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Let M be a von Neumann algebra of operators on a Hilbert space H and τ be 
a faithful normal semifinite trace on M. Let tτ be the measure topology on the 
∗-algebra S(M, τ) of all τ -measurable operators. We prove that for B ∈ S(M, τ)+
the sets IB = {A ∈ S(M, τ)h : −B ≤ A ≤ B} and KB = {A ∈ S(M, τ) : A∗A ≤
B} are convex and tτ -closed in S(M, τ). In this case, we have IB = {

√
BT

√
B :

T ∈ Mh and ‖T‖ ≤ 1} and, for invertible B, we describe the set of extreme 
points of the set IB . Let M be an atomic von Neumann algebra. We prove that an 
operator B ∈ S(M, τ)+ is τ -compact if and only if the set IB is tτ -compact. The 
tτ -compactness of IB for all τ -compact operators B characterizes these algebras.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental result in the theory of Lebesgue L1-spaces on σ-finite measure spaces states that a combi-
nation of local measure convergence and weak convergence yields norm convergence, see [54, Theorem V.5, 
p. 122] and [26, Theorem IV.8.12, p. 295]. G. Ya. Lozanovskii (see Problems 654 and 1123 in [40]) suggested 
to thoroughly examine this property in the setting of Dedekind complete Banach lattices or KB-spaces. In 
this paper we shall discuss an analogue of this property in the setting of symmetric spaces of measurable 
operators (see e.g. [21], [36], [19], [25]). It should be stated from the outset that a direct noncommutative 
analogue of this property fails spectacularly already in the most familiar noncommutative L1-space, that 
is, in the trace ideal C1(H) of compact operators on an infinite dimensional Hilbert space H. Indeed, in 
this setting, local convergence in the measure (which seems to have been introduced firstly in [21]) reduces 
to convergence in the familiar weak operator topology (see [23, p. 482]). Assume, for simplicity, that H is 
separable and fix an orthonormal basis {ek}∞k=1 in H. Consider those operators {xjk}∞j,k=1 whose matrix 
representation with respect to a basis {ek}∞k=1 contains a single non-zero (j, k)-th entry, namely 1. It is a 
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fundamental and easily verifiable fact that the sequence {x1k}∞k=1 is equivalent to a standard orthonormal 
basis in the space �2 and thus converges weakly to 0 in C1(H). The fact that it also converges to 0 in the 
weak operator topology is immediate whereas the trace norm of every element of this sequence is 1. Thus, 
there are two possible avenues to investigate the aforementioned Lozanovskii’s problem in the setting of 
trace ideals of compact operators: either to replace the local convergence in measure with bona fide conver-
gence in measure, or else to identify those subsets of the trace ideals (or more generally, noncommutative 
symmetric spaces) which still satisfy the original setting of the problem for local measure convergence. 
This paper belongs to the latter line of thought, however, prior to explaining our main results, we give a 
short update on the former direction, which has been developed into the study of symmetric function and 
symmetric operator spaces with the property that norm convergence of sequences is equivalent to weak 
convergence plus convergence for the measure topology. This study was initiated in [37,38], where the term 
(wm)-property was coined. In particular, [15, Corollary 1.4] asserts that every Lorentz space Λφ has the 
(wm)-property. Orlicz spaces on the interval [0, 1] with property (wm) have been fully characterized in [3]. 
Finally, in [17, Proposition 6.10] it is shown that, in symmetric function spaces on measure spaces with 
finite measure possessing the property (wm), each relatively weakly compact subset is of uniformly abso-
lutely continuous norm. The latter result does not hold when the measure space is equipped with an infinite 
measure. Furthermore, the just cited results hold also in a much greater generality when symmetric function 
spaces are replaced with their noncommutative counterparts [17].

We now briefly explain our main results in this article, which basically establish that, in the setting of 
quasi-Banach ideals of compact operators on H, on every operator interval weak operator convergence and 
convergence with respect to the quasi-norm coincide.

The so-called intervals of linear bounded operators on Hilbert space H arise in the study of the range 
of Stieltjes transform over all operator-valued measures which generate a given Stieltjes Hermitian moment 
sequence [42]. Let S(M, τ) be the ∗-algebra of all τ -measurable operators (see the following section for all 
unexplained notations). One of the main objects of the present paper is the operator interval [45] (such 
intervals were investigated also in [6,7,12,8,9] and [14])

IB = {A = A∗ ∈ S(M, τ) : −B ≤ A ≤ B}, 0 ≤ B ∈ S(M, τ),

which is an important component in noncommutative integration theory. The set of extreme points of 
operator intervals was studied in [43], [29]. In particular, the main result of [43] shows that for B ∈ B(H), 
the interval IB := {A ∈ B(H) : −B ≤ A ≤ B} is the closure of the convex hull of its extreme points in 
the weak operator topology. In the present paper, we characterize the extreme points of IB, B ∈ S(M, τ)+
(see Theorem 3.9). In addition, if M is atomic (with every atom having the same trace), then IB (0 ≤
B ∈ S(M, τ) is τ -compact) is the closure of the convex hull of its extreme points in the measure topology 
(Corollary 4.7), which generalizes the main result in [43].

In section 4, we characterize the compactness of operator intervals. In particular, if M is atomic, then an 
operator B ∈ S(M, τ)+ is τ -compact if and only if IB is compact in the measure topology (Corollary 4.6). 
As an application, we show that, if M is atomic and E(M, τ) is a quasi-(or even Δ-)normed operator space, 
then the compactness of the operator interval IB, B ∈ Eoc(M, τ), in the (local) measure topology coincides 
with that in the quasi-(or Δ-)norm topology (Corollaries 4.9 and 4.11), where Eoc(M, τ) stands for the set 
of all elements of order continuous quasi-(or Δ-)norm in E(M, τ).

Our final result, Theorem 4.12, presents a wide class of subsets in every symmetrically normed operator 
space with order continuous norm (in particular, in the trace ideal C1(H)) in which local convergence in 
measure implies norm convergence, thus providing a noncommutative analogue for [54, Theorem V.5, p. 122]
and [26, Theorem IV.8.12, p. 295]. Some of these results without proofs were announced in the brief note [11].

The authors sincerely thank Jinghao Huang and Dmitriy Zanin for detailed discussions of the results and 
proofs presented in this paper.
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2. Notation, definitions and preliminaries

Let M be a von Neumann algebra of operators on a Hilbert space H, U(M) be the unitary part of M. 
Let P(M) be the lattice of projections in M, 1 be the unit of M, and let P⊥ = 1 −P for P ∈ P(M). Also 
M+ denotes the cone of positive elements in M, and ‖ · ‖∞ denotes the uniform norm on M. A mapping 
ϕ : M+ → [0, +∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X, Y ∈ M+, 
λ ≥ 0 (moreover, 0 · (+∞) ≡ 0); ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace ϕ is called faithful, if 
ϕ(X) > 0 for all X ∈ M+, X 
= 0; normal, if Xi ↑ X (Xi, X ∈ M+) ⇒ ϕ(X) = supϕ(Xi); semifinite, if 
ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for every X ∈ M+.

A linear operator X : D (X) → H, where the domain D (X) of X is a linear subspace of H, is said to 
be affiliated with M if Y X ⊆ XY for all Y ∈ M′, where M′ is the commutant of M. A linear operator 
X : D (X) → H is termed measurable with respect to M if X is closed, densely defined, affiliated with 
M and there exists a sequence {Pn}∞n=1 in the logic of all projections of M, P (M), such that Pn ↑ 1, 
Pn(H) ⊆ D (X) and P⊥

n is a finite projection (with respect to M) for all n. It should be noted that the 
condition Pn (H) ⊆ D (X) implies that XPn ∈ M. The collection of all measurable operators with respect 
to M is denoted by S (M), which is a unital ∗-algebra with respect to strong sums and products (denoted 
simply by X + Y and XY for all X, Y ∈ S (M)) [47,44].

