УДК 546.722: 547-386 + 544.25 + 54-144

Ферроценсодержащие жидкие кристаллы

О.Н.Кадкин, Ю.Г.Галяметдинов

Казанский национальный исследовательский технологический университет 420015 Казань, ул. К.Маркса, 68, факс (843)236–6523

> Рассмотрены жидкокристаллические моно- и дизамещенные ферроцены, системы на основе ферроценофана, гетероядерные комплексы с ферроценсодержащими лигандами, полимеры и дендримеры на основе ферроцена, а также смешанные системы на основе производных ферроцена. Показано, что жидкокристаллические производные ферроцена характеризуются уникальными физическими свойствами. Отражены современное состояние и перспективы развития исследований таких жидких кристаллов, обсуждены существующие и потенциальные области их применения.

Библиография — 131 ссылка.

Оглавление

1.	Введение	675
II.	Жидкокристаллические монозамещенные ферроцены	677
III.	Производные ферроцена с двумя заместителями в циклопентадиенильных фрагментах	682
IV.	Моно- и 1,1'-дизамещенные жидкокристаллические ферроцены на основе мезогенного холестеринового	686
	фрагмента	
V.	Жидкокристаллические системы на основе ферроценофана	688
VI.	Жидкокристаллические полимеры и дендримеры на основе ферроцена	690
VII.	Гетероядерные жидкокристаллические комплексы с ферроценсодержащими лигандами	692
VIII.	Смешанные системы на основе производных ферроцена	695
IX.	Заключение	697

І. Введение

Ферроцен — уникальное соединение с точки зрения строения, химической и термической стабильности, а также возможности непосредственного применения в различных органических реакциях. Это обусловлено его «сэндвичевой» структурой, представляющей собой трехмерную ароматическую систему. После открытия ферроцена в 1950 г. (см.¹) в течение последующих 20–30 лет химия этого соединения получила бурное развитие, особенно в работах школы академика А.Н.Несмеянова.^{2, 3} Исследования ферроцена включали многие прикладные аспекты, такие как применение его производных в качестве лекарственных препаратов,⁴ добавок к моторному топливу и маслам,⁴ катализаторов в тонком

О.Н.Кадкин. Кандидат химических наук, доцент кафедры физической и коллоидной химии КНИТУ. Телефон: (843)231–4177, e-mail: oleg.kadkin@bk.ru

Ю.Г.Галяметдинов. Доктор химических наук, профессор, заведующий той же кафедрой. Телефон: (843)231–4397, e-mail: vugal2002@mail.ru

e-man. yuga12002@man.ru

Область научных интересов авторов: физическая химия; координационные соединения; ферроцен; гетероядерные комплексы: синтез, фазовые превращения, жидкие кристаллы, магнитные явления, оптические свойства, наноструктуры, сэгнетоэлектричество, хиральность.

Дата поступления 13 октября 2011 г.

органическом синтезе⁵⁻⁷ и полимерных материалов.⁶⁻⁸ Огромный фундаментальный и практический интерес представляют пара- (см.^{9,10}) и ферромагнитные системы на основе ферроцена,^{10,11} производные ферроцена с нелинейными оптическими свойствами,^{12,13} люминесцентные системы,¹⁴ соединения ферроцена, применяемые для флэшфотолиза,¹⁵ ферроцен-феррициниевые окислительно-восстановительные системы, аналитические сенсоры на их основе¹⁶ и т.д. Удивительно, что на фоне этих обширных исследований жидкокристаллические производные ферроцена были получены сравнительно недавно.

Термином «жидкий кристалл» (или «мезоморфное состояние») обозначают особый тип структурной организании вещества, который сочетает в себе типичные свойства обычных изотропных жидкостей, такие как текучесть, вязкость, растворяющая способность и др., и анизотропные свойства, присущие кристаллическим телам. Под анизотропными имеют в виду физические свойства, которые зависят от заданного направления в пространственных координатах; примерами таких свойств могут служить показатель преломления, диэлектрическая проницаемость, электро- и теплопроводность, упругость и т.д. Анизотропия жидких кристаллов обусловлена их частичной молекулярной упорядоченностью: наименее упорядочена нематическая фаза, по характеристикам близкая к обычным жидкостям; более упорядоченные варианты структурной организации по характеристикам ближе к обычным кристаллам (рис. 1).

Как правило, жидкие кристаллы состоят из стержнеобразных либо дископодобных органических молекул с

Рис. 1. Некоторые типы упорядочения в термотропных жидких кристаллах.

a — нематическая упаковка, где стержнеобразные молекулы имеют ориентационный порядок при полном отсутствии позиционного порядка; b — слоевая упаковка смектика A, где позиционный порядок полностью отсутствует; c — упаковка смектика C, где стержнеообразные молекулы слегка наклонены по отношению к плоскости слоя в отличие от смектика A; d — упаковка хирального нематика (холестерика), где направление преимущественной ориентации стержнеобразных молекул описывает спираль при переходе от слоя к слою; e — упаковка дискотического нематика, образованная дискообразными молекулами; f — гексагональная колончатая фаза, где дискообразные молекулы упакованы в стопки.

резко выраженной геометрической анизотропией или анизометрией. Таким молекулам присуща также большая анизотропия поляризуемости, которая, в свою очередь, приводит к анизотропии межмолекулярных взаимодействий. В структуре молекул, способных образовывать жидкокристаллические состояния — мезофазы, — можно выделить жесткую часть на основе ароматических колец, связанных друг с другом непосредственно или через группы (мостики), например карбоксильные, азометиновые, этилиденовые, азогруппы и т.д., а также концевые конформационно гибкие группы — обычно это углеводородные, полисилоксановые или полиоксиэтиленовые цепи. Таким образом, основной причиной возникновения мезофаз является ярко выраженная анизотропия молекулярной структуры. Кроме того, при наличии асимметрии на молекулярном уровне на основе таких соединений формируются более сложные мезофазы с хиральной структурной организацией, например холестерические жидкие кристаллы (см. рис. 1).

По способу перехода в мезоморфное состояние выделяют две основные группы жидких кристаллов. Термотропные жидкие кристаллы (или жидкокристаллические фазы) образуются при нагреве мезоморфного вещества и отделены от кристаллического состояния, друг от друга, а также от изотропно-жидкого состояния фазовыми переходами первого рода (за редкими исключениями, когда мезофазы близких типов разделены фазовыми переходами второго рода). К ним же примыкают жидкие кристаллы на основе высокомолекулярных соединений с характерными особенностями структуры полимерных цепей, а также супрамолекулярные жидкие кристаллы. В последнем случае в качестве элементов жидкокристаллической упаковки вместо молекул выступают супрамолекулярные агрегаты с ограниченным числом молекул. В общем случае жидкие кристаллы можно рассматривать как один из видов супрамолекулярной организации вещества. Особенно это утверждение справедливо по отношению ко второй группе жидкокристаллических систем.

Лиотропные жидкие кристаллы (рис. 2) образуются в смесях мезогенных соединений с растворителями. Склонность к образованию лиотропных мезофаз проявляют амфифильные молекулы в полярных и неполярных растворителях. Считается, что лиотропные жидкокристаллические структуры широко представлены в биологических системах, например в клеточных мембранах.

В настоящее время известно свыше 20 структурных типов термотропных мезофаз. Некоторые из них термодинамически нестабильны, т.е. образуются только в переохлажденных расплавах. Такие мезофазы невозможно получить при прямом плавлении кристалла, поэтому они названы монотропными, в отличие от термодинамически стабильных энантиотропных мезофаз. В настоящем обзоре представлены структурные формулы соединений, на основе которых получены жидкокристаллические мезофазы. Использованы следующие буквенные обозначения для различных фазовых состояний: К — кристалл; L — жидкость; S_x — смектические и Col_x колончатые мезофазы неустановленного типа; буквенные индексы А, В, С — типы смектических мезофаз; Т означает, что мезофаза тетраэдрическая; N — нематическая мезофаза и i — изотропная жидкость; в случае хиральных мезофаз к соответствующим буквенным обозначениям добавляется звездочка, например S^{*}_C — хиральная смектическая фаза C; символ (d) означает, что происходит разложение; числа рядом с буквой — температура фазового перехода, °С; данные в квадратных скобках относятся к монотропным фазовым переходам. В некоторых специфических случаях соответствующие обозначения приведены в пояснениях к формулам.

Для исследования жидкокристаллического состояния применяют в основном следующие физико-химические

Рис. 2. Некоторые типы супрамолекулярной организации в лиотропных жидких кристаллах.

а — мицеллярная, *b* — гексагональная, *с* — мицеллярно-кубическая, *d* — ламеллярная мезофазы.

методы: поляризационную микроскопию при различных температурах, дифференциальную сканирующую калориметрию (ДСК), рентгеновскую дифракцию порошка (методы SAXS и WAXS), электронную и атомно-силовую микроскопию, термический фазовый анализ смесей, спектроскопию ЯМР, спектроскопию кругового дихроизма и т.д. Для первичной идентификации мезофаз поляризационная микроскопия является основным методом. Благодаря оптической анизотропии, оптическому двулучепреломлению и наличию дефектов в упаковке молекул жидкие кристаллы дают разнообразные красочные текстуры при наблюдении в поляризационном микроскопе, которые имеют характерный вид для каждого типа мезофаз. По величине тепловых эффектов фазовых переходов, полученных при исследовании методом ДСК, можно косвенно судить о типах мезофаз. Методы рентгено- и нейтронографии дают представление о межслоевых расстояниях в ламеллярных мезофазах, а также параметрах упаковки колончатых и кубических мезофаз (последние являются оптически изотропными и не дают характеристических текстур в поляризационном микроскопе). При наличии дополнительного упорядочения в слоях дифракционные пики на рентгенограммах проявляются и в области больших углов. Рентгеноструктурный анализ также дает некоторое представление о характере упаковки молекул в жидких кристаллах, посредством определения конформационной структуры монокристалла-предшественника мезофаз.

Учитывая уникальность ферроценового фрагмента и прежде всего тот факт, что он легко и обратимо переходит в окисленное состояние с одним неспаренным электроном, представляло интерес «внедрить» его в молекулу жидкого кристалла с целью получения материалов, обладающих специальными электро- и магнитофизическими характеристиками. Впервые синтез ряда ферроценсодержащих жидких кристаллов 1 был осуществлен в 1976 г. для использования в качестве меток при исследовании параметра порядка жидких кристаллов методом мёссбауэровской спектроскопии.¹⁷ Но, несмотря на присутствие объемного ферроценового фрагмента, синтезированные соединения образовывали нематические мезофазы лишь в узком интервале температур, к тому же в некоторых случаях только монотропные.

