped glasses and crystals.

Appendix A. General expression for the demodulated signals

We consider an incident field of amplitude E0 that is phase modulated at a frequency Ω,

Ei(t) = E0e−iωt+iβ cosΩt. (4)

The laser frequency is denoted by ω, and the modulation index for the phase is denoted by β.
Using the Jacobi-Anger expansion and the relation J−n(x) = (−1)nJn(x), we have

Ei(t) = E0

∞∑
n=−∞

inJn(β)e−i(ω+nΩ)t. (5)

The transmitted field across a homogeneous medium is given by

E(t) = E0

∞∑
n=−∞

inJn(β)e−i(ω+nΩ)tBn(∆), (6)

where the function Bn(∆) is the transmittivity of the n-th sideband, and ∆ is the detuning of
the carrier frequency. Under the condition that we do not saturate the atomic transition, the
transmittivity for a medium of thickness L is given by

Bn(∆) = exp[iχ(∆ + nΩ)kL/2], (7)

where χ(∆) is the susceptibility of the medium. As a result of the frequency modulation, the
transmitted intensity consists of various harmonics of Ω:

I(∆, t) = I0
∑
n, m

in−mJn(β)Jm(β)e−i(n−m)ΩtBn(∆)B∗m(∆), (8)

where n and m are summed over all integers.
We are interested in the first harmonic of transmitted intensity

I1(∆, t) =iI0
∞∑

n=−∞

[
Jn(β)Jn−1(β)Bn(∆)B∗n−1(∆)e

−iΩt − Jn(β)Jn+1(β)Bn(∆)B∗n+1(∆)e
iΩt

]
=2I0

∞∑
n=−∞

Jn(β)Jn+1(β)
[

Im
{
Bn(∆)B∗n+1(∆)

}
cosΩt + Re

{
Bn(∆)B∗n+1(∆)

}
sinΩt

] (9)
Applying the relation J−n(x) = (−1)nJn(x), we can rewrite the expression above such that the
summation is only over positive integers,

I1(∆, t) =2I0
∞∑
n=0

Jn(β)Jn+1(β)
[
Im{Bn(∆)B∗n+1(∆) − B

∗
−n(∆)B−n−1(∆)} cosΩt

+ Re{Bn(∆)B∗n+1(∆) − B
∗
−n(∆)B−n−1(∆)} sinΩt

]
.

(10)
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The in-phase and in-quadrature time-averaged components of the demodulated signal are related
to I1 through I1 = 2(IP cosΩt + IQ sinΩt). We identify those components as

IP(∆) = I0
+∞∑
n=0

Jn(β)Jn+1(β) Im
{
Bn(∆)B∗n+1(∆) − B

∗
−n(∆)B−n−1(∆)

}
,

IQ(∆) = I0
+∞∑
n=0

Jn(β)Jn+1(β)Re
{
Bn(∆)B∗n+1(∆) − B

∗
−n(∆)B−n−1(∆)

}
.

(11)

We can also express the signal using the complex notation,

ID(∆) ≡ IP + iIQ = iI0
+∞∑
n=0

Jn(β)Jn+1(β)
{
B∗n(∆)Bn+1(∆) − B−n(∆)B∗−n−1(∆)

}
. (12)

Under this notation, the first harmonic intensity can be written as

I1(∆, t) = 2Re
{
ID(∆)e−iΩt

}
. (13)

For a given phase factor ϕ, we also have

I1 = 2Re
{
IDeiϕe−i(Ωt+ϕ)

}
. (14)

Thus, a change in the phase of the demodulation reference signal by ϕ, results in a demodulated
signal that is rotated by ϕ in the complex plane, i.e.,

I ′D = IDeiϕ . (15)

For the simple case of a zero-temperature (T = 0) two-level medium with a density ρ, the
susceptibility is given by

χ(∆) = −3πρΓ/
[
k3(∆ + iΓ/2)

]
. (16)

We define
b = Im{χ}kL, (17)

as the OD, and,
φ = Re{χ}kL/2, (18)

as the optical phase shift due to the refractive index of the two-level ensemble. At T = 0, the OD
at resonance b0 is given by

b0 =
6πρL
k2

. (19)

The symmetric property of the susceptibility gives rise to the following relation for the transmit-
tivity,

Bn(∆) = B∗−n(−∆). (20)

