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Operator inequality

1. Introduction

A fundamental result in the theory of Lebesgue L-spaces on o-finite measure spaces states that a combi-
nation of local measure convergence and weak convergence yields norm convergence, see [54, Theorem V.5,
p. 122] and [26, Theorem IV.8.12, p. 295]. G. Ya. Lozanovskii (see Problems 654 and 1123 in [40]) suggested
to thoroughly examine this property in the setting of Dedekind complete Banach lattices or KB-spaces. In
this paper we shall discuss an analogue of this property in the setting of symmetric spaces of measurable
operators (see e.g. [21], [36], [19], [25]). It should be stated from the outset that a direct noncommutative
analogue of this property fails spectacularly already in the most familiar noncommutative Li-space, that
is, in the trace ideal C7(H) of compact operators on an infinite dimensional Hilbert space H. Indeed, in
this setting, local convergence in the measure (which seems to have been introduced firstly in [21]) reduces
to convergence in the familiar weak operator topology (see [23, p. 482]). Assume, for simplicity, that H is
separable and fix an orthonormal basis {e;}72, in H. Consider those operators {;)}3%_; Whose matrix
representation with respect to a basis {ex}2, contains a single non-zero (j, k)-th entry, namely 1. It is a
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fundamental and easily verifiable fact that the sequence {z14}%° ; is equivalent to a standard orthonormal
basis in the space ¢5 and thus converges weakly to 0 in Cy(H). The fact that it also converges to 0 in the
weak operator topology is immediate whereas the trace norm of every element of this sequence is 1. Thus,
there are two possible avenues to investigate the aforementioned Lozanovskii’s problem in the setting of
trace ideals of compact operators: either to replace the local convergence in measure with bona fide conver-
gence in measure, or else to identify those subsets of the trace ideals (or more generally, noncommutative
symmetric spaces) which still satisfy the original setting of the problem for local measure convergence.
This paper belongs to the latter line of thought, however, prior to explaining our main results, we give a
short update on the former direction, which has been developed into the study of symmetric function and
symmetric operator spaces with the property that norm convergence of sequences is equivalent to weak
convergence plus convergence for the measure topology. This study was initiated in [37,38], where the term
(wm)-property was coined. In particular, [15, Corollary 1.4] asserts that every Lorentz space Ay has the
(wm)-property. Orlicz spaces on the interval [0, 1] with property (wm) have been fully characterized in [3].
Finally, in [17, Proposition 6.10] it is shown that, in symmetric function spaces on measure spaces with
finite measure possessing the property (wm), each relatively weakly compact subset is of uniformly abso-
lutely continuous norm. The latter result does not hold when the measure space is equipped with an infinite
measure. Furthermore, the just cited results hold also in a much greater generality when symmetric function
spaces are replaced with their noncommutative counterparts [17].

We now briefly explain our main results in this article, which basically establish that, in the setting of
quasi-Banach ideals of compact operators on H, on every operator interval weak operator convergence and
convergence with respect to the quasi-norm coincide.

The so-called intervals of linear bounded operators on Hilbert space H arise in the study of the range
of Stieltjes transform over all operator-valued measures which generate a given Stieltjes Hermitian moment
sequence [42]. Let S(M, 7) be the %-algebra of all T-measurable operators (see the following section for all
unexplained notations). One of the main objects of the present paper is the operator interval [45] (such
intervals were investigated also in [6,7,12,8,9] and [14])

Ig={A=A"e SM,7): —B<A<B}, 0<BeSM,r),

which is an important component in noncommutative integration theory. The set of extreme points of
operator intervals was studied in [43], [29]. In particular, the main result of [43] shows that for B € B(H),
the interval Ip := {A € B(H) : —B < A < B} is the closure of the convex hull of its extreme points in
the weak operator topology. In the present paper, we characterize the extreme points of I'g, B € S(M,7)"
(see Theorem 3.9). In addition, if M is atomic (with every atom having the same trace), then Ig (0 <
B € S(M, 1) is T-compact) is the closure of the convex hull of its extreme points in the measure topology
(Corollary 4.7), which generalizes the main result in [43].

In section 4, we characterize the compactness of operator intervals. In particular, if M is atomic, then an
operator B € S(M, )" is 7-compact if and only if Ip is compact in the measure topology (Corollary 4.6).
As an application, we show that, if M is atomic and F(M, 1) is a quasi-(or even A-)normed operator space,
then the compactness of the operator interval Ig, B € E°¢(M, 1), in the (local) measure topology coincides
with that in the quasi-(or A-)norm topology (Corollaries 4.9 and 4.11), where E°¢(M, 1) stands for the set
of all elements of order continuous quasi-(or A-)norm in E(M, 7).

Our final result, Theorem 4.12, presents a wide class of subsets in every symmetrically normed operator
space with order continuous norm (in particular, in the trace ideal C1(H)) in which local convergence in
measure implies norm convergence, thus providing a noncommutative analogue for [54, Theorem V.5, p. 122]
and [26, Theorem IV.8.12, p. 295]. Some of these results without proofs were announced in the brief note [11].

The authors sincerely thank Jinghao Huang and Dmitriy Zanin for detailed discussions of the results and
proofs presented in this paper.
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2. Notation, definitions and preliminaries

Let M be a von Neumann algebra of operators on a Hilbert space H, U(M) be the unitary part of M.
Let P(M) be the lattice of projections in M, 1 be the unit of M, and let P~ =1 — P for P € P(M). Also
M denotes the cone of positive elements in M, and || - ||« denotes the uniform norm on M. A mapping
@ Mt — [0,+00] is called a trace, if p(X +Y) = ¢o(X) + oY), o(AX) = Ap(X) for all X, Y € M™T,
A > 0 (moreover, 0 - (+o00) = 0); ¢(Z*Z) = p(ZZ*) for all Z € M. A trace ¢ is called faithful, if
©(X) >0 for all X € M™T, X # 0; normal, if X; 1 X (X;, X € M) = o(X) = supp(X;); semifinite, if
o(X)=sup{p(Y): Y e M, Y < X, ¢o(Y) < +oo} for every X € M.

A linear operator X : © (X) — H, where the domain D (X) of X is a linear subspace of H, is said to
be affiliated with M if YX C XY for all Y € M’ where M’ is the commutant of M. A linear operator
X : ©(X) = H is termed measurable with respect to M if X is closed, densely defined, affiliated with
M and there exists a sequence {P,} -, in the logic of all projections of M, P (M), such that P, 1 1,
P,(H) € D (X) and P;- is a finite projection (with respect to M) for all n. It should be noted that the
condition P, () C ® (X) implies that X P,, € M. The collection of all measurable operators with respect
to M is denoted by S (M), which is a unital *-algebra with respect to strong sums and products (denoted
simply by X +Y and XY for all X,Y € S (M)) [47,44].