Let X be a self-adjoint operator affiliated with M. We denote its spectral measure by {EX}. It is well 
known that if X is a closed operator affiliated with M with the polar decomposition X = U |X|, then 
U ∈ M and E ∈ M for all projections E ∈ {E|X|}. Moreover, X ∈ S(M) if and only if X is closed, densely 
defined, affiliated with M and E|X|(λ, ∞) is a finite projection for some λ > 0. It follows immediately that 
in the case when M is a von Neumann algebra of type III or a type I factor, we have S(M) = M. For 
type II von Neumann algebras, this is no longer true. From now on, let M be a semifinite von Neumann 
algebra equipped with a faithful normal semifinite trace τ .

For any closed and densely defined linear operator X : D (X) → H, the null projection n(X) = n(|X|)
is the projection onto its kernel Ker(X), the range projection r(X) is the projection onto the closure of its 
range Ran(X) and the support projection supp(X) of X is defined by supp(X) = 1 − n(X).

An operator X ∈ S (M) is called τ -measurable if there exists a sequence {Pn}∞n=1 in P (M) such that 
Pn ↑ 1, Pn (H) ⊆ D (X) and τ(P⊥

n ) < ∞ for all n. The collection S (M, τ) of all τ -measurable operators is 
a unital ∗-subalgebra of S (M) denoted by S (M, τ). It is well known that a linear operator X belongs to 
S (M, τ) if and only if X ∈ S(M) and there exists λ > 0 such that τ(E|X|(λ, ∞)) < ∞. Alternatively, an 
unbounded operator X affiliated with M is τ -measurable (see [27]) if and only if

τ
(
E|X|(n,∞))

→ 0, n → ∞.

For any X = X∗ ∈ S (M, τ), we set X+ = XEX [0, ∞) and X− = XEX(−∞, 0]; see [25], remarks following 
Theorem II.2.16.

Let L+ and Lh denote the positive and Hermitian parts of a family L ⊂ S(M, τ), respectively. We 
denote by ≤ the partial order in S(M, τ)h generated by its proper cone S(M, τ)+. If X ∈ S(M, τ), then 
|X| =

√
X∗X ∈ S(M, τ)+.

Definition 2.1. Let a semifinite von Neumann algebra M be equipped with a faithful normal semi-finite 
trace τ and let X ∈ S(M, τ). The generalized singular value function μ(X) : t → μ(t; X) of the operator X
is defined by setting

μ(s;X) = inf{‖XP‖∞ : P = P ∗ ∈ M is a projection, τ(P⊥) ≤ s}.
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An equivalent definition in terms of the distribution function of the operator X is the following. For every 
self-adjoint operator X ∈ S(M, τ), setting

dX(t) = τ(EX(t,∞)), t > 0,

we have (see e.g. [27] and [39])

μ(t;X) = inf{s ≥ 0 : d|X|(s) ≤ t}.

Note that dX(·) is a right-continuous function (see e.g. [27]).
For convenience of the reader, we also recall the definition of the measure topology tτ on the algebra 

S(M, τ). For every ε, δ > 0, we define the set

V (ε, δ) = {X ∈ S(M, τ) : ∃P ∈ P (M) such that ‖XP‖∞ ≤ ε, τ(P⊥) ≤ δ}.

The topology generated by the sets V (ε, δ), ε, δ > 0, is called the measure topology tτ on S(M, τ) [27,44]. 
It is well-known that the algebra S(M, τ) equipped with the measure topology is a complete metrizable 
topological algebra [44]. We note that a sequence {Xn}∞n=1 ⊂ S(M, τ) converges to zero with respect to 
measure topology tτ (i.e. Xn

τ−→ 0) if and only if τ
(
E|Xn|(ε, ∞)

)
→ 0 as n → ∞ for all ε > 0.

If ε, δ > 0 and if P is a projection in M with τ(P ) < ∞, then the family of all sets Nε,δ,P consisting of 
all X ∈ S(M, τ) such that μδ(PXP ) < ε form a neighborhood base at 0 for a Hausdorff linear topology 
on S(M, τ). This topology (cf. [21, p. 746]) will be called the topology of local convergence in measure. 
Convergence with the respect to the topology of local convergence in measure coincides with convergence 
for the measure topology relative to (PMP, τ(P · P )), for each projection P ∈ M with τ(P ) < ∞ [22, 
p. 492].

Remark 2.2. We warn the reader that in [53, Definition 3.1], Yeadon introduces the topology of convergence 
locally in measure in the algebra LS (M) of all locally measurable operators affiliated with a general von 
Neumann algebra M. This is an unfortunate clash of terminology.

The space S0(M, τ) of τ -compact operators is the space associated to the algebra of functions from 
S(0, ∞) vanishing at infinity, that is,

S0(M, τ) = {x ∈ S(M, τ) : μ(∞;X) = 0}.

The two-sided ideal F(τ) in M consisting of all elements of τ -finite range is defined by

F(τ) = {X ∈ M : τ(r(X)) < ∞} = {X ∈ M : τ(s(X)) < ∞}.

Equivalently, F(τ) = {X ∈ M : μ(t; X) = 0 for some t > 0}. Clearly, S0(M, τ) is the closure of F(τ) with 
respect to the measure topology [19], which is a two-sided ideal in S(M, τ).

Let m be Lebesgue measure on R. The noncommutative Lp-Lebesgue space (0 < p < ∞) affiliated with 
(M, τ) is defined as

Lp(M, τ) = {X ∈ S(M, τ) : μ(X) ∈ Lp(R+,m)}

with the quasi-norm ‖X‖p = ‖μ(X)‖p, X ∈ Lp(M, τ). In particular, ‖ · ‖p is a norm when 1 ≤ p < ∞. We 
have F(τ) ⊂ Lp(M, τ) ⊂ S0(M, τ) for all 0 < p < +∞.

Lemma 2.3. [27] Let X, Y ∈ S(M, τ) and U ∈ U(M). Then,
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(i) μ(t; X) = μ(t; |X|) = μ(t; X∗) = μ(t; UXU∗) for all t > 0;
(ii) if |X| ≤ |Y |, then μ(t; X) ≤ μ(t; Y ) for all t > 0;
(iii) μ(t; AXB) ≤ ‖A‖∞‖B‖∞μ(t; X) for all A, B ∈ M and t > 0;
(iv) μ(s + t; X + Y ) ≤ μ(s; X) + μ(t; Y ) for all s, t > 0;
(v) μ(s + t; XY ) ≤ μ(s; X)μ(t; Y ) for all s, t > 0;
(vi) μ(t; f(|X|)) = f(μ(t; X)) for all continuous increasing functions f : R

+ → R
+ with f(0) = 0 and 

t > 0.

Lemma 2.4 ([53, p. 261], [19, Proposition 1]). If A, B ∈ S(M, τ)+ and A ≤ B, then there exists an operator 
Z ∈ M with ‖Z‖∞ ≤ 1 such that 

√
A = Z

√
B and A = ZBZ∗.

A linear subspace E in S(M, τ) is called an ideal (or, solid) space on (M, τ) if (1) X ∈ E implies that 
X∗ ∈ E ; (2) X ∈ E , Y ∈ S(M, τ) and |Y | ≤ |X| imply that Y ∈ E [10]. The algebra M, the set F(τ), 
S0(M, τ), (L1 + L∞)(M, τ), and Lp(M, τ) for 0 < p < +∞ are examples of such solid spaces.