Продолжительное время считалось, что объемный ферроцен как концевой фрагмент стержнеобразной молекулы способствует дестабилизации жидкокристаллического состояния. Впоследствии были синтезированы 1,1'-дизамещенные ферроцены с более стабильными мезофазами, ¹⁸ которые также были апробированы в качестве мёссбауэровских меток.^{19–21} В связи с этим отметим, что метод ядерного γ -резонанса позволяет получать наиболее адекватную информацию о строении, ориентационных и динамических свойствах жидких кристаллов. Появление в конце 80-x – начале 90-х годов XX в. ряда публикаций, посвященных ферроценсодержащим жидкокристаллическим соединениям, свидетельствует о возникновении интереса к ним.^{22–25}

Ферроценсодержащие жидкие кристаллы являются частью более многочисленного класса веществ — металлсодержащих жидких кристаллов, или металломезогенов. Последние хорошо освещены во многих обзорных работах,^{26–34} в которых, однако, не всегда достаточно подробно рассмотрены соединения ферроцена.

Известны жидкокристаллические производные ферроцена, представляющие собой молекулярные соединения, супрамолекулярные структуры и полимеры. Молекулярные соединения ферроцена можно условно разделить на моно- и полизамещенные. Монозамещенным жидкокристаллическим производным ферроцена посвящен обзор ³⁵, в котором обобщены исследования в период с 1976 по 1999 г. Работы по жидкокристаллическим полимерам с ферроценовыми фрагментами, проведенные до 2006 г. включительно, достаточно полно отражены в обзоре ³⁶. Опубликован также ряд других статей по жидкокристаллическим производным ферроцена, обобщающих исследования более раннего периода,^{37–39} в которых, однако, многие достижения в этой области не нашли отражения.

Данная публикация нацелена на обобщение литературного материала, не вошедщего в предыдущие обзоры, а также описание достижений в области синтеза и исследования мезоморфных производных ферроцена за последние годы. Обсуждены структурные особенности, фазовое поведение и типы мезофаз этого класса соединений. Работы, которые уже были проанализированы в обзорах ^{37–39}, в основной массе не обсуждаются, хотя некоторые наиболее интересные исследования для полноты картины отражены в настоящей статье. Значительное внимание уделено гетероядерным комплексам с ферроценсодержащими лигандами, соединениям [3]ферроценофана, а также 1,1'-дизамещенным ферроценам с необычной тетраэдрической упаковкой мезофаз, поскольку в последние годы именно в этих направлениях были сосредоточены собственные усилия авторов данного обзора.

II. Жидкокристаллические монозамещенные ферроцены

Объемная трехмерная структура ферроцена в качестве концевого заместителя из-за стерического эффекта препятствует благоприятной упаковке молекул и приводит к достаточной анизотропии межмолекулярных взаимодействий в жидкокристаллической фазе.³⁵ Увеличение жесткой части стержнеобразной молекулы за счет введения дополнительных бензольных колец позволяет преодолеть данное препятствие, но при этом значительно повышаются температуры фазовых переходов. Для проявления мезоморфизма, помимо ферроценового фрагмента, требуются как минимум три ароматических кольца в составе жесткой части молекулы. Попытки синтезировать ферроценсодержащий жидкий кристалл с меньшим числом бензольных колец приводили либо к отсутствию жидкокристаллической фазы, 40, 41 либо к высокоорганизованной фазе смектик В,41 относящейся к пластическим кристаллам. Исключения составляют структуры, в которых бензольные кольца заменены *транс*-циклогексановым фрагментом, 42 конденсированными полициклическими фрагментами, 43-45 а также полученные недавно соединения с ферроценовым фрагментом, который отделен от составленной из двух бензольных колец жесткой стержнеообразной части длинной углеводородной цепочкой.⁵⁹

Другая группа соединений представлена в основном производными ферроцена, в которых в качестве жесткого остова использован холестериновый остаток. Мезоморфные соединения с холестериновым заместителем отличаются по строению от основной массы жидкокристаллических структур с типичными элементами жесткой части молекулы, что отражается также на их фазовом (термическом) поведении, поэтому холестеринсодержащие моно- и дизамещенные ферроцены будут рассматриваться в отдельном разделе.

Помимо числа бензольных колец, на свойства жидких кристаллов монозамещенных ферроценов влияют длина концевой углеводородной цепочки, наличие боковых заместителей в ароматической системе и природа промежуточных связывающих групп в жесткой части молекулы. Замена бензольных колец другими поли- и гетероциклическими ароматическими системами также приводит к изменению свойств. Здесь мы обсудим результаты по монозамещенным жидкокристаллическим производным ферроцена, полученные после 2000 г. Большинство новых работ в этой области посвящено исследованию фазового поведения монозамещенных ферроценов в зависимости от варьирования химической структуры.

Имри с соавт.⁴⁶ получил ряд жидкокристаллических соединений **2** на основе бифенилферроцена.

Введение простой эфирной связи между двумя бензольными кольцами в бифениле (структура 3) приводит к исчезновению жидкокристаллических свойств. Это происходит из-за неблагоприятной геометрии с изломом посредине жесткой части молекул, что показано с помощью компьютерных квантовохимических моделей.

В следующей работе ⁴⁷ этой же группой исследователей продемонстрировано влияние природы связующих групп, концевых заместителей и числа бензольных колец на свойства синтезированных ими монозамещенных производных ферроцена 4-6.

В соединениях **4** можно проследить влияние концевых заместителей и природы связующих групп на жидкокристаллические свойства: в случае алкоксильной концевой группы с увеличением длины углеводородной цепи возрастает способность соединения к образованию смектических мезофаз, а также повышается термодинамическая стабильность жидкокристаллического состояния и понижаются температуры фазовых переходов. Более разветвленный и полярный концевой заместитель способствует появлению нематической фазы; если нет концевых алкильных цепей, то отсутствует и жидкокристаллическое состояние; замена карбоксильной связующей группы на более гибкие карбоксиалкильные группы также приводит к исчезновению жидкокристаллического состояния.

Для соединений 5 с концевой карбоксиалкильной и цианогруппами обнаружены нематические фазы. Разветвление карбоксиалкильного заместителя вызывает отсутствие мезоморфизма. Соединение с боковым полярным хлорсодержащим заместителем и алкоксильной концевой группой дает монотропную нематическую фазу при низких температурах.

Η	C(O)OC ₈ H ₁₇ -n	K[106N]165i	Н	CN	K238N248i
Η	$C(O)OCH(Me)C_6H_{13}-n$	K122i	Cl	OC ₁₀ H ₂₁ -n	K[??N]122i

?? — точная температура монотропного перехода в оригинальной работе не указана.

Увеличение числа бензольных колец (соединения 6) приводит к заметному расширению температурной области существования мезофаз, но вместе с тем значительно возрастают температуры фазовых переходов.

Соединения 7 с бифениленовой и терфениленовой жесткой частью, примыкающей непосредственно к ферроценовому фрагменту, описаны в работах Макарова с соавт.^{48,49}

Y	т	п	Мезофазы	Y	т	п	Мезофазы
OC(0)	1	6	K186i	N=CH	1	6	K204i
	1	8	K154N161i		1	10	K180i
	1	10	K148N155i		1	14	K178i
	1	12	K133N148i	OC(O)	2	10	K204N270i (d)
C(O)O	1	10	K[151N]172i		2	12	K202N262i (d)
	1	12	K138N141i	N = CH	2	12	K255N292i (d)

Сравнение свойств бифениленовых и терфениленовых производных показало, что введение дополнительного бензольного кольца, безусловно, расширяет температурную область существования мезофаз, но вместе с тем нижний температурный предел границы мезофаз, как и следовало ожидать, значительно повышается. Интересно также проследить влияние ориентации связующих (мостиковых) групп в жестком остове. Введение азометинового мостика приводит к изчезновению мезоморфизма в бифениленовых производных, причем аналогичные соединения с другой ориентацией азометинового фрагмента содержали нематические и смектические фазы.⁴⁶ Авторы объяснили это большей делокализацией электронов атома кислорода в концевом алкоксильном остатке за счет более эффективного сопряжения с акцепторной мостиковой группой через ароматическую систему в случае их соединения с электрофильным концом. Такой же эффект хорошо прослеживается при различном расположении карбоксильного мостика. (Приведенная в той же работе несимметричная 1,1'-дизамещенная структура с алкильным заместителем во втором циклопентадиенильном кольце будет обсуждена ниже.)

Недавно были получены жидкокристаллические производные ферроцена 8-10, в которых одно из бензольных колец в жесткой части стержнеобразной молекулы заменено на циклогексановый фрагмент.⁴² Несомненное преимущество такого рода структур — снижение температур фазовых переходов и вязкости мезофаз. Данные свойства могут играть существенную роль при поиске областей возможного практического применения жидкокристаллических производных ферроцена в будущем.

Мезофаза — К[134N]143i

В серии работ Накамуры с соавт.^{50–58} проведены рентгеноструктурные исследования серии жидкокристаллических монозамещенных ферроценов **11**, показавших (что было установлено на основании более ранних исследований) мезофазы смектик С и нематического типа.

В ранних работах 50-54 описаны производные ферроцена 11 с короткими углеводородными связывающими группами; в последующих работах 55-58 исследовали упаковки молекул в кристаллических фазах серии производных с n = 9 - 11. Основная цель этих исследований состояла в определении особенностей структуры предшественника жидкого кристалла, которые предопределяют проявление мезоморфизма. Найдено, что упаковке с анизотропной формой молекулы отвечают немного изогнутые стержнеобразные структуры с ориентацией карбонильных групп, благоприятной для эффективного бокового межмолекулярного взаимодействия, которые стабилизируют смектические мезофазы. Соединения с короткими цепочками (n = 1 - 3, 5 и 7) не проявляли мезоморфизма, так как в полной мере не отвечают условиям геометрической анизотропии молекул и анизотропии поляризуемости из-за большого угла между плоскостями бензольных колец. Несмотря на это, структуры с n = 9 и 11 являются мезоморфными, поскольку отмеченные неблагоприятные факторы нивелируются с увеличением общей длины молекулы и, как следствие, анизотропии ее формы.

Исследованы соединения **12** с бифениленовым фрагментом в жестком остове, близкие по структуре к производным **11**.

Эти структуры характеризуются большей геометрической анизотропией.⁵⁹ Число атомов углерода (*n*) в центральной связующей углеводородной цепочке варьировалось от 6 до 10. В соединениях **12** по сравнению с соединениями **11** возрастают температурные интервалы существования нематической мезофазы, а смектическая мезофаза С отсутствует. Возрастание обусловлено повышением температуры перехода в изотропно-жидкое состояние. При этом только при короткой связующей цепочке (n = 6) наблюдается энантиотропная нематическая фаза; при n = 7-10 фазовые переходы монотропные. Наблюдаемое чет-нечетное альтернирование температур фазовых переходов объясняется тем, что при четных *n* жесткий мезогенный остов и ферроценовый фрагмент находятся на одной линии, при этом повышается тер-

мическая стабильность мезофаз по сравнению с нечетными членами ряда в соединениях 11 и 12.

