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Abstract: The purpose of this study is to enhance the quality of heavy oil through refinement using
aquathermolysis with the simultaneous injection of steam and thermally stable nonionic surfactants
(NS). To achieve this, the NS R-PPG of the nonionic type was synthesized, and the optimal product
structures were characterized using infrared (IR) methods. Furthermore, the thermal stability of the
synthesized NS R-PPG was investigated in line with the requirements for surfactants used in heavy
oil applications. Subsequently, the study delved into investigating the hydrothermal upgrading of
heavy oil with a catalyst, involving the joint participation of steam and surfactants at a temperature
of 250 ◦C. Additionally, we assessed the improved oil characteristics resulting from the experimental
process through SARA analysis, elemental analysis, GC, and viscosity reduction evaluations. The
experimental results demonstrated distinct effects concerning the presence and absence of surfactants
on heavy oil. Based on these findings, we conclude that surfactants play a crucial role in dispersing
asphaltene clusters, thereby facilitating the decomposition process under mild thermobaric conditions,
leading to a noticeable increase in the content of light fractions. Furthermore, as per the results of the
elemental analysis, surfactants contribute significantly to the desulfurization of heavy oil. Overall,
the incorporation of surfactants during hydrothermal upgrading resulted in an irreversible reduction
in the viscosity of heavy oil, thereby enhancing its overall quality.

Keywords: surfactant; in situ upgrading heavy oil; steam additives; chemical additives; hydrothermal
treatment; aquathermolysis; in situ upgrading

1. Introduction

Currently, the oil industry continues to face a significant challenge in extracting heavy
oil, necessitating the enhancement of existing techniques. The depletion of conventional
global oil reserves has prompted the exploration of oil fields harboring heavier, highly
viscous crude oils enriched with considerable quantities of asphaltenes, resins, and waxes.
The tendency of these components to aggregate and precipitate gives rise to profound
technological and economic complications throughout the stages of crude oil extraction
and processing. The heightened viscosity can be attributed to the abundance of asphaltenes
and heteroatomic compounds, which impede their further extraction and transportation.
Moreover, it is established that asphaltenes adhere to a continental model, forming intricate
aggregate structures comprising multiple molecules arranged in a planar manner, primar-
ily connected through π–π interactions and hydrogen bonding. Specialized techniques,
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referred to as enhanced oil recovery methods, are indispensable for their extraction. Addi-
tionally, processing with steam has both physical and chemical effects on the characteristics
of heavy oil, with the latter being poorly studied in the literature. Furthermore, the chemi-
cal consequences of steam stimulation methods can be improved by introducing various
additives, such as air, solvents, catalysts, and chemicals [1]. Furthermore, it is well known
that the addition of an appropriate amount of catalytic complex or mixtures into the volume
of oil and the steam reaction zone significantly promotes chemical reactions, including
hydrolysis, hydrocracking, hydrogenation, pyrolysis, hydrodesulfurization, isomerization,
and water–gas conversion [2–6]. Presently, the extraction of heavy oil remains a relevant
task for the oil extraction industry because the implementation of extracting such oils
requires the enhancement of existing methods. One of the most suitable approaches is
steam-assisted gravity drainage (SAGD). Nevertheless, these technologies have several
disadvantages, such as the significant release of greenhouse gases and low recovery effi-
ciency of heavy oil/bitumen, as well as the complexity of halting operations in emergency
conditions [7].

At present, thermal methods of oil extraction are gaining popularity. These methods
include steam-assisted gravity drainage (SAGD), cyclic steam stimulation (CSS), and in
situ combustion. However, these methods have notable drawbacks, such as the high costs
associated with steam generation processes [8–12].

