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Abstract Localization is an important task in swarm robotics framework. This paper overviews swarm
control and localization approaches, concentrating on localization methods under restrictions that are im-
posed by using inexpensive onboard sensors with the emphasis on swarm formation control applications
in urban search and rescue and environment exploration tasks. The goal of the paper is to aid researchers
selecting appropriate sensors for these tasks.

1 Introduction
For many years, robotics focused on single-robot strate-

gies to achieve required objectives, while robots were be-
coming more and more intelligent and reliable. Nowadays,
with algorithm development, sensory perception limits are
elegantly overcome using different sensory data synergy
and sophisticated mathematical data processing methods.
Biologically inspired approaches in robotics consider ex-
amples of ant and bee colonies, flocking birds and school-
ing fishes as life evidences of effective multi-agent systems.
Moreover, single distinct agents in such systems are not ca-
pable of performing any essential tasks alone and only their
collaborative behavior guarantees a successful survival of
a colony. Under the conditions of highly limited individ-
ual agent intelligence, these systems show very high per-
formance, scalability and flexibility as a team. In order to
transfer these qualities from the nature to artificial robotic
systems, swarm robotics studies intensity grew exponen-
tially in the past decades.

Swarm robotics is a field of research which studies multi-
robot systems. Such systems are designed to perform col-
laborative tasks using multiple agents and communications
between them in order to increase overall system efficiency.
It is important to note that collective behavior appears in
distributed manner, without a centralized control. Robotic
swarms are a flexible tool to perform wide range of tasks,
including collective exploration [1], flocking [2], foraging
[3], hunting [4], collaborative manipulation [5] and reloca-
tion [6], and others.

For a long time, mathematical simulations were a ma-
jor way of swarm algorithms verification and validation.
This trend is changing because of computation power in-
crease and flexible programming frameworks appearance.
For example, Robot Operating System (ROS) framework
bundled with Gazebo simulator gives opportunities to test
new methods and algorithms considering most real-world
conditions [7]. The ability to verify collective swarm be-
havior in a simulation is essential because of a high to-
tal equipment cost for multiple physical entities of robots.
High quality simulations give a chance for swarm robotics

to perform various areas of research without a direct pur-
chase of an expensive hardware. Moreover, constant de-
crease of electronic components cost and size allows re-
searches to construct and test various robot construction de-
signs and algorithms in experiments, proving swarm robotic
systems efficiency, effectiveness and usability. This paper
pays a special attention to robotic equipment cost-efficiency.

2 Swarm robotics terminology
Swarm robotics started to attract attention of researchers

when a single-robot robotics field was already flourishing.
As the field is still establishing, even the basic terms of
swarm robotics vary from one paper to another and this
must be carefully considered by researchers. For exam-
ple, groups of multiple robots are denoted in various recent
studies as:

• Multi-Robot System or MRS [8–11]

• Multi-Agent System or MAS [12–18]

• Swarm Robotics System (Robotic Swarm) or SRS
(RS) [1, 3, 4, 19–24]

These terms are often used as synonyms within a same
paper [2,25], however, it is worth to note that, strictly speak-
ing, MAS definition spans over non-robotic systems as well,
for example, such as people crowds, schooling fishes and
bird flocks. Therefore, the third definition, swarm robotics
system, is used in this paper as more a popular and, in our
opinion, a more precise expression.

Formation control is an important swarm robotics task
that consists of reaching and keeping a desired robot posi-
tion by every swarm member robot from its arbitrary initial
position. Desired positions are often defined by a 1D, 2D or
3D geometric shape formation, although it is not the only
way to create a formation. For instance, a shape may be
determined on the fly by a particular obstacle boundaries
shape. This task has several sub-tasks, however, there is no
common sub-tasks classification: only formation producing
and formation tracking sub-tasks are specified in [16], how-
ever, formation transformation and its kinds are pointed out



additionally in [17]. Yet, we could roughly specify three
main sub-tasks of formation control as follows:

• Formation producing, which requires the robots to
create a particular desired shape [13, 19, 20, 26]

• Formation tracking, which is a formation shape pre-
serving during locomotion of a swarm as a single
structural group [4, 10, 12, 25, 27]

