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HYPONORMAL MEASURABLE OPERATORS AFFILIATED
WITH A SEMIFINITE VON NEUMANN ALGEBRA. IV
A. M. Bikchentaev UDC 517.983+4-517.986

Abstract—Let 7 be a faithful normal semifinite trace on a von Neumann algebra M of operators.
For a normal operator A in M, a condition on a 7-integrable operator B is found under which the
operator A + B is normal. For an operator whose square is 7-integrable, equivalent conditions for
its normality are established in terms of trace inequalities. For an operator in M, a criterion for
hyponormality is found in terms of trace inequalities. It is shown that, given an arbitrary natural n,
the power (PQ)™ of the product of projections P and @) in M is hyponormal if and only if PQ = QP.
Operator inequalities are obtained for powers of hyponormal contractions. It is shown that every natural
power of a hyponormal partial isometry is a hyponormal partial isometry with the same initial space.
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1. Introduction

Hyponormal bounded operators on a Hilbert space have been studied by many authors (see, for
instance, [1-10] and the references therein). In the context of semifinite von Neumann algebras, the
author published the papers [11-19] devoted to properties of (unbounded) T-measurable hyponormal
operators (see also [20]). Let M be a von Neumann algebra of operators acting in a Hilbert space H,
let MP" be the lattice of projections in M, and let 7 be a faithful normal semifinite trace on M. We list
the main results of the paper; some of them are new even in the case M = B(H) with 7 = tr.

e Let A € M be normal and let B € Li(M,7)N La(M, 7). If the operator A+ B is hyponormal, then
A+ B is normal (Theorem 1).
For an operator A € La(M, 7), the following conditions are equivalent (see Theorem 2):

(i) A is normal;

(ii) 7(PA*AP) > 7(PAA*P) for all P € MPT;

(iii) 7(PA*AP) < 7(PAA*P) for all P € MP".
A € M is hyponormal if and only if 7(PA*AP) > 7(PAA*P) for all P € MP" with 7(P) < +o0.
If A € B(H); is hyponormal, then (A*?A™)Y/* > (A*)"2A"2 for all n € N with 3 < n (Theorem 4).
Given P, Q € B(H)P* and n € N, the operator (PQ)" is hyponormal if and only if PQ) = QP (Theorem 5).
If a partial isometry U € B(H) is hyponormal, then U" is also a hyponormal partial isometry and
U*U™ = U*U for each n € N (Corollary 5).
Apparently, some of our assertions extend to locally measurable operators from [21].

2. Definitions and Notation

Let M be a von Neumann algebra of operators on a Hilbert space H, let MP" be the lattice of
projections (P = P? = P*) in M, let I be the unit of M, and let P+ =T — P for P € MP". Let M* be
the cone of positive elements in M, let ||-|| be the C*-norm on M, and let M; = {X e M : || X]| <1}
be the unit ball of M.

Given P,Q € MP' we write P ~ @ (Murray—von Neumann equivalence) if P = U*U and Q = UU*
for some U € M.

For (P,)22; C MP", the infimum A7 | P, € MP" is defined by (A, Po)H = oy PoH.
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An operator V € M is an isometry if V*V =1. An operator V € M is a coisometry if V* is an isometry.
A mapping ¢ : M1 — [0, +00] is called a trace if (X +Y) = (X)) + ¢(Y), o(AX) = Ap(X) for all
X, Y € M and A > 0 (with 0 (+00) =0), and ¢(Z*Z) = ¢(ZZ*) for all Z € M. A trace ¢ is called
o faithful if o(X) >0 for all X € M, X #0;
e normal if X; /' X (X;, X € M™T) implies ¢(X) = sup ¢(X;);
o semifinite if o(X) =sup{p(Y): Y e Mt Y <X, p(Y)< + oo} for all X € MT
(see [22, Chapter V, Section 2; 23, Chapter 1, Section 1.15]).
An operator on H (not necessarily bounded or densely defined) is affiliated with the von Neumann
algebra M if it commutes with every unitary operator from the commutant M’ of M.
Further on, 7 denotes a faithful normal semifinite trace on M, and

MPE={P e MP": 7(P) < +o0}.