If M = B(H), i.e. the ∗-algebra of all linear bounded operators on H, and τ = tr is the canonical trace 
then S(M, τ) coincides with B(H). In this case the measure topology coincides with the ‖ · ‖∞-topology, the 
topology of local convergence in measure coincides with the weak operator topology [23, p. 460], S0(M, τ)
is the compact operator ideal on H, F(τ) is the finite-dimensional operator ideal on H and

μ(t;X) =
∞∑

n=1
sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of an operator X [28, Chap. 1]; here χA is the indicator 
function of a set A ⊂ R. In this case, the space Lp(M, τ) is a Schatten–von Neumann ideal Cp(H), 0 <
p < +∞.

The following result is well known (see e.g. [46] and [25, Corollary I.2.28]).

Lemma 2.5. The function f(t) =
√
t (t ≥ 0) is operator monotone, that is f(A) ≥ f(B) whenever 

τ -measurable operators A and B such that A ≥ B ≥ 0.

3. Convex sets of τ -measurable operators

Let τ be a faithful normal semifinite trace on a von Neumann algebra M. For every B ∈ S(M, τ)+, we 
consider the following operator intervals

KB := {A ∈ S(M, τ) : A∗A ≤ B},
MB := {A ∈ S(M, τ) : |A| ≤ B},

and

IB := {A ∈ Sh(M, τ) : −B ≤ A ≤ B}.

Theorem 3.1. If an operator B belongs to S(M, τ)+, then

(i) KB ⊆ M√
B with the equality for abelian M;

(ii) IB ⊃ MB ∩ S(M, τ)h;
(iii) if B ∈ P(M), then IB ⊂ MB = KB;
(iv) if A ∈ IB, then A + B ∈ S(M, τ)+ ∩M2B;
(v) if A ∈ IB, then there exists S ∈ Mh ∩ U(M) such that A ∈ M(B+SBS)/2.
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Proof. (i). The assertion follows immediately from Lemma 2.5.
(ii). Let A ∈ IB . Note that A ≤ |A| ≤ B and −A ≤ |A| ≤ B. Hence, −B ≤ A ≤ B for A ∈ MB ∩S(M, τ)h.
(iii). Assume that B is a projection. For IB ⊂ MB , see [8, Theorem 2.4]. The inclusion KB ⊂ MB follows 

from (i). Let A ∈ MB , i.e., |A| ≤ B. Then, |A|B = B|A| = |A| (see e.g. [48, Chap. 2, item 2.17]). 
Hence,

A∗A = |A|2 = |A| 12 |A||A| 12 ≤ |A| 12B|A| 12 = B|A| 12 |A| 12B ≤ B

and therefore, MB ⊂ KB .
(iv). Note that 0 ≤ A + B ≤ 2B, i.e., A + B ∈ M2B ∩ S(M, τ)+ ⊂ I2B .
(v). See [7, Theorem 1]. �
Example 3.2. Let X, Y ∈ S(M, τ).

(i) Since (X ± Y )∗(X ± Y ) ≥ 0, we have X∗Y + Y ∗X ∈ IX∗X+Y ∗Y ;
(ii) since (XY ± I)(XY ± I)∗ ≥ 0, we have XY + Y ∗X∗ ∈ IX|Y ∗|2X∗+I ;
(iii) since (

√
X ± Y

√
X)(

√
X ± Y

√
X)∗ ≥ 0 for X ∈ S(M, τ)+, we have XY ∗ + Y X ∈ IX+Y XY ∗ ;

(iv) since (X ± Y X−1)(X ± Y X−1)∗ ≥ 0 for invertible X ∈ Sh(M, τ) with X−1 ∈ S(M, τ), we have 
Y + Y ∗ ∈ IX2+Y X−2Y ∗ .

Lemma 3.3. [12, Theorem 5.1] Let E, G, En, Gn ∈ L1(M, τ)h and F, Fn ∈ Sh(M, τ) with En ≤ Fn ≤ Gn

for any n ∈ N. Assume that

En
τ−→ E, Fn

τ−→ F, Gn
τ−→ G and τ(En) → τ(E), τ(Gn) → τ(G) as n → ∞.

Then, F, Fn ∈ L1(M, τ) and τ(Fn) → τ(F ) as n → ∞. If, in addition, En ≤ 0 ≤ Gn and En ≤ (Fn)p ≤ Gn, 
where 0 < p < +∞ is such that the function R � λ �→ λp ∈ R is defined, then Fn, F ∈ Lp(M, τ) and 
‖Fn − F‖p → 0 as n → ∞.

Proposition 3.4. Let X, Y, Xn, Yn ∈ S(M, τ) be such that X∗X + Y ∗Y, X∗
nXn + Y ∗

n Yn ∈ L1(M, τ) for any 
n ∈ N. Assume that ‖X∗

nXn + Y ∗
n Yn −X∗X − Y ∗Y ‖1 → 0 and X∗

nYn + Y ∗
nXn

τ−→ X∗Y + Y ∗X as n → ∞. 
Then, X∗

nYn + Y ∗
nXn, X∗Y + Y ∗X ∈ L1(M, τ) and ‖X∗

nYn + Y ∗
nXn −X∗Y − Y ∗X‖1 → 0 as n → ∞.

Proof. Let En := −(X∗
nXn +Y ∗

n Yn), Gn := X∗
nXn +Y ∗

n Yn, Fn := X∗
nYn +Y ∗

nXn and E := −(X∗X +Y ∗Y ), 
G := X∗X + Y ∗Y , F := X∗Y + Y ∗X. We have En

τ−→ E and Gn
τ−→ G (see e.g. [19, Proposition 20]). By 

item (i) of Example 3.2, we obtain that En ≤ Fn ≤ Gn for every n.
By Lemma 3.3, we obtain that Fn, F ∈ L1(M, τ) with ‖Fn − F‖1 → 0 as n → ∞. �

Proposition 3.5. For all operators A, B ∈ S(M, τ)h and numbers t ∈ [0, 1], we have (
√
tA +

√
1 − tB)2 ≤

A2 + B2. It turns into equality if and only if 
√

1 − tA =
√
tB. Hence, 

√
tA +

√
1 − tB ∈ M√

A2+B2 .

Proof. It is clear that

(
√
tA +

√
1 − tB)2 + (

√
1 − tA−

√
tB)2 = A2 + B2.

Hence, (
√
tA +

√
1 − tB)2 ≤ A2 +B2. Now, by Lemma 2.5, we have |

√
tA +

√
1 − tB| ≤

√
A2 + B2. It turns 

into equality if and only if 
√

1 − tA =
√
tB. �

Example 3.6. Let E be S0(M, τ) or F(τ) and B ∈ E+. It is clear that KB , MB and IB are subsets of E .
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Indeed, MB ⊂ E follows from item (ii) of Lemma 2.3.
Let A ∈ KB . It follows from item (ii) of Lemma 2.3 that μ(A∗A) ≤ μ(B). Then, by items (i) and (vi) of 

Lemma 2.3, we obtain that KB ⊂ E .
For every A ∈ IB , by (v) of Theorem 3.1, A ∈ MB+SBS

2
for a selfadjoint unitary operator S. By (i) of 

Lemma 2.3, we have SBS ∈ E . We obtain that A ∈ MB+SBS
2

⊂ E . Hence, IB ⊂ E (the case when E = F(τ)
can be obtained by [33, Lemma 4.2] immediately).

Remark 3.7. We note that if E is a solid space on (M, τ) and B ∈ E+, then MB and IB are subsets of E .

Proposition 3.8. Consider A ∈ S(M, τ) and U ∈ M such that ‖U‖∞ ≤ 1.
(i) If A ∈ KB, then UA ∈ KB.
(ii) If AU ∈ MB, then U∗|A|U ∈ MB.

