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ВВЕДЕНИЕ 

 

Существует два вида симметричных шифров, используемых в 

криптографии – это потоковые и блочные шифры. Первые шифруют 

поток информации посимвольно, складывая побайтно или побитово 

информационный поток с ключевой последовательностью. Блочные 

шифры разбивают текст на блоки определенной длины (обычно, 64, 

128 и более бит) и используют схему Фейстеля или подобные для пе-

рестановок и смешивания ключей внутри каждого блока в ходе много 

раундовых процедур.  

В свою очередь, для потоковых шифров ключевая последова-

тельность строится либо, как одноразовый блокнот, когда при каж-

дом шифровании заново используется новый ключ (например, по-

строенный на фрагменте какого-то литературного произведения), ли-

бо используется генератор псевдослучайной последовательности, ко-

гда ключ небольшой длины может генерировать псевдослучайную 

последовательность большого периода. Ключевая последователь-

ность, получаемая с помощью таких генераторов, должна удовлетво-

рять ряду требований, которые позволяют успешно противостоять 

различным видам криптографических атак. Требования к псевдослу-

чайным последовательностям изложены в тестах американского Ин-

ститута стандартов NIST [1].  

Блочные шифры используют, в основном, схему Фейстеля, раз-

работанную еще в 70-х годах XX столетия. В 1971 году Хорст Фей-

стель запатентовал два устройства, реализующих различные алгорит-

мы шифрования, позже получившие название «Люцифер». Тогда 

Фейстель работал над созданием новых криптосистем в компании 

IBM вместе с Доном Копперсмитом. Проект «Люцифер» был экспе-

риментальным, но стал основой для алгоритма DES (англ. Data 

Encryption Standard).  

Любой блочный шифр разбивает шифруемый файл на блоки 

фиксированной длины (например, для DES он был равен 64 битам) и 

выполняет многораундовые преобразования, состоящие из однотип-
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ных преобразований, включающих подстановки, перестановки и гам-

мирование. Гаммирование – это сложение блока данных с ключевой 

последовательностью, такое же, как в потоковых шифрах.  

Преобразование называется линейным, если оно может быть 

выражено с помощью набора линейных функций 𝑓𝑗(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑗 =

1,2, … 𝑘. Линейными называются функции вида 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 + 𝑏.  

Перестановки и гаммирование – это линейные преобразования, а 

подстановки – нелинейные. Линейный криптоанализ – это вид атаки, 

позволяющий находить ключ шифрования путем анализа входных и 

выходных блоков данных.  

Он работает тем эффективнее, чем ближе к линейному является 

преобразование. Поэтому подстановки или s-боксы в блочных шиф-

рах являются необходимым элементом. Задачей первой лабораторной 

работы является построение нелинейного преобразования с высокой 

степенью нелинейности. 
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ЛАБОРАТОРНАЯ РАБОТА 1. ИССЛЕДОВАНИЕ СВОЙСТВ 

S-БОКСОВ И ПОСТРОЕНИЕ S-БОКСА НАИБОЛЬШЕЙ 

СТЕПЕНИ НЕЛИНЕЙНОСТИ 

 

1.1. Теоретический материал 

Обозначим через 𝐹2 множество {0,1}, а через 𝐹2
𝑛 множество 

векторов длины n с элементами из 𝐹2.  

Произвольный s-бокс длины (𝑛,𝑚) представляет собой отоб-

ражение из 𝐹2
𝑛 в 𝐹2

𝑚. Образом отображения служит все множество 

𝐹2
𝑚, то есть s-box является отображением на. При 𝑛 = 𝑚 также тре-

буют отсутствия неподвижных точек, то есть для всех аргументов 𝑥, 

𝑠(𝑥) ≠ 𝑥  (рис. 1): 

 

Рис.1. Пример s-бокса при (𝑚, 𝑛) = (3,3) 

 

Вход 𝑥 = 5 = 1012 он преобразует в 𝑦 = 7 = 1112. Также s-

бокс можно задать с помощью таблицы. Пусть, например, 𝑛 = 3,𝑚 =

2 (рис. 2). 
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Рис. 2. S-бокс (3, 2) 

 

Тогда, 𝑆(100) = 11 (первый бит аргумента 100 определяет 

строку, а последние два бита – столбец таблицы).  

Произвольный (𝑛,𝑚) s-бокс представляет собой набор из m бу-

левых функций размерности n. Напомним основные определения и 

обозначения из теории булевых функций. 𝐹2 = {0,1}, 𝐹2
𝑛  множество 

n-мерных векторов с координатами из 𝐹2. Каждую булеву функцию 

можно задать в виде полинома Жегалкина: 

𝑓 = 𝑎0 + ∑𝑎𝑘𝑥1
𝑘1𝑥2

𝑘2 … 𝑥𝑛
𝑘𝑛 , 

где 𝑘𝑖 ∈ 𝐹2 = {0,1}, и 𝑥𝑖
0 = 1, 𝑥𝑖

1 = 𝑥𝑖. Значит, булеву функцию в виде 

полинома Жегалкина можно задать как набор векторов 𝑤𝑖 =

(𝑘1, 𝑘2, … 𝑘𝑛) и свободного члена  𝑎0 ∈ 𝐹2. 

 

Пример. Пусть 𝑓 = 1 + 𝑥1𝑥3 + 𝑥2𝑥4. Эту функцию можно за-

дать как список:  

𝐹 = [1, (1010), (0101)]. 

Функция f называется линейной (или аффинной), если все сла-

гаемые в полиноме Жегалкина имеют первую степень, т.е. 𝑓 = 𝑎0 +

∑𝑎𝑖𝑥𝑖 = 𝑎0 + 𝐴𝑋, где 𝐴 = (𝑎1, 𝑎2, 𝑎3),  𝑋 = (𝑥1, 𝑥2, 𝑥3). 

Пример: 𝑓(𝑥1, 𝑥2, 𝑥3) = 1 + 𝑥1 + 𝑥3, 𝑎0 = 1,  𝐴 = (1,0,1). 

Булеву функцию можно также задать как вектор ее значений. 

Пусть, например, 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 + 𝑥3. Построим таблицу истин-

ности (таблица 1) для функции 𝑓: 

Множество всех линейных функций размерности n обозначается 

через 𝐿𝐹𝑛.  
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Таблица 1 

Таблица истинности 

(𝑥1, 𝑥2, 𝑥3) (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 

𝑓(𝑥1, 𝑥2, 𝑥3) 0 1 0 1 0 1 1 0 

𝐹 = (0,1,0,1,0,1,1,0). 