• Formation transformation, which is a controlled for-
mation type or shape evolution in the process of lo-
comotion [17]. In turn, it may take a form of:

– Arbitrary transformation: a formation type evo-
lution caused by an operator command [9]

– Obstacle avoidance with a formation: an auto-
matic formation type evolution that occurs in
order to avoid swarm robot collisions with static
or dynamic obstacles [2, 14]

– Self-adaptation: a formation type automatically
adapts to environment conditions [15]

3 Sensors for a swarm
A precise environment perception is essential for every

robot, and different sensors may be employed to perceive
different kind of data about robot and its surrounding, which
is demanded in order to perform a particular task. These
data could be used in further processing and decision mak-
ing, allowing a robot to dynamically react on inner and
outer conditions changes according to its program. Typi-
cally, these sensors are treated as an additional equipment
mounted on a robot, and therefore it is important to con-
sider sensor’s properties before its use: its accuracy and er-
ror rate, power and computation needs, data transmission
interfaces, its size and cost, etc. Every robot in a group or
a swarm should be equipped with a single sensor or a set
of sensors, thus, cost-effectiveness becomes crucial in the
case of swarm robotics. GPS receivers and laser range find-
ers, typically, are still relatively high-cost devices and their
usage in robotic swarms is very limited.

Without attempting to form a complete list of all sensor
types that are used in swarm robotics, we overview most
popular and important of them in Table 1 and their strong
features and potential pitfalls. The table includes cameras,
GPS, radio frequency (RF), ultrasound and infrared bea-
cons [10], optical and acoustic sensors [21], chemical sen-
sors (particularly, alcohol sensors [29]) and others.

While for swarm robots low-cost sensors are preferable
due to scalability with regard to the swarm size, a number
of significant drawbacks should be emphasized. The first
one is the lack of measurement accuracy (for infrared and
ultrasound sensors) or data resolution (for visual sensors).
This forces researchers to deal with imprecise sensory data
and adapt their algorithms accordingly. For example, sev-
eral measurements could be done sequentially to decrease
average error value and statistical methods may be applied

to reduce noise in the output data. The second drawback
is that the manufacturers in order to reduce the total cost
of a sensor may exclude some important yet secondary fea-
tures, e.g., visual sensors may lack an auto-focus feature
or RF sensors may lack noise suppression algorithms. The
third is that low-cost components usage often increase sen-
sor size, which is crucial for swarms of tiny robots that has
rather tight size and power constraints.

Since we focus on perception in urban search and rescue
(USAR) field [30], we concentrate on ultrasonic, infrared
and visual sensors. In addition, several laser range find-
ers (LRF) examples that were applied by USAR swarm re-
searchers are mentioned - we noted that LRF use in USAR
swarms increases due to their significant cost decrease in
recent years. Table 2 presents an overview of major sen-
sors that were used in particular robotic studies in recent
years with their main properties and price1 as well as refer-
ences to the particular swarm robotics studies, which used
the device as a part of a robotic system hardware. In order
to distinguish surface mountable and out-of-the-box sen-
sors, some sensors appear in the table with an appropriate
controller (e.g., Raspberry Pi 3) that is required in order to
process sensory data. We excluded GPS, light and acous-
tic sensors from this table because of their operating draw-
backs in indoor environments, which are the target environ-
ments for a USAR swarm.

4 Forms of swarm control
One of the key properties of a robotic swarm is its control

form. We intentionally avoid terms like ”communication
graph” [1] or ”connected configuration” [11] because there
are multiple examples when both sensory interactions and
communication links between swarm robots create non–
obvious topology, which is sometimes hard to distinguish
and classify. For example, leader-following approach im-
plementations may differ in the way of connectivity usage:
it could be completely prohibited [12] or it could be pre-
served with no actual data transmission [15], although both
methods clearly utilize leader-following strategy. There-
fore, our approach extends swarm control forms classifica-
tion that was proposed by Oh et.al. in their multi-agent for-
mation control review [16]. Consensus-based topology [44]
is also included into this classification due to its difference
from other control forms, while its importance is shown in
recent studies.

In leader-follower control scheme at least one of robots
is defined as a leader, while all other robots act as its follow-
ers. The leader autonomously preserves its trajectory and
the rest of robots follow the leader with some offset. This
type of formation may have features like switching lead-
ership [9], special functional followers [12], dynamically
changing distance between robots [15] and other, depend-
ing on communication scheme between the robots [25, 45].