Proof. (i). If A ∈ KB , then A∗A ≤ B and therefore, A∗U∗UA ≤ A∗1A = A∗A. That is, UA ∈ KB .
(ii). By Lemma 2.5 and Hansen’s Theorem ([30]; [4, Lemma 3.1.1]), we have

B ≥ |AU | =
√
U∗A∗AU ≥ U∗√A∗AU = U∗|A|U. �

Theorem 3.9. If B ∈ S(M, τ)+ then

(i) KB = {T
√
B : T ∈ M and ‖T‖∞ ≤ 1};

(ii) extKB = {T
√
B : T ∈ M is partial isometry such that (1 − T ∗T )M(1 − TT ∗) = {0}} for invertible 

B satisfying B−1 ∈ S(M, τ);
(iii) the sets IB and KB are convex and tτ -closed in S(M, τ).

Proof. (i). If A ∈ KB , then it follows from Lemma 2.4 that there exists Z ∈ M with ‖Z‖∞ ≤ 1 such that 
|A| =

√
A∗A = Z

√
B. Standard polar decomposition yields A = U |A| = UZ

√
B = T

√
B for T = UZ. 

Hence, KB ⊂ {T
√
B : T ∈ M and ‖T‖∞ ≤ 1}. On the other hand, for every T ∈ M with ‖T‖∞ ≤ 1, we 

have (T
√
B)∗T

√
B ≤ B. That is, {T

√
B : T ∈ M and ‖T‖∞ ≤ 1} ⊂ KB .

(ii). It is well-known that ext{T ∈ M : ‖T‖∞ ≤ 1} is the set of all partial isometries U ∈ M such that 
(1 − U∗U)M(1 − UU∗) = {0}, see [35, Theorem 7.3.1].

(iii). The convexity of IB is clear. Since the set {T ∈ M : ‖T‖∞ ≤ 1} is convex, it follows (i) that KB

is convex.
Consider a sequence {An}∞n=1 ⊂ KB such that An

τ−→ A ∈ S(M, τ) as n → ∞. One has A∗
nAn

τ−→
A∗A ∈ S(M, τ) as n → ∞, since the involution and the multiplication operations are continuous in the 
measure topology [19]. Since B −A∗

nAn ≥ 0 for all n ∈ N and B −A∗
nAn

τ−→ B −A∗A as n → ∞, we have 
B −A∗A ≥ 0 by tτ -closedness of the cone S(M, τ)+ in S(M, τ) [19].

It is well-known that S(M, τ)h and S(M, τ)+ are closed with respect to the measure topology (see e.g. 
[25, Chapter II, Propositions 5.10 and 6.1]). Therefore, A ∈ S(M, τ)h with B − An

τ−→ B − A ≥ 0 and 
B + An

τ−→ B + A ≥ 0 for any sequence {An} ⊂ IB . Hence, we obtain the tτ -closedness of IB . �
Corollary 3.10. If B ∈ P(M), then the set MB is convex.

Proof. Apply Theorem 3.9 and item (iii) of Theorem 3.1. �
Proposition 3.11. For every operator B ∈ S(M, τ)+, the set MB is tτ -closed in S(M, τ).

Proof. Consider a sequence {An}∞n=1 ⊂ MB such that An
τ−→ A ∈ S(M, τ) as n → ∞. Since the involution 

and the multiplication operations are continuous in the measure topology, one has A∗
nAn

τ−→ A∗A ∈ S(M, τ)
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as n → ∞. Then |An| =
√
A∗

nAn
τ−→

√
A∗A = |A| as n → ∞ via tτ -continuity of the operator function 

f(t) =
√
t (t ≥ 0), see [51] and [20]. Since B − |An| ≥ 0 for all n ∈ N and B − |An| τ−→ B − |A| as n → ∞, 

we have B− |A| ≥ 0 by tτ -closedness of the cone S(M, τ)+ in S(M, τ), which implies that MB is tτ -closed 
in S(M, τ). �
Theorem 3.12. For a von Neumann algebra M, the following conditions are equivalent:

(i) the set MB is convex for every operator B ∈ M+;
(ii) The equality IB = MB ∩Mh holds for every operator B ∈ M+;
(iii) M is abelian.

Proof. (iii)⇒(i). By (i) of Theorem 3.1, KB2 = MB . Then, applying Theorem 3.9, we obtain that MB is 
convex, which implies the validity of (i).

(iii)⇒(ii). By Theorem 3.1, we have IB ⊃ MB ∩ Sh(M, τ). Remark 3.7 implies that IB ⊂ M. Hence, 
IB ⊃ MB ∩Mh.

On the other hand, assume that M is abelian and −B ≤ A ≤ B (i.e. A ∈ IB). Note that AEA(0, ∞) ≤
BEA(0, ∞) and −BEA(−∞, 0) ≤ AEA(−∞, 0). Hence, we have |A| ≤ B(EA(0, ∞) + EA(−∞, 0)) ≤ B. 
That is, A ∈ MB . Since IB ⊂ S(M, τ)h ∩M, it follows that IB ⊂ MB ∩Mh.

(i)⇒(iii). If M is noncommutative, then it contains a ∗-subalgebra N which ∗-isomorphic to M2(C), see, 
for example, the proof of Theorem 1 in [52]. Put

A1 =
(

1 1
0 0

)
, A2 =

(
1 −1
0 0

)
, P = 1

2

(
1 1
1 1

)
, Q = 1

2

(
1 −1
−1 1

)
.

It is easy to check that P , Q are one-dimensional projections, and

A∗
1A1 = 2P, A∗

2A2 = 2Q,
1
2A1 + 1

2A2 = diag(1, 0).

Then

|A1| =
√

2P, |A2| =
√

2Q,

∣∣∣∣12A1 + 1
2A2

∣∣∣∣ = diag(1, 0).

For B := diag(7/8, 5), we have |A1| ≤ B, |A2| ≤ B, but the inequality 
∣∣ 1
2A1 + 1

2A2
∣∣ ≤ B fails.

(ii)⇒(iii). It suffices to show that there exists B ∈ M2(C)+ such that IB 
= MB ∩M2(C)h. Assume that 
IB = MB∩M2(C)h for all B ∈ M2(C)+. Since −|X| ≤ X ≤ |X| and −|Y | ≤ Y ≤ |Y | for all X, Y ∈ M2(C)h, 
we have −|X| − |Y | ≤ X +Y ≤ |X| + |Y |. By the assumption, we obtain the inequality |X +Y | ≤ |X| + |Y |
for all X, Y ∈ M2(C)h, which is not true when we take

X :=
(
−1 0
0 0

)
and Y := 2−1

(
1 1
1 1

)
,

see [2, p. 310]. The theorem is proved. �
Lemma 3.13 (cf. [9, Lemma 1]). Let τ be a faithful normal semifinite trace on a von Neumann algebra M
and B ∈ S(M, τ)+. If A ∈ IB, then there exist X ∈ S(M, τ)h and Y ∈ S(M, τ)+ such that A = XY +Y X, 
B = X2 + Y 2. If, in addition, A ∈ S(M, τ)+, then X ∈ S(M, τ)+.

Proof. Put

X := 1
2(

√
A + B −

√
B −A), Y := 1

2(
√
A + B +

√
B −A). (1)
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It is clear that X ∈ S(M, τ)h and Y ∈ S(M, τ) with A = XY + Y X, B = X2 + Y 2. Assume that A ≥ 0. 
Then, A + B ≥ B −A. Applying Lemma 2.5, we have 

√
A + B ≥

√
B −A. Relation (1) implies X belongs 

to S(M, τ)+. �
Theorem 3.14. For all X, Y ∈ S(M, τ)h, there exists T ∈ Mh with ‖T‖∞ ≤ 1 such that XY + Y X =√
X2 + Y 2T

√
X2 + Y 2.