В другой работе этой же группы исследователей описаны мезоморфные ферроценовые производные **13** с двумя бензольными кольцами в жесткой части стержнеобразной молекулы, без фениленового заместителя при ферроценовом фрагменте.⁶⁰

При n = 9 - 12 эти производные ферроцена образуют монотропные мезофазы нематического и смектического типов.

Определенный интерес представляет введение гетероциклических фрагментов в жесткий остов молекулы, поскольку такие соединения могут проявлять люминесцентные и нелинейно-оптические свойства. Мажумдар с соавт.⁶¹ сообщил о синтезе ряда стержнеообразных производных ферроцена 14а с оксадиазольным заместителем. При этом S-алкильные цепочки использовали в качестве концевых звеньев, а углеводородные — в качестве промежуточного гибкого мостика между ферроценовым фрагментом и жестким мезогенным остовом. Варьировали также боковые заместители в оксадиазольном фрагменте. Все синтезированные и исследованные соединения показали энантиотропные мезофазы типа смектик С и нематик. В одном случае проявлялась только энантиотропная фаза смектик С без перехода в нематическую. Производные ферроцена 14b, содержащие бензоксадиазольный фрагмент, обнаруживают фазу смектик С.62

Карлеску с соавт.^{63–65} синтезировал и исследовал производные ферроцена **15–19**, содержащие в качестве связывающих звеньев азо- и азометиновые группы. При этом еще раз были подтверждены открытые ранее общие структурные закономерности проявления мезоморфизма производными

R	Мезофазы	
$C_6H_4OC_nH_{2n+1}-n-4$	K104N147i	
	K110S _C 112N14	5i
	K117S _C 119N14	5i
	K112S _C 117N14	14i
	K113S _C [129S _B]	129N138i
$C_6H_2(OC_{10}H_{21}-n)_3-3,4,5$	K 59i	
R	Мезофазы	
C6H4OC10H21-n-4	K144N157i	
$C_6H_2(OC_{10}H_{21}-n)_3-3,4,5$	K72i	
R		Мезофазы
OCH ₂ C*HMeC(O)OC ₆ H	H ₁₃ -n	K120N*122i
$HC = CHC(O)OC^*HMeC(O)OC_6H_{13}-n$		K88N*99i

Мезофаза — К161N*168і

ферроценов, такие как наличие по меньшей мере трех бензольных колец, ориентация карбоксильных групп и природа концевых заместителей. При этом были подробно исследованы термохимические и термофизические свойства полученных соединений.⁶⁶

Используя экспериментальные данные ^{63–66} и программы компьютерного моделирования молекул, Лиса с соавт.^{67,68} разработал метод теоретического прогнозирования жидкокристаллических свойств производных ферроцена. Суть метода состоит в создании базы данных количественных молекулярных дескрипторов жидкокристаллических свойств, рассчитанных методами компьютерного моделирования, для элементов химической структуры и применении метода нейронных сетей для конструирования структур производных ферроцена с заданными свойствами. Нейронные модели, оптимизированные с применением соответствующих алгоритмов, позволяют довольно точно оценить термическую стабильность и предсказать параметры жидкокристаллического состояния производных ферроцена.

Сешадри с соавт.⁶⁹ синтезировал и исследовал производные тиоуретанов **20**, **21** и иминов **22**, **23** с гибкой углеводородой цепочкой, связывающей ферроцен с остальной частью молекулы. Отмечено, что холестерические фазы в хиральных соединениях **22**, **23** при охлаждении склонны застекловываться с сохранением жидкокристаллического порядка, поэтому возможно их применение для создания оптических носителей с полноцветовой записью информации.

Лай с соавт.⁷⁰ получил на основе ферроцена жидкокристаллические соединения **24**, **25**, содержащие пиразольный цикл в жесткой части молекулы. Для их исследования применяли рентгеновскую дифракцию порошка, а также рентгеноструктурный анализ исходных кристаллов. Прослежено изменение жидкокристаллических свойств соединений в зависимости от длины углеводородного заместителя и положения пиразольного цикла в сравнении со свойствами аналогичной структуры, не содержащей ферроцена. Показано, что жидкокристаллические свойства несколько ухудшаются при наличии ферроценового фрагмента. Особенный интерес, по нашему мнению, представляет возможность сравнения структур 24 и 25. При удалении от ферроценовой группы пиразольного цикла (обусловливающего изгиб жесткой части молекулы) структура 25 показывает уже несколько типов мезофаз (жидкокристаллический полиморфизм), причем температурный интервал существования мезофазы немного шире по сравнению со структурой 24.

6	K ₁ 115K ₂ [174S _C]196N197i	12	K ₁ 68K ₂ 168S _C 181N1188i
8	K ₁ 158K ₂ 177S _C 192N193i	14	K ₁ 70K ₂ 168S _C 183S _A 186i
10	K ₁ 133K ₂ 175S _C 188N192i	16	$K_{1}82K_{2}168S_{C}182S_{A}184i$

Жао с соавт.⁴⁵ сообщил о синтезе производных ферроцена **26**, **27**. Следует отметить, что приведенные характеристики мезофаз и температуры фазовых переходов во многом не соответствуют данным, полученным другими исследовательскими группами. Так, на основании анализа многочисленных работ по монозамещенным жидкокристаллическим производным ферроцена Имри с соавт.³⁵ сделал вывод, что для данной структуры двух бензольных колец в жесткой стержнеобразной части молекулы недостаточно для проявления мезоморфизма.

	Fe 1			$OC_nH_{2n+1}-n$
			26	
n	Мезофазы	n	Мезофазы	_
4	K173S186i	10	K103S107i	-
6	K145S149i	12	K76S106i	
8	K118S131i	14	K ₁ 50S54N76i	
				OC_nH_{2n+1}

III. Производные ферроцена с двумя заместителями в циклопентадиенильных фрагментах

Гомо- и гетероаннулярно дизамещенные ферроцены позволяют полнее использовать преимущества трехмерной системы ферроцена для получения разнообразных геометрических форм мезогенной молекулы по сравнению с монозамещенными аналогами. При этом зачастую второй заместитель позволяет сглаживать неблагоприятное влияние объемного ферроценового фрагмента за счет более органичного его вписывания в общую пространственную геометрию молекулы. Кроме того, возможно варьирование первого и второго заместителей с образованием несимметрично замещенных структур. Последние могут влиять не только на форму мезогенных молекул, но и, как будет показано ниже, отразиться на пространственной супрамолекулярной организации образуемых ими мезофаз. Возможные изомеры дизамещенных ферроценов приведены на схеме 1. Как правило, 1,2-дизамещенные ферроцены (см. схему 1,d) не проявляют жидкокристаллических свойств из-за клинообразной формы, нарушающей анизометрию молекулы.

1. 1,3-Дизамещенные ферроцены

Производные ферроцена с двумя заместителями в одном и том же циклопентадиенильном фрагменте редки. Известные 1,3-дизамещенные ферроцены (см. схему 1,с) описаны в обзорах ³⁷⁻³⁹, поэтому здесь подробно обсуждаться не будут. Отметим только, что такой тип замещения позволяет полнее сгладить неблагоприятное воздействие объемного ферроценового фрагмента за счет того, что оба заместителя находятся в одной плоскости и составляют жесткий стержень без ступенеобразной конфигурации и возможности шарнирного излома в его середине, в отличие от 1,1'-дизамещенных аналогов (см. схему 1,а). Другие особенности этих структур — наличие планарной асимметрии и возможность получения мезофаз, хиральность которых обусловлена непосредственно ферроценовым фрагментом, при условии разделения энантиомеров. Последняя задача достаточно нетривиальная, и разработка новых методов синтеза планарно-асимметричных жидкокристаллических производных ферроцена до сих пор актуальна. При этом хиральные смектические фазы могут проявлять свойства сегнетоэлектриков (ферроэлектриков). В дополнение к ранее синтезированному сегнетоэлектрическому (ферроэлектрическому) жидкому кристаллу на основе планарно-хирального ферроцена.⁷¹ Дешено с соавт.72 получил планарно-асимметричные жидкокристаллические мономеры 28 и 29, а также полимеры на их основе (см. ниже).72

Разделение асимметричных производных ферроцена было проведено следующим образом.⁷¹ После замещения

одной кислотной группы в исходной ферроцен-1,3-дикарбоновой кислоте смесь оптических изомеров планарно-асимметричного моноэфира была превращена в смесь диастереомерных аммониевых солей с помощью оптически активного (+)-фенилэтиламина. Диастереоселективная кристаллизация и последующее восстановление исходного моноэфира позволили разделить оптические изомеры с энантиомерной чистотой 98%. Абсолютные конфигурации оптических изомеров промежуточного моноэфира ферроцендикарбоновой кислоты определяли по спектрам кругового дихроизма. При этом синтезированные мономеры 28 и 29 показали хиральные мезофазы нематического (холестерического) типа, а также типа смектик С*. Последняя мезофаза интересна прежде всего тем, что в ней возможна объемная электрическая поляризация материала или появление сегнетоэлектричества. Исследована также возможность применения данных соединений в нематических твист-ячейках в качестве закручивающих добавок.71

2. Симметричные 1,1'-дизамещенные ферроцены

Исследования симметрично замещенных ферроценов в основном проводили до начала 2000-х гг., и они также отражены в обзорах ^{37–39}. Поэтому здесь остановимся только на некоторых обобщающих моментах и работах, выполненных в последние годы.

Получение дизамещенных, как, впрочем, и гомоаннулярных дизамещенных ферроценов, может быть сопряжено с определенными трудностями, такими как низкие выходы, а также необходимость разделения изомеров и продуктов дальнейшего замещения. Второй заместитель в реакциях замещения в ферроценовом ядре может быть направлен не только в положения 2 и 3 одного кольца, но и в разные циклопентадиенильные фрагменты. В подавляющем большинстве случаев в качестве промежуточных соединений были использованы ферроцендикарбоновые кислоты, которые сравнительно просто получить. Мы также использовали в качестве интермедиатов гидразоны диацетилферроцена 73 и 1,1'-диарилферроцены.⁷⁴ В последних наличие сопряжения бензольных колец с циклопентадиенильными фрагментами и свободного вращения колец относительно друг друга может приводить к весьма интересной внутренней организации мезофаз (см. ниже).

В отличие от монозамещенных ферроценов, в 1,1'-замещенных аналогах неблагоприятное воздействие объемного ферроценового фрагмента сглаживается вследствие его расположения в центре жесткой части молекулы. Этим обясняется появление разнообразных мезофаз, причем число бензольных колец в жесткой части молекулы может быть минимальным (т.е. по одному на каждый заместитель в циклопентадиенильных фрагментах).⁷⁵

Пространственная геометрия таких производных ферроцена осложнена возможностью свободного вращения циклопентадиенильных фрагментов относительно друг друга вокруг оси, проходящей через атом железа. Во-первых, это несколько дестабилизирует жидкокристаллическое состояние из-за появления излома в центре жесткой части моле-

Рис. 3. Упаковка молекул в смектической фазе С 1,1'-дизамещенного ферроцена **30** с n = 7, согласно представлениям Накамуры с соавт.⁷⁷

d — межслоевое расстояние.