Let X be a self-adjoint operator affiliated with M. We denote its spectral measure by {EX}. It is well
known that if X is a closed operator affiliated with M with the polar decomposition X = U|X|, then
U e Mand E € M for all projections E € { EIX!}. Moreover, X € S(M) if and only if X is closed, densely
defined, affiliated with M and EI*!()\, 00) is a finite projection for some A > 0. It follows immediately that
in the case when M is a von Neumann algebra of type III or a type I factor, we have S(M) = M. For
type II von Neumann algebras, this is no longer true. From now on, let M be a semifinite von Neumann
algebra equipped with a faithful normal semifinite trace 7.

For any closed and densely defined linear operator X : © (X) — H, the null projection n(X) = n(|X])
is the projection onto its kernel Ker(X), the range projection r(X) is the projection onto the closure of its
range Ran(X) and the support projection supp(X) of X is defined by supp(X) =1 — n(X).

An operator X € S (M) is called 7-measurable if there exists a sequence {P,} -, in P (M) such that
P, 11, P, (H) CD(X) and 7(P;) < oo for all n. The collection S (M, 7) of all 7-measurable operators is
a unital x-subalgebra of S (M) denoted by S (M, 7). It is well known that a linear operator X belongs to
S (M, 7) if and only if X € S(M) and there exists A > 0 such that 7(EXI(),00)) < co. Alternatively, an
unbounded operator X affiliated with M is 7-measurable (see [27]) if and only if

T (E‘Xl(n,oo)) —0, n—oo.

For any X = X* € S (M, 1), weset X, = XEX[0,00) and X_ = XEX(—o00,0]; see [25], remarks following
Theorem I1.2.16.

Let £* and L), denote the positive and Hermitian parts of a family £ C S(M,7), respectively. We
denote by < the partial order in S(M,7); generated by its proper cone S(M,7)". If X € S(M,7), then
|X| = VX*X € S(M,7)*.

Definition 2.1. Let a semifinite von Neumann algebra M be equipped with a faithful normal semi-finite
trace 7 and let X € S(M, 7). The generalized singular value function pu(X) : ¢ — u(¢; X) of the operator X
is defined by setting

w(s; X) = inf{||XP|| : P = P*€ M is a projection, 7(P*) < s}.

Please cite this article in press as: A. Bikchentaev, F. Sukochev, When weak and local measure convergence implies norm
convergence, J. Math. Anal. Appl. (2019), https://doi.org/10.1016/j.jmaa.2019.01.028
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An equivalent definition in terms of the distribution function of the operator X is the following. For every
self-adjoint operator X € S(M, ), setting

dx (t) = 7(EX(t,00)), t>0,
we have (see e.g. [27] and [39])
p(t; X) =inf{s > 0: dx|(s) < t}.

Note that dx(-) is a right-continuous function (see e.g. [27]).
For convenience of the reader, we also recall the definition of the measure topology t, on the algebra
S(M, 1). For every €, > 0, we define the set

V(e,0) = {X € S(M,7): IP € P (M) such that |XP|, <&, 7(P*) <6}

The topology generated by the sets V (e, 6), €, > 0, is called the measure topology t, on S(M, 1) [27,44].
It is well-known that the algebra S(M,7) equipped with the measure topology is a complete metrizable
topological algebra [44]. We note that a sequence {X,}°; C S(M,7) converges to zero with respect to
measure topology t, (i.e. X,, — 0) if and only if T(E‘X“(g, 00)) — 0 as n — oo for all £ > 0.

If £,0 > 0 and if P is a projection in M with 7(P) < oo, then the family of all sets N, 5 p consisting of
all X € S(M, ) such that pus(PXP) < e form a neighborhood base at 0 for a Hausdorff linear topology
on S(M, 7). This topology (cf. [21, p. 746]) will be called the topology of local convergence in measure.
Convergence with the respect to the topology of local convergence in measure coincides with convergence
for the measure topology relative to (PMP,7(P - P)), for each projection P € M with 7(P) < oo [22,
p. 492].

Remark 2.2. We warn the reader that in [53, Definition 3.1], Yeadon introduces the topology of convergence
locally in measure in the algebra LS (M) of all locally measurable operators affiliated with a general von
Neumann algebra M. This is an unfortunate clash of terminology.

The space So(M,T) of T-compact operators is the space associated to the algebra of functions from
S(0, 00) vanishing at infinity, that is,

SoM, 1) ={z € S(M,7): p(oo; X) = 0}.
The two-sided ideal F(7) in M consisting of all elements of 7-finite range is defined by
Flr)={XeM : 71(r(X)) <oo}={XeM : 7(s(X)) < 0}

Equivalently, F(7) = {X € M : p(t; X) = 0 for some t > 0}. Clearly, So(M, 1) is the closure of F(7) with
respect to the measure topology [19], which is a two-sided ideal in S(M, 7).

Let m be Lebesgue measure on R. The noncommutative L,-Lebesgue space (0 < p < oo) affiliated with
(M, 7) is defined as

Lp(M,7) ={X € S(M,7) : u(X) € Lp(R",m)}

with the quasi-norm || X||, = [|u(X)|p, X € L,(M, 7). In particular, | - ||, is a norm when 1 < p < co. We
have F(7) C L,(M,7) C So(M, 1) for all 0 < p < +o0.

Lemma 2.3. [27] Let X, Y € S(M,7) and U € U(M). Then,
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) w(t; X) = p(t; | X[) = p(t; X*) = p(t; UXU") for allt > 0;
) if | X| <Y, then u(t; X) < u(t;Y) for allt > 0;
iil) p(t; AXB) < ||Alloo||Blloott(t; X) for all A,B € M andt > 0;
Y p(s+6X+Y) <u(s; X))+ ut;Y) for all s,t > 0;
) p(s+6XY) < p(s; X)u(t;Y) for all s,t > 0;
) w(t; F(IX]) = f(u(t; X)) for all continuous increasing functions f : RT — RT with f(0) = 0 and
t>0.

Lemma 2.4 (/53, p. 261], [19, Proposition 1]). If A, B € S(M,7)" and A < B, then there exists an operator
Z € M with || Z||oo <1 such that VA= Zv/B and A = ZBZ*.