Proof. Let X = U1|X| and Y = V1|Y | be the polar decompositions of X, Y ∈ S(M, τ)h. We have

X2, Y 2 ≤ X2 + Y 2.

By Lemma 2.4, there exist U2, V2 ∈ M with ‖U2‖∞ ≤ 1, ‖V2‖∞ ≤ 1 such that

|X| =
√
X2 = U2

√
X2 + Y 2, |Y | =

√
Y 2 = V2

√
X2 + Y 2.

Let P = supp(X2+Y 2). Without loss of generality, we may assume that supp(U2), supp(V2) ≤ P . Moreover,

|X|2 + |Y |2 =
√
X2 + Y 2(U∗

2U2 + V ∗
2 V2)

√
X2 + Y 2

implies that 
√
X2 + Y 2 = (U∗

2U2 + V ∗
2 V2)

1
2
√
X2 + Y 2. Hence, P = (U∗

2U2 + V ∗
2 V2)

1
2 . In particular, U∗

2U2 +
V ∗

2 V2 = P .
Letting U = U1U2, V = V1V2, we have X = U

√
X2 + Y 2, Y = V

√
X2 + Y 2. It is clear that

U∗U + V ∗V = U∗
2U

∗
1U1U2 + V ∗

2 V
∗
1 V1V2 ≤ U∗

2U2 + V ∗
2 V2 = P ≤ 1.

Letting T := U∗V + V ∗U , it follows from the relation (U ± V )∗(U ± V ) ≥ 0 that T ∈ Mh with ‖T‖∞ ≤ 1. 
Note that

(X ± Y )2 =
√
X2 + Y 2(U ± V )∗(U ± V )

√
X2 + Y 2. (2)

Hence,

X2 + Y 2 = (X + Y )2 + (X − Y )2

2
(2)=

√
X2 + Y 2(U∗U + V ∗V )

√
X2 + Y 2. (3)

Now, subtracting (3) from (2), we have

XY + Y X =
√
X2 + Y 2(U∗V + V ∗U)

√
X2 + Y 2 =

√
X2 + Y 2T

√
X2 + Y 2. �

Corollary 3.15. If B ∈ S(M, τ)+ then
(i) IB = {

√
BT

√
B : T ∈ Mh and ‖T‖∞ ≤ 1};

(ii) ext IB = {
√
BT

√
B : T ∈ Mh ∩ U(M)} for B with B−1 ∈ S(M, τ).

Proof. (i). Let T ∈ Mh and −1 ≤ T ≤ 1. We multiply both sides of the inequality by the operator 
√
B on 

the left and the right, and achieve 
√
BT

√
B ∈ IB . That is, {

√
BT

√
B : T ∈ Mh and ‖T‖∞ ≤ 1} ⊂ IB .

Applying Lemma 3.13 and Theorem 3.14, we obtain that IB ⊂ {
√
BT

√
B : T ∈ Mh and ‖T‖∞ ≤ 1}.

(ii). It is well-known that ext{T ∈ Msa : ‖T‖∞ ≤ 1} = Mh ∩ U(M) (see e.g. [35, Proposition 7.4.6]). 
Since
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ext IB = ext{A ∈ S(M, τ)h : −B ≤ A ≤ B}
= ext{A ∈ S(M, τ)h : −1 ≤ B− 1

2AB− 1
2 ≤ 1},

it follows that extIB = {A ∈ IB : B− 1
2AB− 1

2 ∈ Mh ∩ U(M)} = {
√
BT

√
B : T ∈ Mh ∩ U(M)}. �

4. Operator intervals and uniformly absolutely continuous norms

In this section, we study the compactness of operator intervals. In particular, we demonstrate the con-
nection of the compactness of operator interval and the order continuity of symmetric (quasi- or Δ-)norms. 
Before proceeding to the main result, we present some well known facts.

Assume that M = �∞ and τ(X) =
∑∞

k=1 xk for X = {xk}∞k=1 ∈ M+. In this case, S0(M, τ) = c0
is the space of complex sequences converging to zero. It is well-known that a ‖ · ‖∞-closed set A ⊂ c0 is 
‖ · ‖∞-compact if and only if there exists B ∈ c+0 such that |A| ≤ B for all A ∈ A [13, Ch. 5, exercise 5.6.47].

Proposition 4.1. Let τ be a faithful normal semifinite trace on a von Neumann algebra M such that 
τ(1) = ∞. If B ∈ S(M, τ)+ is such that any of the sets IB, KB or MB is compact (in measure topol-
ogy), then B is τ -compact.

Proof. Let B ∈ S(M, τ)+ be non τ -compact. For such an operator B, we have b := limt→∞ μt(B) > 0. 
Since the trace τ is semifinite, there exists a sequence {Pn}∞n=1 of pairwise orthogonal projections in M and 
a number a > 0 such that τ(Pn) ≥ a > 0 and bPn ≤ B for all n ∈ N. Clearly no subsequence {bPnk

}∞k=1 of 
{bPn}∞n=1 tτ -converges. The assertion is proved. �

Recall that a von Neumann algebra is of type Ifin if it is finite and of type I.

Theorem 4.2. Let M be a semifinite von Neumann algebra and let 0 ≤ B ∈ S(M, τ). If either KB or MB

is compact (in measure topology), then B is affiliated with the Ifin direct summand of M.

Proof. Combining [50, Theorem V.1.19] with [50, Theorem V.1.27], we infer that there exists unique cen-
trally orthogonal decomposition

1 = zIfin + zI∞ + zII1 + zII∞

so that

M = MIfin ⊕MI∞ ⊕MII1 ⊕MII∞ ,

where MIfin has type Ifin, MI∞ has homogeneous type I∞, MII1 has type II1 and MII∞ has type II∞.
Step 1. We shall show that zI∞B ∈ S(MI∞ , τ) vanishes. For brevity, let us simply assume that M has 

homogeneous type I∞ and show that in this case B = 0.
Without loss of generality, we may assume that M acts on separable Hilbert space. Indeed, the argument 

for the general case is exactly the same.
By [50, Theorem V.1.27], we may write

M =
⊕∑
α

Aα⊗̄B(Hα)

where Aα is abelian von Neumann algebra and Hα is infinite dimensional separable Hilbert space. To prove 
our claim, it is sufficient to assume that M = Aα⊗̄B(Hα), or, equivalently that M = L∞(Ω, μ)⊗̄B(H), 
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where (Ω, μ) is a σ-finite measure space. It is sufficient to show that B = 0 in two cases: when (Ω, μ) is a 
discrete measure space or else if (Ω, μ) is atomless. Firstly, we consider the case when (Ω, μ) is a discrete 
measure space, in other words, we could assume that

M = B(H)⊗̄�∞.

Assume that (ek)k≥0 is the standard basic sequence in �∞. Fix k ≥ 0 such that B · (1 ⊗ ek) 
= 0. By taking 
M · (1 ⊗ ek) instead of M and B · (1 ⊗ ek) instead of B, we may assume without loss of generality that 
M = B(H). The measure topology induced on B(H) is simply the uniform norm topology [19].

Fix rank one projection p and a constant c > 0 such that B ≥ cp. Obviously, Kcp ⊂ KB and Mcp ⊂ MB . 
By Theorem 3.9 and Proposition 3.11, Kp and Mp are closed in measure. Therefore, by the assumption that 
KB (or MB) is compact, Kp (or Mp) is compact. If q is another rank one projection and if Uq is a partial 
isometry such that

U∗
qUq = p, UqU

∗
q = q,

then Uq ∈ Kp and Uq ∈ Mp. Therefore,

{Uq : q is rank one projection}

is compact (in uniform norm topology). If q and r are orthogonal rank one projections, then

q · (Uq − Ur) = q · (qUq − rUr) = qUq = Uq.