кулы, а во-вторых, возникает неопределенность: какая из возможных конфигураций реализуется в мезофазах.⁷⁷ Поэтому рентгеноструктурные исследования кристаллических предшественников мезофазы и рентгенография порошка в жидкокристаллических фазах в этом случае приобретают особенно важное значение.

Авторами работы²³ на основании таких исследований был сделан вывод о *транс*-конформации (S-конфигурации) жидкокристаллических дикарбоксилатных производных ферроцена. Однако исследования с помощью метода рентгеновской дифракции кристаллических предшественников мезофазы для диазиновых производных ферроцена свидетельствуют о *цис*-конформации (U-конфигурации) молекул.⁷⁶ Следовательно, геометрия молекул в 1,1'-дизамещенных жидкокристаллических ферроценах сильно зависит от их химической структуры. При этом, как будет показано ниже, могут реализоваться и промежуточные конформации.

В серии работ Накамуры с соавт.^{77–82} методом рентгеновской дифракции подробно исследованы жидкокристаллические 1,1'-дизамещенные ферроцены **30** (рис. 3).

Соединения этого типа проявляли жидкокристаллический полиморфизм, причем идентификация мезофаз была проведена методами поляризационной микроскопии, ДСК и рентгенографии порошка.⁷⁷ При n = 2, 4 мезоморфизм не проявлялся, при n = 3 была обнаружена мезофаза нематического типа в области $19-35^{\circ}$ С, а при n = 5-10 в интервале температур от $-6 до 65^{\circ}$ С, кроме нематической, обнаружены две мезофазы смектического типа. Особого внимания заслуживают низкие температуры фазовых переходов; в больпинстве случаев после перехода в изотропную жидкость

исследуемые соединения вновь кристаллизовались при более высоких температурах, что указывает на сложное фазовое поведение и метастабильность жидкокристаллического состояния. На основании данных рентгеновской дифракции и предположения о *транс*-конфигурации молекул были сделаны следущие выводы:

 в этих соединениях наблюдается ламеллярная мезофаза типа смектик С с глубоким проникновением слоев друг в друга, которая возникает в результате упорядочения S-подобных молекул (см. рис. 3);

 другой наблюдающийся вид смектической фазы относится к более организованным типам — это либо смектик F, либо смектик I.

Тем не менее кристаллические предшественники мезофаз в соединениях структуры **30** с n = 3, 9, 10 (см.^{78–82}), согласно данным рентгеноструктурного анализа, имеют U-образную конфигурацию, тогда как при n = 5 наблюдается упаковка молекул с S-образной конфигурацией.⁸¹ В то же время соединение с n = 2, по данным рентгеноструктурного анализа, имеет отличающуюся от других конфигурацию Z-типа,⁸² которая не обладает стержнеобразной анизотропией формы. В свете этого вполне закономерно, что в последнем случае мезоморфизм не проявляется.

Таким образом, конформационные взаимопревращения в 1,1'-дизамещенных ферроценах играют значимую роль для проявления мезоморфизма. При исследовании соединений общей структуры 31 были обнаружены и более сложные типы организации тетраэдрических мезофаз. В них изогнутая конформация, промежуточная между S- и U-типами, стабилизирована вследствие образования молекулярных димеров (рис. 4).⁸³ Кроме того, смешанная упаковка развернутых S-форм и изогнутых промежуточных конформеров приводит к весьма необычной колончатой мезофазе с характеристическими оптическими текстурами. Структура мезофаз тетраэдрической симметрии подтверждается результатами анализа оптических текстур в поляризационном микроскопе, данными рентгеновской дифракции и молекулярного моделирования. Удивительно, что данный тип структурной организации мезофаз не обнаруживался в многочисленных дикарбоксилатных и диазиновых производных ферроцена.

Можно предположить, что в 1,1'-диарилпроизводных ферроцен включен в общую систему сопряженных ароматических фрагментов, в которых бензольные кольца составляют одну плоскость с циклопентадиенильными фрагментами. Поэтому димеризованные конформеры образуют устойчивую молекулярную систему с эффективным межплоскостным взаимодействием их π -электронных систем.

Рис. 4. Димеры из изогнутых конформеров в тетраэдрических нематической (N_T^*) и смектической А (S_A^*) мезофазах (*a*) и колончатая мезофаза со смешанной упаковкой развернутых и изогнутых конформеров соединения **31** (*b*).⁸³

Это же показали квантовомеханические расчеты компьютерных молекулярных моделей. Определенную роль в формировании димеров могут играть боковые заместители, в частности атомы фтора, которые создают сильный дипольный момент, направленный перпендикулярно длинной оси молекул. Аналогичные диарилпроизводные **32** имеют очень высокие температуры перехода в мезофазу (~250°C), поэтому наблюдение и исследование жидкокристаллического состояния затруднялось их термической деградацией.⁷⁴

Разработан^{84,85} метод квантовохимического расчета больших молекулярных ансамблей, включающих ~1000 мезогенных молекул, для прогнозирования температур и выявления особенностей фазовых переходов, протекающих в нематических и смектических системах при изменении температуры, формы подложек, состава и структуры молекул. В качестве объектов моделирования были опробованы соединения **31**. Согласно расчетам методом молекулярной динамики без граничных условий, в жидкокристаллических кластерах 1,1'-дизамещенного ферроцена при изменении температуры происходят конформационные превращения, что согласуется с экспериментальными данными.⁸³

Итак, считается, что объемный ферроценовый фрагмент в 1,1'-дизамещенных ферроценах более органично вписан в стержнеобразную структуру мезогенной молекулы. Однако однозначно определить упаковку молекул в жидкокристаллической фазе зачастую сложно из-за свободного вращения циклопентадиенильных фрагментов относительно друг друга. При этом очевидно, что при *цис*-конфигурации требуется большое число бензольных колец в заместителях для

создания необходимой анизотропии молекул, тогда как в случае *транс*-конфигурации достаточно меньшего числа. Увеличение числа бензольных колец зачастую ведет также и к увеличению температур фазовых переходов. Один из способов понижения таких температур — введение гибких углеводородных звеньев между ферроценовым фрагментом и жестким мезогенным остовом. Однако при этом соединения могут показать сложное температурное поведение с последующей кристаллизацией изотропных расплавов. Другой способ улучшения термических характеристик мезофаз заключается в нарушении симметрии заместителей в ферроценовом ядре (см. ниже).

3. Несимметричные 1,1'-дизамещенные ферроцены

С целью изучения влияния ферроценильного ядра в жесткой части молекул и сравнения их с аналогами, содержащими фрагменты бензола и циклогексана, Томпсон с соавт.⁸⁶ синтезировал ряд несимметрично замещенных производных ферроцена **33**. Синтезированные соединения показали жидкокристаллические фазы нематического типа, во многих случаях монотропные в области отрицательных температур. Некоторые из полученных производных ферроцена образуют энантиотропные нематические фазы с достаточно низкими температурами фазовых переходов.

Дешено с соавт.⁸⁷ получил несимметрично замещенные ферроцены **34**. Особенность этих соединений заключается в том, что они образуют смектические мезофазы типа A и C. Отмечено также снижение температур фазовых переходов по сравнению с симметрично замещенными аналогами.

Ханасаки с соавт.⁸⁸ синтезировал ряд соединений **35**. По приведенным данным можно проследить, как меняются жидкокристаллические свойства и температуры фазовых переходов в зависимости от структурных особенностей этой группы несимметрично замещенных производных ферроцена. Большинство соединений образуют нематические фазы, устойчивые при относительно низких температурах.

n	R	Мезофазы	n	R	Мезофазы
10	Н	K131i	8	OC ₇ H ₁₅ -n	K82N94i
10	CN	K[117LC][129N]143i	9	OC ₇ H ₁₅ -n	K82N98i
10	CF ₃	K[958 _A]131i	10	OC7H15-n	K85N93i
10	OMe	K[79LC1][81LC2][88N]120i	12	OC7H15-n	K82N91i
10	OBu ⁿ	K102N103i	13	OC_7H_{15} -n	K89N91i
10	OC_6H_{13} -n	K99N100i			

LC — жидкокристаллическая мезофаза, тип которой не определяли.

Подобный подход позволил Дядченко с соавт.⁴⁸ значительно снизить температуры переходов в жидкокристаллическую фазу производных ферроцена **36** с терфенильным заместителем.

При введении алкильной группы во второй циклопентадиеновый фрагмент соединения **36** наряду с нематической могут образовывать смектическую мезофазу.

Несимметрично замещенные производных ферроцена 37, 38, как и упомянутые выше симметричные производные 31, показали мезофазы с необычной тетраэдрической упаковкой молекул (рис. 5).⁸⁹ Характерной особенностью тетраэдрических мезофаз S_{CT}^* и N_T^* является спонтанное разделение на обширные оптически активные области, что связано с хиральной супрамолекулярной организацией при отсутствии хиральных центров в молекуле. При этом образуются случайно распределенные обширные участки плоскости поляризации света обоих знаков вращения. Кроме того, есть признаки оптической двуосности тетраэдрической нематической мезофазы N_T^* .

В мезофазе S_{CT}^* также обнаружены спиралевидные супрамолекулярные образования, а мезофаза N_T^* в поляризованном свете между скрещенными поляризаторами представляет собой в основном темное поле (в отличие от красочных текстур обычной нематической мезофазы). Рентгенограммы мезофаз имеют сложный вид, не характерный для известных мезофаз.

1	Мезофазы
1	K144S _A 149i
2	K[134S _C]143S _A 150i
3	K140S _C 144S _A 151i
4	K135S _C 142S _A 152i
5	K132S _C 145S _A 151i
6	K132S _C 148S _A 153i

Y = O(O)C: R = H или OC_nH_{2n+1} (n = 2, 4, 6, 8); Y = N = N: R = Cl, Br, Me

Жао с соавт.⁹⁰ сообщил о синтезе несимметрично замещенных ферроценов **39**.

Привлекательная особенность этих соединений заключается в том, что они проявляют жидкокристаллические свойства при умеренных температурах.

IV. Моно- и 1,1'-дизамещенные жидкокристаллические ферроцены на основе мезогенного холестеринового фрагмента

Холестериновый фрагмент представляет собой удобный мезогенный остов для введения в различные молекулярные структуры. При этом одновременно в жидкокристаллическую молекулу вводятся элементы хиральности с целью получения оптически активных мезофаз, имеющих важное значение в различных прикладных областях.^{91, 92} Поэтому вполне закономерен интерес исследователей к получению жидкокристаллических соединений, содержащих ферроцен и холестериновый остаток.

Накамура с соавт.^{43, 44, 93–97} синтезировал и исследовал методами поляризационной микроскопии, ДСК и рентгеновской дифракции фазовое поведение производных ферроцена **40**, содержащих холестериновую группу. Соединения с *n* = 2, 4, 6, 8, 9, 10 и 11 образуют монотропную мезофазу смектик С, возникающую из переохлажденной жидкости.