 

Нормой Хэмминга вектора 𝑎 ∈ 𝐹2
𝑛 называется число его нену-

левых координат. Например, 𝐻(101) = 2.   

Расстоянием Хэмминга между двумя векторами называется 

норма их суммы (при сложении векторы складываются покоординат-

но). По-другому, расстояние Хэмминга равно числу координат, в ко-

торых эти вектора отличаются. Например, 𝐻(1010, 1100) =

 𝐻(1010⊕  1100) = 𝐻(0110) = 2. 

Расстояние между двумя n-мерными функциями 𝑓 и 𝑔 вычисля-

ется по формуле: 

𝜌(𝑓, 𝑔) = |𝑥: 𝑥 ∈ 𝐹2
𝑛, 𝑓(𝑥) ≠ 𝑔(𝑥)|  

Пример. Найдем расстояние между функциями двух перемен-

ных – логическими «и» и «или». Зададим их таблицы истинности 

(таблица 2). 

Таблица 2 

Таблица истинности для «и» и «или» 

(𝑥1, 𝑥2) «и» «или» «и» + «или» 

(0, 0) 0 0 0 

(0, 1) 0 1 1 

(1, 0) 0 1 1 

(1, 1) 1 1 0 

Расстояние между «и» и «или» равно числу ненулевых аргумен-

тов в их сумме, т.е. равно 2: 𝜌(&,) = 2.  

Мерой линейности булевой функции 𝑓 называется наименьшее 

возможное расстояние от 𝑓 до линейной функции: 

𝑁𝐿(𝑓) = min𝑔{ 𝜌(𝑓, 𝑔), 𝑔 ∈  𝐿𝐹𝑛}. 
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Пример. 𝑛 = 2. Выпишем всевозможные линейные функции 

размерности 2: 

 
Составим для них таблицы истинности (таблица 3): 

Таблица 3 

Таблица истинности для функций двух переменных 

𝑥1 𝑥2 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

0 0 0 1 0 0 1 1 0 1 

0 1 0 1 0 1 1 0 1 0 

1 0 0 1 1 0 0 1 1 0 

1 1 0 1 1 1 0 0 0 1 

 

Всего существует 22 
𝑛
 функций от 𝑛 переменных. Для 𝑛 = 2 это 

число равно 16, значит, существует 8 нелинейных функций. Каждая 

из них является суммой логического «и» 𝑓 = 𝑥1𝑥2 и какой-то линей-

ной функции.  

Функция 𝑓 = 𝑥1𝑥2  задается вектором: 

𝑓 = (

0
0
0
1

).     

Очевидно, наименьшее расстояния между 𝑓 и линейными функ-

циями равно 1 (это расстояние до нулевой функции, столбец значе-

ний которой состоит из 0).  

Если 𝑛 – четно, то максимальное значение 𝑁𝐿(𝑓) равно 2𝑛−1 −

2
𝑛

2
−1

. Функции с нелинейностью 2𝑛−1 − 2
𝑛

2
−1 называются bent-

функциями. Для нечетных 𝑛 bent-функций не существует. Но можно 

найти функцию с максимальной нелинейностью.  
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Примером bent-функции при n = 6 является 𝑓 = 𝑥1𝑥3 + 𝑥2𝑥4. Ее 

степень нелинейности равна 4. Значения максимальной нелинейности 

четных 𝑛 приведено в таблице 4: 

Таблица 4 

Значения максимальной нелинейности четных 𝑛 

n 2 4 6 8 10 

maxNL 1 6 28 120 496 

Таким образом, при увеличении 𝑛 максимальная возможная сте-

пень быстро растет. Построение bent-функций для больших 𝑛 являет-

ся очень трудной задачей. 

 

1.2. Степень нелинейности s-бокса 

Произвольный s-box представляет собой набор из базовых 

функций 𝑓1, 𝑓2, … 𝑓𝑚. Степень нелинейности s-бокса определяется как 

наименьшее расстояние между множеством всех линейных комбина-

ций этих базовых функций и множеством всех линейных функции 

данной размерности. 

Значит, для определения степень нелинейности s-бокса надо 

строить всевозможные линейные комбинации функций 𝑓1, 𝑓2, … 𝑓𝑚 и 

находить расстояние от этих линейных комбинаций до линейных 

функций. 

Пример. Пусть n = 3, и s-бокс задан циклической перестановкой 

сдвига вправо на 1 позицию:  

(𝑥1, 𝑥2, 𝑥3) → (𝑥2, 𝑥3, 𝑥1) 

Зададим этот s-бокс с помощью таблиц истинности (таблица 5). 

Такой s-бокс имеет нулевую степень нелинейности, поскольку 

все его базовые функции просто проекции: 

𝑓1(𝑥1, 𝑥2, 𝑥3) = 𝑥2,   𝑓2(𝑥1, 𝑥2, 𝑥3) = 𝑥3, 𝑓3(𝑥1, 𝑥2, 𝑥3) = 𝑥1. 

Поэтому для построения нелинейного s-бокса нельзя использо-

вать перестановки типа сдвига, а надо определять s-бокс либо через 

базовые нелинейные функции, либо перестановки, не являющиеся 

сдвигом. Иначе говоря, надо задать 𝑛 нелинейных базовых функций и 
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проверить, что их линейные комбинации ∑𝑎𝑖𝑓𝑖 для произвольных 

векторов 𝐴 = (𝑎1, 𝑎2, … 𝑎𝑛) также являются нелинейными. 

Таблица 5 

S-бокс размерности 3 

(𝑥1, 𝑥2, 𝑥3) 𝑆(𝑥1, 𝑥2, 𝑥3) 𝑓1 𝑓2 𝑓3 

(0,0,0) (0,0,0) 0 0 0 

(0,0,1) (0,1,0) 0 1 0 

(0,1,0) (1,0,0) 1 0 0 

(0,1,1) (1,1,0) 1 1 0 

(1,0,0) (0,0,1) 0 0 1 

(1,0,1) (0,1,1) 0 1 1 

(1,1,0) (1,0,1) 1 0 1 

(1,1,1) (1,1,1) 1 1 1 

 

Для 𝑛 = 3 существует 7 нетривиальных линейные комбинации 

этих функций: 

𝑓1, 𝑓2, 𝑓3,𝑓1+𝑓2, 𝑓1+𝑓3, 𝑓1+𝑓3, 𝑓1+𝑓2 + 𝑓3 

и еще один такой же набор с добавлением 1 к каждой из этих функ-

ций, всего 14. Однако поскольку степень нелинейности функций 𝑓 и 

𝑓 + 1 одинаковая (докажите это!), то достаточно рассматривать ли-

нейные комбинация со свободным членом 0. 