A linear subspace &£ in S(M, 1) is called an ideal (or, solid) space on (M, 7) if (1) X € £ implies that
X*e& (2 X el Y e SWM, ) and |Y| < |X| imply that Y € £ [10]. The algebra M, the set F(1),
So(M,T), (L1 + Loo)(M, 1), and L,(M, 1) for 0 < p < 400 are examples of such solid spaces.

If M = B(H), i.e. the *-algebra of all linear bounded operators on H, and 7 = tr is the canonical trace
then S(M, 7) coincides with B(#). In this case the measure topology coincides with the || - ||o-topology, the
topology of local convergence in measure coincides with the weak operator topology [23, p. 460], So(M, T)
is the compact operator ideal on H, F(7) is the finite-dimensional operator ideal on H and

,U/(t; X) = Z Sn(X)X[n—l,n)(t)7 t>0,
n=1

where {s,(X)}52, is the sequence of s-numbers of an operator X [28, Chap. 1]; here x4 is the indicator
function of a set A C R. In this case, the space L,(M,7) is a Schatten—von Neumann ideal C,(H), 0 <
p < +o0.

The following result is well known (see e.g. [46] and [25, Corollary 1.2.28]).

Lemma 2.5. The function f(t) = \/t (t > 0) is operator monotone, that is f(A) > f(B) whenever
T-measurable operators A and B such that A > B > 0.

3. Convex sets of 7-measurable operators

Let 7 be a faithful normal semifinite trace on a von Neumann algebra M. For every B € S(M,7)T, we
consider the following operator intervals

Kp:={Ac SM,1): A"A < B},
Mp:={Ae SM,T): |A| < B},

and
Ig:={Ae S(M,7): —B< A< B}.

Theorem 3.1. If an operator B belongs to S(M, 1), then

(i) Kp € M /5 with the equality for abelian M;
(ii) Ip D MpNS(M,7)p;
(iii) ZfB S P(M), then Ig C Mp = Kp;
(iv) if A€ Ig, then A+ B € S(M, 7)™ N Map;
(v) if A€ Ip, then there evists S € My NU(M) such that A € Mg, sBs)/2-
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Proof. (i). The assertion follows immediately from Lemma 2.5.

(ii). Let A € Ip. Note that A < |A| < Band —A <|A| < B.Hence, —-B< A< Bfor A€ MgNS(M,7).

(iii). Assume that B is a projection. For Iz C Mg, see [8, Theorem 2.4]. The inclusion Kg C Mp follows
from (i). Let A € Mp, i.e., |A] < B. Then, |A|B = B|A| = |4] (see e.g. [48, Chap. 2, item 2.17]).
Hence,

A"A=|AP = |A2|A||A]> < |A]>B|A|> = B|A]?|A]?B< B

and therefore, Mg C Kp.
(iv). Note that 0 < A+ B < 2B, ie, A+ B € MypNS(M,7)" C I1p.
(v). See [7, Theorem 1]. O

Example 3.2. Let X,Y € S(M, 7).

(i) Since (X £Y)*(X £Y) >0, we have X*Y + Y*X € Ix«xivy-y;
(ii) since (XY £ I)(XY £1)* >0, we have XY +Y*X* € Ix\y«p2x+11;
) (
)

(iii) since (VX £ YVX)(VX £ YVX)* >0 for X € S(M,7)*, we have XY* + Y X € Ix,yxy-;
since (X £ YX 1)(X £ YX~1)* > 0 for invertible X € S,(M,7) with X! € S(M,7), we have

Y+Y* E IX2+YX’2Y*'

(iv

Lemma 3.3. [12, Theorem 5.1] Let E,G,E,,G,, € L1(M,7), and F,F, € S,(M,7) with E,, < F,, < G,
for any n € N. Assume that

E,-E, F, - F G, G and 7(E,) = 7(E),7(G,) = 7(G) as n — oco.

Then, F, F,, € Liy(M,7) and 7(F,) — 7(F) asn — oo. If, in addition, E,, <0< G,, and E, < (F,)? < Gy,
where 0 < p < 400 is such that the function R 5 A — A € R is defined, then F,,,F € L,(M,T) and
|Fn, — Fllp = 0 as n — co.

Proposition 3.4. Let X,Y, X,,,Y,, € S(M, 1) be such that X*X +Y*Y, XX, + Y Y, € Li(M, ) for any
n € N. Assume that || XX, + Y, Y, — X*X —Y*Y|; = 0 and XY, + Y X, — XY +Y*X as n — cc.
Then, XY, + Y X, XY +Y*X € Liy(M,7) and || XY, + V)X, — X*Y = Y*X|;1 = 0 as n — oo.

Proof. Let E, = —(X:Xp + YY), Gy = X2 Xy +Y3Y,, Fp i= X2V + Y X, and E := —(X*X +Y*Y),
G:=X*X+Y"'Y, F:=X"Y +Y*X. We have E,, — E and G,, — G (see e.g. [19, Proposition 20]). By

item (i) of Example 3.2, we obtain that E, < F,, < G,, for every n.
By Lemma 3.3, we obtain that F,,, F' € Ly(M, 1) with ||F},, — F|l1 = 0asn —oco. O

Proposition 3.5. For all operators A, B € S(M, 1), and numbers t € [0,1], we have (v/tA + /1 —1tB)? <
A? 4 B2, It turns into equality if and only if /1 —tA = /tB. Hence, VtA++\/1—1tB € M zope.

Proof. It is clear that

(VtA+ V1 —tB)*> + (V1 —tA —VtB)?> = A% 4+ B>

Hence, (vtA++/1—tB)? < A%+ B2. Now, by Lemma 2.5, we have |\/tA++/1 — tB| < /A2 + B2. It turns
into equality if and only if /1T —tA =+tB. O

Example 3.6. Let £ be So(M, 1) or (1) and B € ET. Tt is clear that K, Mp and Ip are subsets of £.
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Indeed, Mp C € follows from item (ii) of Lemma 2.3.

Let A € Kp. It follows from item (ii) of Lemma 2.3 that u(A*A) < p(B). Then, by items (i) and (vi) of
Lemma 2.3, we obtain that Kg C £.

For every A € Ip, by (v) of Theorem 3.1, A € Mpssss for a selfadjoint unitary operator S. By (i) of
Lemma 2.3, we have SBS € £. We obtain that A € Mp+sps C €. Hence, Ip C € (the case when & = F (1)
can be obtained by [33, Lemma 4.2] immediately).