1The prices were verified in on-line shops at the time we were writing
this paper and were valid for March 2018.



Table 1: Sensors list with features that are important for swarm robotics

Sensor type Features
GPS Provide global positioning; not effective in indoor environments [12]
Laser range finders Provide highly precise range data in a wide angle; no distinguishing between

objects; decreased performance in outdoor environment due to weather condi-
tions [2]

Visual sensors Provide large amount of data that requires complicated processing; depend on
light conditions [3, 10, 28]

Radio frequency sensors Provide a wide bandwidth communication channel between robots; weak de-
pendency on environment [20, 21]

Infrared sensors Provide a narrow bandwidth communication channel between robots; provide
distance measurements in close range; [14, 19, 24]

Acoustic sensors Broadcasting waves [20]
Ultrasound sensors Provide distance measurements in short and medium range distances; unable to

distinguish among obstacle types [3]
Light sensors Provide data about light intensity [3, 27]
Chemical sensors Provide data about chemical substance density [29]

In behavioral control approach robots follow several pre-
defined behaviors that include cohesion, inter-robot and ob-
stacle collision avoidance [2–4,10,21,27]. In virtual struc-
ture control scheme an entire swarm behaves as a single
object with a particular desired motion. Motions of distinct
robots are determined depending on the entire structure mo-
tion [46]. In consensus control scheme an agreement reach-
ing between robots within a swarm is based on their states
and collected data [1, 8, 11, 13, 19, 20, 24].

5 Challenges of localization task
Localization is one of the main tasks for mobile robotics

along with mapping and path planning [47]. Localization
must be performed as accurate as possible in order to per-
form locomotion and sensory data gathering in precise and
predictive manner. Effectively performed localization of
a robotic swarms helps avoiding inter-robot collisions and
performing formation control task.

Localization methods could be divided into range-free
and range-based localization [19]. Range-free class in-
cludes methods that do not use distance for localization.
Positions are estimated based on the fact of connectivity
existence or on indirect properties, e.g., Received Signal
Strength (RSS), and are used without further converting
them into distance values. This class also includes methods
based on pheromones and others, which do not use sensory
data to estimate ranges [1, 22, 27, 29].

On the opposite, range-based class consists of methods
where range measurements serve as a base for further pro-
cessing and position estimation. Range-based methods al-
low using a wide range of devices, which in turn dictate the
limits of a desired accuracy. Distances could be computed
using empirically obtained correlations between distances
and sensory data (e.g., RSS values) or special techniques

(e.g., time of arrival, TOF, or time difference of arrival,
TDOA [21]).

Recent studies [14,16] classify localization into three types
depending on the robots’ coordinate frames relations and
measured variables (Table 3), and range-based methods play
important role in all mentioned localization types, which
are classified as follows:

• Position-based: robots get direct measurements of
their position relative to a global coordinate system
[3, 14, 26, 48]

• Displacement-based: robots actively control displace-
ments of their neighbors relatively to their own local
coordinate system. To make a formation, robots’ lo-
cal coordinate systems orientations must be aligned
with each other [11, 24]

• Distance-based: desired formation is achieved by track-
ing inter-robot distances, therefore, local coordinate
systems may be oriented in an arbitrary way [4,8,10,
12, 19–21, 25]

6 Towards swarm control in urban search and
rescue

Urban search and rescue tasks are a forward-looking field
of swarm robotics practical application. Natural and tech-
nological disasters often bring significant destructions and
human rescue teams require broad assistance especially in
the first few hours and days after a disaster occurs. Rapidly
deployable communication structures, robust and efficient
ways of path planning in ruins and urban debris, fast sur-
vivors search and buildings inspection are of a high demand
in such situations. Thousands of cheap small-sized UAV
and UGV robots could serve as a first wave of USAR oper-
ation rescue teams, providing detailed information about a



Table 2: Devices list used in robotics researches sorted by their type

Type Device Unit price
(USD)

Measurement
accuracy
(cm)
or provided
resolution

Detection
angle (deg)

Minimum
detection
range (cm)