Thus, for the two-level case, we find that the in-phase and in-quadrature components are both
odd functions of ∆. As pointed out before, this leads to an abrupt phase jump of π across the
resonance.
We further note that, in the two-level case, the spectrum center ∆c occurs at resonance i.e.,
∆c = 0.
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Appendix B. High modulation index case

We consider here the high modulation index case, which forms the basis for the large OD
frequency modulation (FM) spectroscopy. We suppose that the carrier component is weak and
the signal is dominated by the beat note between the 1st and the 2nd sidebands. The in-phase and
in-quadrature components simplifies to the following:

IP(∆) = I0J1J2 Im
{
B1(∆)B∗2(∆) − B

∗
−1(∆)B−2(∆)

}
,

IQ(∆) = I0J1J2 Re
{
B1(∆)B∗2(∆) − B

∗
−1(∆)B−2(∆)

}
.

(21)

In the complex notation, we have

ID(∆) = iI0J1J2
{
B∗1(∆)B2(∆) − B−1(∆)B∗−2(∆)

}
. (22)

We further assume that the modulation frequency is sufficiently large, i.e. Ω � Γ, so that the
two-level susceptability can be approximated by

χ(∆) ≈ −
3πρΓ
k3

(
1
∆
−

iΓ
2∆2

)
. (23)

For a medium with non-zero temperature, the above approximation also holds as long as the
modulation frequency is much larger than the Doppler broadening.
Using Eq. (7) and Eq. (23), we can write

B±1(∆) ≈ exp
{
−
b0
2

(
Γ2

4(∆ ±Ω)2
+ i

Γ

2(∆ ±Ω)

)}
,

B±2(∆) ≈ exp
{
−
b0
2

(
Γ2

4(∆ ± 2Ω)2
+ i

Γ

2(∆ ± 2Ω)

)}
.

(24)

The product of the transmittivity function in Eq. (12) can be written as

B±1B∗±2 ≈ exp
{
−
b0
2

Γ2

4(∆ ±Ω)2

}
exp

{
−
b0
2

Γ2

4(∆ ± 2Ω)2

}
× exp

{
−i

b0
2

Γ

2(∆ ±Ω)

}
exp

{
i
b0
2

Γ

2(∆ ± 2Ω)

} (25)

Its derivative with respect to ∆, and subsequent evaluation at the spectrum center (∆ = 0), is
given by

d
d∆

B±1B∗±2 |∆=0 ≈ iB±1(0)B∗±2(0)
b0
Ω

3Γ
16Ω

. (26)

Since Ω � Γ, we retain only the first order terms in Γ/Ω. Therefore, we have

d
d∆

[
B∗1B2 − B−1B∗−2

] ����
∆=0
≈ −

3i
2
b1 exp (−5b1/8 + iφ1/2) Γ−1. (27)

We denote the OD and the optical phase shift at the position of the first sidebands to be
b1 = b0Γ2/(4Ω2) and φ1 = b0Γ/(4Ω) respectively, when the carrier component is at the center
of the spectrum. The slope of the demodulated signal is then given by

dID
d∆

����
∆=0
≈

3
2
I0J1J2b1 exp

(
−
5
8
b1 +

i
2
φ1

)
Γ
−1. (28)

As the OD of the medium changes, φ1 changes and the values of the slope for the in-phase and
in-quadrature components display an oscillatory behavior. The sensitivity of the spectroscopic
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technique can be measured by a suitable phase shift of the reference signal, according to equation
Eq. (15), such that the component I ′P = Re{I ′D}, has the full value of the on-resonance slope
while I ′Q = Im{I ′D} has zero slope. In practice, it is a measurement of the magnitude of the slope,
given by

|dI ′P/d∆|∆=0 ≈
3
2
I0J1J2b1 exp

(
−
5
8
b1

)
Γ
−1, (29)

which is Eq. (2). The maximum value of J1(β)J2(β) occurs when β = 2.4, giving the optimum
modulation index for large OD FM spectroscopy.

Appendix C. Low modulation index case

We contrast the results obtained in the previous section with the case of low modulation index.
For low modulation index, one only has to consider the beat note between the carrier and the first
sidebands. The demodulated signal becomes

ID(∆) = iI0J0J1
{
B∗0(∆)B1(∆) − B0(∆)B∗−1(∆)

}
. (30)

When Ω � Γ, we have the conventional band-resolved FM spectroscopy
In the limit of low OD (b0 � 1), we can approximate B±1 ≈ 1 and B0 ≈ 1 − b0/2 + iφ. The

demodulated signal becomes
IP(∆) = 2I0J0J1φ,
IQ(∆) = 0.