Remark 3.7. We note that if £ is a solid space on (M, 7) and B € €T, then Mp and Ig are subsets of &.

Proposition 3.8. Consider A € S(M,7) and U € M such that ||U|| < 1.
(1) If A€ Kp, then UA € Kp.
(ii) If AU € Mp, then U*|A|U € Mp.

Proof. (i). If A € Kpg, then A*A < B and therefore, A*U*UA < A*1A = A*A. That is, UA € Kp.
(ii). By Lemma 2.5 and Hansen’s Theorem ([30]; [4, Lemma 3.1.1]), we have

B> |AU| = VU*A*AU > U*VA*AU = U*|A|U. O
Theorem 3.9. If B € S(M, )" then

(i) Kp ={TVB: T € Mand |T||o < 1};
(ii) ext K = {TV/B : T € M is partial isometry such that (1 — T*T)M(1 — TT*) = {0}} for invertible
B satisfying B~' € S(M,T);
(iii) the sets I and Kpg are convex and t,-closed in S(M,T).

Proof. (i). If A € Kp, then it follows from Lemma 2.4 that there exists Z € M with ||Z]| < 1 such that
|A| = VA*A = Z+/B. Standard polar decomposition yields A = U|A| = UZVB = TVB for T = UZ.
Hence, Kp C {TvVB: T € M and |T||sc < 1}. On the other hand, for every T € M with ||« < 1, we
have (TVB)*TvVB < B. That is, {TVB: T € M and ||T||o <1} C Kp.

(ii). It is well-known that ext{T € M : ||T||cc < 1} is the set of all partial isometries U € M such that
1-U*U)M(1 —UU*) = {0}, see [35, Theorem 7.3.1].

(iii). The convexity of Ip is clear. Since the set {T' € M : ||T||oc < 1} is convex, it follows (i) that Kp
is convex.

Consider a sequence {4,}5%, C Kp such that 4, — A € S(M,7) as n — co. One has A*A,
A*A € S(M, 1) as n — oo, since the involution and the multiplication operations are continuous in the
measure topology [19]. Since B — A*A,, > 0 for all n € N and B — A% A,, —/ B — A*A as n — oo, we have
B — A*A > 0 by t,-closedness of the cone S(M,7)T in S(M, 1) [19].

It is well-known that S(M, 1), and S(M, 7)" are closed with respect to the measure topology (see e.g.
[25, Chapter II, Propositions 5.10 and 6.1]). Therefore, A € S(M,7), with B — A, — B — A > 0 and

B+ A, - B+ A > 0 for any sequence {A,} C Ip. Hence, we obtain the ¢,-closedness of Ig. O
Corollary 3.10. If B € P(M), then the set Mp is conver.

Proof. Apply Theorem 3.9 and item (iii) of Theorem 3.1. O

Proposition 3.11. For every operator B € S(M,1)", the set Mg is t,-closed in S(M,T).

Proof. Consider a sequence {4,152, C Mg such that A4, — A € S(M,T) as n — oo. Since the involution
and the multiplication operations are continuous in the measure topology, one has A* A,, — A*A € S(M, )
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as n — oo. Then |A,| = \/Ar A, — VA*A = |A| as n — oo via t,-continuity of the operator function
f(t) =/t (t >0), see [51] and [20]. Since B — |A,| >0 for all n € N and B — |A,| — B — |A] as n — o0,
we have B —|A] > 0 by t,-closedness of the cone S(M, 7)™ in S(M,7), which implies that Mp is ¢,-closed
in S(M,7). O

Theorem 3.12. For a von Neumann algebra M, the following conditions are equivalent:
(i) the set Mp is convex for every operator B € M™;
(ii) The equality Ig = Mp N My, holds for every operator B € M™;
(iii) M s abelian.

Proof. (iii)=-(i). By (i) of Theorem 3.1, Kgz = Mp. Then, applying Theorem 3.9, we obtain that Mp is
convex, which implies the validity of (i).

(iii)=-(ii). By Theorem 3.1, we have Iz D Mp N Sp(M, 7). Remark 3.7 implies that Iz C M. Hence,
Ig D Mg N My.

On the other hand, assume that M is abelian and —B < A < B (i.e. A € Ip). Note that AE“(0, 00)
BE#(0,00) and —BE“4(—00,0) < AE#(—0c0,0). Hence, we have |A| < B(E*(0,00) + E4(—00,0)) <
That is, A € Mp. Since Iz C S(M, 1), N M, it follows that Iy C Mg N My,.

(i)=-(iii). If M is noncommutative, then it contains a x-subalgebra A/ which x-isomorphic to My (C), see,
for example, the proof of Theorem 1 in [52]. Put

_ 1 1 _
A = 1 1 Ay — 1 1 p-l 1 1 o=t 1 1 .
0 0 0 0 2\1 1 2\ -1 1
It is easy to check that P, @) are one-dimensional projections, and
. . 1 1 i
A1A1 = 2P, A2A2 = 2@7 §A1 + §A2 = dlag(l,O).
Then

1 1
[Ai] = V2P, |4 = V2Q, ‘2,41 + 5 Aa| = diag(1,0).

For B := diag(7/8,5), we have |A1| < B, |A;| < B, but the inequality |3 A4; + §Az| < B fails.

(ii)=-(iii). It suffices to show that there exists B € My(C)* such that Iz # Mg N My(C). Assume that
I = MpNMy(C)y, for all B € My(C)*. Since —|X| < X < |X|and —|Y| <Y < [Y]for all X,Y € My(C)p,
we have —|X|— Y| < X +Y < |X|+]Y]. By the assumption, we obtain the inequality |X +Y| < |X|+ Y|
for all X,Y € My(C)p, which is not true when we take

xo= 1 9) g ymot b1 ,
0 0 11

see [2, p. 310]. The theorem is proved. O

Lemma 3.13 (¢f. [9, Lemma 1]). Let T be a faithful normal semifinite trace on a von Neumann algebra M
and B € S(M,1)%. If A € I, then there exist X € S(M,7)y, andY € S(M,7)T such that A= XY +Y X,
B = X% +Y?2. If, in addition, A € S(M, )", then X € S(M,7)*.

Proof. Put

X::%(\/A+B—\/B—A)7 Y::%(\/A+B+\/B—A). (1)
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It is clear that X € S(M, 1), and Y € S(M,7) with A = XY +Y X, B = X2+ Y?. Assume that A > 0.