Maximum
detection
range (cm)

U
ltr

as
on

ic SRF02 [31] 16,8 3 80 15 250
MB1010 LV-MaxSonar-EZ1 [32] 30,00 3 60 12 390
328ST160 + 328SR160 [33] 27,00 1 100 10 30
LPC1768 (Cortex-M3) 60,00

In
fr

ar
ed

TSKS-5400 + TEFT-4300 [34] 1,80 1 60 0 12
ATMEGA168 4,00
Kingbright APA3010F3C-GX +
Kingbright APECVA3010P3BT [35]

1,10 3 120 0 20

Xmega128A3U 7,00
Sharp GP2Y0A02YK [34] 16,00 3 - 12 160
TCRT1000 [36] 1,00 1 45 1 10
LPC1768 (Cortex-M3) 60,00
782-VSMB1940X01 [19] +
782-TEMD7100X01

1,6 0,1 120 1 10

556-ATMEGA328P-MU 3,00
GP2Y0A41SK0F [23] 10,55 1 - 4 30
Raspberry Pi 3 35,00

V
is

ua
l

OptiTrack Flex 13 999,00 1280 x 1024 H: 56 V: 46 - -
OptiTrack OptiHub [37] 300,00
Microsoft Kinect [38] 100,10 640 x 480 H: 57 V: 43 40 400
Microsoft Kinect 2 [39] 550,00 1280 x 960 H: 70 V: 60 50 400
Asus Xtion PRO LIVE [39] 200,00 1280 x 1024 H: 58 V: 45 80 450
Intel RealSense D400 Series 150 - 180 1280 x 720 H: 91 V: 66 10 1000
Intel RealSense SR300 [40] 65,00 1920 x 1080 H: 68 V: 41 20 150
ZED Stereo Camera [41] 450,00 4416x1242 H: 96 V: 54 50 2000

L
R

F Neato XV-11 [42] 159,00 1 360 15 600
Hokuyo URG-04LX [2] 1040,00 3 240 2 650
RPLIDAR 360 Laser Scanner [43] 336,00 1 360 20 600

disaster site, people remaining under the ruins and locating
zones that are still dangerous for rescue teams (e.g., due to
nuclear or chemical pollution, fire or non-stable construc-
tions). While the main task of a swarm within USAR tasks
is focused on environment exploration and survivors search,
the swarm could also perform various (light) cargo trans-
portation tasks, communication systems replacement, first
medical and psychological aid provision to discovered sur-
vivors.

In order to be applicable in uncertain GPS-denied envi-
ronments of partially destroyed buildings robotic swarms
require sophisticated methods of control and motion plan-
ning. Formation control in such conditions is a compli-
cated task to perform: unpredictable environment, lack of
long-range communication and tight time constraints in-
fluence swarm behavior. Formation control in such con-
ditions should be considered as only a background task,

while robotic swarm should concentrate on simultaneously
performing data acquisition and transfer, mapping and path
planning. Therefore, formation control algorithms must be
highly flexible to adapt swarm behavior to rapidly changing
external conditions.

7 Conclusions
Swarm robotics is a rapidly developing field of robotics

and its development heavily relies on electronics progress.
Robotic swarm agents need relatively small, precise and
cost-effective sensory devices. Wide range of available equip-
ment often is a trade-off between these characteristics, there-
fore, swarm robotics is still a challenging research field.
New hardware constructions, continuously enhancing math-
ematical methods and swarm control topologies are designed
to overcome difficulties.



Table 3: Distinctions among position, displacement, and distance-based formation control. Source: taken from [16].

Position-based Displacement-based Distance-based
Sensed variables Positions of agents Relative positions of neighbors Relative positions of neighbors
Controlled variables Positions of agents Relative positions of neighbors Inter-agent distances
Coordinate systems A global coordinate systems Orientation aligned local Local coordinate systems

coordinate systems
Interaction topology Usually not required Connectedness or existence Rigidity or persistence

of a spanning tree

In this paper we briefly overview swarm control and lo-
calization approaches, concentrating on localization meth-
ods under restrictions that are imposed by using inexpen-
sive on-board sensors. We review sensors that are broadly
used in swarm robotics for indoor navigation and explo-
ration while performing urban search and rescue tasks. The
goal of the paper was to aid researchers selecting an appro-
priate set of sensors for these tasks.
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[26] Y. Dieudonné, O. Labbani-Igbida and F. Petit: Circle
formation of weak mobile robots; ACM Transactions
on Autonomous and Adaptive Systems, Vol. 3, No. 4,
pp. 16 (2008)