Пример. Попробуйте построить функцию от трех переменных, 

имеющую степень нелинейности больше или равную 2. 

1.3. Задание на лабораторную работу 1 

1) Разработать программу, которая находит расстояние Хэм-

минга между булевыми функциями и определяет степень нелинейно-

сти заданной булевой функции размерности 𝑛 как минимальное рас-

стояние до произвольной линейной (аффинной) функции.  

2) Разработать программу, строящую bent-функции размерно-

стей 𝑛 = 4 и 𝑛 = 6. 

3) Разработать программу, генерирующую нелинейные s-

боксы и с помощью нее построить s-бокс размерности 𝑛 = 5 с 

наибольшей степенью нелинейности.   
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ЛАБОРАТОРНАЯ РАБОТА 2. ПОСТРОЕНИЕ ТАБЛИЦЫ 

ЛИНЕЙНОЙ АППРОКСИМАЦИИ S-БОКСА 

 

2.1. Теоретический материал 

Как было сказано ранее, произвольный s-бокс представляет со-

бой отображение из пространства векторов размерности 𝑛 с элемен-

тами из 𝑍2 = {0,1} в пространство векторов размерности 𝑚 с такими 

же элементами с определенными свойствами. S-бокс может быть за-

дан либо как перестановка векторов, либо как набор 𝑚 булевых 

функций от 𝑛-переменных. Каждый s-бокс характеризуется своей 

степенью нелинейности, которая определяется как наименьшее рас-

стояние по Хэммингу между линейными комбинациями булевых 

функций, образующих s-бокс, и классом линейных булевых функций. 

Чем выше степень нелинейности s-бокса, тем успешнее s-бокс проти-

востоит крипто атакам с использованием нелинейного криптоанализа. 

В этой лабораторной работе мы изучим процедуру построения 

таблицы линейно аппроксимации (linear approximation table LAT) для 

заданного s-бокса, которая используется для выполнения атак нели-

нейного криптоанализа. Будем изучать необходимые понятия на при-

мере s-бокса размерности 3х3. Предположим, что нам задан следую-

щий s-бокс (таблица 6): 

Таблица 6 

S-бокс 

X (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 

S(X) (1,0,0) (1,0,1) (1,1,0) (0,0,1) (1,1,1) (1,0,0) (1,0,0) (0,0,1) 

 

Данный s-бокс можно также представить как набор из 3-х буле-

вых функций, заданных таблицей истинности. Они называются ба-

зисными функциями s-бокса (таблица 7). 

Кратко запишем базисные функции в виде строк их значений: 

𝑌1 = [1,1,1,0,1,0,1,0], 𝑌2 = [0,0,1,0,1,1,0,0], 𝑌3 = [0,1,0,1,1,1,0,1]. 
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Таблица 7 

Задание с помощью базисных функций  

𝑋1 𝑋2 𝑋3 𝑓1(𝑋) 𝑓2(𝑋) 𝑓3(𝑋) 

0 0 0 1 0 0 

0 0 1 1 0 1 

0 1 0 1 1 0 

0 1 1 0 0 1 

1 0 0 1 1 1 

1 0 1 0 1 1 

1 1 0 1 0 0 

1 1 1 0 0 1 

 

Линейной аппроксимацией s-бокса называется произвольное со-

отношение типа: 

                                           ∑𝑎𝑖𝑋𝑖 = ∑𝑏1𝑌𝑖 + 𝑐 ,                              (1) 

где 𝑋𝑖 , 𝑌𝑗   вектора размерности 𝑛, а + это операция XOR (сложение 

по модулю 2). Подставляя в (1) всевозможные комбинации аргумен-

тов 𝑋𝑖 мы определим, как часто выполняется заданная линейная ап-

проксимация. Построим, например, таблицу значений для соотноше-

ния 𝑋2 = 𝑌1 + 𝑌3 (таблица 8). 

Таблица 8 

Таблица значений для соотношения 𝑋2 = 𝑌1 + 𝑌3 

𝑋1 𝑋2 𝑋3 𝑌1 𝑌2 𝑌3 𝑌1 + 𝑌3 𝑋2 

0 0 0 1 0 0 0 0 

0 0 1 1 0 1 1 0 

0 1 0 1 1 0 1 1 

0 1 1 0 0 1 1 1 

1 0 0 1 1 1 0 0 

1 0 1 0 1 1 0 0 

1 1 0 1 1 0 1 1 

1 1 1 1 0 1 1 1 

 

Для этого будем в цикле перебирать всевозможные тройки зна-

чений вектора (𝑋1, 𝑋2, 𝑋3), вычислять для них значения вектора ба-
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зисных функций  (𝑌1, 𝑌2, 𝑌3) и проверять соотношение 𝑋2 = 𝑌1 + 𝑌3. 

Сравнивая два последних столбца, мы видим, что соотношение 

𝑋2 = 𝑌1 + 𝑌3 выполняется в 6 случаях из 8, что выше среднего значе-

ния сср = 4 . Обозначим это значение через 𝑐, 0 ≤ 𝑐 ≤ 8. Оно связано 

с расстоянием Хэмминга ℎ между двумя векторами соотношением 

𝑐 + ℎ = 2𝑛 = 8, поскольку h характеризует число компонент, где век-

тора различаются. 

Мы можем также поискать и другие подходящие аппроксима-

ции. Для этого составим таблицу линейной аппроксимации. Запишем 

произвольное линейное соотношение в векторной форме: 

𝐴𝑋 = 𝐵𝑌,  

где 𝑋 = (𝑋1, 𝑋2, 𝑋3), 𝑌 = (𝑌1, 𝑌2, 𝑌3),  𝐴 = (𝐴1, 𝐴2, 𝐴3), 𝐵 = (𝐵1, 𝐵2, 𝐵3). 

Таблица линейной аппроксимации представляет собой таблицу 

размерности 2𝑛 × 2𝑛, где заголовками столбцов служат комбинации 

векторов 𝐴 = (𝐴1, 𝐴2, 𝐴3), а заголовками строк – комбинации векто-

ров  𝐵 = (𝐵1, 𝐵2, 𝐵3). На пересечении помещается число аргументов 

𝑋 = (𝑋1, 𝑋2, 𝑋3), на которых выполняется соотношение 𝐴𝑋 = 𝐵𝑌 ми-

нус сср. Параметр сср = 4 = 2𝑛/2 обозначает среднее значение 𝑐. Чем 

больше отличается значение 𝑐 от среднего (в большую или меньшую 

стороны), тем лучше данная линейная комбинация характеризует s-

бокс. Если же 𝑐 − сср = ±4, то данный s-бокс имеет наименьшую 

степень нелинейности 0, то есть является полностью линейным. По-

этому с точки зрения криптографии, идеальным является s-бокс, у ко-

торого все значения в таблице аппроксимаций близки к 0. 