В другой работе этой же группы исследователей описаны вязкоэластичные свойства соединений 40.98 Было отмечено, что полученные жидкокристаллические производные ферроцена проявляют в большей степени вязкие, чем упругие свойства в смектическом состоянии, в отличие от большинства других соединений со смектической фазой. Авторы связали это с более слабой ассоциацией молекул в исследуемых соединениях. Также отмечены высокие значения динамического модуля упругости, сохраняющиеся в какой-то мере даже в изотропно-жидком состоянии. Предполагается, что это обусловлено сохранением слабого ближнего локального порядка даже после перехода в изотропную жидкость. Исследования соединений 40 методом рентгеноструктурного анализа показали,96 что появление мезофаз типа смектик С обусловлено особенностями упаковки молекул в кристаллическом предшественнике, а именно антипараллельной упаковкой с некоторым смещением молекул относительно друг друга вдоль длинной оси молекул.

Простейшие случаи присоединения холестеринового фрагмента к ферроценовому ядру описаны в работе ⁹⁹. При этом производное **41** не проявляло мезоморфизма, а для

1,1'-дизамещенного ферроцена **42** была обнаружена способность давать мезофазу типа кристаллический смектик В при довольно высоких температурах (265–276°С).

Монозамещенный ферроцен **43** с присоединенной холестериновой группой показал холестерическую мезофазу (хиральный нематик) в достаточно широком интервале температур (119–171°C).⁶⁹

Структуры с двумя жесткими мезогенными остовами, соединенными гибкой углеводородной цепью, подходят для создания жидких кристаллов, включающих объемные фрагменты. Мажумдару с соавт.¹⁰⁰ синтезировал серию соединений **44**, **45** с весьма интересными свойствами. Кроме вполне ожидаемой холестерической мезофазы, некоторые из синтезированных димеров показали мезофазы TGB (Twisted Grain Boundary) и смектическую A. Соединения ферроцена 46, 47, содержащие холестериновый фрагмент, которые были получены авторами статьи ¹⁰¹, интересно сравнить с аналогичными соединениями 48.¹⁰² Исследования этих групп холестерин- и ферроценсодержащих мезоморфных соединений проведены методами поляризационной микроскопии и ДСК. В первом случае ферроценовое ядро отделено от остальной части мезогенного остова молекулы гибкой углеводородной цепочкой. Соединения 46 и 48 показали мезофазу холестерического типа, хотя в отсутствие жесткого остова или при наличии изгиба между холестериновым фрагментом и остальной частью молекулы жидкокристаллические свойства не проявлялись. Мезофазы соединений 48 обнаружены в более низких интервалах температур. Обоими методами были идентифицированы мезофазы холестерического типа, а

также в некоторых случаях обычная и хиральная смектическая фаза А. Оба типа соединений интересны для получения фотоуправлямых свойств за счет наличия азогруппы, которая может обратимо менять *цис-* и *транс*-конфигурацию при облучении светом, и тем самым менять параметры холестерической фазы, такие как шаг холестерической спирали (обусловливающий цвет) либо привести к оптически изотропной жидкости.

В дальнейшем была исследована термическая стабильность соединений 47, 48 методом термогравиметрии.^{103, 104} Первая фаза термического разложения этих соединений в большинстве случаев начиналась при температурах > 310°С. Было показано, что жидкие кристаллы с ферроценовым фрагментом довольно устойчивы к термической деградации.

Монозамещенный ферроцен **49**, как сообщено в работе ⁴⁵, показал монотропную холестерическую мезофазу при охлаждении из изотропного расплава при 137°С.

V. Жидкокристаллические системы на основе ферроценофана

Жидкие кристаллы, содержащие ферроценовое ядро с алкильным мостиком, впервые получены Вернером и Фридрихсеном.¹⁰⁵ Такие соединения могут давать мезофазы типов смектик С и нематик.

Путем арилирования ферроценофана с использованием диазониевых солей были получены и структурно охарактеризованы промежуточные соединения для синтеза ферроценофансодержащих мезоморфных соединений.¹⁰⁶ Позднее на их основе был синтезирован ряд моно- и дизамещенных ферроценофана **50**–**54** с различными заместителями.¹⁰⁷

Монозамещенные ферроценофаны 51 с мезогенным заместителем в положении, соседнем по отношению к алкильному мостику, из-за неблагоприятной геометрии молекул менее склонны к образованию мезофаз, хотя при удлинении жесткой части возможно появление термодинамически нестабильной монотропной нематической фазы. При наличии заместителя у третьего от алкильного мостика атома углерода вновь может образоваться единая сопряженная ароматическая система, включающая циклопентадиеновый фрагмент. Кроме того, алкильный мостик в этом случае занимает положение, которое способствует продолжению длинной оси молекулы. Соединение 50 с двумя бензольными кольцами проявляет монотропный мезоморфизм, в отличие от аналогичных ферроценовых структур. Колончатая мезофаза в данном случае объясняется образованием кластеров из нескольких молекул, которые затем упаковываются в колонки. При увеличении геометрической анизотропии заместителей ферроценофановые соединения этого типа, как и их ферроценовые аналоги, проявляют энантиотропный нематический мезоморфизм.

Дизамещенные ферроценофаны **52** с заместителями в соседних положениях одного цикла, не проявляют мезоморфизма вследствие их V-образной геометрии, а также из-за стерических препятствий для образования единой сопряженной системы ароматических колец. Аналогичные системы на основе ферроцена, не содержащие алкильного мостика, также немезогенные.^{37–39} Молекула соединения **53** с заместителями в разных циклопентадиеновых фрагментах также имеет клинообразную форму, но при этом возможно эффективное сопряжение ферроценового фрагмента с ароматическим заместителем, в этом случае наблюдается мезоморфизм. Интересно, что если при наличии коротких заместителей наблюдается энантиотропная нематическая мезофаза, то с увеличением их длины обнаружена только неидентифицированная монотропная смектическая мезофаза. Удлинение цепи у заместителей приводит к более сильному «расклиниванию» их концов и уменьшению общей геометрической анизотропии.

Соединение 54 с аминовинилкетонным заместителем показало сложное термическое поведение с последующей кристаллизацией расплавов после перехода в изотропную жидкость. При быстром охлаждении были обнаружены термодинамически нестабильные монотропные нематическая и смектическая С мезофазы.

Многие из полученных производных ферроценофана в дальнейшем использовались для синтеза гетероядерных жидких кристаллов (см. ниже).

Синтезированы⁴² жидкокристаллические производные ферроценофана **55**, **56** с циклогексановым фрагментом в жесткой стержнеобразной части молекулы. Соединения **55** способны образовывать нематическую мезофазу, в отличие от их аналогов **8** на основе ферроцена без алкильного мостика. Соединение **56** с иной кристаллической формой, полученное из расплава, показало энантиотропный нематический мезоморфизм.

Таким образом, ферроценофан — ценный структурный фрагмент для получения ферроценсодержащих жидких кристаллов.

VI. Жидкокристаллические полимеры и дендримеры на основе ферроцена[†]

Ферроценсодержащие полимерные жидкие кристаллы составляют обширную группу макромолекулярных соединений, представители которой описаны в обзоре ³⁶.

† К сожалению, не во всех случаях исследователи жидкокристаллических полимерных структур приводят данные о степени полимеризации, ММР, реологических, механических и других свойствах, т.е. данные, касающиеся характеристик собственно полимеров, а ограничиваются в основном исследованием жидкокристаллических свойств методами оптической поляризационной микроскопии, ДСК, анализа фазовых превращений, рентгенографии, термогравиметрии и исследования химической структуры. Поэтому в данном обзоре основной акцент сделан на взаимосвязи строения ферроценсодержащих полимеров с характеристиками жидкокристаллических свойств. Это особенно важно для целенаправленного молекулярного дизайна такого рода структур. Ферроценсодержащие жидкокристаллические дендримеры — соединения со строго определенным молекулярным составом и довольно большими молекулярными массами. Для их исследования применяют те же методы, что и в случае низкомолекулярных соединений: спектроскопические методы, ЯМР, MALDI-TOF-масс-спектрометрию, элементный анализ и т.д.

В гребнеобразных полимерных жидких кристаллах ферроценновое ядро может находиться как в основной цепи, так и в боковых заместителях. В первом случае ферроценовый фрагмент позволяет значительно повысить термическую стабильность материала. Значительный интерес представляют исследования окислительно-восстановительных свойств ферроцена и возможности взаимодействия между металлическими центрами для получения новых оптических, электрических, магнитных переключающихся свойств в полимерных жидких кристаллах. Изучение первых полимерных жидких кристаллов 57 с ферроценовыми фрагментами в основной цепи показало, что ферроцен может способствовать образованию мезофаз.²⁴

Разнообразие ферроценсодержащих жидкокристаллических полимеров обеспечивается как введением различных связывающих групп в полимерную структуру, так и использованием разных типов замещения в ферроценовом фрагменте. В обзоре ³⁶ показано, что многие из этих возможностей уже использованы в синтезе высокомолекулярных ферроценсодержащих мезоморфных соединений.

Особый интерес среди материалов этого класса представляют жидкокристаллические полимеры с силоксановыми связующими группами. Полисилоксаны обладают рядом уникальных свойств. Большая гибкость цепей, слабые межцепные взаимодействия обусловливают высокую растворимость, низкие температуры плавления, небольшую поверхностную энергию. Эти факторы позволяют использовать данные соединения в качестве покрытий. Рыхлость структуры и повышенная адсорбционная способность свойства полисилоксанов, привлекательные для их применения в качестве мембран и каталитических агентов. Для полисилоксановых структур также характерны высокие термическая, химическая стабильность и устойчивость к солнечному свету. Многие ферроценсодержащие полисилоксаны получены и исследованы Дешено с соавт.⁷² Например, большой интерес представляют полидиметилсилоксаны 58, 59 с

планарно-хиральными ферроценовыми фрагментами.⁷² Полученные полимеры могут использоваться в качестве закручивающих добавок в нематических твист-ячейках.

Казаку с соавт.¹⁰⁸ получил ряд ферроценсодержащих полиамидов и полиэфиров с общей формулой **60**, а также их

G — стекло, W — фаза типа воска.

сополимеров с ди- и олигосилоксанами, в которых ферроценовый фрагмент «вплетен» в основную полимерную цепь. Кроме жидкокристаллических свойств, полученные материалы проявляют окислительно-восстановительную активность и могут применяться в качестве модификаторов в электродных системах.

В продолжение своих более ранних исследований Дешено с соавт.^{109,110} получил ряд новых дендримерных ферроценфуллереновых жидких кристаллов **61**–**63**. Материалы этого типа интересны тем, что в них могут осуществляться электронные переходы между двумя видами структурных единиц. Кроме того, они должны обладать весьма интересными фотофизическими свойствами. Спектроскопические исследования показали полное гашение флуоресценции благодаря наличию этих двух фрагментов в молекуле, т.е. такие соединения могут быть использованы в качестве светособирающих антенн. Несмотря на громоздкую структуру, синтезированные дендримерные системы образовывали смектические фазы A с неплохими температурными характеристиками.

