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Width of the Gakhov Class Over the Dirichlet Space is Equal to 2
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Abstract—Gakhov class G is formed by the holomorphic and locally univalent functions in the unit
disk with no more than unique critical point of the conformal radius. Let D be the classical Dirichlet
space, and let P : f �→ F = f ′′/f ′. We prove that the radius of the maximal ball in P (G) ∩ D with
the center at F = 0 is equal to 2.
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1. INTRODUCTION

It was my good fortune in 2002 to work under the supervision of Professor D.H. Mushtari within the
subject “Fundamental structures of mathematics and applied problems” which was carried out under
the auspices of Tatarstan Academy of Sciences. Together with R.N. Gumerov and S.G. Haliullin we
have prepared the report devoted to our study of linear functionals. Supervisor’s review noted “the good
balance of the report reflecting both functional-analytic nature of the studied objects, and the dynamics
of the development of the investigations around the studying of the functionals behavior.”

In this report the author developed the research of the hyperbolic derivatives of holomorphic functions
(historically appeared as conformal radii of the hyperbolic domains). The concrete results concerned the
study of the class A of the images of holomorphic functions with the unique extremum of the hyperbolic
derivative under the pre-Schwarzian imbedding into the Bloch or Dirichlet space. The main tool was
the Minkowski functional which allowed us to establish the series of topological properties of A, to
compute the width of A, and to give an explicit description of the boundary part of A where such a width
is attained.

Author’s contribution to the above mentioned report has been reflected in the digest [1]; the expanded
form of the Bloch case has been given in [2]. In the present note we reincarnate the results on the
Dirichlet case announced in [1]. The author considers the work making here as the sacred duty and the
cause to remember once again the unforgettable days of the fruitful experience of the job alongside the
remarkable man and outstanding mathematician, Daniar Hamidovich Mushtari.

2. GAKHOV CLASSES

Let H be the class of all holomorhic functions in D = {ζ ∈ C : |ζ| < 1}, let A = {f ∈ H : f(0) =
f ′(0) − 1 = 0}, and let H0 be the subclass of f ’s taking away from the class A by the local univalence
condition in the unit disk D: f ′(ζ) �= 0 when ζ ∈ D. Hyperbolic derivative (conformal radius) of the
function f ∈ H0 is defined as

hf (ζ) = (1 − |ζ|2)|f ′(ζ)|. (1)
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Systematic research of the extrema of the function (1) was begun by H.R. Haegi [3] as the development of
the classical subjects of G. Polya and G. Szegö [4]; in the same, 1950, year the historical F.D. Gakhov’s
report has been sound at the conference on the complex function theory in Moscow (see [5], p. 649).
This report became the starting point of the history of Kazan Seminar on the geometric function theory.

A surge of interest in the extrema of (1), i.e. the elements of the set

Mf = {a ∈ D : ∇hf (a) = 0}, (2)

came in the 1980-ies due to the connection between (2) and correctness of a number of problems in the
complex function theory [6]–[8] and mathematical physics (see [9, 10] and bibliography there). One can
considered the work [11] as a prolongation of the article [3]: the invariant form of the Haegi classification
of the points in (2) turned out to be generic for the Nehari inequality [12]

|Sf (ζ)| ≤ 2/(1 − |ζ|2)2, ζ ∈ D, (3)

as a condition for (2) to be a singleton or empty set [13]; Sf (ζ) = (f ′′/f ′)′(ζ) − (f ′′/f ′)2(ζ)/2 is the
Schwarzian derivative of the function f . The study of this genericity was given in [14] and led to the new
(in comparison with [13, 11]) proof of the implication

(3) =⇒ kf ≤ 1 (4)

where kf = #Mf is the number of elements of (2) (see also [15]).

Later on the themes concentrating around the implication (4) have been caught up by M. Chuaqui et
al (see, e.g., [16], and, especially, [17]) while within the walls of Kazan Seminar the new approach arose
to treat the set of functions f ∈ H0 with kf ≤ 1 as an object to study “im großen”. The history of this
approach is presented in [2].