 

2.2. Построение таблицы линейной аппроксимации 

1) Разместим всевозможные комбинации коэффициентов левой 

части линейной комбинации по горизонтали, а правой части – по вер-

тикали. 

2) На пересечении столбца (𝑎1, 𝑎2, 𝑎3) и строки (𝑏1, 𝑏2, 𝑏3) по-

местим значение числа совпадений соотношения 𝑎1𝑋1 + 𝑎2𝑋2 +

𝑎3𝑋3 = 𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3 минус 4. Например, на пересечении столб-



 

15 
 

ца (0,1,0) и строки (1,0,1) поместим значение 64=2, где 6 – значе-

ние, вычисленное в предыдущей таблице.  

3) Размер полученной таблицы равен 2𝑛𝑥2𝑚 , где 𝑛,𝑚 – размеры 

входа и выхода s-бокса. В нашем примере получится таблица 8х8.  

Вручную заполнять такую таблицу слишком долго, поэтому ре-

ализуем эту процедуру на компьютере.  

1) Зададим три базисные функции s-бокса столбцом векторов, 

как сделано выше в таблице истинности. 

2) В двойном цикле перебираем векторы входа (𝑎1, 𝑎2, 𝑎3) и 

векторы выхода (𝑏1, 𝑏2, 𝑏3), каждый от (0,0,0) до (1,1,1).  

3) Для каждой комбинации значений (𝑎1, 𝑎2, 𝑎3) и (𝑏1, 𝑏2, 𝑏3) 

открываем новый цикл по всевозможным значениям векторов 

𝑋,  𝑋2,  𝑋3 и проверяем соотношение 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 =

𝑏1𝑌1 + 𝑏2𝑌2 + 𝑏3𝑌3. Не забудем, что суммирование выполняется по 

модулю 2. 

4) Вычисляем число аргументов, на которых это соотношение 

выполняется. От полученного значения отнимаем 4 и помещаем в со-

ответствующую клетку таблицы. Получится следующая таблица 

(таблица 9): 

Таблица 9 

Таблица линейной аппроксимации s-бокса 

 (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 

(0,0,0) 4 0 0 0 0 0 0 0 

(0,0,1) -1 3 -1 -1 1 1 1 1 

(0,1,0) 0 -2 0 2 2 0 2 0 

(0,1,1) -1 1 3 1 -1 1 -1 1 

(1,0,0) -2 -2 0 0 0 0 -2 2 

(1,0,1) -1 -1 1 1 -1 1 0 -3 

(1,1,0) 0 2 -2 0 0 -2 -2 0 

(1,1,1) 1 -1 -1 -3 -1 1 1 -1 

 

Мы видим, что наш s-бокс, хотя и не является линейным, имеем 

степень нелинейности 1, так в таблице есть несколько значений -3 и 

3, близкие к линейным ±4  (значения 1-й строки не учитываются). 

Возьмем, например, значение  3, расположенное в 3 столбце и 4 
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строке (выделено жирным шрифтом). Оно соответствует линейной 

комбинации 𝑌2 + 𝑌3 = 𝑋2. Полученная аппроксимация имеет число 

совпадений 𝑐 = 3 + 𝑐ср = 7 со значениями s-бокса и не выполняется 

только на одном аргументе. Выпишем из таблицы еще два соотноше-

ния (строка 2, столбец 2) и (строка 6, столбец 8). Последнее значение 

содержит отрицательное значение, поэтому в уравнении добавили 1 в 

правой части: 

{

                                    
𝑌2 + 𝑌3 = 𝑋2                          
𝑌3 = 𝑋3                                    
𝑌1+𝑌3 = 𝑋1 + 𝑋2 + 𝑋3 + 1,

    

или  

 {

                                    
𝑌2 + 𝑌3 + 𝑋2 = 0                          
𝑌3 + 𝑋3 = 0                                    
𝑌1+𝑌3 + 𝑋1 + 𝑋2 + 𝑋3 + 1 = 0.

(*) 

Вычислим значения полученной аппроксимации на множестве 

всех аргументов и сравним с соответствующими значениями базис-

ных функций s-бокса (таблица 10).  

Таблица 10 

Значения линейных комбинаций базисных функций 

𝑋1 𝑋2 𝑋3 𝑌1 𝑌2 𝑌3 𝑌2 + 𝑌3 + 𝑋2 𝑌3 + 𝑋3 𝑌1 + 𝑌3+𝑋1 + 𝑋2 + 𝑋3 + 1 

0 0 0 1 0 0 0 0 0 

0 0 1 1 0 1 1 0 0 

0 1 0 1 1 0 0 0 1 

0 1 1 0 0 1 0 0 0 

1 0 0 1 1 1 0 1 0 

1 0 1 0 1 1 0 0 0 

1 1 0 1 1 0 0 0 0 

1 1 1 1 0 1 0 0 0 

 

Мы видим, что все три линейные комбинации только на одном 

из аргументов дают отличное от нуля значение, то есть исходная си-

стема базисных функций 𝑌1 = [1,1,1,0,1,0,1,0], 𝑌2 = [0,0,1,0,1,1,0,0], 

𝑌3 = [0,1,0,1,1,1,0,1] имеет степень нелинейности 1, то s-бокс почти 

линеен. 
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2.3. Задание на лабораторную работу 2 

Построить таблицу линейных аппроксимаций согласно номеру 

своего варианта. Сделать отчет в формате Word, в котором привести 

таблицу линейных аппроксимаций, код процедуры построения таб-

лицы и систему линейных уравнений, аппроксимирующих s-бокс. 