Таким образом, ферроценовый фрагмент может быть успешно внедрен в полимерные и дендримерные структуры, как в качестве структурной единицы основной цепи, так и в качестве бокового заместителя. Такие системы, благодаря переносу электронов, могут проявлять интересные электрические и оптические свойства. Отметим также, что окисленная форма ферроцена обладает магнитными свойствами. Все это представляет интерес при создании различных переключающих устройств.

Мезофаза — G57S_A155i

VII. Гетероядерные жидкокристаллические комплексы с ферроценсодержащими лигандами

При введении атомов нескольких металлов в молекулу жидкого кристалла возможны обменные взаимодействия между ними и, как следствие, появление необычных электрических, магнитных и оптических свойств. Мы впервые получили такие системы в 1990 г.²⁵ В настоящее время необычные свойства би- и полиядерных металломезоморфных соединений (в том числе гетероядерных) продолжают привлекать внимание исследователей. Например, недавно была получена полиядерная система 64 на основе молибденовых кластеров,¹¹¹ образующая при комнатной температуре смектическую мезофазу с типичной веерной конфокальной текстурой. Кроме того, соединение 64 обладает яркой люминесценцией в красной и ближней ИК-области.

Ферроценсодержащие мезогенные структуры, обладая признаками обычных органических молекул (благодаря аро-

Мезофаза — G23S_x103i

матичности ферроценового комплекса), могут успешно применяться в качестве лигандов в координационных соединениях без разрушения «сэндвичевой» структуры. При этом получаются мезоморфные соединения с несколькими металлическими центрами. В Казанском национальном исследовательском технологическом университете в течение ряда лет проводятся исследования в этой области с использованием различных производных ферроцена в качестве лигандов с целью оптимизации жидкокристаллических свойств. Так, нарушение симметрии в металлоорганических комплексах со смешанной лигандной системой приводит к существенному снижению температуры перехода в мезофазу. На примере соединений 65-68 показано, что симметричные комплексы 65 (см. 112, 113) и палладийорганический димер 66 (см. 113) имеют довольно высокие температуры фазовых переходов, а в палладиевых комплексах 67 и 68 со смешанными лигандами температуры фазовых переходов относительно низкие.

Бекешев с соавт.¹¹⁴ исследовал методом мёссбауэровской спектроскопии синтезированные ранее¹¹⁵ комплексы **69** с шестью атомами железа разной природы. В спектрах наблюдаются три квадрупольных дублета, которые при пониженных температурах хорошо различаются (рис. 6). Первый дублет относится к атому железа в ферроценовом фрагменте. Основной вклад в спектр дает парамагнитный дублет от атомов ⁵⁷Fe, связанных через атом кислорода. Наличие еще одного менее интенсивного парамагнитного дублета с близким значением квадрупольного расщепления свидетельствует о том, что некоторое количество атомов ⁵⁷Fe находится в ином химическом окружении.

Палладийорганические комплексы предоставляют больше возможностей для тонкого модифицирования химической структуры и, тем самым, улучшения температурных характеристик мезофаз, поэтому на их основе были продолжены исследования гетероядерных систем.¹¹⁶ В качестве лигандов использовали ферроценофановые производные. Комплексы 70–72 образуют стабильные нематические фазы при довольно низких температурах перехода в мезофазу и в достаточно широком температурном интервале. Два благоприятных фактора — сильное нарушение симметрии молекул и наличие мягкого алкильного мостика в ферроценовом фрагменте — сыграли свою роль.

Рис. 6. Мёссбауэровские спектры комплекса **69** при температурах 293 (*a*), 80 (*b*), 4.2 (*c*) и 4.0 К (*d*).¹¹⁴

Комплексы 73, 74 с ферроценофановыми лигандами¹¹⁷ также обладают лучшими характеристиками мезофаз по сравнению с аналогичными комплексами на основе ферроценсодержащих лигандов.¹¹⁵

Следует отметить, что аналогичный комплекс ванадила дает энантиотропную нематическую фазу, при этом несколько расширяются температурные интервалы существования мезофазы. Однако по сравнению со смешанными палладийорганическими соединениями (например, 67 и 68) гетероядерные комплексы 73, 74 имеют более симметричные структуры и, как следствие, более высокие температуры фазовых переходов.

Комплексы меди и палладия с аминовинилкетоном, в которых ферроценовый фрагмент непосредственно примыкает к хелатному центру, интересны с точки зрения возможных обменных взаимодействий между атомами металлов. Мы получили серию металлохелатов 75.¹¹⁸ Исходные ферроценсодержащие лиганды оказались немезогенными. Гетероядерные комплексы на основе этих лигандов хотя и проявляли мезоморфизм, но только монотропного характера. По-видимому, в полученных комплексах объемные

ферроценовые фрагменты препятствуют возникновению упорядоченных состояний.

Таким образом, производные ферроцена предоставляют широкие возможности для получения гетероядерных жидкокристаллических структур. С помощью известных методов химического модифицирования металлосодержащих систем можно достичь весьма низких температур перехода в жидкокристаллическое состояние и широких температурных интервалов существования мезофаз.

VIII. Смешанные системы на основе производных ферроцена

Производные ферроцена проявляют разные типы мезоморфных состояний. Кроме описанных выше мезофаз нематического, смектического и колончатого типов, а также их хиральных вариантов, возможны иные типы фазовой организации. Так, гексакатенарные ферроценсодержащие жидкие кристаллы 76 проявляют оптически изотропную кубическую мезофазу (Bicontinuous Cubic, BCC),¹¹⁹ которая транформируется в гексагональную колончатую (Col_h) по мере увеличения длины углеводородных концевых цепей (рис. 7).

Ранее Дешено с соавт.¹²⁰ исследовал интересный вариант колончатой фазовой организации из тетракатенарных молекулярных самособирающихся структур с водородными свя-

Рис. 7. Схема, иллюстрирующая замену кубической фазы на гексагональную колончатую структуру по мере удлинения концевых углеводородных цепей в гексакатенарных жидких кристаллах на основе ферроцена.

I — кристалл, *2* — кубическая фаза, *3* — гексагональная колончатая структура, *4* — изотропная жидкость.

зями — соединения 77–79. В ферроценсодержащих соединениях 79 с n = 8 и m = 6 уменьшение числа звеньев концевых углеводородных цепочек приводит к ламеллярной организации мезофаз.

Позднее¹²¹ термотропное поведение супрамолекулярных жидких кристаллов типа **79** с различными длинами углеводородных цепочек было исследовано более подробно методами калориметрии, поляризационной микроскопии и рентгеновской дифракции порошка. С увеличением длины концевых углеводородных цепочек в слоевой упаковке появляется эффект кривизны и возникает сложная супрамолекулярная организация с кубической симметрией — кубическая мезофаза.

Водородные связи — мощный инструмент для создания различных супрамолекулярных структур. Так, относительно небольшая молекула **80**

с алкильной цепью и остатком модифицированного D-copбитола самоорганизуется в весьма сложную супрамолекуструктуру благодаря межмолекулярным пярную водородным связям.¹²² При нагревании до 98°С соединение 80 переходит в SA-фазу. Смектические двойные слои образуются путем сегрегации амфифильных молекул сообразно их гидро- и липофильным частям, а также дополнительного скрепления гидрофильных частей сорбитольного остатка сетью водородных связей. При 137°С термотропная жидкокристаллическая система переходит в изотропно-жидкое состояние. При добавлении воды в качестве растворителя соединение 80 образует лиотропный жидкий кристалл ламеллярного типа, который, в свою очередь, подвергается структурным трансформациям при нагреве до критической точки мицеллообразования и последующем охлаждении. Таким образом, ферроцен может быть использован для создания редокс-активных лиотропных жидкокристаллических систем, перспективных для применения в биологии.

В работе ¹²³ описаны производные ферроцена **81–83**, которые были внедрены в липидные системы на основе гексадека-7-ена с целью разработки электрохимических биосенсоров.

 $\mathbf{R} = (\mathbf{CH}_2)_6 \mathbf{CH} = \mathbf{CH} \mathbf{C}_8 \mathbf{H}_{17} \mathbf{\cdot} \mathbf{n}$

Добавки производных ферроцена с остатком алкена вызывали трансформацию и взаимный переход между различными видами лиотропных мезофаз липида.

Интересный пример «вписывания» ферроценовых структур в природные полисахариды осуществил Виль с соавт.¹²⁴ Полученный полимер с хромофорной ферроценовой группой (структура **84**) проявлял свойства жидкого кристалла в области температур от комнатной до 122°С.

Лиотропные системы хлористый метилен-соединение **84** также содержали анизотропную мезофазу.

Попытка получить дискотические системы на основе трифениленовых производных ферроцена оказалась неудачной.¹²⁵ Синтезированы соединения **85–87**, для которых можно ожидать проявление жидкокристаллических свойств. Упаковка дисков в виде столбиков интересна с точки зрения создания электронных проводников, действующих в одном измерении, особенно если в них находятся такие группы, как ферроцен, способные переносить заряд.

85: $R = R' = n-C_6H_{13}$; **86**: $R = n-C_6H_{13}$, R' = Me

Способность ферроцена образовывать комплексы с переносом заряда имеет немаловажное значение при образовании мезофаз смектического и колончатого типа в соединениях **88**.^{126, 127}

Col_{rect} — прямоугольная колончатая мезофаза.

Интересная особенность комплексов 88 заключается в том, что исходное производное ферроцена до взаимодействия с акцептором электронной плотности было немезогенным. Таким образом, электронный перенос в данном случае является способом вызвать жидкокристаллическое упорядочение молекул. Другая особенность — образование парамагнитных центров на ферроценовом фрагменте после формирования комплекса. В мёссбауэровских спектрах обнаружена синглетная линия феррициний-катиона (или дублет с небольшим расщеплением при низких температурах), а дублет, характерный для ферроцена, практически отсутствовал, что свидетельствует об эффективном формировании комплекса с переносом заряда. Проведены измерения магнитных восприимчивостей полученных соединений, однако обменных взаимодействий, связанных с жидкокристаллическим упорядочением магнитных специй, обнаружить не удалось.

Получены 128-130 сложные жидкокристаллические структуры 89-91, сочетающие в одном соединении фрагменты ферроцена и фуллерена С₆₀. По данным исследования методом рентгеновской дифракции, молекулы соединений 89 и 90 упакованы в колонны и, судя по результатам исследования методами поляризационной микроскопии и ДСК, содержат анизотропные жидкие фазы в случае длинных углеродных цепей. При исследовании парамагнитных свойств соединений 91 методом ЭПР найдены $g_{\parallel} = 3.75$ и $g_{\perp} = 1.70$ при 4 К. Определены также обратимые окислительно-восстановительные потенциалы этих систем методом циклической вольтамперометрии. Соединения 91 показали ¹³⁰ трехмерное упорядочение в жидкокристаллических фазах, согласно данным рентгеновской дифракции; мезофазы обнаруживали в очень широких температурных интервалах, начиная от температур, близких к комнатной.