A closed operator X affiliated with M whose domain D(X) is dense in H is called T-measurable
if for every € > 0 there exists P € MP" such that PH C D(X) and 7(P*) < . The set S(M,7) of
all 7-measurable operators is a *x-algebra with respect to taking the adjoint, scalar multiplication, and
the operations of strong addition and multiplication obtained by taking closures of the usual operations
(see [24, Chapter IX; 23, Chapter 2, Section 2.3]). For a family £ C S(M,7), we denote by £ and £"
the positive and Hermitian parts of £, respectively. The partial order on S(M, 7)* induced by the proper
cone S(M, 1) is denoted by <. If X € S(M,7) and X = U|X] is the polar decomposition of X, then
UeMand |X|=vX*X € S(M, 7).

An operator A € S(M,7) is called hyponormal if A*A > AA*. It is called cohyponormal if the
operator A* is hyponormal.

By u(t; X)) we denote the singular value function of an operator X € S(M,7), i.e., the nonincreasing
right-continuous function pu(-; X) : (0, +00) — [0, +00) defined by

u(t; X) = inf{|XP| : P € MP, 7(P*) <t}, t>0.

Lemma 1 [25]. Let X,Y € S(M, 1) and let A, B € M. Then
(i) p(t; X) = pu(t; | X|) = p(t; X*) for all t > 0;
(ii) if | X| < |Y|, then pu(t; X) < pu(t;Y) for all t > 0;
(iii) u(t; AXB) < [|A] || B (t X) for all t > 0;
(iv) u(t; (| X)) = f(u(t; X)) for all continuous functions f: RT — Rt with f(0) =0 and all t > 0.
The set
So(M, 1) ={X € S(M,7) : p(o0; X) := tli)rg)u(t;X) =0}

of T-compact operators is an ideal in S(M, 7).
Let m be the Lebesgue measure on R. The noncommutative Lebesgue Ly-space (1 < p < 400)
associated with (M, 7) can be defined by

LyM,7)={X € SIM,7): u(-;X) € L,(R*,m)}

with the norm || X, = [|u(-; X)||p, X € Lp(M, 7). We denote by the same symbol 7 the extension of
the trace 7 to the entire Banach space Li(M, ).

If M = B(H) is the x-algebra of all bounded linear operators on H and 7 = tr is the canonical trace,
then S(M, ) coincides with B(H), and Sy(M, 7) coincides with the ideal of compact operators S(H).
The following holds:

H(t; X) = Z Sn(X)X[n—l,n) (t)a t >0,
n=1

where {s,(X)}7; is the sequence of s-numbers of a compact operator X, and x4 denotes the indicator
function of a set A C R (see [26, Chapter II]). Then the space L,(M,7) is the Schatten-von Neumann
ideal Sp(H), 1 < p < +o0.
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3. Main Results
Lemma 2 [24, Chapter IX, Theorem 2.13]. If X € M andY € Li(M, ), then XY, Y X € L1(M, ).
Lemma 3 [27, Theorem 17]. If X, Y € S(M,7)" and XY, Y X € L;(M, ), then 7(XY) = (Y X).
Theorem 1. Let an operator A € M be normal and let B € L1(M,7) N La(M, 7). If the operator

T := A+ B is hyponormal, then T is normal.
PROOF. Since T*T > TT* and A*A = AA*, we have

A*B+B*A+ B*B > AB* + BA* + BB*.

Therefore,
D:=A*B+B*A+ B*B—- AB*— BA* — BB* > 0.

The terms A*B, B*A, AB*, and BA* belong to Li(M,7) by Lemma 2, and B*B, BB* € Li1(M,T)
by the definition of the space Lo(M, 7). Hence D € L1(M,7)". By Lemma 3 we have

T(A*B) =71(BA*), 7(B*A)=171(AB*), 7(B*B)=7(BB"),

and therefore, by linearity of the extension of 7 to Li(M, ), we get 7(D) = 0. Since this extension
is faithful on the cone Li(M,7)", we conclude that D = 0. Thus T*T = TT*, and the operator T
is normal. [

Passing to adjoint operators, we obtain the following.

Corollary 1. Let an operator A € M be normal and let B € L1(M,7)N La(M, 7). If the operator
T := A+ B is cohyponormal, then T is normal.