Then, A+ B > B — A. Applying Lemma 2.5, we have /A + B > /B — A. Relation (1) implies X belongs
to S(M,T)T. O

Theorem 3.14. For all X|Y € S(M, 1)y, there exists T € My, with ||T]leo < 1 such that XY +YX =
VX2 +Y2TVX2+Y2,

Proof. Let X = U;|X| and Y = V1|Y| be the polar decompositions of X,Y € S(M,7),. We have
X% Y?2< X?2+Y2
By Lemma 2.4, there exist Uz, Vo € M with ||Uz|lec < 1, ||V2|lcc < 1 such that
IX|=VXZ=TUV/X24Y2, |[Y]|=VY?=VaVX2+VY2
Let P = supp(X2+Y?2). Without loss of generality, we may assume that supp(Us), supp(Vz) < P. Moreover,
X2+ V]2 = VX2 + Y2(ULUs + V5 Vo) VX2 + Y2
implies that VX2 + Y2 = (U3 U, + ViVa)2 /X2 + Y2. Hence, P = (UsUs + V5Va)2. In particular, U3Us +
ViVs = P.
Letting U = U Us, V = ViVa, we have X = UV X2+ Y2, Y = VX2 +Y2. It is clear that
UU +V*V = UUTULUs + Vi Vi ViVa < USU + Vi Ve = P < 1.

Letting T := U*V 4+ V*U, it follows from the relation (U = V)*(U £ V) > 0 that T € M, with [|T]|e < 1.
Note that

(X+Y)? =VX24+Y2U+V)*(U+V)VX2+Y2 (2)

Hence,

X1Y2+(X-Y) ¢
x2yyzo K )‘g( O e v U+ vV S Ve (3)

Now, subtracting (3) from (2), we have

XY +YX = VX2 YV2(U'V+VUIWX2+Y2=VX2+YV2TVX2+Y2 O

Corollary 3.15. If B € S(M, 1)t then
() Ip = {VBTVB: T € My, and ||T||o0 < 1};
(ii) ext Ip = {VBTVB: T € My NU(M)} for B with B~' € S(M, ).

Proof. (i). Let T € M;, and —1 < T < 1. We multiply both sides of the inequality by the operator v/B on
the left and the right, and achieve v/BTVB € Ig. That is, {VBTVB: T € My, and ||T||e < 1} C I.
Applying Lemma 3.13 and Theorem 3.14, we obtain that Iy C {V/BTVB: T € My, and ||T|~ < 1}.
(ii). It is well-known that ext{T" € M : ||T||s < 1} = My NU(M) (see e.g. [35, Proposition 7.4.6]).
Since
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ext Ip = ext{A € S(M,7),: —B< A< B}
—ext{A € S(M,7),: ~1 < B 2AB™z <1},

it follows that ext/p = {A € Ip: B"2AB™2 € My NUM)} = {VBTVB: T € M, NUM)}. O
4. Operator intervals and uniformly absolutely continuous norms

In this section, we study the compactness of operator intervals. In particular, we demonstrate the con-
nection of the compactness of operator interval and the order continuity of symmetric (quasi- or A-)norms.
Before proceeding to the main result, we present some well known facts.

Assume that M = lo and 7(X) = D70, a2 for X = {x}32, € M*. In this case, So(M,7) = ¢
is the space of complex sequences converging to zero. It is well-known that a || - ||s-closed set A C ¢ is
|| - [|co-compact if and only if there exists B € ¢f such that |A| < B for all A € A [13, Ch. 5, exercise 5.6.47].

Proposition 4.1. Let 7 be a faithful normal semifinite trace on a von Neumann algebra M such that
7(1) = co. If B € S(M,7)" is such that any of the sets Ig, Kg or Mp is compact (in measure topol-
ogy), then B is T-compact.

Proof. Let B € S(M,7)" be non 7-compact. For such an operator B, we have b := lim;_,o0 p¢(B) > 0.
Since the trace 7 is semifinite, there exists a sequence { P, }°° ; of pairwise orthogonal projections in M and
a number a > 0 such that 7(P,) > a > 0 and bP, < B for all n € N. Clearly no subsequence {bP,, }32, of
{bP,}22, t.-converges. The assertion is proved. 0O

Recall that a von Neumann algebra is of type Ig, if it is finite and of type I.

Theorem 4.2. Let M be a semifinite von Neumann algebra and let 0 < B € S(M, 7). If either Kg or Mg
is compact (in measure topology), then B is affiliated with the I, direct summand of M.

Proof. Combining [50, Theorem V.1.19] with [50, Theorem V.1.27], we infer that there exists unique cen-
trally orthogonal decomposition

1=z, + 21, + 21 + 211,
so that
M= My, &M & Mn, & My,

where My, has type Is,, Mr  has homogeneous type I, M1, has type II; and My has type Il.

Step 1. We shall show that z;_ B € S(Mi_, ) vanishes. For brevity, let us simply assume that M has
homogeneous type I, and show that in this case B = 0.

Without loss of generality, we may assume that M acts on separable Hilbert space. Indeed, the argument
for the general case is exactly the same.

By [50, Theorem V.1.27], we may write

b
M =7 A@B(H,)

where A, is abelian von Neumann algebra and H,, is infinite dimensional separable Hilbert space. To prove
our claim, it is sufficient to assume that M = A,®B(H,), or, equivalently that M = L (Q, u)@B(H),
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where (€, i) is a o-finite measure space. It is sufficient to show that B = 0 in two cases: when (€, i) is a
discrete measure space or else if (2, ) is atomless. Firstly, we consider the case when (0, ) is a discrete
measure space, in other words, we could assume that

M = B(H)&ls.

Assume that (e)r>0 is the standard basic sequence in {o,. Fix k£ > 0 such that B - (1 ® ei) # 0. By taking
M- (1 ® eg) instead of M and B - (1 ® e;) instead of B, we may assume without loss of generality that
M = B(H). The measure topology induced on B(H) is simply the uniform norm topology [19].

Fix rank one projection p and a constant ¢ > 0 such that B > cp. Obviously, K., C Kp and M., C Mp.
By Theorem 3.9 and Proposition 3.11, K, and M, are closed in measure. Therefore, by the assumption that
Kp (or Mp) is compact, K, (or M,) is compact. If ¢ is another rank one projection and if U, is a partial
isometry such that

U,Ug=p, UU; =q,
then U, € K, and U; € M), Therefore,
{U; : q is rank one projection}
is compact (in uniform norm topology). If ¢ and r are orthogonal rank one projections, then
q-(Ug—Ur) =q-(qUq —rUy) = qUg = U,.
Therefore,
1Uq = Urlloo = la(Uq — Ur)lloo = [|Uglloc = 1.