 

Вариант 1 

F1=(0,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0) 

F2=(0,1,1,1,1,0,1,0,0,1,0,1,1,0,1,0) 

F3=(1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0) 

F4=(0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0) 

 

Вариант 2 

F1=(0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0) 

F2=(0,0,1,1,0,1,1,1,1,1,0,0,1,1,0,0) 

F3=(0,1,0,1,1,0,0,0,0,1,0,1,1,0,1,0) 

F4=(1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,1) 

 

Вариант 3 

F1=(1,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0) 

F2=(0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1) 

F3=(0,1,0,0,1,0,1,0,0,1,0,1,1,0,1,0) 

F4=(0,1,0,1,1,0,0,0,1,0,1,0,0,1,0,1) 

 

Вариант 4 

F1=(0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0) 

F2=(0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,1) 

F3=(1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1) 

F4=(0,1,1,0,0,1,1,0,1,1,1,0,0,1,1,0) 

 

Вариант 5 

F1=(0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,1) 
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F2=(0,1,1,0,1,0,0,1,0,1,1,1,1,0,0,1) 

F3=(1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,1) 

F4=(0,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0) 

 

 

Вариант 6 

F1=(0,1,0,1,1,0,1,0,0,0,1,0,0,1,0,1) 

F2=(0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1) 

F3=(1,1,0,0,0,0,1,1,1,1,0,0,0,1,1,1) 

F4=(0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1) 

 

Вариант 7 

F1=(0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0) 

F2=(0,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0) 

F3=(1,0,1,0,0,1,0,1,1,1,1,0,0,1,0,1) 

F4=(0,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1) 

 

Вариант 8 

F1=(0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0) 

F2=(0,1,1,0,0,1,1,0,1,1,1,0,0,1,1,0) 

F3=(0,1,1,1,1,0,0,1,0,1,1,0,1,0,0,1) 

F4=(1,0,0,0,0,1,0,1,1,0,1,0,0,1,0,1) 

 

Вариант 9 

F1=(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0) 

F2=(1,1,0,0,0,0,1,0,0,0,1,1,1,1,0,0) 

F3=(0,1,1,0,0,1,0,0,0,1,1,0,0,1,1,0) 

F4=(0,0,0,0,1,1,1,1,1,1,1,1,0,1,0,0) 

 

Вариант 10 

F1=(1,0,1,0,0,0,0,1,1,0,1,0,0,1,0,1) 

F2=(0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1) 
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F3=(0,1,0,1,1,0,1,0,1,0,0,0,0,1,0,1) 

F4=(0,1,1,0,0,1,1,0,1,0,0,0,1,0,0,1) 

 

Вариант 11 

F1=(1,1,0,1,0,1,1,0,1,0,0,1,0,1,1,0) 

F2=(0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0) 

F3=(0,1,1,0,0,1,1,0,1,0,0,0,1,0,0,1) 

F4=(0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,1) 

 

Вариант 12 

F1=(0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0) 

F2=(0,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0) 

F3=(0,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0) 

F4=(1,0,0,0,0,1,0,1,1,0,1,0,0,1,0,1) 

 

Вариант 13 

F1=(0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,1) 

F2=(0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0) 

F3=(1,1,0,1,0,0,0,0,0,0,0,0,1,1,1,1) 

F4=(0,0,1,1,1,0,0,0,1,1,0,0,0,0,1,1) 

 

Вариант 14 

F1=(1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0) 

F2=(0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0) 

F3=(0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0) 

F4=(0,1,0,1,1,0,1,0,0,1,0,1,1,1,1,0) 

 

Вариант 15 

F1=(0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0) 

F2=(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0) 

F3=(1,1,0,0,0,0,1,1,0,0,1,1,1,0,0,0) 

F4=(0,1,1,1,0,1,1,0,0,1,1,0,0,1,1,0) 
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Вариант 16 

F1=(0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0) 

F2=(1,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0) 

F3=(0,1,1,0,0,1,1,0,1,1,1,0,0,1,1,0) 

F4=(0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0) 

 

Вариант 17 

F1=(0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1) 

F2=(0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1) 

F3=(0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0) 

F4=(1,0,0,1,1,1,0,1,1,0,0,1,1,0,0,1) 

 

Вариант 18 

F1=(0,1,0,1,1,0,1,0,1,0,1,0,0,0,0,1) 

F2=(0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1) 

F3=(0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0) 

F4=(1,1,0,0,0,0,1,1,0,1,1,1,1,1,0,0) 

 

Вариант 19 

F1=(1,0,0,1,1,0,0,1,0,0,0,1,1,0,0,1) 

F2=(0,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0) 

F3=(0,1,0,1,1,0,1,0,1,1,1,0,0,1,0,1) 

F4=(0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0) 

 

Вариант 20 

F1=(0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1) 

F2=(0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0) 

F3=(1,1,0,0,1,1,0,0,0,0,1,1,0,0,0,1) 

F4=(0,1,1,0,0,1,1,0,1,1,0,1,1,0,0,1) 
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ЛАБОРАТОРНАЯ РАБОТА 3. ВЗЛОМ 3-Х РАУНДОВОЙ 

СИММЕТРИЧНОЙ СИСТЕМЫ ШИФРОВАНИЯ ТИПА DES  

 

Рассмотрим систему шифрования, построенную по схеме Фей-

стеля, которая использует слабый s-бокс предыдущего задания. Про-

демонстрируем, как можно взломать эту систему и найти секретный 

ключ, используя частичные зашифрованные данные (входы и выхо-

ды), полученные после третьего раунда процедуры шифрования. 

 

3.1. Описание системы шифрования 

На входе подается 2n-битовый вектор 𝑋, который разбивается на 

левую и правые половины, обозначаемые 𝐿 и 𝑅. Левая половина под-

вергается преобразованию с помощью некоторой функции 𝑓 =

𝑓(𝐾, 𝐿) (функции Фейстеля), где K  секретный ключ.  

Результат побитно складывается с правой половиной R и от-

правляется на левую половину следующего раунда. Также левая по-

ловина 1-раунда без изменения передается в правую половину сле-

дующего раунда (рис. 3). 

 

Рис. 3. Один проход системы Фейстеля 
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В каждом последующем раунде все операции повторяются. В 

оригинальной системе Фейстеля ключ K меняется от раунда к раунду 

и представляет собой выборку из исходного 64-битового ключа.  

Опишем теперь (упрощенный) механизм функции f. На ее вход 

подается n-битовый вектор L и n-битовый ключ K (рис. 4). 

 
Рис. 4. Схема упрощенной функции Фейстеля 𝑓 для нашей системы 

 

Сначала исходный вектор L подвергается преобразованию с по-

мощью n-мерного s-бокса. Потом результат побитно складывается с 

ключом K и подвергается перестановке P. Результатом будем такой 

же n-мерный вектор, который встраивается для дальнейшего преоб-

разования в схему Фейстеля. 

Отметим, что полный перебор системы шифрования требует пе-

ребора всех 2n-битовых входов и n-битовых ключей, поэтому про-

странство перебора составляет величину 23𝑛, что достаточно трудо-

емко для больших 𝑛 (𝑛 ≥ 32). 

Покажем, как можно взломать данную систему, используя сла-

бую нелинейность s-бокса. Будем предполагать, что в нашем распо-

ряжении имеется сама система шифрования, позволяющая снимать 

выходные данные (𝑢1, 𝑢2, …  𝑢𝑛) при подаче на вход произвольного 

входа (𝑥1, 𝑥2, … , 𝑥𝑛).  