Therefore,

‖Uq − Ur‖∞ ≥ ‖q(Uq − Ur)‖∞ = ‖Uq‖∞ = 1.

This contradicts with the compactness assumption.
Now, we assume that M = L∞(Ω, μ)⊗̄B(H), where (Ω, μ) is an atomless measure space. In fact, since 

we work with separable Hilbert spaces, we can assume that (Ω, μ) is a standard measure space, and for the 
sake of clarity and brevity, we shall assume further that (Ω, μ) coincides with the interval [0, 1] equipped 
with Lebesgue measure. Fix a τ -finite projection p ∈ M and a constant c > 0 such that B ≥ cp. By 
[5, Lemma 5.1] the projection p may be viewed as a function defined a.e. on [0, 1] taking values in finite 
projections in B(H). Without loss of generality, we assume that the function ω → p(ω) has full support on 
[0, 1]. Consider now the sequence {rn(·)}∞n=1 of Rademacher functions on [0, 1], that is a concrete sequence 
of independent (Bernoulli) random variable taking values ±1 with probability 1/2. Again referring to [5] we 
may define a sequence of partial isometries Un ∈ M as vector valued functions

φn(ω) := rn(ω)p(ω), n ≥ 1.

We trivially have U∗
nUn = p and Un ∈ Kp and Un ∈ Mp for all n ≥ 1. However, it is a well known fact that 

the Rademacher system does not contain any subnet converging in measure. Combining this observation 
with [5, Remark 5.4], we infer that the sequence {Un}n≥1 does not contain any subnet converging in measure 
as well which again contradicts with the compactness assumption. This completes the proof of the claim 
that B = 0 in the setting when M is of type I∞.

Step 2: Suppose that M = MII1 , or else that M = MII∞ . Fix a τ -finite projection p and a constant 
c > 0 such that B ≥ cp. Obviously, Kcp ⊂ KB and Mcp ⊂ MB . Therefore, Kp (or Mp) must be compact. In 
other words, the unit ball of the algebra pMp is compact (in measure topology). Without loss of generality, 
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let τ(p) = 1 and let i : L∞(0, 1) → pMp be a trace preserving unital ∗-isomorphism (see e.g. [14]). It follows 
that the unit ball of L∞(0, τ(p)) is compact (in measure topology). Again appealing to the example of the 
Rademacher sequence {rn}n≥1 we arrive at the contradiction. This completes the proof that in either case 
B = 0.

Combining steps 1 and 2, we arrive at the assertion that B must be affiliated with MIfin . �
A nonzero projection P ∈ M is called an atom if 0 
= Q ≤ P , Q ∈ P(M), implies that Q = P . A von 

Neumann algebra M is atomic if every nonzero projection in M majorizes some atom.

Lemma 4.3. Let (M, τ) be a semifinite von Neumann algebra. If 0 ≤ B ∈ M ∩ S0(M, τ) and if a uniformly 
bounded net Ti → 0 in local measure topology, then B

1
2TiB

1
2 → 0 in measure.

Proof. Let e = EB(0, ε), ε > 0. In particular, τ(e⊥) < ∞. Using (i), (iii) and (iv) of Lemma 2.3, for any 
s, t > 0, we have

μ(s + 3t;B 1
2TiB

1
2 ) ≤ μ(s; e⊥B 1

2TiB
1
2 e⊥) + μ(t; e⊥B 1

2TiB
1
2 e)

+ μ(t; eB 1
2TiB

1
2 e⊥) + μ(t; eB 1

2TiB
1
2 e)

≤ μ(s; e⊥B 1
2TiB

1
2 e⊥) + 3‖B‖

1
2∞ sup

i
‖Ti‖∞ε

1
2 .

Since ε is arbitrarily chosen and μ(s; e⊥B 1
2TiB

1
2 e⊥) →i 0 [19, Section 2.5], it follows that μ(s +

3t; B 1
2TiB

1
2 ) →i 0, which completes the proof. �

Lemma 4.4. Let (M, τ) be a semifinite atomic von Neumann algebra. If 0 ≤ B ∈ M is τ -compact and if a 
uniformly bounded net Ti → 0 ultraweakly, then B

1
2TiB

1
2 → 0 in measure.

Proof. Assume Ti → 0 ultraweakly, that ‖Ti‖∞ ≤ 1 and that M is atomic. By Lemma 4.3, it suffices to 
show that Ti →i 0 locally in measure. By the definition of local convergence in measure, it may be assumed 
that τ(1) < ∞ and it then suffices to show that Ti → 0 for the measure topology. Since M is atomic, it 
follows that there exists a sequence {Qn}∞n=1 of finite rank projections (see [50], Definition III 5.9) such that 
Qn ↑n 1. Let t > 0 and choose n0 such that

τ(1 −Qn0) < t

and note that

μ(t;1 −Qn0) = χ[0,τ(1−Qn0 ))(t) = 0.

This implies that, for all i,

μ(2t;1 −Qn0) ≤ μ(t;Qn0Ti(1−Qn0)) + μ(t; (1 −Qn0)Ti)

≤ 2μ(t;1 −Qn0) = 0.

Consequently,

μ(3t;Ti) ≤ μ(t;Qn0TiQn0) + μ(2t;Ti −Qn0TiQn0)

≤ μ(t;Qn0TiQn0) + μ(t;Ti −Qn0Ti) + μ(t;Qn0Ti −Qn0TiQn0)

≤ μ(t;Qn0TiQn0).
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Since Ti → 0 ultraweakly and Qn0 is finite-dimensional, it follows that τ(Qn0TiQn0) →i 0, which implies 
that Qn0TiQn0 →i 0 in measure (see e.g. [36,39]). It follows that μ(3t; Ti) →i 0 and so Ti converges to 0 for 
the measure topology. This completes the proof. �
Theorem 4.5. Let τ be a faithful normal semifinite trace on an atomic von Neumann algebra M. An operator 
B ∈ S(M, τ)+ is τ -compact if and only if the set IB is tτ -compact.

Proof. Let (An)n ⊂ IB be an arbitrary sequence. We first prove the case when B ∈ M+ ∩ S0(M, τ). By 
Lemma 2.4, we can write Ai +B = (2B) 1

2Si(2B) 1
2 , where ‖Si‖∞ ≤ 1, i ∈ I. By Banach–Alaoglu Theorem, 

there exists a subnet (Sψ(j))j∈J such that Sψ(j) → S ∈ M ultraweakly. Applying the preceding lemma to 
the net Tj = Sψ(j) − S, we obtain the proof of sufficiency for B ∈ M+.

Since measure topology is complete metrizable [19], we can endow S(M, τ) with a metric d. Now, assume 
that B ∈ S0(M, τ)+. Let en = EB [0, n]. By the latter result, there exists a subsequence {A(1)

i } of {Ai} such 

that e1A
(1)
i e1

tτ→ e1A
(1)e1 for some A(1) ∈ IBe1 ⊂ IB . In particular, we can find an An(1) from {An} such 

that

d(e1An(1)e1, A
(1)) ≤ 1.

Similarly, there exists a subsequence {A(2)
i } of {A(1)

i } such that e2A
(2)
i e2

tτ→ e2A
(2)e2 for some A(2) ∈

IBe2 ⊂ IB . In particular, e1A
(2)e1 = A(1). We can find an An(2) from {A(2)

i } such that n(2) > n(1) with

d(e2An(2)e2, A
(2)) ≤ 1

2 .

Argument inductively, we obtain a sequence {A(n)} ⊂ IB such that A(n) = enA
(m)en for any m ≥ n, and 

a subsequence {An(j)} of {An} such that

d(ejAn(j)ej , A
(j)) ≤ 1

j
.