This contradicts with the compactness assumption.

Now, we assume that M = L (2, u)@B(H), where (Q, 1) is an atomless measure space. In fact, since
we work with separable Hilbert spaces, we can assume that (2, 1) is a standard measure space, and for the
sake of clarity and brevity, we shall assume further that (€, ) coincides with the interval [0, 1] equipped
with Lebesgue measure. Fix a 7-finite projection p € M and a constant ¢ > 0 such that B > ¢p. By
[5, Lemma 5.1] the projection p may be viewed as a function defined a.e. on [0, 1] taking values in finite
projections in B(H). Without loss of generality, we assume that the function w — p(w) has full support on
[0, 1]. Consider now the sequence {ry(-)}22; of Rademacher functions on [0, 1], that is a concrete sequence
of independent (Bernoulli) random variable taking values +1 with probability 1/2. Again referring to [5] we
may define a sequence of partial isometries U,, € M as vector valued functions

bn(w) = rp(w)p(w), n>1.

We trivially have U;;U,, = p and U,, € K, and U,, € M), for all n > 1. However, it is a well known fact that
the Rademacher system does not contain any subnet converging in measure. Combining this observation
with [5, Remark 5.4], we infer that the sequence {U, },>1 does not contain any subnet converging in measure
as well which again contradicts with the compactness assumption. This completes the proof of the claim
that B = 0 in the setting when M is of type 1.

Step 2: Suppose that M = M, or else that M = My . Fix a 7-finite projection p and a constant
¢ > 0 such that B > ¢p. Obviously, K., C Kp and M., C Mp. Therefore, K, (or M,) must be compact. In
other words, the unit ball of the algebra pMp is compact (in measure topology). Without loss of generality,
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let 7(p) = 1 and let i : Lo (0,1) — pMp be a trace preserving unital x-isomorphism (see e.g. [14]). It follows
that the unit ball of Lo (0,7(p)) is compact (in measure topology). Again appealing to the example of the
Rademacher sequence {r,},>1 we arrive at the contradiction. This completes the proof that in either case
B=0.

Combining steps 1 and 2, we arrive at the assertion that B must be affiliated with My, . O

A nonzero projection P € M is called an atom if 0 # Q < P, Q € P(M), implies that Q = P. A von
Neumann algebra M is atomic if every nonzero projection in M majorizes some atom.

Lemma 4.3. Let (M, 7) be a semifinite von Neumann algebra. If 0 < B € M N So(M,T) and if a uniformly
bounded net T; — 0 in local measure topology, then B:T;Bz — 0 in measure.

Proof. Let ¢ = EP(0,¢), e > 0. In particular, 7(el) < co. Using (i), (iii) and (iv) of Lemma 2.3, for any
s,t > 0, we have

u(s+3t; BET,B?) < p(s; e B3T;Bet) + u(t; - BET; Be)
+ p(t; eB%TiB%GL)+LL(t; eB%TZ—B%e)
1
< (s et BATIBR ) + 3| Bl| o sup | T; oo
Since ¢ is arbitrarily chosen and pu(s;elBzT;Bzet) —; 0 [19, Section 2.5], it follows that pu(s +
3t; B%TZB%) —; 0, which completes the proof. O

Lemma 4.4. Let (M, 7) be a semifinite atomic von Neumann algebra. If 0 < B € M is T-compact and if a
uniformly bounded net T; — 0 ultraweakly, then B2T,B% — 0 in measure.

Proof. Assume T; — 0 ultraweakly, that ||T;||cc < 1 and that M is atomic. By Lemma 4.3, it suffices to
show that T; —; 0 locally in measure. By the definition of local convergence in measure, it may be assumed
that 7(1) < oo and it then suffices to show that 7; — 0 for the measure topology. Since M is atomic, it
follows that there exists a sequence {Qy,}22 ; of finite rank projections (see [50], Definition III 5.9) such that
@Qn Trn 1. Let t > 0 and choose ng such that

T(l - Q’I'LO) <t

and note that

1t 1 = Qny) = X[o,7(1-Qu,)) (1) = 0.
This implies that, for all 7,
N(Qt; 1- Qno) S N(t; QnoTi(l - Qno)) + ,LL(t; (1 - Qno)TZ)
<2u(t;1 — Qn,) =0.

Consequently,

w3t Ti) < plt; Qug TiQng) + (26 Ti — Qg TiQny)
< p(t; Qo TiQng ) + (6T — Qg Ti) + p(t; QroTi — Quy TiQny)
< (s Qo TiQny)-
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Since T; — 0 ultraweakly and Q,, is finite-dimensional, it follows that 7(Qn,T;Qn,) —: 0, which implies
that Qn,T;Qn, —: 0 in measure (see e.g. [36,39]). It follows that u(3t;T;) —; 0 and so T; converges to 0 for
the measure topology. This completes the proof. O

Theorem 4.5. Let T be a faithful normal semifinite trace on an atomic von Neumann algebra M. An operator
B e S(M, 1)t is T-compact if and only if the set I is t,-compact.

Proof. Let (A,), C Ip be an arbitrary sequence. We first prove the case when B € M™* N So(M, 7). By
Lemma 2.4, we can write A; + B = (2B)25;(2B)2, where ||S;||oo < 1, i € I. By Banach-Alaoglu Theorem,
there exists a subnet (Sy;))jes such that Sy;) — S € M ultraweakly. Applying the preceding lemma to
the net T; = Sy(;) — S, we obtain the proof of sufficiency for B € M.

Since measure topology is complete metrizable [19], we can endow S(M, 7) with a metric d. Now, assume
that B € So(M, 7)". Let e, = EP[0,n]. By the latter result, there exists a subsequence {AZ(-l)} of {4;} such
that elAgl)el Iy e1AWe; for some AD € Ipe, C Ip. In particular, we can find an A,y from {A,} such
that

d(elAn(l)el,A(l)) <1.