[27] H. Li, C. Feng, H. Ehrhard, Y. Shen, B. Cobos, F.
Zhang, K. Elamvazhuthi, S. Berman, M. Haberland
and A. L. Bertozzi: Decentralized stochastic control of
robotic swarm density: Theory, simulation, and experi-
ment; Intelligent Robots and Systems (2017)

[28] A. K. Massimino and D. A. Sofge: Motion Localiza-
tion with Optic Flow for Autonomous Robot Teams and
Swarms; Journal of Computer and Communications,
Vol. 6, No. 01, pp. 265 (2017)

[29] R. Fujisawa, S. Dobata, K. Sugawara and F. Mat-
suno: Designing pheromone communication in swarm
robotics: Group foraging behavior mediated by chem-
ical substance; Swarm Intelligence, Vol. 8, No. 3, pp.
227–246 (2014)

[30] E. Magid, T. Tsubouchi, E. Koyanagi and T. Yoshida:
Static balance for rescue robot navigation: Losing
balance on purpose within random step environment;
IEEE Intelligent Robots and Systems, pp. 349–356
(2010)

[31] N. Gageik, P. Benz and S. Montenegro: Obstacle de-
tection and collision avoidance for a UAV with com-
plementary low-cost sensors; IEEE Access, Vol. 3, pp.
599–609 (2015)

[32] M. S. Couceiro, C. M. Figueiredo, J. M. Luz, N. MF.
Ferreira and R. P. Rocha: A Low-Cost Educational
Platform for Swarm Robotics; International Journal of
Robots, Education & Art, Vol. 2, No. 1 (2012)

[33] D. Ruiz, E. Garcı́a, J. Ureña, D. de Diego, D. Gualda
and J. C. Garcı́a: Extensive ultrasonic local positioning
system for navigating with mobile robots; 10th Work-
shop on Positioning Navigation and Communication,
pp. 1–6 (2013)

[34] F. Arvin, K. Samsudin and A. R. Ramli: A short-range
infrared communication for swarm mobile robots; In-
ternational Conference on Signal Processing Systems,
pp. 454–458 (2009)

[35] N. Farrow, J. Klingner, D. Reishus and N. Correll:
Miniature six-channel range and bearing system: al-
gorithm, analysis and experimental validation; IEEE
International Conference on Robotics and Automation
(ICRA), pp. 6180–6185 (2014)

[36] J. Hilder, R. Naylor, A. Rizihs, D. Franks and J. Tim-
mis: The pi swarm: A low-cost platform for swarm
robotics research and education; Conference Towards
Autonomous Robotic Systems, pp. 151–162 (2014)

[37] A. G. Millard, J. A. Hilder, J. Timmis and A. FT Win-
field: A low-cost real-time tracking infrastructure for
ground-based robot swarms; Swarm Intelligence: 9th
International Conference, Vol. 8667, pp. 278 (2014)



[38] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D.
Maturana, D. Fox and N. Roy: Visual odometry and
mapping for autonomous flight using an RGB-D cam-
era; Robotics Research, pp. 235–252 (2017)

[39] F. Endres, J. Hess, J. Sturm, D. Cremers and W. Bur-
gard: 3-D mapping with an RGB-D camera; IEEE
Transactions on Robotics, Vol. 30, No. 1, pp. 177-187
(2014)

[40] S. Yuan, Q. Ye, B. Stenger, S. Jain and T.-K. Kim:
Bighand2.2m benchmark: Hand pose dataset and state
of the art analysis; IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 2605–2613 (2017)

[41] U. Shah, R. Khawad and K. Madhava Krishna: Deep-
fly: towards complete autonomous navigation of MAVs
with monocular camera; Proceedings of the Tenth In-
dian Conference on Computer Vision, Graphics and
Image Processing, pp. 59 (2016)

[42] BG. Sileshi, J. Oliver, R. Toledo, J. Gonçalves and
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