(31)

The demodulated signal is non-zero only for the in-phase component. Furthermore, it has a
dispersive profile suitable to generate an error signal for the frequency stabilization of a laser.
To compute the slope of the demodulated signals, we first note that

B∗0(∆)B1(∆) − B0(∆)B∗−1(∆) ≈
[
B∗0(∆) − B0(∆)

]
. (32)

Its derivative, evaluated at the center, is then given by

d
d∆

[
B∗0(∆) − B0(∆)

] ����
∆=0
≈

2i
Γ
b0e−b0/2. (33)

Here, the component I ′P that has the full slope is simply IP. The on-resonance slope is given by

|dI ′P/d∆|∆=0 ≈ 2I0J0J1b0e−b0/2Γ−1, (34)

which is Eq. (3). Here, the maximum value J0(β)J1(β) is obtained when β = 1.

Appendix D. Experimental demodulated signals

Experimental demodulated signals at various vapor temperature are shown in Fig. 4. The
experimental curves are plotted in blue, while the theoretical curves are plotted in red. In the first
two columns, we plot the I ′P and I ′Q components of the demodulated signals. In the third and
the fourth columns, we plot the magnitude |ID | and the phase φD = arg{ID} of the demodulated
signals. As the vapor temperature increases, the demodulated signals become more complicated,
as evidenced by the increasing oscillations in the magnitude, and the rapid change in the phase of
the demodulated signals.
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Fig. 4. The demodulated signals at several vapor temperatures. The first column and
the second column show the I′P and the I′Q components. The third column and the fourth
column show the magnitude |ID |, and phase of the demodulated signal, φD. The blue curves
are the experimental results and the red curves are the theoretical predictions including
the three allowed transitions of cesium D2 line from the F = 4 ground state. The vapor
temperatures indicated here are the temperatures obtained from a fit of the theoretical model
to the experimental curves. The fit is performed in a frequency range of 400 Γ around ∆c.
They agree well with direct measurements of the temperatures on the setup.
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Appendix E. Model for the transmittivity of cesium D2 line

To capture properly the contribution of the three-allowed transitions in a cesium vapor of
temperature T and thermal velocity v̄, we use the following expression of the transmittivity at the
vicinity of the D2 line

B(∆) = exp

[
−
B

2

√
π

8
Γ

kv̄

5∑
F′=3

S4F′w
(
∆ − δF′ + iΓ/2
√
2kv̄

)]
, (35)

where SFF′ is the transition strength factor. They take the values S4F′ = 7/72, 7/24 and 11/18, for
F′ = 3, 4 and 5 respectively [43]. The detuning ∆ is referred from the F = 4→ F′ = 5 transition.
The two other relevant hyperfine excited states are detuned from the F′ = 5 level by δF′ . In this
case, δF′ = −452.4, −251.1 and 0 MHz, for F′ = 3, 4 and 5 respectively [43]. The function w(z),
with a complex parameter z, is the Faddeeva function. It is defined by w(z) = exp(−z2)erfc(−iz)
[44]. B is a parameter proportional to ρL, which is described in the following. We assume that
the intensity of each sideband is low enough such that transition saturation and optical pumping
can be neglected. We also neglect the contribution of the other F = 3 hyperfine ground state,
since it is 9.2 GHz away from the F = 4 ground state. This transmittivity function is used in Eq.
(12) to calculate the demodulated signals.

The expressions of the absorption cross sections for the D lines of alkali atoms, are found in
[45]. Using the expression for the D2 line, we can write B in terms of the atomic density ρ,

B =
18πLρ
(2I + 1)k2

, (36)

where I = 7/2 is the nuclear spin of cesium atoms.
The atomic density is then related to the vapor pressure Pv and vapor temperature T ,

ρ = 133.323
Pv

kBT
. (37)

In the above expression, T is specified in Kelvin and Pv in Torr. The vapor pressure of cesium is
further related to its temperature [46],

log10
Pv

760 Torr
= 4.711 −

3999K
T

, T<301.64K,

log10
Pv

760 Torr
= 4.165 −

3830K
T

, T>301.64K.
(38)

Eqs. (37) and (38) together link the temperature to B. Thus, B and T are not independent in
our model here. Between the two quantities, we choose T as the free parameter when fitting our
experimental data with the model.
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