Gakhov class (see, e.g., [17, 18, 2]) is defined as G = {f ∈ H0 : kf ≤ 1} and is equal to the union of
its subclasses G− = {f ∈ H0 : kf = 0} and G+ = {f ∈ H0 : kf = 1}. The latter in turn breaks up in the
disjoint union G+ = G1

⊔
Gs of the subclasses G1 = {f ∈ H0 : kf = 1, γf (Mf ) = +1} and Gs = {f ∈

H0 : kf = 1, γf (Mf ) �= +1}. For the function f ∈ H0 M.I. Kinder’s mapping γf : Mf → {−1, 0,+1}
associates to an element a ∈ Mf the index γf (a) of the vector field ∇hf (ζ); depending on values of γf (a)
the points a ∈ Mf may be of only three types: the case γf (a) = +1 corresponds to the local maximum,
the case γf (a) = −1 defines the saddle, and in the case γf (a) = 0 we have the semi-saddle [8].

As in [2] we consider the mapping

P : H0 → H : f �→ F = f ′′/f ′ (5)

which assigns to each function f ∈ H0 its pre-Schwarzian F = f ′′/f ′ and is one-to-one due to H0 ⊂ A.
In [2] the Gakhov class studied in the following setting [19, 20, 1].

Let B be the classical Bloch space consisting of all functions F ∈ H with finite semi-norm |F |B =
supζ∈D hf (ζ). It is well known that B is the Banach space relative to the norm ||F ||B = |F (0)| + |F |B,
and that the small Bloch class is defined by B0 = {F ∈ H : limζ→∂D hF (ζ) = 0}. Since P−1(B) ⊂ B0

we have P−1(B)
⋂

G− = P−1(B)
⋂

Gs = ∅ [2]. Therefore B
⋂

P (G) = B
⋂

P (G+) = B
⋂

P (G1) which
simplifies the study of the representation

A = B
⋂

P (G) (6)

of the Gakhov class in the Bloch space. Restriction on the subspace B̃ = {F ∈ B : F (0) = 0} where
the Gakhov class is represented as Ã = A

⋂
B̃ equalize pre-balls Bε(F ) = {G ∈ B : |G−F |B < ε} and

balls Bε(F ) = {G ∈ B : ||G−F ||B < ε}: B̃ε(F ) = Bε(F )
⋂

B̃ = Bε(F )
⋂

B̃ = B̃ε(F ). We will use also
the sets B = {F ∈ H : |F |B < 2}, S = {F ∈ H : |F |B = 2}, B̄ = B

⋃
S, and S = {F ∈ A : |F |B = 1}.

Let’s remark the following statement from [2]. For a function F ∈ S and a number ξ ∈ (−1, 1) we
define the set

Sξ(F ) =
{

2ε̄ξ
1 − ξ2

− 2ε̄2F ◦ Δξε : |ε| = 1
}

, (7)
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where Δω(ζ) = (ζ − ω)/(1 − ω̄ζ), |ω| < 1, and the set

S =
⋃

F∈S, ξ∈(−1,1)

Sξ(F ). (8)

Proposition 1. The following relations hold:

B̄ ⊂ A, (9)

B̄
⋂

FrBA = S. (10)

Defining the (Gakhov) width of the class A as the least upper bound

Γ(A) = sup{r > 0 : Br(0) ⊂ A} (11)

we can rewrite Proposition 1 as
Proposition 2. Gakhov width of the class (6) is equal to Γ(A) = 2.
In the present note we give an analogue of this assertion and some consequences for the classical

Dirichlet space D with the Banach norm ||F ||D = |F (0)| + |F |D where

|F |D =
{

1
π

∫ ∫

D

|F ′(ζ)|2dxdy

}1/2

< +∞

and ζ = x + iy. We introduce the notations D = {F ∈ H : |F |D < 2}, T = {F ∈ H : |F |D = 2}, D̄ =
D

⋃
T , and collect the required facts on the classes B and D in the following

Lemma 1. ([4, 21, 22]) The inclusion D ⊂ B0 is valid with estimate

|F |B ≤ |F |D. (12)

Equality in (12) is attained only on the functions of the form F (ζ) = a + bΔω(ζ) where a ∈ C,
b = |F |D , and ω ∈ D is the (unique) maximum of the function hF (on D̄).