Similarly, there exists a subsequence {AEQ)} of {Agl)} such that egAEQ)eg 5 e3A®ey for some A €
Ip., C Ip. In particular, e1A@e; = AW We can find an Ap(2) from {AZ@)} such that n(2) > n(1) with

d(eaAp(2)e2, A?) <

N | =

Argument inductively, we obtain a sequence {A(™} C I such that A™ = e, A(™)e,, for any m > n, and
a subsequence {A,;} of {A,} such that

1

d(ejAn(pes, AV)
j

Since 7(1 — e,,) — 0 and e, A™e, = A™ for any m > n, it follows that {A(™)} converges in measure.
We denote C := t, — lim A, That is, d(A"™,C) —,, 0. Since I is closed in measure topology (see
Theorem 3.9), it follows that C' € Ig. Note that

d(An(])a C) < d<An(])7 ejAn(j)ej> + d(ejAn(J)eja A(j)) + d<A(J)7 C)
1 )
< d(Ang), €jAnye) + ; +d(AD, C). (4)

Since 7(1 — e,,) —n 0, it follows from [39, Corollary 2.3.16.] that

t
2’
< 2u(t/4;1 — e;)pu(t/4; An(yy) — 0.

t
s Ang) = € An(i)€5) < 155 An) = €5 4n()) + (55 €5AnG) = € 4n(5)€5)

That is, d(An(j), ejAn)e;) —; 0. Hence, (4) converges to 0 as j — oo. We obtain the compactness of I.
The necessity follows from Proposition 4.1. 0O

Corollary 4.6. Let 7 be a faithful normal semifinite trace on a von Neumann algebra M. The following
conditions are equivalent:

(i) M is atomic;

(ii) the set I is t,-compact for every T-compact operator B € S(M,1)".
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Proof. Assume that M is not atomic. Then, it is a direct sum of atomic von Neumann algebra and a
non-trivial von Neumann algebra without minimal projections [16, p. 325]. Without loss of generality we
can assume that there exists an isometric embedding of L ([0,1],7) into M, where v is the Lebesgue
0.1] fdv), see [16, p. 325].
In the algebra Lo ([0,1],v), consider the sequence of Rademacher functions r,(t) = signsin2"nt with

measure on [0, 1], which preserves the trace (on Lo ([0, 1], v) the trace is 7(f) = f[

0 <t < 1. The sequence {r,}52; contains no t.-converging subsequences:

vt € [0,1]: |rn(t) — ()| > 1} =v{t € [0,1] : () #rr(t)} = %, n # k.

Thus, taking a 7-compact operator B = x|o,1], the sets Ip and Kp = Mp are not ¢,-compact. The assertion
is proved. O

Now, by Krein—-Milman Theorem (see also Corollary 3.15), we have
Corollary 4.7. Let 7 be a faithful normal semifinite trace on an atomic von Neumann algebra M and let
there exist a constant a > 0 such that 7(P) > a for any atom P of M. If an operator B € S(M, )" is
T-compact, then the set I is the t, -closure of the convex hull of its extreme points.
Proof. We have S(M, 1) = M. Moreover, the topology t, coincides with the [|-|| _-topology on M. O
A function ||-]| from 2 to R is a A-norm, if for all z,y € Q the following properties hold:
Nl =0,z =0 &z =0;
- Nlew]] < flaf], ¥V af < 1;

. limg 0 [|az|| = 0;
Mz +yll < Ca- (=l + Iyl

=W N

for a constant Cq > 1 independent of z, y. Let M be a semifinite von Neumann algebra equipped with a
faithful normal semifinite trace 7. Let £ be a linear subset in S(M, 7) equipped with a A-norm || - ||s. We
say that £ is a symmetrically A-normed space if for x € £, y € S(M, 1) and u(y) < p(z) imply that y € €
and [ly[le < [lz]le [32,33].

Let E(M,T) be a symmetrically A-normed spaces affiliated with M. Let E°°(M, 7) be the set of all
elements of order continuous A-norm [33], i.e.,

(M, 1) = {X € E(M,7): |X] > X0 L 0= [|Xn]lz L O}

We note that for some symmetric spaces E(M, 7), E°¢(M, ) is trivial, that is E°¢(M, 1) = {0} [19, p. 246].

If X € E(M,7), then X is said to have absolutely continuous A-norm if and only if for all decreasing
sequences {P,} in P(M) with P, |, 0, we have ||P,XP,||lg — 0 [17]. A subset A of E(M,7) is called of
uniformly absolutely continuous A-norm if

sup [|P,XP,|lg — 0, VP, | 0 C P(M).
XeA

Lemma 4.8. Let E(M,7) be a symmetrically A-normed operator space. Assume that T € E°¢(M,1). Then,
every decreasing sequence { P, },, of projections in M such that P, | 0, we have |TP,||g | 0 and ||P,T||g | 0.
In particular, T has uniformly absolutely continuous A-norm.
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Proof. Note that T € So(M,7) (see e.g. [33, Remark 2.9]). Since p(P,T) = u(|P,T)), it follows that
I1P.T|le = ||P.T)|g- Since {T*P,T}, is decreasing and T* P, T — 0 in measure topology, it follows from
[25, Chapter II, Remark 5.9] that (T*P,T)'/2 | 0 (see also [51]). Noting that

Pl = (P (P25 = (T PLT) 2] 5
and (T*P,T)Y? < |T|, order continuity of T implies that |P,T||z J 0. Similarly, |TP,||z 1 0. O

Corollary 4.9. Let T be a faithful normal semifinite trace on an atomic von Neumann algebra M. If E(M, 1)
is a symmetrically A-normed operator space, then Ip is compact (in the A-norm topology) for every B €

Ec(M,1)".

Proof. Let (A,)n>0 C Ip. Since Ip is compact in measure (see Corollary 4.6), there exists a subsequence
(An, k>0 such that A,, — A in measure. Since Ip is closed in measure, it follows that A € Ig. By
Lemma 4.8, the sequence (B + A,, )x>0 is of uniformly absolutely continuous A-norm.’

For the sake of convenience, we denote Cy, = A,,, + B — A — B. It suffices to prove that C, — 0 in E.
By passing to a subsequence of {C}}, we may assume that there exists a sequence {p;} such that p; — 1,
7(pj) = 0 as j — 00, [[Cipjlloc — 0 as k — oo for any j [18, Lemma 2.3].

Since 2B € E°¢(M, 1), it follows that Cy € E°¢(M, 7). By Lemma 4.8, ||Cre;: ||z — 0 as n — oo. On the

other hand,

|Crenlle < CelCrpienlle + Chlp;Crpyenlls + Chllpj Crpienlle
< (Ce + CR)|ICkpjllcen| g + CElipj Crpjenll e
< (Cg + Co)|[ICkp;llscen]|  + CEIP; (An, + B)pjlle + lIpj (A + B)pj || e)
< (C + CR)IChpjllcenl| ; + CEllpy - 2B - vy |l&-

Since 7(p;) — 0, it follows from Lemma 4.8 that |pj Bpi||z —; 0. For every fixed j, [|Cipjlloc = 0.
Hence, ||CkenHE — 0, which completes the proof. O

Noting that So(M,7) can be equipped with an order continuous symmetric A-norm,” the following
corollary is an extension of Theorem 4.5.