Будем рассматривать пример размерности n=4. Пусть s-бокс за-

дан следующими базисными функциями: 

F1=(1,1,1,1,0,1,0,0,1,1,1,1,0,0,0,0) 

F2=(0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1) 

F3=(0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0) 
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F4=(0,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0) 

Пусть перестановка P представляет собой циклический сдвиг 

вправо (0,1,2,3, ) → (1,2,3,0). Ключ 𝐾 = (𝑘0, 𝑘1, 𝑘2, 𝑘3) является неиз-

вестным. 

Решение.  

Составим сначала таблицу линейной аппроксимации Т: 

 Х  0   1   2   3   4   5   6   7   8  9 10  11 12 13 14 15 

-------------------------------------------------------------- 

0 [ 8,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0] 

1 [ 1,  1, -1, -1,  1,  1, -1, -1, -1, 7,  1,  1, -1, -1, 1,  1] y3 

2 [ 1, -1, -1,  1, -1,  1,  1,  7, -1, 1,  1, -1,  1, -1, -1, 1] y2 

3 [ 0, -2,  0,  2, -2,  0,  2,  0,  0, 2,  0, -2,  2,  0,  6,  0] 

4 [ 1,  7,  1, -1,  1, -1,  1, -1,  1, -1, 1, -1,  1, -1, 1, -1]  y1 

5 [ 0,  2, -2,  0,  0,  2, -2,  0,  6,  0, 0,  2, -2,  0,  0,  2] 

6 [-2,  2,  0,  0,  0,  0,  6,  2,  0,  0, -2, 2, -2,  2,  0,  0] 

7 [-1, -1,  3, -1,  1, -3,  1, 1,   3, -1, -1, -1, 1, 1,  1,  5] 

8 [-1, 1, -1,  1, -7, -1,  1, -1, -1,  1, -1,  1, 1, -1, 1, -1]  y0 

9 [ 0, -2,  2,  0, -2,  0,  0,  2,  2,   0, 0, -2, 0, -6, -2, 0] 

0 [ 0,  0, -2, -6,  0,  0,  2, -2, -2,  2, 0,  0,  2, -2,  0, 0] 

1 [ 3, -1, -1, -1, -1, 3, -1, -1, -1, -1, -5, -1, -1, -1, -1,3] 

2 [ 0,  0,  0,  0, -2, -6, -2,  2, 0,   0,  0,  0, -2,  2, -2, 2] 

3 [-1, -1,  1,  1,  1, -3,  3, -1, 1,   1, -1, -1, -5, -1, 1,-3] 

4 [ 1, -1, -5, -3,  1, -1, -1,  1, 3, -3,   1, -1, -1,  1, 1,-1] 

5 [-2,  4, -2,  0,  2,  0, -2,  0, -2, 0,  -2, -4, -2,  0, 2, 0] 

 

Соответствующая система линейных уравнений имеет вид: 

{

𝑌0 = 𝑋1 + 1             
Y1 = X3                      
𝑌2 = X1 + X2 + X3
𝑌3 = X0 + X3 .        

     (3.1) 

 

Ключ шифрования нам неизвестен, но известна перестановка P, 

которая в нашем примере представляет собой циклический сдвиг 

влево на 1 позицию. Такую перестановку можно записать в виде 

(таблица 11), или в сокращенном виде 𝑃 = [3, 0, 1, 2]. 



 

24 
 

Таблица 11 

Перестановка 

0 1 2 3 

3 0 1 2 

 

Зная эти данные, мы можем создать тестовую систему, заменяя 

s-бокс системой линейных уравнений и подставляя в качестве ключа 

K произвольные комбинации битов. Наша задача – определить ключ 

K, сравнивая выходы оригинальной системы шифрования и нашей 

тестовой системы.  

 

3.2. Поиск 4-битного ключа 3-раундовой системы Фейстеля 

Выполним отслеживание изменений 8-мерного входного корте-

жа (n=4): 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) в процессе шифрования по 

схеме Фейстеля. Обозначим через 𝑊 выходной вектор, полученный 

на третьем раунде. Нас будет интересовать только правая часть 𝑊, 

которая согласно схеме Фейстеля совпадает с выходом левой части 

предыдущего раунда. Поэтому нам достаточно отследить преобразо-

вания двух раундов и получить левую половину выходного вектора 

второго раунда.  

В соответствии со схемой Фейстеля исходный вектор 𝑋 разбива-

ется на левую и правую части L и R.  

1. Левая часть 𝐿 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) подвергается преобразова-

нию с помощью s-бокса, который дает выход 𝑆(𝐿) = (𝑦0, 𝑦1, 𝑦2, 𝑦3). 

2. Вектор 𝑆(𝐿) = (𝑦0, 𝑦1, 𝑦2, 𝑦3) складывается побитно с клю-

чом K:  

𝑍 = (𝑦0 + 𝑘0, 𝑦1 + 𝑘1 , 𝑦2 + 𝑘2, 𝑦3 + 𝑘3). 

3. Вектор 𝑍 подвергается перестановке 𝑃: 

𝑈(𝑢0, 𝑢1, 𝑢2, 𝑢3) = 𝑃(𝑍). 

4. Вектор U складывается с правой половиной вектора X и 

подается на левую половину входа второго раунда: 

𝐿2 = 𝑈 + 𝑅 = (𝑢0 + 𝑥4, 𝑢1 + 𝑥5, 𝑢2 + 𝑥6, 𝑢3 + 𝑥7). 
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5. Полный вход второго раунда имеет вид: 

𝑋′ = (𝑢0 + 𝑥4, 𝑢1 + 𝑥5, 𝑢2 + 𝑥6, 𝑢3 + 𝑥7, 𝑥0, 𝑥1, 𝑥2, 𝑥3). 

6. Вектор 𝐿2 подвергается тем же преобразованиям с помо-

щью операций пунктов 25 и выдается на выход системы в виде ле-

вой половины 2n-мерного выходного вектора.  

Последний вектор совпадает с правой половиной выходного 

вектора 𝑊 полной 3-раундовой системы шифрования, частичные зна-

чения которой нам известны. Пользуясь слабостью s-бокса, мы мо-

жем построить тестовую систему шифрования, заменяя s-бокс систе-

мой линейных уравнений (3.1).  