It remains to introduce the analogues of the sets (7) and (8):

Tξ := Sξ(id) =
{

2ε̄ξ
1 − ξ2

− 2ε̄2Δξε : |ε| = 1
}

, T =
⋃

ξ∈(−1,1)

Tξ.

We define the Gakhov width of the class A
⋂

D by analogy with (11):

Γ
(
A

⋂
D

)
= sup

{
r > 0 : Dr(0) ⊂ A

⋂
D

}
,

where Dr(0) = {F ∈ D : |F |D ≤ r}.

3. GAKHOV WIDTH OVER DIRICHLET SPACE

Now we prove the main result of this note:
Theorem 1. There holds the equality Γ(A

⋂
D) = 2. In more detail, the following relations

take place: the inclusion

D̄ ⊂ A
⋂

D, (13)

and the equality

D̄
⋂

FrBA = T . (14)

Proof. The inclusion (9) is completed to (13) by the inclusion

D̄ ⊂ B̄ (15)

being the consequence of the inequality (12). Let’s prove (14).
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Suppose G ∈ D̄
⋂

FrBA. The relations (15) and (10) lead to

G ∈ B̄ (16)

and to G ∈ S. According to (7) and (8) the latter means the existence of the function G̃ ∈ S and the
number ξ ∈ (−1, 1) such that

G =
2ε̄ξ

1 − ξ2
− 2ε̄2G̃ ◦ Δξε. (17)

The direct calculations with G̃ ∈ S give

hG(εξ) = 2, (18)

whence, by virtue of (16), we have

|G|B = 2. (19)

Then, the relations G ∈ D̄, (12) for F = G, and (19) establish the equality |G|B = |G|D ; due to the
Lemma 1 it is possible only for

G = a + bΔω (20)

where a, b ∈ C, ω ∈ D. From (19) we have |b| = |G|B = 2, i.e. b = 2η for some η, |η| = 1; furthermore,
the estimate hf (ζ) = 2hΔω(ζ) ≤ 2 holds in D where the equality is attained only for ζ = ω. Due to (18)
and G ∈ B0 it follows that ω = εξ. In view of the latter we equate the representations (17) and (20) for
the function G, and in the resulting identity we make the change of variables Λω(ζ) = w:

a + 2ηw =
2ε̄ξ

1 − ξ2
− 2ε̄2G̃(w), w ∈ D. (21)

In the following transform we use the belonging G̃ ∈ S. Substituting w = 0 in (21) we have
a = 2ε̄ξ/(1 − ξ2). Subtracting the latter from (21), differentiating the remainder and substituting w = 0
once again we get η = −2ε̄2. Thus, G̃(w) = w, and G ∈ Tξ.

So, the inclusion ⊂ in (14) is established. Let’s prove the opposite inclusion.
We start with T ⊂ S. By (10) it means that if G ∈ T , then G ∈ FrBA; moreover, the direct

calculation shows that |G|D = 2. As a result we obtain G ∈ D̄
⋂

FrBA which implies the desired
inclusion ⊃ in (14). �

Corollary 1. The following equality takes place:

D̄
⋂

FrD
(
A

⋂
D

)
= T . (22)

Proof. The inclusion ⊂ in (22) follows from the inclusion FrD (A
⋂

D) ⊂ D
⋂

FrBA which is
established in [23], Sect. 2.1. Now we turn to the inclusion ⊃.