By utilizing surfactants in conjunction with catalysts, the thermal effects can be en-
hanced by promoting reactions within the reservoir. Specifically, surfactants aid in dis-
persing asphaltene aggregates, facilitating the pathway for the catalyst to interact with the
C=S bond. Consequently, the application of thermal treatments, alongside surfactants and
catalysts, is being proposed for reservoirs containing highly viscous oils and natural bitu-
mens. Moreover, among various chemical substances, surfactants are considered promising
auxiliary additives to catalysts for further optimization and increased efficiency of steam-
based recovery methods. It is expected that the co-injection of surfactants with steam will
reduce interfacial tension, improve wettability, and alter the steam-to-oil ratio. Furthermore,
surfactants facilitate the interaction of catalytic systems with asphaltene fragments at the
molecular level. Asphaltenes, being the heaviest fraction and polar components of heavy
oils, play a crucial role in viscosity reduction [13–15]. According to the asphaltene and
resin micelle model, asphaltenes occupy the core of the micelle with resin acting as the
dispersing agent [16]. Surfactants are believed to enhance the interaction energy between
steam and heavy crude oil, inhibiting asphaltene agglomeration and thus promoting the
penetration of catalytic systems deep into the asphaltene micelle core. On the other hand,
surfactants can emulsify the condensed water phase into the oil phase or vice versa, leading
to additional viscosity reduction and a shift towards water-wet conditions [16].

According to [17,18], the behavior of catalysts in oil fields is still poorly understood.
There have been insufficient field trials and assessments of economic efficiency to determine
the benefits of directly injecting catalysts into an oil reservoir.

In [19], field trials conducted at the Liaohe oilfield in China are described. The
injection of a water-soluble catalyst based on iron salts resulted in not only an increase in
oil production but also a reduction in oil viscosity by 63–95%.

The implementation of the aquathermolysis process at oil fields encounters several
challenges [17,19,20]:

1. The selection of catalysts and their optimal concentrations.
2. The choice of surfactants with suitable physicochemical characteristics, such as ther-

mal stability, salt resistance, etc.
3. Investigation of the catalyst and surfactant’s potential for reservoir plugging and

consideration of their environmental impact.
4. Exploration and testing of more cost-effective methods for reservoir heating.

Currently, the most attractive solution involves using a combination of chemical
methods, such as alkaline and surfactant flooding, after the steam injection, to extract heavy
oil and recover residual oil.
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This paper discusses various chemical substances, specifically alkaline and surfactant
agents, and addresses a range of issues and their corresponding solutions that may arise
during laboratory and field trials. One focus is on exploring the combination of chemical
and thermal methods for extracting highly viscous oils and non-thermal methods for oils
with viscosities below 10,000 mP·s, while considering the presence of carbon dioxide [20,21].
Furthermore, researchers have observed a correlation between surfactant stability and pH,
where increased acidity adversely affects stability and, consequently, the effectiveness
of surfactants [22]. The study findings indicate that non-ionic and anionic surfactants
demonstrate the highest efficiency [23,24]. In the context of foam-assisted vapor methods
for oil recovery, it is essential to consider the foam’s stability when it encounters different
zones within the reservoir. Specifically, the foam should be unstable when it contacts
highly oil-saturated areas and fully stable when it interacts with zones of low saturation.
Furthermore, it is worth noting that the loss of surfactant predominantly occurs due to
partitioning and precipitation phenomena. The latter is a result of cation exchange between
divalent clay cations and monovalent sodium cations present in the surfactant, leading
to the accumulation of divalent cations. However, the stability against divalent ions has
shown some improvement through the utilization of specific auxiliary surfactants [25–29].

In the pursuit of enhanced oil recovery, comprehensive modeling processes were
conducted using anionic surfactants to extract oil from diverse asphaltene-rich formations
with distinct structures. Notably, these modeling endeavors introduced temperature as a
variable, in addition to considering different surfactant compositions. The analysis of these
modeled processes yielded intriguing insights. Specifically, the presence of heteroatoms
such as oxygen, nitrogen, and sulfur within the asphaltene structure was found to exert
a significant influence on molecular polarity and their active participation in hydrogen
bonding. Furthermore, the positional arrangement of these heteroatoms was found to affect
both van der Waals and Coulombic interactions within the system. For the investigation,
two anionic surfactants with similar molecular compositions were selected, differing only
in the presence of a cyclic conjugated π–π bond system. This structural element, while
enhancing van der Waals interactions, concurrently reduced Coulombic interactions. More-
over, an increase in temperature within the molecular models resulted in a notable decrease
in intermolecular interaction energy within the asphaltene–surfactant–water system.