В работе¹³¹ сообщено, что с помощью малых электрических полей возможно управление ориентацией нематических жидких кристаллов на золотом электроде, обработанном сульфоалкилированным ферроценом. Под действием электрического потенциала или химического воздействия ферроцен переходит в окисленную форму и приводит в движение поверхностные слои находящегося на подложке ориентированного или закрученного нематика. На таком принципе может быть основано устройство электрических и химических датчиков, изменяющих цвет или прозрачность при внешнем воздействии.

IX. Заключение

Ферроценовый фрагмент может быть успешно внедрен в мезогенные молекулы. Возможность полизамещения и наличие структурных изомеров в соединениях ферроцена приводит к большому разнообразию возможных геометрических форм и типов надмолекулярной организации, а в некоторых случаях даже к появлению новых типов жидкокристаллических фаз. Путем модифицирования химической структуры можно добиться значительного улучшения некоторых параметров мезофаз, например понижения температур фазовых переходов и расширения температурной области их существования. Особенности химического строения ферроцена обусловливают появление необычных свойств жидких кристаллов на его основе, таких как фотохромизм, обратимое редокс-переключение, парамагнетизм, нелинейные оптические свойства, перенос заряда и т.д. Возможность сочетания ферроценового фрагмента с жидкокристаллическими полимерами, различными металлокомлексами, а также с фуллеренами повышает вероятность получения наноструктурированных материалов с новыми свойствами. Одним из перспективных направлений, по нашему мнению, является создание новых ферроценсодержащих жидкокристаллических материалов с магнитными центрами, молекулярных переключателей и сегнетоэлектриков.

Литература

- 1. T.J.Kealy, P.L.Pauson. Nature (London), 168, 1039 (1951)
- 2. А.Н.Несмеянов. Химия ферроцена. Наука, Москва, 1969
- 3. А.Н.Несмеянов. *Ферроцен и родственные соединения*. Наука, Москва, 1982
- А.Н.Несмеянов, Н.С.Кочеткова. Vcnexu химии, 43, 1513 (1974) [Russ. Chem. Rev., 43, 710 (1974)]
- R.Peters, D.F.Fischer, S.Jautze. In *Iron Catalysis: Fundamentals and Applications*. (Ed. B.Plietker). Springer-Verlag, Berlin, 2011. P. 139
- T.Hayashi, A.Togni. Ferrocenes: from Homogeneous Catalysis to Materials Science. VCH, Weinheim, 1995
- 7. P.Stepnicka. Ferrocenes: Ligands, Materials and Biomolecules. Wiley, New York, 2008
- P.Nguyen, P.Gómez-Elipe, I.Manners. Chem. Rev., 99, 1515 (1999)
- M.Aly, R.Bramley, J.Upadhyay, A.Wassermann, P.Woolliams. J. Chem. Soc., Chem. Commun., 404 (1965)
- J.S.Miller, M.Drillon. Advances in Magnetism: from Molecules to Materials. Wiley-VCH, Weinheim, 1999
- J.S.Miller, R.S.Mclean, C.Vazquez, J.C.Calabrese, F.Zuof, A.J.Epstein. J. Mater. Chem., 3, 215 (1993)
- 12. S.Barlow, S.R.Marder. Chem. Commun., 1555 (2000)
- 13. H.S.Nalwa. Appl. Organomet. Chem., 5, 349 (1991)
- S.Fery-Forgues, B.Delavaux-Nicot. J. Photochem. Photobiol. A: Chemistry, 132, 137 (2000)
- Р.Бенсассон, Э.Лэнд, Т.Траскот. Флеш-фотолиз и импульсный радиолиз. Применение в биохимии и медицинской химии. Мир, Москва, 1987
- Э.Тёрнер, И.Карубе, Д.Уилсон. Биосенсоры: основы и приложения. Мир, Москва, 1992
- 17. J.Malthete, J.Billard. Mol. Cryst. Liq. Cryst., 34, 117 (1976)
- В.М.Чайковский, Л.И.Минеев, И.И.Сушкин. В кн. Тезисы докладов 5-й Всесоюзной конференции «Жидкие кристаллы и их практическое использование». Т. 1. Иваново, 1985. С. 16
 У.С. Верекри, У.У., Верекри, Е. Б. Менекри, исперенсе использование». Т. 1. Иваново, 1985. С. 16
- V.G.Bekeshev, V.Ya.Rochev, E.F.Makarov. *Hyperfine Interact.*, **67**, 661 (1991)
 V.Y. Parakarov. V.C. Pakasharov. *Math. Cond. Lin. Cond.* **265**, 0
- 20. V.Ya.Rochev, V.G.Bekeshev. Mol. Cryst. Liq. Cryst., 265, 9 (1995)
- V.Ya.Rochev, V.G.Bekeshev. J. Radioanal. Nucl. Chem., 190, 333 (1995)
- J.Bhatt, B.M.Fung, K.M.Nicholas, C-D.Poon. J. Chem. Soc., Chem. Commun., 1439 (1988)
- M.A.Khan, J.C.Bhatt, B.M.Fung, K.M.Nicholas, E.Wachtel. Liq. Cryst., 5, 285 (1989)
- 24. P.Singh, M.D.Rausch, R.W.Lenz. Polym. Bull., 11, 247 (1989)
- Ю.Г.Галяметдинов, О.Н.Кадкин, И.В.Овчинников. Изв. АН СССР. Сер. хим., 2462 (1990)
- A.M.Giroud-Godquin, P.M.Maitlis. Angew. Chem., Int. Ed. Engl., 30, 375 (1991)
- P.Espinet, M.A.Esteruelas, L.A.Oro, J.L.Serrano, E.Sola. Coord. Chem. Rev., 117, 215 (1992)
- 28. S.A.Hudson, P.M.Maitlis. Chem. Rev., 93, 861 (1993)
- 29. J.L.Serrano. *Metallomesogens: Synthesis, Properties and Applications.* Wiley-VCH, Weinheim, 1996
- D.W.Bruce. In *Inorganic Materials*. (Eds D.W.Bruce, D.O'Hare). Wiley, Chichester, 1996. P. 429
- A.M.Giroud-Godquin. Coord. Chem. Rev., 178-180, 1485 (1998)
- D.W.Bruce, B.Donnio. In *Structure and Bonding. Vol. 95*.
 (Ed. D.M.P.Mingos). Springer Verlag, Berlin; Heidelberg, 1999.
 P. 193
- R.Gimenez, D.P.Lydon, J.L.Serrano. Curr. Opin. Solid State Mater. Sci., 6, 527 (2002)
- B.Donnio, D.Guillon, R.Deschenaux, D.W.Bruce. In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology. Vol. 7. (Eds J.A.McCleverty, T.J.Meyer). Elsevier, Oxford, 2003. P. 357

- C.Imrie, P.Engelbrecht, C.Loubser, C.W.McCleland. Appl. Organomet. Chem., 15, 1 (2001)
- Y.Gao, J.M.Shreeve. J. Inorg. Organomet. Polym. Mater., 17, 19 (2007)
- R.Deschenaux, J.W.Goodby. In Ferrocenes: from Homogeneous Catalysis to Materials Science. (Eds T.Hayashi, A.Togni). VCH, Weinheim, 1995. P. 471
- B.Donnio, D.Guillon, R.Deschenaux, D.W.Bruce. In Comprehensive Coordination Chemistry II: from Biology to Nanotechnology. Vol. 7. (Eds J.A.McCleverty, T.J.Meyer). Elsevier, Oxford, 2003. P. 585
- B.Donnio, D.Guillon, D.W. Bruce, R.Deschenaux. In Comprehensive Organometallic Chemistry III: from Fundamentals to Applications. Vol. 12. (Eds R.H.Crabtree, D.M.P.Mingos). Elsevier, Oxford, 2006. P. 195
- 40. W.E.Lindsell, L.Xinxin. J. Chem. Res. (S), 62 (1998)
- C.Loubser, C.Imrie. J. Chem. Soc., Perkin Trans. 2, 399 (1997)
 S.Y.Kim, O.N.Kadkin, E.H.Kim, M.-G.Choi. J. Organomet. Chem., 696, 2429 (2011)
- N.Nakamura, T.Hanasaki, H.Onoi. Mol. Cryst. Liq. Cryst., 225, 269 (1993)
- N.Nakamura, T.Hanasaki, H.Onoi. Chem. Express, 8, 467 (1993)
- K.-Q.Zhao, P.Hu, H.-B.Xu, W.Wan, Z.-Y.Zhou, L.-F.Zhang. Mol. Cryst. Liq. Cryst., 364, 759 (2001)
- C.Imrie, P.Engelbrecht, C.Loubser, C.McCleland, V.O.Nyamori, R.Bogardi, D.C.Levendis, N.Tolom, J.van Rooyen, N.Williams. J. Organomet. Chem., 645, 65 (2002)
- C.Imrie, C.Loubser, P.Engelbrecht, C.McCleland, Y.Zheng. J. Organomet. Chem., 665, 48 (2003)
- M.V.Makarov, D.A.Lemenovskii, A.E.Bruce, M.R.M.Bruce, V.P.Dyadchenko. *Liq. Cryst.*, 33, 485 (2006)
- M.V.Makarov, L.N.Kuleshova, D.W.M.Hofmann, V.P.Dyadchenko, M.Y.Antipin. *Crystallogr. Rep.*, **51**, 792 (2006)
- 50. N.Nakamura, S.Setodoi. Mol. Cryst. Liq. Cryst., 312, 253 (1998)
- 51. N.Nakamura, S.Setodoi. Mol. Cryst. Liq. Cryst., 319, 173 (1998)
- 52. N.Nakamura, S.Setodoi. Mol. Cryst. Liq. Cryst., 326, 177 (1999)
- 53. N.Nakamura, S.Setodoi. Mol. Cryst. Liq. Cryst., 333, 151 (1999)
- N.Nakamura, S.Setodoi, T.Takayama. Mol. Cryst. Liq. Cryst., 346, 19 (2000)
- 55. N.Nakamura, T.Takahashi, K.Uno, T.Hanasaki. *Mol. Cryst. Liq. Cryst.*, **383**, 27 (2002)
- N.Nakamura, S.Setodoi, T.Hanasaki. Mol. Cryst. Liq. Cryst., 350, 93 (2000)
- N.Nakamura, T.Nio, T.Okabe. Mol. Cryst. Liq. Cryst., 461, 29 (2007)
- N.Nakamura, T.Nio, T.Okabe. Mol. Cryst. Liq. Cryst., 460, 85 (2006)
- N.Nakamura, M.Ishimizu, M.Nishikawa, N.Dogen. Mol. Cryst. Liq. Cryst., 516, 114 (2010)
- N.Nakamura, K.Hiro, M.Nishikawa, T.Okabe, K.Uno. Mol. Cryst. Liq. Cryst., 516, 122 (2010)
- 61. K.C.Majumdar, P.K.Shyam. *Mol. Cryst. Liq. Cryst.*, **528**, 3 (2010)
- K.C.Majumdar, T. Ghosh, P.K.Shyam. *Liq. Cryst.*, 38, 567 (2011)
- I.Cârlescu, D.Scutaru, N.Hurduc, O.Cătănescu, L-C.Chien. Mol. Cryst. Liq. Cryst., 439, 107 (2005)
- I.Cârlescu, A.M.Scutaru, D.Apreutesei, V.Alupei, D.Scutaru. Appl. Organomet. Chem., 21, 661 (2007)
- I.Cârlescu, A.M.Scutaru, D.Apreutesei, V.Alupei, D.Scutaru. Liq. Cryst., 34, 775 (2007)
- I.Cârlescu, G.Lisa, D.Scutaru. J. Therm. Anal. Cal., 91, 535 (2008)
- C.Lisa, S.Curteanu, V. Bulacovschi, D.Apreutesei. *Rev. Roum. Chim.*, 53, 283 (2008)
- G.Lisa, D.Apreutesei Wilson, S.Curteanu, C.Lisa, C.-G.Piuleac, V.Bulacovschi. *Thermochim. Acta*, **521**, 26 (2011)