Let D ∈ T . As it was done at the end of the proof of Theorem 1 we get |G|D = 2, so, G ∈ D̄.
Obviously, it remains to prove that

G ∈ FrD
(
A

⋂
D

)
. (23)

The bijectivity of the mapping (5) implies the existence of a function g ∈ H0 such that g′′/g′ = G.
The idea of the proof of the inclusion (23) is based on the study of the dynamics of the critical points
of the hyperbolic derivatives hgr for the level lines gr(ζ) = g(rζ)/r satisfying the condition g′′r /g′r = Gr

where Gr(ζ) = rG(rζ), and on the estimate of the norm ||Gr − G||D when r → 1.
The use of the representation for Gr on the base of G ∈ T allows us to conclude that |Gr|D ≤ 2 when

0 ≤ r ≤ 1, and 2 < |Gr|D < ∞ when 1 < r < 1/|ξ|. It follows from here at once that for 0 ≤ r ≤ 1 we
have Gr ∈ A

⋂
D. In particular, for r = 1 the Schwarzian derivative is equal to Sg(εξ) = −2ε̄2/(1 −

|εξ|2)2, whence |Sg(εξ)| = 2/(1 − |εξ|2)2, i.e. the critical point ζ = εξ is parabolic for the function hg

(see, e.g., [11]).
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Since G = G1 ∈ A
⋂
D, the point ζ = εξ is the unique critical point of hg, and since G ∈ B0 by

Lemma 1, then ζ = εξ is the (parabolic) maximum point of hg . As is well known (see, for example, [18]),
it means that, when r increasing, the maximum ζ = εξ for r = 1 bifurcates into two maxima and one
saddle for r > 1. Therefore, for 1 < r < 1/|ξ| we have Gr ∈ D \ A.

The estimate ||Gr − G||D ≤ M(ξ)|r − 1| with the explicitly representable constant M(ξ), ξ ∈
(−1, 1), and 0 ≤ r ≤ (1 + 1/|ξ|)/2 is established by virtue of an estimate of sup-norm of the difference
Gr − G in D, and implies that when r → 1, the convergence Gr → G holds in the norm of D. According
to the proved above it follows that the function G belongs to both ClD(A

⋂
D) and ClD(D \ A), i.e. we

obtain (23). �

Corollary 2. There holds the following equality:

D̄
⋂

FrB̃Ã = T0.

Proof. We remind that the class T0 reduces to the family of the functions F (ζ) = 2ηζ where |η| = 1. It
is evident that T0 ⊂ D̄. In order to verify the inclusion T0 ⊂ FrB̃Ã it is enough to analyze the dynamics
of the sets Mfr for the level lines fr defining by the equation f ′′

r /f ′
r = 2ηr2ζ with r varies near 1. An

outcome of such an analysis is analogous to one in the proof of Corollary 1 for Mgr . So, this way leads
to the inclusion ⊃. Let’s prove the inclusion ⊂.

First of all we note that D ⊂ B ⊂ IntBA by Lemma 1 above and Theorem 2 from [2], and
B̃

⋂
IntBA = IntB̃Ã by Theorem 6 from [2]. Therefore, D

⋂
FrB̃Ã ⊂ IntB̃Ã

⋂
FrB̃Ã = ∅, and,

consequently, D̄
⋂

FrB̃Ã = T
⋂

FrB̃Ã.

Now we fix an arbitrary function G ∈ T
⋂

FrB̃Ã, and suppose G /∈ T0. Then |G|B < |G|D by
Lemma 1. Let’s consider the pre-ball B̃ε(G) = {F ∈ H̃ : |F −G|B < ε} where ε = (|G|D − |G|B) /2(>
0). We have |G|B = |G|D − 2ε = 2 − 2ε < 2 − ε by G ∈ T , and the condition F ∈ B̃ε(G) implies the
following chain of inequalities:

|F |B ≤ |G|B + |F − G|B ≤ |G|B + |F − G|D < 2 − ε + ε = 2,

whence F ∈ A due to Proposition 1. By the arbitrariness of F ∈ B̃ε(G) it follows from B̃ε(F ) = B̃ε(F )
that G ∈ B̃

⋂
IntBA = IntB̃Ã, which is in contradiction with G ∈ FrB̃Ã. Thus G ∈ T0. �

Remark 1. Assertion of Corollary 2 may be given by considering the trace on B̃ of the inequality (14),
and by using Theorem 7 from [2].
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