To gain further insights into the intricate dynamics, the study delved into exploring the
interactions among asphaltene molecules of varying structures, alongside the examination
of anionic and non-anionic surfactants and hydrocarbon solvents. Through comprehensive
molecular interaction modeling, it was revealed that surfactants played a pivotal role in
facilitating asphaltene dispersion processes. However, the efficacy of surfactants was found
to be contingent upon the nature of the asphaltenes, particularly the high aromaticity of
asphaltene molecules, which contributed to their tendency for agglomeration and floccula-
tion. The assessment of aromaticity, commonly determined by the H/C ratio, provided
valuable insights into the underlying dynamics [30–32].

The primary objective of this article is to conduct a rigorous investigation supported
by experimental results, aiming to unravel the intricate interactions between surfactants
and heavy crude oil fractions during steam injection processes. By shedding new light on
the underlying mechanisms of surfactant action on asphaltenes and resins under the harsh
conditions of reservoirs, it is anticipated that the findings will have significant implications
for the optimization of steam-based recovery methods in practical applications.

2. Materials and Methods
2.1. Surfactant Synthesis

In order to synthesize the surfactant (R-PPG), 0.04 g/mol of PPG-425 was loaded into
a flat-bottomed flask equipped with a thermometer and a reflux condenser. With the aid of
a magnetic stirrer, 4 × 10−4 g/mol of SnCl2 catalyst was dissolved in it. Then, 0.08 g/mol
of stearic acid was added. The reaction was conducted under vacuum using a water jet
pump (approximately 1 mmHg) at a temperature of 80 ◦C for 7 h. The resulting PPG-425
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esters and stearic acid were dissolved in 50 mL of ethyl acetate and rinsed with a water
solution of sodium chloride (10 g of NaCl in 100 mL of distilled water). Ethyl acetate was
removed using a rotary evaporator under vacuum provided by the water jet pump.
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2.2. Thermal Analysis of Surfactants

In order to determine the thermal stability of the surfactants and establish the ap-
propriate temperature for the upgrading experiments, a method was employed. Prior
to conducting the upgrading experiments, thermogravimetric analysis (TGA) was per-
formed on the surfactants using an STA 449 F1 Jupiter Thermal Analyzer (Netzsch, Selb,
Germany). The TGA analysis was conducted within a temperature range of 20–1000 ◦C,
employing heating rates of 10 ◦C/min and an airflow rate of 50 mL/min. The solid
phase consisted of aluminum oxide, while the gas phases involved nitrogen and oxygen.
Data processing was carried out using the Proteus Analysis 5.2.1 and NETZSCH Kinetics
Neo 2.1.2.2 software packages.

2.3. Fourier-Transform Infrared (FT-IR) Spectral Analysis

The FT-IR spectral analysis method was employed to examine the structural composi-
tion of the original heavy oil samples and the products of hydrothermal treatment in the
presence of surfactants. Moreover, this technique was utilized to analyze the synthesized
surfactant’s final product. Spectra were recorded using a Spectrum two PERKIN ELMER
instrument with Single Reflection Diamond, covering a range of 4000 to 450 cm−1 and a
resolution of 4 cm−1. In addition, the following spectral coefficients, namely C1, C3, C4,
and C5, were introduced to assess changes in the functional groups within the crude oil
systems. Specifically, C1 represents the aromaticity of heavy oil, determined as the ratio of
optical density at the maximum of D1600 to D720. Furthermore, branching and paraffinicity
were characterized by C3 = D1380/D1465 and C4 = (D720 + D1380)/D1600, respectively.
Notably, the sulfurization index was indicated by C5 = D1030/D1465.

2.4. Activity of the Synthesized Surfactant
2.4.1. Upgrading Experiments of Heavy Oil with Surfactant

The hydrothermal treatment of heavy oil samples, both in the absence and presence of
the synthesized surfactant, was performed in a periodic action reactor made of stainless
steel with a stirrer, manufactured by Parr Instruments (Moline, IL, USA). The reactor
configuration is illustrated in Figure 1. In this regard, the system consisted of 70 g of heavy
oil and 30 g of water without the surfactant. Conversely, for experiments involving the
surfactant, 1 g of R-PPG surfactant was added to the reaction medium. Additionally, the
desired pressure was achieved by purging nitrogen into the reactor for 15 min to remove
trapped air. Subsequently, the reactor was gradually heated from room temperature to
250 ◦C and maintained for 48 h. Notably, the initial target pressure was set at 10 bar, while
the working pressure reached at 250 ◦C exceeded 44.5 bar.
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2.4.2. SARA Analysis