- T.Seshadri, H.-J.Haupt, U.Flörke, G.Henkel. Liq. Cryst., 34, 33 (2007)
- W.-C.Shen, Y.-J.Wang, K.-L.Cheng, G.-H.Lee, C.K.Lai. Tetrahedron, 62, 8035 (2006)
- T.Chuard, S.J.Cowling, M.Fernandez-Ciurleo, I.Jauslin, J.W.Goodby, R.Deschenaux. *Chem. Commun.*, 2109 (2000)
- J.Brettar, T.Bürgi, B.Donnio, D.Guillon, R.Klappert, T.Scharf, R.Deschenaux. Adv. Funct. Mater., 16, 260 (2006)
- Ю.Г.Галяметдинов, О.Н.Кадкин, И.В.Овчинников, Л.М.Тинчурина. Изв. АН. Сер. хим., 358 (1995)
- Ю.Г.Галяметдинов, О.Н.Кадкин, И.В.Овчинников. Изв. АН. Сер. хим., 402 (1992)
- 75. P.Singh, M.D.Rausch, R.W.Lenz. Liq. Cryst., 9, 19 (1991)
- 76. А.П.Полищук, Т.В.Тимофеева, М.Ю.Антипин, Ю.Т.Стручков, Ю.Г.Галяметдинов, И.В.Овчинников. Кристаллография, 37, 705 (1992)
- N.Nakamura, R.Mizoguchi, M.Ueda, T.Hanasaki. Mol. Cryst. Liq. Cryst., 312, 127 (1998)
- T.Okabe, K.Nakazaki, T.Igaue, N.Nakamura, B.Donnio, D.Guillon, J.-L.Gallani. J. Appl. Cryst., 42, 63 (2009)
- N.Nakamura, T.Nio, T.Okabe, B.Donnio, D.Guillon, J.-L.Gallani. Mol. Cryst. Liq. Cryst., 466, 3 (2007)
- 80. N.Nakamura, T.Okabe. Chem. Lett., 33, 358 (2004)
- N.Nakamura, T.Okabe, T.Takahashi. Mol. Cryst. Liq. Cryst., 441, 243 (2005)
- 82. N.Nakamura, M.Nishikawa. Chem. Lett., 34, 1544 (2005)
- E.H.Kim, O.N.Kadkin, S.Y.Kim, M.-G.Choi. Eur. J. Inorg. Chem., 2933 (2011)
- 84. M.Agelmenev. Mol. Cryst. Liq. Cryst., 545, 190 (2011)
- С.М.Братухин. Дис. канд. хим. наук. Караганд. гос. ун-т. Караганда, 2010
- N.J.Thompson, J.W.Goodby, K.J.Toyne. *Liq. Cryst.*, **13**, 381 (1993)
- R.Deschenaux, M.Rama, J.Santiago. *Tetrahedron Lett.*, 34, 3293 (1993)
- T.Hanasaki, K.Matsushita, T.Watanabe, S.Enomoto, Y.Sato. Mol. Cryst. Liq. Cryst., 351, 103 (2000)
- O.N.Kadkin, E.H.Kim, Y.J.Rha, S.Y.Kim, J.Tae, M.-G.Choi. Chem. – Eur. J., 10343 (2009)
- Q.Yan, P.Hu, W.H.Yu, B.Q.Wang, K.-Q.Zhao. Key Eng. Mater., 428-429, 162 (2010)
- 91. H.Kitzerow, C.Bahr. *Chirality in Liquid Crystals*. Springer-Verlag, New York, 2000
- S.T.Lagerwall. Ferroelectric and Antiferroelectric Liquid Crystals. Wiley-VCH, New York, 1999
- T.Hanasaki, M.Ueda, N.Nakamura. Mol. Cryst. Liq. Cryst., 237, 329 (1993)
- N.Nakamura, H.Onoi, T.Oida, T.Hanasaki. *Mol. Cryst. Liq. Cryst.*, 257, 43 (1994)
- N.Nakamura, T.Oida, M.Shonago, H.Onoi, T.Hanasaki. Mol. Cryst. Liq. Cryst., 265, 1 (1995)
- N.Nakamura, T.Takayama. Mol. Cryst. Liq. Cryst., 307, 145 (1997)
- 97. N.Nakamura, T.Oida. Mol. Cryst. Liq. Cryst., 326, 55 (1999)
- N.Nakamura, H.Maekawahara, T.Hanasaki, T.Yamaguchi. Mol. Cryst. Liq. Cryst., 352, 125 (2000)
- R.Deschenaux, J.-L.Marendaz, J.Santiago, J.W.Goodby. Helv. Chim. Acta, 78, 1215 (1995)
- 100. K.C.Majumdar, S.Chakravorty, N.Pal, R.K.Sinha. Tetrahedron, 65, 7998 (2009)
- D.Apreutesei, G.Lisa, H.Akutsu, N.Hurduc, S.Nakatsuji, D.Scutaru. Appl. Organomet. Chem., 19, 1022 (2005)
- 102. D.Apreutesei, G.H.Mehl, D.Scutaru. Liq. Cryst., 34, 819 (2007)
- D.Apreutesei, G.Lisa, D.Scutaru, N.Hurduc. J. Optoelectron. Adv. Mater., 8, 737 (2006)
- 104. G.Lisa, D.A.Wilson, D.Scutaru, N.Tudorachi, N.Hurduc. *Thermochim. Acta*, 507–508, 49 (2010)
- A.Werner, W.Friedrichsen. J. Chem. Soc., Chem. Commun., 365 (1994)

- O.Kadkin, C.Näther, W.Friedrichsen. J. Organomet. Chem., 649, 161 (2002)
- 107. O.Kadkin, H.Han, Yu.Galyametdinov. J. Organomet. Chem., 692, 5571 (2007)
- 108. M.Cazacu, A.Vlad, M.Marcu, C.Racles, A.Airinei, G.Munteanu. *Macromolecules*, **39**, 3786 (2006)
- S.Campidelli, L.Pérez, J.Rodríguez-López, J.Barberá, F.Langa, R.Deschenaux. *Tetrahedron*, 62, (2006)
- 110. S.Campidelli, M.Séverac, D.Scanu, R.Deschenaux, E.Vázquez, D.Milic, M.Prato, M.Carano, M.Marcaccio, F.Paolucci, G.M.Aminur Rahman, D.M.Guldi. J. Mater. Chem., 18, 1504 (2008)
- 111. Y.Molard, F.Dorson, V.Cîrcu, T.Roisnel, F.Artzner, S.Cordier. Angew. Chem., Int. Ed., 49, 3351 (2010)
- О.Н.Кадкин, Ю.Г.Галяметдинов, А.И.Рахматуллин, В.Ю.Маврин. Изв. АН. Сер. хим., 387 (1999)
- O.Kadkin, Y.Galyametdinov, A.Rakhmatullin. Mol. Cryst. Liq. Cryst., 332, 109 (1999)
- 114. В.Г.Бекешев, В.Я.Рочев, Н.Н.Савватеев, Ф.Вагнер, Г.Гроссе. В кн. Материалы VI Всероссийской конференции «Структура и динамика молекулярных систем». Яльчик, Эл, 1999
- Ю.Г.Галяметдинов, О.Н.Кадкин, А.В.Просвирин. Изв. АН. Сер. хим., 941 (1994)
- O.Kadkin, J.An, H.Han, Yu.Galyametdinov. Eur. J. Inorg. Chem., 1682 (2008)
- 117. H.W.Chae, O.N.Kadkin, M.-G.Choi. Liq. Cryst., 36, 53 (2009)
- 118. O.N.Kadkin, E.H.Kim, S.Y.Kim, M.-G.Choi. *Polyhedron*, 28, 1301 (2009)
- 119. J.-S.Seo, Y.-S.Yoo, M-G.Choi. J. Mater. Chem., 11, 1332 (2001)
- R.Deschenaux, F.Monnet, E.Serrano, F.Turpin, A.-M.Levelut. *Helv. Chim. Acta*, 81, 2072 (1998)
- P.Massiot, M.Impéror-Clerc, M.Veber, R.Deschenaux. Chem. Mater., 17, 1946 (2005)
- B.Donnio, J.M.Seddon, R.Deschenaux. Organometallics, 19, 3077 (2000)
- 123. J.Barauskas, V.Razumas, Z.Talaikyte, A.Bulovas, T.Nylander, D.Tauraite, E.Butkus. *Chem. Phys. Lipids*, 23, 187 (2003)
- 124. F.Zhang, V.Vill, J.Heck. Organometallics, 23, 3853 (2004)
- G.Cooke, A.Radhi, N.Boden, R.J.Bushby, Z.Lu, S.Brown, S.L.Heath. *Tetrahedron*, 56, 3385 (2000)
- 126. R.Deschenaux, M.Schweissguth, A.-M.Levelut. Chem. Commun., 1275 (1996)
- R.Deschenaux, M.Schweissguth, M.-T.Vilches, A.-M.Levelut, D.Hautot, G.J.Long, D.Luneau. Organometallics, 18, 5553 (1999)
- 128. Y.Matsuo, K.Tahara, E.Nakamura. J. Am. Chem. Soc., 128, 7154 (2006)
- 129. Y.Matsuo, A.Muramatsu, Y.Kamikawa, T.Kato, E.Nakamura. J. Am. Chem. Soc., 128, 9586 (2006)
- C.-Zh.Li, Y.Matsuo, E.Nakamura. J. Am. Chem. Soc., 132, 15514 (2010)
- 131. Y.-Y.Luk, N.L.Abbott. Science, 301, 623 (2003)