Corollary 2 [28]. Let an operator A € B(H) be normal and let B € Sy(H). If the operator
T := A+ B is hyponormal (or cohyponormal), then T is normal.

PROOF. The assertion follows from the inclusion Sa(H) C S1(H).

Theorem 2. For an operator A € Lo(M, 1), the following conditions are equivalent:

(i) A is normal;

(ii) 7(PA*AP) > 7(PAA*P) for all P € MP";

(iii) 7(PA*AP) < 7(PAA*P) for all P € MP".

PRrROOF. (i)=(ii): Every normal operator X € S(M, ) is hyponormal. Hence, from the inequality
A*A > AA* we get

PA*AP > PAA*P for all P €¢ MP".

Therefore, by monotonicity on the cone Li(M,7)" of the extension of 7 to L1(M, 7), we obtain (ii).
(ii)=>(i): Assume that (ii) holds, but A is not normal. Since Lo(M,7) C So(M, ), the operator A
is not hyponormal by [11, Theorem 2.2]. Therefore, in the Jordan decomposition

Xi=A"A—AA* =X, - X_, (1)

with X, X_ € Liy(M,7)" and X, X_ = 0, we have X_ # 0. Multiplying both sides of equality (1) on
the left and on the right by the projection P = supp(X_), we get

PA*AP — PAA*P = —X_. (2)

Consequently, 7(PA*AP) — 7(PAA*P) = —7(X_) < 0 since the extension of 7 to Li(M, 1) is faithful
on the cone Li(M,7)*. This contradicts (ii).
Since an operator X € S(M, 1) is normal if and only if X* is normal, we obtain (i)<(iii). O
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Since the trace 7 on the algebra M is semifinite, there exists a nonzero subprojection @ of the
projection P such that Q € MY and QX_Q # 0 (see (2)). Therefore, each of the conditions
o T(PA*AP) > 7(PAA*P) for all P € MY
o T(PA*AP) < 7(PAA*P) for all P € MY
implies that the operator A € La(M, 7) is normal.
An operator T' € S(M, 1) is hyponormal (cohyponormal) if and only if u(¢;TP) > u(t;T*P)
(respectively, u(t;T*P) > p(t; TP)) for all ¢ > 0 and all P € MY (see [17, Theorem 6]). Hence,
by Lemma 1(i), (iv), we conclude the following:

An operator T' € S(M, T) is hyponormal (cohyponormal) if and only if u(t; PT*TP) > u(t; PTT*P)
(respectively, u(t; PTT*P) > p(t; PT*TP)) for allt > 0 and all P € MY,

Arguing in the same way as in the proof of Theorem 2, we verify the following statement:

For an operator A € M, the following conditions are equivalent:
(i) A is hyponormal;
(i) 7(PA*AP) > 7(PAA*P) for all P € MY".

Theorem 3. Let an operator A € M be an isometry, let B € Sy(M,7), and let T := A + B.
If TT* > I and T is hyponormal, then T is normal.

PRrROOF. By assumption, P := AA* € MP". Since T*T > TT* > I, we have
A*B + B*A+ B*B > AB* — BA* — BB* — P+ >0. (3)

In particular, P+ € So(M, 7). If XY € S(M,7)T, Y # 0, and X > p(oo; X)I, then there exists s > 0
such that p(s; X) < p(s; X +Y) (see [29, Proposition 2.2]). The operator

X := AB* — BA* — BB* — Pt
belongs to So(M, 7)™ and satisfies X > p(oco; X)I =0-1 = 0. Put
X+Y =A*B+B*A+ B*B

(see the left-hand side of inequality (3)). Assume that T is not normal, i.e., Y # 0. For an arbitrary
Z € S(M,7)", we have
wt; I +2) =14+ p(t; Z) forallt >0

(see the proof of [30, Theorem 7]). By Lemma 1(i), (iv), we obtain
p(t; TT) = u(t; |T1?) = p(t; |T))? = p(t; T)? = p(t; T*)? = pt; | T*)? = (s | T*?) = p&TT*) - (4)
for all £ > 0. Now, for s > 0 we have
p(sTT)=pw(s; I+ X +Y)=14+pu(s; X +Y) > 14 pu(s; X) = p(s; I+ X) = p(s; TT™).
This contradicts (4). Therefore, Y = 0, and the operator T' is normal. [

Passing to adjoint operators, we obtain the following.