The composition of heavy oil was analyzed using the Saturates, Aromatics, Resins,
and Asphaltenes (SARA) analysis method, which divides the crude oil composition into
four groups according to ASTM D4124. To precipitate the asphaltenes from the crude oil,
the oil sample was dissolved in n-hexane. Asphaltenes, being the most polar component of
heavy oil, do not dissolve in nonpolar solvents such as n-hexane, following the principle of
“like” dissolves “like”. Therefore, they completely precipitated after 12 h. The precipitates
were then filtered, and the asphaltene residue from the filter was extracted in a Soxhlet
apparatus using a warm polar solvent, such as toluene. Meanwhile, the filtrates were sepa-
rated into saturated hydrocarbons, aromatics, and resins in a specialized chromatography
column filled with neutral adsorbent (Al2O3) using diluent solvents with varying polarity.

2.4.3. Elemental Analysis

The initial heavy oil sample and the products of catalytic and non-catalytic hydrogena-
tion of carbon dioxide were analyzed for their elemental (CHNS-O) composition using
a Perkin Elmer 2400 Series II instrument. This analysis provides information about the
content of carbon, hydrogen, nitrogen, oxygen, and sulfur. Additionally, the H/C ratio for
each heavy oil sample was estimated based on the results of elemental analysis.

2.4.4. Viscosity Measurements

The viscosity of the initial heavy oil sample, as well as after upgrading in the absence
and presence of the catalyst, was evaluated using a rotational viscometer, specifically the
Fungilab Alpha L. The measurements were conducted under constant temperature, which
was regulated by a thermostat from the manufacturer Huber. The TL5 spindle was utilized
for measuring all samples, with each measurement requiring 6.7 mL of heavy oil sample.
For each shear rate, the viscosity value was considered acceptable when the percentage
value of the spring curvature compared to the same base scale was more than 50% and
remained constant.



Processes 2023, 11, 2156 6 of 12

2.4.5. Analysis of Evolved Gases by Gas Chromatography (GC)

The gas composition of the evolved products obtained after hydrothermal treatment
using R-PPG was determined using gas chromatography. The Chromatec Crystall 5000.2
instrument (Yoshkar-Ola, Russia), connected to the HPHT reactor through specialized
tubing, was employed for this analysis. The gas samples were passed through a capillary
column with a length of 100 m and two absorption chambers, with a continuous flow
of inert helium and argon gases. The temperature program involved a 4 min hold at
90 degrees, followed by a ramp from 90 ◦C to 250 ◦C at a heating rate of 10 ◦C/min.
The flow rate of the gases was maintained at 2.5 mL/min. The measurement procedures
followed the ASTM D5134-98 (2008) standard [33]. The resulting spectra were processed
using Chromatec Analytics 3.0 software to perform quantitative analysis and determine the
relative volumetric content of each gas component. Additionally, the Mendeley–Clapeyron
equation was applied to convert the volumetric percentage of each gas component into
weight percent. Since the gaseous products were assumed to behave ideally as gases, the
compressibility factor was considered as 1. The total volume of gases was estimated by
measuring the difference in volumes between an empty reactor and a reactor filled with
liquid (water and oil).

3. Results and Discussion

The initial part of the results focuses on the characterization of R-PPG. It underwent
thermogravimetric analysis (TGA), and its structural confirmation was carried out using
FT-IR. The subsequent section investigates the impact of R-PPG on heavy oil. The samples
obtained after aquathermolysis, both in the presence and absence of R-PPG, were examined
for their group composition, elemental composition, and viscosity. To assess the quality
improvement of the heavy oil samples after aquathermolysis, FT-IR, EPR, and GC methods
were employed.

3.1. Thermal Stability of Surfactants (R-PEG)

The synthesized R-PPG exhibited remarkable thermal stability, withstanding tempera-
tures exceeding 200 ◦C, while experiencing a minimal weight loss of only 7%. Moreover, as
the temperature rose above 500 ◦C, the weight loss reduced by 50%. These findings indicate
the presence of thermally stable components within the surfactant. The TGA results are
depicted in Figure 2.
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Based on the obtained data, further hydrothermal treatment experiments were con-
ducted at 250 ◦C.