 

3.3. Тестовая система шифрования 

Тестовая система имеет те же преобразования, что и основная 

система за исключением того, что s-бокс заменяется системой (3.1), 

то есть, выполняются уравнения (3.1), сложение с ключом K, пере-

становка 𝑃 = [3, 0, 1, 2] (циклический сдвиг влево на 1 позицию) и 

добавление правой части R. Перепишем систему (3.1): 

{

𝒀𝟎 = 𝑿𝟏 + 𝟏              
𝒀𝟏 = 𝑿𝟑                      
𝒀𝟐 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑
𝒀𝟑 = 𝑿𝟎 + 𝑿𝟑 .        

 

𝑋(𝑥0, 𝑥1, 𝑥2, 𝑥3) → 𝑌(𝑦0, 𝑦1, 𝑦2, 𝑦3), 

𝑌 = ((𝑥1 + 1), (𝑥3), (𝑥1 + 𝑥2 + 𝑥3), (𝑥0 + 𝑥3)) , 

𝑌 + 𝐾 = ((𝑥1 + 1 + 𝑘0), (𝑥3 + 𝑘1), (𝑥1 + 𝑥2 + 𝑥3 + 𝑘2), (𝑥0 + 𝑥3 + 𝑘3))  , 

𝑃(𝑌 + 𝐾) = ((𝑥0 + 𝑥3 + 𝑘3), ( 𝑥1 + 1 + 𝑘0), (𝑥3 + 𝑘1), (𝑥1 + 𝑥2 + 𝑥3 + 𝑘2)) , 

𝑊1 = ((𝑥0 + 𝑥3 + 𝑥4 + 𝑘3), ( 𝑥1 + 𝑥5 + 1 + 𝑘0), (𝑥3 + 𝑥6 + 𝑘1), 

(𝑥1 + 𝑥2 + 𝑥3 + 𝑥7 + 𝑘2)). 

 

Последний вектор 𝑊1(𝑤0, 𝑤1, 𝑤2, 𝑤3) был получен сложением 

выхода 1-раунда с правой половиной 𝑅(𝑥4, 𝑥5, 𝑥6, 𝑥7) исходного век-
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тора 𝑋. Далее он подается на место левой половины входного вектора 

второго раунда, где правая половина – это исходный вектор 

𝑥0, 𝑥1, 𝑥2, 𝑥3 и вычисления повторяются. Итак, входной вектор второ-

го раунда имеет вид: 

𝑋′ = (𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑥0, 𝑥1, 𝑥2, 𝑥3). 

Далее, применяет к вектору 𝑊1 функцию Фейстеля. После при-

менения системы уравнения (3.1) получим вектор 𝑌′(𝑦0′, 𝑦1′, 𝑦2′, 𝑦3′) 

со следующими координатами: 

{
 

 
𝑦0
′ = 𝑤1 + 1 = 𝑥1 + 𝑥5 + 𝑘0                                                             

𝑦1
′ = 𝑤3 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥7 + 𝑘2                                                 

𝑦2
′ = 𝑤1 + 𝑤2 + 𝑤3 = 𝑥2 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑘0 + 𝑘1 + 𝑘2 + 1

𝑦3
′ = 𝑤0 + 𝑤3 = 𝑥0 + 𝑥1 + 𝑥2 + 𝑥4 + 𝑥7 + 𝑘2 + 𝑘3 .                  

 

Прибавляем ключ K: 

{
 

 
𝑧0
′ = 𝑤1 + 1 = 𝑥1 + 𝑥5                                                             

𝑧1
′ = 𝑤3 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥7 + 𝑘2 + 𝑘1                             

𝑧2
′ = 𝑤1 + 𝑤2 + 𝑤3 = 𝑥2 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑘0 + 𝑘1 + 1

𝑧3
′ = 𝑤0 + 𝑤3 = 𝑥0 + 𝑥1 + 𝑥2 + 𝑥4 + 𝑥7 + 𝑘2.                  

 

После выполнения перестановки получим вектор 𝑊2 со следу-

ющими координатами: 

{
 
 

 
 
𝑤0
′ = 𝑥0 + 𝑥1 + 𝑥2 + 𝑥4 + 𝑥7 + 𝑘2           

𝑤1′ = 𝑥1 + 𝑥5                                                

𝑤2
′ = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥7 + 𝑘1 + 𝑘2           

𝑤3′ = 𝑥2 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑘0 + 𝑘1 + 1.
                           

 

Последний шаг – это сложение вектора 𝑊2 c правой половиной 

входного вектора второго раунда, то есть с вектором (𝑥0, 𝑥1, 𝑥2, 𝑥3).  В 

результате, получим вектор 𝑈(𝑢0, 𝑢1, 𝑢2, 𝑢3) ∶ 

{

𝑢0 = 𝑥1 + 𝑥2 + 𝑥4 + 𝑥7 + 𝑘2                  
𝑢1 = 𝑥5                                                            
𝑢2 = 𝑥1+𝑥3 + 𝑥7 + 𝑘1 + 𝑘2                     
𝑢3 = 𝑥2 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑘0 + 𝑘1 + 1.

                       (3.2) 

Отметим, что из-за плохой конструкции s-бокса мы получили 

достаточно простую аппроксимирующую систему, а второе уравне-

ние системы вообще не зависит от ключа. 
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3.4. Поиск ключа 

Сначала мы найдем значения аргументов 𝑋, на которых значе-

ния системы (3.1) отличаются от значения s-бокса. Для этого в цикле 

по всем аргументам 𝑋 от (0,0,0,0) до (1,1,1,1) вычислим значения s-

бокса и системы (3.1) и выделим значения, на которых они отличают-

ся.  Получим некоторый набор из 4-х значений. В десятичном форма-

те этот набор имеет вид Err = {5,1,15,10}. В нем i-уравнение системы 

(3.1) дает одну ошибку на i-аргументе множества Err. Например, 

𝑦0(𝑥) ≠ 𝐹0(𝑥) на аргументе 𝑥 = 5 = 01012. 

Далее, подадим на вход нашей системы шифрования несколько 

аргументов, отличных от аргументов из набора Err и выпишем полу-

ченные результаты шифрования в таблицу. Будем брать значения 

правой половины входных векторов 𝑅(𝑋) = (𝑥4, 𝑥5, 𝑥6, 𝑥7) равными 0. 

Значения левой половины будем брать последовательно от 0000 до 

1000, исключая значения из множества Err. Полученные 7 значений 

выпишем в таблицу (для нашего примера мы взяли ключ шифрования 

𝐾 = 01112 = 7) (таблица 12). 

Таблица 12  

Таблица значения на аргументах X с правой частью 0 и ключом 

 𝐾 = 01112 = 7 

𝐿(𝑋)   0000 0010 0011 0100 0110 0111 1000 

С(𝑋) 1001 0001 0110 1010 1011 1000 1000 

 

Следующим этапом является вычисление значений тестовой си-

стемы (3.2) на аргументах из таблицы 12. Удалим из системы беспо-

лезное второе уравнение и подставим 0 вместо переменных 𝑥4 − 𝑥7. 