Corollary 3. Let an operator A € M be a coisometry, let B € So(M,7), and let T := A+ B.
If TT* > I and T is cohyponormal, then T is normal.

Lemma 4. The function f(t) = tP is operator monotone on the half-line [0, +o00) for 0 < p < 1.
Lemma 5 [31]. If A € B(H)" and B € B(H)1, then Bf(A)B* < f(BAB*) for every function f that

is operator monotone on [0, +00) and satisfies f(0) < 0.
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Theorem 4. Let an operator A € B(#H)1 be hyponormal. Then (A*™A™)Y/* > (A*)*~2A"=2 for all
3<neN.

ProOOF. Multiplying both sides of the inequality A*A > AA* on the left by A* and on the right
by A, we obtain
A*2A? > (A*A)2 (5)

Then (A*2A42)Y/2 > A*A by Lemma 4. Multiplying both sides of the latter inequality on the left by A*
and on the right by A, by Lemmas 4, 5, and inequality (5) we get

(A*3A3)1/2 > A*(A*2A2)1/2A > A*2 A2 > (14*14)27
and hence (A*3A3)1/4 > A* A. Multiplying both sides of the latter inequality on the left by A* and on the
right by A, by Lemmas 4 and 5 we obtain (A*A%)1/* > A*(A*A3)1/4A > A*2A?; hence, in the same
way we derive
(A*5A5)1/4 > A*(A*4A4)1/4A > A3 43,

Continuing this process, we get (A**A™)1/4 > (A*)"=2472 je., |A?Y/2 > A" 22 forall 3<neN. O

Corollary 4. Let an operator A € My be hyponormal and let A™ € Sy(M, ) for some 2 < n € N.
Then A belongs to So(M, 1) and is normal.

ProoOF. Without loss of generality, we may assume that n is odd (if n is even, consider the operator
ATl = A. A" € Sy(M, 7)). For every t > 0, by Lemma 1(i), (ii), (iv), we have

,U/(t; An)l/? — u(t;A*nAn)1/4 — M(t; (A*nAn)1/4) > ,U*(t; (A*)n72An72) — N(t; |An72‘ ) — N(t; An72)2.
On the other hand, for every ¢ > 0, by Lemma 1(iii),
p(t; A") = p(t; A A"72 - A) < JJA|P p(t; AP72) < plt; A™2),

and hence u(t; A"72) > u(t; A™) > p(t; A72)4 ¢ > 0. Thus A" 2 € So(M, 7). Continuing the process
of reducing the exponent of A, we obtain A € Sp(M, 7). By [11, Theorem 2.2], the operator A is normal.
In particular, pu(t; A¥) = u(t; A)¥ for all t > 0 and all k € N by [11, Theorem 3.1(ii)]. O

Recall that in [16, Theorem 3.3(i)] it was established that if an operator A € S(M, 7) is paranormal
and A™ € So(M,7) for some n € N, then A € Sp(M, 7).

Theorem 5. Let P,Q € B(H)P", let n € N, and let A := (PQ)". Then the following are equivalent:
(i) A is hyponormal;

(ii) PQ = QP (hence A= P AQ € B(H)").

PrOOF. (i)=(ii): We have (QP)"(PQ)" > (PQ)"(QP)", that is,

(QPQ)* 1 > (PQP)™ 1.

Applying Lemma 4 with p = (2n —1)~! € (0, 1], we obtain QPQ > PQP. Multiplying both sides of this
inequality on the left and on the right by the projection P, we get PQPQP = (PQP)? > PQP. Since
PQP € B(H)" N B(H)1, we obtain PQP > (PQP)?. Consequently,

PQP = (PQP)* € B(H)"".

By von Neumann’s theorem [32, Problem 122] (a new proof is given in [33, Theorem 2.2]), the sequence
(PQP)* is nonincreasing and converges in the strong operator topology of B(#) to the projection P A Q.
Thus PQP = P A Q, and the operator V := QP is a partial isometry. Then V* = (QP)* = PQ
is also a partial isometry [32, Corollary 2 to Problem 127, and VV* = QPQ € B(H)P". Applying
von Neumann’s theorem once again, we obtain QPQ = P A (). Hence PQP = QPQ = P N Q. Since
[PQ—PAQ| =+/|PQP — P AQ]| =0 (see [33, p. 6]), we get PQ = PAQ and A = (PQ)" = PAQ. O
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Lemma 6. Let A€ B(H)", let P € B(H)P*, and let I > A > P. Then
(i) AP =PA;
(ii) if AP = A, then A= P.