3.2. FT-IR Analysis of Surfactants (R-PPG)

To determine the structure of the synthesized surfactant, FT-IR spectra were recorded
for all the components involved in the chemical reaction. The spectra are presented in
Figure 3.
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In the infrared spectra of the synthesized R-PEG compounds, a strong intensity band
is observed, indicating the presence of stretching vibrations (ν C=O) of carbonyl groups.
Specifically, in the range of 1700–1730 cm−1 (max 1740–1745 cm−1), a band with a strong
intensity is observed. Additionally, a strong intensity band, characteristic of stretching
vibrations (ν C–O) of the ether group in complex ethers, is observed in the range of
1200–1150 cm−1. Moreover, in the range of 1150–1060 cm−1 (max 1130 cm−1), an intense
band is observed, corresponding to stretching vibrations (ν C–O–C) of the ether group.

The valence vibrations (ν C–H) of the C–H bonds in the CH3 and CH2 groups were
observed at 2850 and 2920 cm−1 (with a maximum at 3070 cm−1). Furthermore, a broad
and moderately intense complex band is observed in the range of 3600–3400 cm−1 (max
3370 cm−1), indicating the presence of associated hydroxyl (OH) groups. These infrared
spectra confirm the formation of complex ether bonds in the synthesized compounds.

3.3. Analysis of Chemical Composition and Elemental Analysis

To examine the chemical composition of the oil samples after hydrothermal treatment,
both with and without the use of R-PPG, SARA analysis was conducted. The results of
the group composition analysis are presented in Figure 4. Significantly, the mass fraction
of resins decreased from 31% to 26% when R-PPG was used, while the mass fraction of
asphaltenes decreased from 6.5% to 5.5%. Conversely, in the absence of R-PPG, there was an
increase in resins (34% by mass) and asphaltenes (7% by mass). Moreover, the degradation
of the heavy fraction resulted in an increased content of light fraction compounds after
hydrothermal treatment with R-PPG. Specifically, the mass fraction of aromatic hydrocar-
bons increased from 35% to 39%, and saturated hydrocarbons increased from 27% to 30%.
These changes can be attributed to the intensified breakdown of asphaltene aggregates
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under reservoir conditions, particularly the more stable flocculated structures. Additionally,
R-PPG played a role in enhancing hydrothermal reactions. Consequently, surfactants con-
tribute to the peptization of asphaltenes, leading to a disaggregating effect and increasing
the distance between ordered asphaltene molecules, thereby accelerating the decomposi-
tion process. Notably, many researchers have hypothesized that the content of resins and
asphaltenes is directly linked to the viscosity of heavy oil and natural bitumen [34,35]. The
authors were able to reduce the content of asphaltenes by using a catalyst and solvents
during the aquathermolysis process. Analyses of the changes in the group composition
were conducted, but the changes in the group composition of the heavy fraction were not
significant. The use of modern surfactants such as R-PEG enables the improvement of the
oil composition with minimal costs. Therefore, the results of the SARA analysis should
correlate with the viscosity measurements, which will be presented in subsequent sections.
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Moreover, the findings from the elemental analysis, as presented in Table 1, demon-
strate the considerable effect of R-PPG on the disruption of π=π bonds, which are predomi-
nantly found in asphaltenes and resins. Notably, sulfide and disulfide compounds, which
are easily susceptible to cleavage under relatively gentle thermobaric conditions created
during steam-heating treatment, contribute to a reduction in sulfur concentration within
the oil composition. In contrast, the presence of R-PPG leads to a substantial increase in the
hydrogen-to-carbon ratio compared to the original crude oil, indicating the occurrence of
the destructive hydrogenation reaction in the oil’s heavy fraction.

Table 1. Results of elemental analysis.