Since τ(1 − em) → 0 and enA(m)en = A(n) for any m ≥ n, it follows that {A(m)} converges in measure. 
We denote C := tτ − limA(n). That is, d(A(m), C) →m 0. Since IB is closed in measure topology (see 
Theorem 3.9), it follows that C ∈ IB . Note that

d(An(j), C) ≤ d(An(j), ejAn(j)ej) + d(ejAn(j)ej , A
(j)) + d(A(j), C)

≤ d(An(j), ejAn(j)ej) + 1
j

+ d(A(j), C). (4)

Since τ(1 − em) →m 0, it follows from [39, Corollary 2.3.16.] that

μ(t;An(j) − ejAn(j)ej) ≤ μ( t2 ;An(j) − ejAn(j)) + μ( t2 ; ejAn(j) − ejAn(j)ej)

≤ 2μ(t/4; 1 − ej)μ(t/4;An(j)) → 0.

That is, d(An(j), ejAn(j)ej) →j 0. Hence, (4) converges to 0 as j → ∞. We obtain the compactness of IB.
The necessity follows from Proposition 4.1. �

Corollary 4.6. Let τ be a faithful normal semifinite trace on a von Neumann algebra M. The following 
conditions are equivalent:

(i) M is atomic;
(ii) the set IB is tτ -compact for every τ -compact operator B ∈ S(M, τ)+.
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Proof. Assume that M is not atomic. Then, it is a direct sum of atomic von Neumann algebra and a 
non-trivial von Neumann algebra without minimal projections [16, p. 325]. Without loss of generality we 
can assume that there exists an isometric embedding of L∞([0, 1], ν) into M, where ν is the Lebesgue 
measure on [0, 1], which preserves the trace (on L∞([0, 1], ν) the trace is τ(f) =

∫
[0,1] f dν), see [16, p. 325]. 

In the algebra L∞([0, 1], ν), consider the sequence of Rademacher functions rn(t) = sign sin 2nπt with 
0 ≤ t ≤ 1. The sequence {rn}∞n=1 contains no tτ -converging subsequences:

ν{t ∈ [0, 1] : |rn(t) − rk(t)| ≥ 1} = ν{t ∈ [0, 1] : rn(t) 
= rk(t)} = 1
2 , n 
= k.

Thus, taking a τ -compact operator B = χ[0,1], the sets IB and KB = MB are not tτ -compact. The assertion 
is proved. �

Now, by Krein–Milman Theorem (see also Corollary 3.15), we have

Corollary 4.7. Let τ be a faithful normal semifinite trace on an atomic von Neumann algebra M and let 
there exist a constant a > 0 such that τ(P ) ≥ a for any atom P of M. If an operator B ∈ S(M, τ)+ is 
τ -compact, then the set IB is the tτ -closure of the convex hull of its extreme points.

Proof. We have S(M, τ) = M. Moreover, the topology tτ coincides with the ‖·‖∞-topology on M. �
A function ‖·‖ from Ω to R is a Δ-norm, if for all x, y ∈ Ω the following properties hold:

1. ‖x‖ � 0, ‖x‖ = 0 ⇔ x = 0;
2. ‖αx‖ � ‖x‖, ∀ |α| ≤ 1;
3. limα→0 ‖αx‖ = 0;
4. ‖x + y‖ ≤ CΩ · (‖x‖ + ‖y‖)

for a constant CΩ ≥ 1 independent of x, y. Let M be a semifinite von Neumann algebra equipped with a 
faithful normal semifinite trace τ . Let E be a linear subset in S(M, τ) equipped with a Δ-norm ‖ · ‖E . We 
say that E is a symmetrically Δ-normed space if for x ∈ E , y ∈ S(M, τ) and μ(y) ≤ μ(x) imply that y ∈ E
and ‖y‖E ≤ ‖x‖E [32,33].

Let E(M, τ) be a symmetrically Δ-normed spaces affiliated with M. Let Eoc(M, τ) be the set of all 
elements of order continuous Δ-norm [33], i.e.,

Eoc(M, τ) = {X ∈ E(M, τ) : |X| ≥ Xn ↓ 0 ⇒ ‖Xn‖E ↓ 0}.

We note that for some symmetric spaces E(M, τ), Eoc(M, τ) is trivial, that is Eoc(M, τ) = {0} [19, p. 246].
If X ∈ E(M, τ), then X is said to have absolutely continuous Δ-norm if and only if for all decreasing 

sequences {Pn} in P(M) with Pn ↓n 0, we have ‖PnXPn‖E → 0 [17]. A subset A of E(M, τ) is called of 
uniformly absolutely continuous Δ-norm if

sup
X∈A

‖PnXPn‖E → 0, ∀Pn ↓ 0 ⊂ P(M).

Lemma 4.8. Let E(M, τ) be a symmetrically Δ-normed operator space. Assume that T ∈ Eoc(M, τ). Then, 
every decreasing sequence {Pn}n of projections in M such that Pn ↓ 0, we have ‖TPn‖E ↓ 0 and ‖PnT‖E ↓ 0. 
In particular, T has uniformly absolutely continuous Δ-norm.
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Proof. Note that T ∈ S0(M, τ) (see e.g. [33, Remark 2.9]). Since μ(PnT ) = μ(|PnT |), it follows that 
‖PnT‖E = ‖|PnT |‖E . Since {T ∗PnT}n is decreasing and T ∗PnT → 0 in measure topology, it follows from 
[25, Chapter II, Remark 5.9] that (T ∗PnT )1/2 ↓ 0 (see also [51]). Noting that

‖|PnT |‖E = ‖((PnT )∗(PnT ))1/2‖E = ‖(T ∗PnT )1/2‖E

and (T ∗PnT )1/2 ≤ |T |, order continuity of T implies that ‖PnT‖E ↓ 0. Similarly, ‖TPn‖E ↓ 0. �
Corollary 4.9. Let τ be a faithful normal semifinite trace on an atomic von Neumann algebra M. If E(M, τ)
is a symmetrically Δ-normed operator space, then IB is compact (in the Δ-norm topology) for every B ∈
Eoc(M, τ)+.

Proof. Let (An)n≥0 ⊂ IB . Since IB is compact in measure (see Corollary 4.6), there exists a subsequence 
(Ank

)k≥0 such that Ank
→ A in measure. Since IB is closed in measure, it follows that A ∈ IB . By 

Lemma 4.8, the sequence (B + Ank
)k≥0 is of uniformly absolutely continuous Δ-norm.1

For the sake of convenience, we denote Ck = Ank
+ B − A − B. It suffices to prove that Ck → 0 in E. 

By passing to a subsequence of {Ck}, we may assume that there exists a sequence {pj} such that pj → 1, 
τ(p⊥j ) → 0 as j → ∞, ‖Ckpj‖∞ → 0 as k → ∞ for any j [18, Lemma 2.3].

Since 2B ∈ Eoc(M, τ), it follows that Ck ∈ Eoc(M, τ). By Lemma 4.8, ‖Cke
⊥
n ‖E → 0 as n → ∞. On the 

other hand,

‖Cken‖E ≤ CE‖Ckpjen‖E + C2
E‖pjCkp

⊥
j en‖E + C2

E‖p⊥j Ckp
⊥
j en‖E

≤ (CE + C2
E)

∥∥‖Ckpj‖∞en
∥∥
E

+ C2
E‖p⊥j Ckp

⊥
j en‖E

≤ (CE + C2
E)

∥∥‖Ckpj‖∞en
∥∥
E

+ C3
E(‖p⊥j (Ank

+ B)p⊥j ‖E + ‖p⊥j (A + B)p⊥j ‖E)

≤ (CE + C2
E)

∥∥‖Ckpj‖∞en
∥∥
E

+ C3
E‖p⊥j · 2B · p⊥j ‖E .