Corollary 4.10. Let 7 be a faithful normal semifinite trace on an atomic von Neumann algebra M. If E(M,T)
is a symmetrically A-normed operator space, then the A-norm on E(M,T) is order continuous if and only
if the set Ip is ||| z-compact for every B € E(M,1)".

Proof. “=" If the A-norm is order continuous, then Corollary 4.9 implies that I is compact in the A-norm
topology for every B € E(M,7)*.

“<"1If Ig is || - || p-compact, then I is compact in measure. By Proposition 4.1, we have B € Sy(M, 7).
If B ¢ E(M,7)°c, then there exists a sequence {b,} with B > b, | 0 but with [|b,||g - 0 as n — oo.
Since B € So(M, 1), it follows from [25, Chapter II, Theorem 6.3] (see also [19]) that b, — 0 in measure. In
particular, any subsequence of {b,,} converges to 0 in measure. Since I is compact in the A-norm topology,
it follows that there is a subsequence {b,, } of {b,} with b,, — b for some b € I in || - || g-topology, and

1 For the case of strongly symmetrically normed spaces, the assertion of this corollary follows immediately from Theorem 6.11 of
[18].

2 For example, one can take the A-norm || - || g by setting || X ||z = infiso{t + p(t; X)} [34,31]. It is clear that || - ||z is an order
continuous A-norm on S (0, c0). Hence, || - ||g is an order continuous A-norm on the noncommutative counterpart So(M, 7) [33].
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therefore, in measure. Hence, b = 0, which implies that ||b,, ||z — 0. Therefore, ||b,||g — 0, which is a
contradiction. O

Corollary 4.10 might be considered as a non-commutative analogue of the Banach lattice specialization
of Theorem 6.56 of the monograph [1], which goes back to a much older theorem of 1. Kawai (loc. cit., 1957).

Corollary 4.11. Let 7 be a faithful normal semifinite trace on an atomic von Neumann algebra M and let
B e E°¢(M, 7). If (Ai)ics C Ip and if A; — A locally in measure, then A; — A in A-norm topology.

Proof. Assume the contrary. Choose a subnet (A, (;));jes such that || Ay, ;) —A| g > € for every j € J. Since
Ip is compact in A-norm topology, one can extract a further subnet (A, (p,(x)))rex such that Ay, k) —
C € Ip in the A-norm topology. In particular, Ay, (y,k)) — C in measure [49], and therefore, Ay, (y, k) — C
locally in measure. However, A; — A locally in measure and, passing to a subnet, Ay, (y,(x)) — A locally in
measure. By the uniqueness of the limit, C' = A. Therefore, Ay, (y,x)) — A in the A-norm topology and,
simultaneously, || Ay, (y,k)) — Allz > € for every k € K. This contradiction completes the proof. O

Theorem 4.12. Assume that (M, T) is a semifinite von Neumann algebra. Let E(0,00) be a symmetrically
normed operator space with order continuous norm.® If x, € Ig, B € E(M,7) and x, — z locally in
measure, then ||z, — x| g — 0.

Proof. Let {e;} be a net of 7-finite projections increasing to 1. Note that —B < z, < B. Since z, — =
locally in measure, it follows that = € Ip (see e.g. [25, Chapter II, Proposition 7.6]). On the other hand,
since

0<z,+B<2B, 0<x+B<2B,

it follows that ||« + Bl g, ||[tn + B|| < ||2B||g. For every ¢t € R, we have

pult; n — )
3 3 1 3 1 l 1 1
< p(eilan — 2)eq) + p( s eilen —w)er) + p(gs e (on — @)er) + plgs e (wn — 2)ey)
t t
< ulysei(en —a)ei) +3u(7; (20 — )e;)

By Lemma 2.4, we have

rn+B=vV2BZ,vV2B
2+ B =v2BZV2B,
where || Z, oo, | Z]|co < 1. Hence, (z, — 2)e;- = V2B(Z,, — Z)V/2Be;-. Note that vV2B(Z, — Z) is bounded

in S(M, 1) with u(vV2B(Z,, — Z)) < 2u(v2B). Moreover, since || - ||g is absolutely continuous, it follows
from [17, Theorem 3.1] that

1/2

H\/ 2365‘

2
U = [veBet?|| = lletemet|l, o

3 In particular, E(M, 1) is a strongly symmetric operator space having order continuous norm (see e.g. [25, Chapter IV, Corol-
lary 5.6, Theorem 14.3 and Theorem 14.6]). Lemma 4.8 implies that every element in E(M, 7) has uniformly absolutely continuous
norm.
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where || - || g2 is the norm of the 2-convexification of E(M, ) [24], that is, v/2Be; — 0 in measure topology
[49]. By [39, corollary 2.3.16], we have

t
rY

S VEB)u(5;VaBeh),

w(Es (@ — )et) = u(LVEB(Z, — 2)V2Bel) < 20 .

that is, p(%; (zn — x)e;) — 0 as e | 0. By the assumption that z, — z locally in measure, we have

ple;(z, — x)e;) =, 0 for every fixed e;, and therefore, u(t; x,, — ) —, 0.
Note that for any net of projections {p;} decreasing to 0, we have

sup ||pi(zn — 2)pill g = sup [|pi(zn + B —x — B)pi||g < 2||pi2Bpi|g — 0,

which implies that {z,, — z} is a bounded set of uniformly absolutely continuous norm [17, Definition 3.3].
Hence, by [17, Corollary 3.5], we have ||z, — z||g — 0. DO

We call reader’s attention to the connection between order continuous norms and weak compactness of
the interval {y : 0 < y < z}. In the classical (commutative) case this connection can be found in [41,
Theorem 2.4.2]. A noncommutative analogue of the latter result is contained in [17, Proposition 4.3]. The
following proposition is a direct corollary.

Proposition 4.13. Let 7 be a faithful normal semifinite trace on a von Neumann algebra M. If E(M,T) is
a Banach symmetric operator space, then the norm on E(M,T) is order continuous if and only if the set
I is weakly compact for every B € E(M,1)".
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