Elemental Analysis, wt.%

Ashalcha Oil
C H N S O H/C

79.01 8.74 0.45 4.85 5.85 1.32
Oil + Steam 81.69 11.96 0.00 4.76 1.59 1.74

Oil + Steam + R-PPG 80.80 12.15 0.00 4.57 2.48 1.79



Processes 2023, 11, 2156 9 of 12

Gas Composition of the Products

The gas composition products resulting from oil upgrading in the presence and
absence of R-PEG surfactants during steam treatment are presented in Table 2. The data
were calculated excluding N2 make-up gas to offer a comprehensive depiction of the
results. Remarkably, the GC results revealed a significant increase (from 5.06% to 9.75%)
in C2–C4 methane gases after the introduction of surfactants. Additionally, noteworthy
changes (from 1.72% to 0.19%) occurred in the case of H2, indicating an enhancement
in the hydrogenation reaction. Simultaneously, there was a substantial reduction in the
proportion of H2S content (from 31.04% to 6.71%), potentially linked to the formation of
hydrosulfuric acid in the water composition following surfactant-assisted hydrothermal
upgrading during steam-chemical treatment. Notably, CO2 serves as an indicator of the
progress of the aquathermolysis reaction [16], and the obtained findings demonstrated an
elevation in CO2 content (from 11.56% to 17.09%) in the presence of surfactants.

Table 2. The gas composition of the experimental products.

Gas Composition, wt.%
Samples

Oil + Steam Oil + Steam + R-PEG

CH4 1.68 1.64
C2–C4 5.06 9.75

H2 1.72 0.19
O2 2.43 6.5

CO2 11.56 17.09
H2S 31.04 6.71

Other gases 46.50 58.07

Total 100 100

3.4. Dynamic Viscosity

Furthermore, viscosity is a crucial parameter in the extraction and transportation
of heavy oil. The viscosity measurement results reveal that the viscosity of heavy oil
tends to increase after steam treatment in the absence of surfactants, indicating asphaltene
agglomeration. However, the viscosity of the heavy oil sample exhibited a substantial
decrease after surfactant-assisted hydrothermal cleaning, as depicted in Figure 5. In their
research, the authors [7,36] examined the impact of surfactant solubility and emulsification
on the extent of viscosity reduction during hydrothermal cleaning.

The dynamic viscosity of Ashalcha heavy oil at 20 ◦C was approximately 3150 mPa·s
at a shear rate of 1.3 s−1. The viscosity at the same shear rate decreased by 42% after
hydrothermal cleaning in the presence of R-PPG surfactant. The evident influence of surfac-
tants on viscosity reduction can be attributed to the disaggregation of asphaltene clusters,
thereby accelerating the processes of degradation. Considering the structural changes in
heavy oil composition, such as resins and asphaltenes, it is well known that even a slight
reduction in asphaltene content can significantly decrease oil viscosity. Thus, it is presumed
that viscosity reduction may occur through the weakening of π=π bonds, which are pri-
marily concentrated in resins and asphaltenes. The sequence of hydrocracking involves
the following chemical interactions with higher dissociation energies: C–N, C–O, C–C,
C=S, C=N, C=O, and C=C. The reactions occurring during hydrothermal cleaning with the
aid of surfactants can be roughly categorized into cracking, hydrogenation, isomerization,
alkylation, and polymerization reactions.
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4. Conclusions

This study presents the results of laboratory investigations on hydrothermal upgrading
of heavy oil using surfactants. The advantages of using R-PEG surfactants lie in intensifying
the destruction of asphaltene aggregates under reservoir conditions, including the most
stable cluster structures. This facilitates access to easily breakable carbon–heteroatom bonds
within asphaltenes. In addition to the oil displacement processes, surfactants promote as-
phaltene peptization, thereby enhancing oil mobility in terrigenous reservoirs. Surfactants
induce a wedging effect, increasing the distance between ordered molecular assemblies of
asphaltenes. Consequently, certain carbon–heteroatom bonds within asphaltenes that were
previously inaccessible to hydrothermal factors undergo destructive hydride attack. Hence,
surfactants enhance the extent of thermochemical upgrading of oil. Furthermore, elemental
analysis and GC results demonstrated a significant reduction in sulfur concentration after
the addition of surfactants. SARA analysis indicated an improvement in the content of
light fractions, confirming the reduction in heavy oil viscosity. Therefore, the positive
impact of surfactants lies in the peptization of asphaltene aggregates, facilitating access to
sulfide and disulfide bridges, which are easily ruptured under relatively mild thermobaric
conditions created during thermal steam treatment of reservoirs. It has been identified
that the developed surfactant composition possesses the ability to diffuse from an aqueous
solution into oil and exert a dispersing effect on the main structuring components.
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