Система (3.2) получит упрощенный вид: 

{

𝑢0 = 𝑥1 + 𝑥2 + 𝑘2         
𝑢2 = 𝑥1 + 𝑥3 + 𝑘1 + 𝑘2
𝑢3 = 𝑥2 + 𝑘0 + 𝑘1 + 1.

     (3.3) 

Перепишем систему (3.3) в следующем виде: 
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  {

𝑘2 = 𝑢0 + 𝑥1 + 𝑥2          
𝑘1 + 𝑘2 = 𝑢2 + 𝑥1 + 𝑥3
𝑘0 + 𝑘1 = 𝑢3 + 𝑥2 + 1.

                                          (3.4) 

Вычислим значения вектора:  

𝑍 = (𝑢0 + 𝑥1 + 𝑥2,  𝑢2 + 𝑥1 + 𝑥3,  𝑢3 + 𝑥2 + 1)  

на аргументах X из таблицы 12, где вместо переменных 𝑈 =

𝑢0, 𝑢1, 𝑢2, 𝑢3 будем подставлять значения 𝐶(𝑋) из той же таблицы. 

Получим (таблица 13): 

Таблица 13 

Таблица перехваченных значений 

𝐿(𝑋) 0000 0010 0010 0100 0110 

𝑍(𝑋, 𝐶) 101 101 101 101 101 

 

Нам повезло, и система (3.4) имеет однозначное решение (1,0,1). 

Если бы не все значения были одинаковыми, то мы бы выбирали для 

каждой координаты то значение, которое появляется чаще. Выпишем 

решение системы (3.4) и найдем значения бит ключа 

{

𝑘2 = 1          
𝑘1 + 𝑘2 = 0
𝑘0 + 𝑘1 = 1

      →      {

𝑘0 = 0  
𝑘1 = 1
𝑘2 = 1.

 

Последний бит ключа 𝑘3 нам не нужен, поскольку он не исполь-

зуется в системе. Взлом ключа выполнен! 

 

3.5. Задание на лабораторную работу 3 

Для своего варианта взять данные s-бокса из лабораторной ра-

боты 2 и выполнить следующее: 

1. Построить систему линейных уравнений (3.2). 

2. Выполнить поиск неизвестного ключа, построив систему (3.4). 

3. Зная ключ, расшифровать перехваченное сообщение c(m). 
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Варианты заданий 

Вариант 1 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(6,6,1,15,13,15,6,6,11,2). 

Перестановка P=[2,1,3,0]. 

Зашифрованное сообщение c(m)=8. 

 

Вариант 2 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(7,14,8,0,11,15,6,10,8,8). 

Перестановка P=[3,0,1,2]. 

Зашифрованное сообщение c(m)=5, 9<=m<16. 

 

Вариант 3 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(15,4,13,0,13,14,2,6,4,3). 

Перестановка P=[1,3,0,2]. 

Зашифрованное сообщение c(m)=3, 9<=m<16. 

 

Вариант 4 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(10,13,2,7,12,11,7,2,5,12). 

Перестановка P=[3,1,2,0]. 

Зашифрованное сообщение c(m)=13, 9<=m<16. 

 

Вариант 5 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(0,9,15,0,6,11,7,6,14,7). 

Перестановка P=[3,1,2,0]. 

Зашифрованное сообщение c(m)=9, 9<=m<16. 
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Вариант 6 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(12,8,5,3,13,15,4,4,13,11). 

Перестановка P=[1,2,3,0]. 

Зашифрованное сообщение c(m)=7, 9<=m<16. 

 

Вариант 7 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(13,5,13,4,10,11,1,2,0,1). 

Перестановка P=[2,3,0,1]. 

Зашифрованное сообщение c(m)=0, 9<=m<16. 

 

Вариант 8 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(6,10,6,4,3,3,10,14,13,6). 

Перестановка P=[1,0,3,2]. 

Зашифрованное сообщение c(m)=8, 9<=m<16. 

 

Вариант 9 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(7,14,0,9,2,9,14,1,13,5). 

Перестановка P=[1,3,2,0]. 

Зашифрованное сообщение c(m)=5, 9<=m<16. 

 

Вариант 10 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(12,4,1,12,2,15,11,1,8,15). 

Перестановка P=[3,0,1,2]. 

Зашифрованное сообщение c(m)=12, 9<=m<16. 
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Вариант 11 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(4,8,7,5,11,9,8,10,6,10). 

Перестановка P=[3,2,0,1]. 

Зашифрованное сообщение c(m)=4, 9<=m<16. 

 

 Вариант 12 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(10,7,0,8,6,11,9,4,1,5). 

Перестановка P=[1,2,3,0]. 

Зашифрованное сообщение c(m)=12, 9<=m<16. 

 

 Вариант 13 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(9,2,9,7,15,0,10,0,0,0). 

Перестановка P=[3,1,0,2]. 

Зашифрованное сообщение c(m)=8, 9<=m<16. 

 

 Вариант 14 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(13,9,0,4,15,9,0,5,13,15). 

Перестановка P=[3,0,1,2]. 

Зашифрованное сообщение c(m)=4, 9<=m<16. 

 

 Вариант 15 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(4,0,8,2,11,1,3,11,0,0). 

Перестановка P=[1,3,2,0]. 

Зашифрованное сообщение c(m)=0, 9<=m<16. 
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Вариант 16 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(0,8,1,8,13,13,4,12,10,4). 

Перестановка P=[1,3,0,2]. 

Зашифрованное сообщение c(m)=2, 9<=m<16. 

 

 Вариант 17 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(3,5,12,0,6,9,14,11,2,15). 

Перестановка P=[2,1,0,3]. 

Зашифрованное сообщение c(m)=1, 9<=m<16. 

 

Вариант 18 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(1,11,12,14,14,6,13,3,15,5). 

Перестановка P=[2,3,0,1]. 

Зашифрованное сообщение c(m)=2, 9<=m<16. 

 

 Вариант 19 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(7,14,6,14,12,5,9,1,2,7). 

Перестановка P=[2,0,1,3]. 

Зашифрованное сообщение c(m)=7, 9<=m<16. 

 

 Вариант 20 

Частичная шифровальная таблица 3-раундового шифра Фейстеля от 

Х=0 до Х=8: 

C=(2,9,12,7,2,9,8,5,3,7). 

Перестановка P=[2,1,0,3]. 

Зашифрованное сообщение c(m)=7, 9<=m<16. 
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