Since τ(p⊥j ) → 0, it follows from Lemma 4.8 that ‖p⊥j Bp⊥j ‖E →j 0. For every fixed j, ‖Ckpj‖∞ →k 0. 
Hence, 

∥∥Cken
∥∥
E
→k 0, which completes the proof. �

Noting that S0(M, τ) can be equipped with an order continuous symmetric Δ-norm,2 the following 
corollary is an extension of Theorem 4.5.

Corollary 4.10. Let τ be a faithful normal semifinite trace on an atomic von Neumann algebra M. If E(M, τ)
is a symmetrically Δ-normed operator space, then the Δ-norm on E(M, τ) is order continuous if and only 
if the set IB is ‖·‖E-compact for every B ∈ E(M, τ)+.

Proof. “⇒” If the Δ-norm is order continuous, then Corollary 4.9 implies that IB is compact in the Δ-norm 
topology for every B ∈ E(M, τ)+.

“⇐” If IB is ‖ · ‖E-compact, then IB is compact in measure. By Proposition 4.1, we have B ∈ S0(M, τ). 
If B /∈ E(M, τ)oc, then there exists a sequence {bn} with B ≥ bn ↓ 0 but with ‖bn‖E � 0 as n → ∞. 
Since B ∈ S0(M, τ), it follows from [25, Chapter II, Theorem 6.3] (see also [19]) that bn → 0 in measure. In 
particular, any subsequence of {bn} converges to 0 in measure. Since IB is compact in the Δ-norm topology, 
it follows that there is a subsequence {bnk

} of {bn} with bnk
→k b for some b ∈ IB in ‖ · ‖E-topology, and 

1 For the case of strongly symmetrically normed spaces, the assertion of this corollary follows immediately from Theorem 6.11 of 
[18].
2 For example, one can take the Δ-norm ‖ · ‖E by setting ‖X‖E = inft>0{t + μ(t; X)} [34,31]. It is clear that ‖ · ‖E is an order 

continuous Δ-norm on S0(0, ∞). Hence, ‖ · ‖E is an order continuous Δ-norm on the noncommutative counterpart S0(M, τ) [33].
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therefore, in measure. Hence, b = 0, which implies that ‖bnk
‖E → 0. Therefore, ‖bn‖E → 0, which is a 

contradiction. �
Corollary 4.10 might be considered as a non-commutative analogue of the Banach lattice specialization 

of Theorem 6.56 of the monograph [1], which goes back to a much older theorem of I. Kawai (loc. cit., 1957).

Corollary 4.11. Let τ be a faithful normal semifinite trace on an atomic von Neumann algebra M and let 
B ∈ Eoc(M, τ). If (Ai)i∈I ⊂ IB and if Ai → A locally in measure, then Ai → A in Δ-norm topology.

Proof. Assume the contrary. Choose a subnet (Aψ1(j))j∈J such that ‖Aψ1(j)−A‖E ≥ ε for every j ∈ J . Since 
IB is compact in Δ-norm topology, one can extract a further subnet (Aψ1(ψ2(k)))k∈K such that Aψ1(ψ2(k)) →
C ∈ IB in the Δ-norm topology. In particular, Aψ1(ψ2(k)) → C in measure [49], and therefore, Aψ1(ψ2(k)) → C

locally in measure. However, Ai → A locally in measure and, passing to a subnet, Aψ1(ψ2(k)) → A locally in 
measure. By the uniqueness of the limit, C = A. Therefore, Aψ1(ψ2(k)) → A in the Δ-norm topology and, 
simultaneously, ‖Aψ1(ψ2(k)) −A‖E ≥ ε for every k ∈ K. This contradiction completes the proof. �
Theorem 4.12. Assume that (M, τ) is a semifinite von Neumann algebra. Let E(0, ∞) be a symmetrically 
normed operator space with order continuous norm.3 If xn ∈ IB, B ∈ E(M, τ) and xn → x locally in 
measure, then ‖xn − x‖E → 0.

Proof. Let {ei} be a net of τ -finite projections increasing to 1. Note that −B ≤ xn ≤ B. Since xn → x

locally in measure, it follows that x ∈ IB (see e.g. [25, Chapter II, Proposition 7.6]). On the other hand, 
since

0 ≤ xn + B ≤ 2B, 0 ≤ x + B ≤ 2B,

it follows that ‖x + B‖E , ‖xn + B‖ ≤ ‖2B‖E . For every t ∈ R, we have

μ(t;xn − x)

≤ μ( t4 ; ei(xn − x)ei) + μ( t4 ; ei(xn − x)e⊥i ) + μ( t4 ; e⊥i (xn − x)ei) + μ( t4 ; e⊥i (xn − x)e⊥i )

≤ μ( t4 ; ei(xn − x)ei) + 3μ( t4 ; (xn − x)e⊥i ).

By Lemma 2.4, we have

xn + B =
√

2BZn

√
2B

x + B =
√

2BZ
√

2B,

where ‖Zn‖∞, ‖Z‖∞ ≤ 1. Hence, (xn − x)e⊥i =
√

2B(Zn − Z)
√

2Be⊥i . Note that 
√

2B(Zn − Z) is bounded 
in S(M, τ) with μ(

√
2B(Zn − Z)) ≤ 2μ(

√
2B). Moreover, since ‖ · ‖E is absolutely continuous, it follows 

from [17, Theorem 3.1] that

∥∥∥√2Be⊥i

∥∥∥1/2

E(2)
=

∥∥∥|√2Be⊥i |
2∥∥∥

E
=

∥∥e⊥i 2Be⊥i
∥∥
E
→ 0,

3 In particular, E(M, τ) is a strongly symmetric operator space having order continuous norm (see e.g. [25, Chapter IV, Corol-
lary 5.6, Theorem 14.3 and Theorem 14.6]). Lemma 4.8 implies that every element in E(M, τ) has uniformly absolutely continuous 
norm.
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where ‖ ·‖E(2) is the norm of the 2-convexification of E(M, τ) [24], that is, 
√

2Be⊥i → 0 in measure topology 
[49]. By [39, corollary 2.3.16], we have

μ( t4 ; (xn − x)e⊥i ) = μ( t4 ;
√

2B(Zn − Z)
√

2Be⊥i ) ≤ 2μ( t8 ;
√

2B)μ( t8 ;
√

2Be⊥i ),

that is, μ( t
4 ; (xn − x)e⊥i ) → 0 as e⊥i ↓ 0. By the assumption that xn → x locally in measure, we have 

μ(ei(xn − x)ei) →n 0 for every fixed ei, and therefore, μ(t; xn − x) →n 0.
Note that for any net of projections {pi} decreasing to 0, we have

sup
n

‖pi(xn − x)pi‖E = sup
n

‖pi(xn + B − x−B)pi‖E ≤ 2‖pi2Bpi‖E → 0,

which implies that {xn − x} is a bounded set of uniformly absolutely continuous norm [17, Definition 3.3]. 
Hence, by [17, Corollary 3.5], we have ‖xn − x‖E → 0. �

We call reader’s attention to the connection between order continuous norms and weak compactness of 
the interval {y : 0 ≤ y ≤ x}. In the classical (commutative) case this connection can be found in [41, 
Theorem 2.4.2]. A noncommutative analogue of the latter result is contained in [17, Proposition 4.3]. The 
following proposition is a direct corollary.

Proposition 4.13. Let τ be a faithful normal semifinite trace on a von Neumann algebra M. If E(M, τ) is 
a Banach symmetric operator space, then the norm on E(M, τ) is order continuous if and only if the set 
IB is weakly compact for every B ∈ E(M, τ)+.
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