ProoF. (i): Since P+ > I — A > 0; according to [34, Chapter 2, 2.17] the operators P+ € B(H )P
and I — A commute. Hence AP = PA.

(ii): We have B:= A — P > 0 and A = P + B. Multiplying both sides of the latter equality on the
left by the projection Pt, we get BP+ = AP+ = 0. Multiplying both sides of the inequality I > P + B
on the left and on the right by the projection P, we obtain P > P 4+ PBP. Since PBP > 0, we have
PBP = |BY2P|?> = 0. Consequently, BY2P =0 and BP = B'/?. B/2P = 0. Thus B = BP + BP* =
0+ 0=0, and hence A=P. O

Theorem 6. Let P,QQ € MP". Then
(i) u(t; PQY)? = p(t; P — PQP) < pu(t; P — Q) for all t > 0;
(ii) if P~ Q and V € M with V*V = P and VV* = @Q, then

wt; P=V)=put;Q—=V) <u(t; 1 -V) forallt>0;
(iii) if a partial isometry U € B(#) is hyponormal, then

PRrROOF. (i): For every ¢t > 0, by Lemma 1(i), (iii), (iv), we have
p(t; PQ)? = u(t; Q1 P)? = p(t; PQTP) = p(t; P — PQP) = pu(t; P(P — Q)P)
<|PIPut: P = Q) = p(t; P - Q).

(ii): If P ~ @Q with V € M, then V is a partial isometry and V = VV*V (see [32, Corollary 3
to Problem 127]). Therefore, by Lemma 1(i), (iii), for every ¢ > 0 we have

pwt; P =V)=put; V'V = VVV) = pt; (V= VVHV)
<Vt VE=VV) = u(t; V= Q) = put;Q = V).

In the same way, we obtain u(t;Q — V) < u(t; P — V) for every t > 0. By Lemma 1(i), (iii), for every
t > 0 we have

p(t;Q=V)=pt; VvV =V) = pt; V(V' = 1) < VIpt V= 1) = p(t; I = V).

(iii): Multiplying both sides of the inequality U*U > UU™* on the left by U and on the right by U*,
and taking into account the equality U = UU*U, we obtain UU* > U2U*?. Multiplying all parts of
the chain U*U > UU* > U%U*? on the left by U and on the right by U*, and again using U = UU*U,
we get UU* > U?U*? > U3U*3. Continuing this process, we obtain

U'U > UU* > UU2 > ... > Uru > urtipset) >

Multiplying both sides of the inequality U*U > UU* on the left by U* and on the right by U, and
taking into account the equality U = UU*U, we obtain U*?U? > U*U. Multiplying all parts of the chain
U*2U? > U*U > UU* on the left by U* and on the right by U, and again using U = UU*U, we get
U*U3 > U*2U? > U*U. Continuing this process, we obtain
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Corollary 5. If a partial isometry U € B(H) is hyponormal, then U™ is also a hyponormal partial
isometry and U*U™ = U*U for every n € N.

PRrROOF. Since I > U*U™ > U*U > UU* > UMU™ > 0, the operator U" is hyponormal for every
n € N. Fixn € N and put A:=U"U", P:=U*U. Then I > A> P and

AP =UU" - U*U = U"U™ . UU'U =U*"U" = A

by the equality UU*U = U. Now, by Lemma 6(ii), we obtain U*"'U"™ = U*U = P for every n € N.
Consequently, U™ is also a partial isometry; hence, U*"" is a partial isometry for every n € N.

The sequence of projections (Q,)02; = (U"U*™)2° is decreasing and, according to Vigier’s theorem
(see [35, Theorem 4.1.1] or [36, Chapter 1, Theorem 4.5]), it converges in the strong operator topology
of B(H) to some nonnegative operator in B(?);. Since the lattice B(H)P" is monotone complete, the
limit operator is the projection A\>2 | Qpn. O
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