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Abstract: This research is based on the concept that mitochondria are a promising target for anticancer
therapy, including thatassociated with the use of oxidative phosphorylation blockers (mitochon-
drial poisons). Liposomes based on L-α-phosphatidylcholine (PC) and cholesterol (Chol) modified
with cationic surfactants with triphenylphosphonium (TPPB-n, where n = 10, 12, 14, and 16) and
imidazolium (IA-n(OH), where n = 10, 12, 14, and 16) head groups were obtained. The physico-
chemical characteristics of liposomes at different surfactant/lipid molar ratios were determined by
dynamic/electrophoretic light scattering, transmission electron microscopy, and spectrophotometry.
The hydrodynamic diameter of all the systems was within 120 nm with a polydispersity index of no
more than 0.24 even after 2 months of storage. It was shown that cationization of liposomes leads
to an increase in the internalization of nanocontainers in pancreatic carcinoma (PANC-1) and duo-
denal adenocarcinoma (HuTu 80) cells compared with unmodified liposomes. Also, using confocal
microscopy, it was shown that liposomes modified with TPPB-14 and IA-14(OH) statistically better
colocalize with the mitochondria of tumor cells compared with unmodified ones. At the next stage,
the mitochondrial poison rotenone (ROT) was loaded into cationic liposomes. It was shown that the
optimal loading concentration of ROT is 0.1 mg/mL. The Korsmeyer–Peppas and Higuchi kinetic
models were used to describe the release mechanism of ROT from liposomes in vitro. A significant
reduction in the IC50 value for the modified liposomes compared with free ROT was shown and,
importantly, a higher degree of selectivity for the HuTu 80 cell line compared with the normal cells
(SI value is 307 and 113 for PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT, respectively)
occurred. It was shown that the treatment of HuTu 80 cells with ROT-loaded cationic liposomal
formulations leads to a dose-dependent decrease in the mitochondrial membrane potential.

Keywords: mitochondria; cationic surfactant; triphenylphosphonium; imidazolium; liposome;
rotenone; cancer; colocalization

1. Introduction

The critical role of mitochondria in the functioning of healthy and transformed cells
makes these organelles an ideal target for pharmaceutical substances for the treatment
of various pathologies (for instance, neurodegenerative, oncological, and cardiovascular
diseases) [1,2]. Cellular processes such as energy production, calcium homeostasis, pro-
duction of reactive oxygen species, cell survival, apoptosis, and regulation of the immune
response are largely controlled by the cell mitochondria [3,4]. Mitochondrial medicine is a
field of science and practice that deals with mitochondrial dysfunction in one or more of the
listed cellular processes leading to disease progression [5–9]. Cancer development is closely
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related to the proliferation of transformed cells. A hallmark of tumor cell metabolism is
increased glucose uptake and the enzymatic conversion of glucose to lactate even in the
presence of oxygen (the Warburg effect) [10]. Aerobic glycolysis in cancer cells was long
believed to be the result of mitochondrial dysfunction, which in turn was thought to be the
cause of cancer. However, later it was proved that the Warburg effect is not the cause of ma-
lignant transformation but its consequence and adaptation to hypoxia in tumor cells [11,12].
New therapeutic methods should take into account the main factors affecting the resistance
of tumors to chemotherapy. Cell metabolism-focused research offers new perspectives that
may contribute to the development of innovative and effective medicines [13,14].

There are strategies for targeting mitochondria, such as the use of mitochondrial leader
sequences, mitochondrial peptides, delocalized cations, and self-assembled bolaform de-
qualinium structures (DQAsomes) [1,15]. Among them, the use of delocalized cations
has attracted attention due to our experience in cationic surfactant research [16–18]. In
the case of delocalized cations, the mitochondrial targeting strategy is based on the high
negative charge of the mitochondrial membrane (about −180 mV) and gentle passage of
lipophilic cations through the cell membrane, maintaining its integrity. Mitotropic cations,
for instance, alkyltriphenylphosphonium cations, rhodamine, and cyanine cations, could
be covalently attached to the functional moiety through a linker [15]. For instance, con-
jugates of rhodamine B with pentacyclic triterpenoic acids (oleanolic, ursolic, betulinic,
platanic, and asiatic acids) [19], with hydroxy core-modified porphyrin [20], and with zinc
complexes [21] have been obtained and investigated. A variety of work on delocalized
cations was carried out on the triphenylphosphonium (TPP) cation, which was covalently
linked to doxorubicin [22], glycyrrhetinic acid [23], betulin and betulinic acid [24], ginseno-
sides (the main active components in ginseng) [25], etc. There are examples of TPP cation
introduction into a polymer matrix: the polyethylene glycol-phosphatidylethanolamine
conjugate with the TPP group and paclitaxel demonstrated enhanced cytotoxicity and
anti-tumor efficacy [26]; methoxy polyethylene glycol—TPP conjugate with biodegradable
linkage and two disulfide bonds could cause rapid doxorubicin release with enhanced
mitochondrial uptake [27]; and D-α-tocopheryl polyethylene glycol 1000 succinate—TPP
conjugate was incorporated into liposomes [28]. However, covalent modification can
potentially affect activity. Therefore, as an alternative, the noncovalent modification of
nanocontainers can be used [29]. Modified liposomes can also be obtained by introducing
a TPP group into phospholipids [30–32] or by the noncovalent modification of nanopar-
ticles with TPP-containing amphiphilic derivatives [33–37]. The latter is achieved by a
hydrophobic tail that anchors into the lipid bilayer, while TPP is located on the inner and
outer liposome surface. Previously, for the first time, we have used a homologous series
of alkyltriphenylphosphonium [35] and 1-methyl-3-alkylimidazolium [38] bromides for
the noncovalent modification of liposomes. It has been established that they are able to
colocalize with mitochondria [34,35].

A modern approach in the treatment of oncological diseases resistant to traditional
types of chemotherapy is the use of oxidative phosphorylation blockers. Currently, more
than 20 compounds are known to directly act on mitochondria and cause the death of
unhealthy cells (such as rotenone (ROT), antimycin A, oligomycin, etc.) [39]. Therefore,
studies with surfactant-modified liposomes with a delocalized charge were developed by
loading them with mitochondrial poison.

In the framework of this research, liposomal formulations based on
L-α-phosphatidylcholine (PC), cholesterol (Chol), and two types of surfactants with a delo-
calized positive charge, namely, n-alkyltriphenylphosphonium bromides (TPPB-n, where
n = 10, 12, 14, and 16) and 3-alkyl-1-(2-hydroxyethyl)imidazolium bromides (IA-n(OH),
where n = 10, 12, 14, and 16) (Figure 1), were created. The obtained modified liposomes
were loaded with the mitochondrial poison ROT. After the optimization of the liposomal
formulation, in vitro studies on the colocalization of modified liposomes with the mitochon-
dria of duodenal adenocarcinoma (HuTu 80) and pancreatic carcinoma (PANC-1) cells were
carried out. A comparative analysis of all the results obtained for the traditionally used
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triphenylphosphonium cation and the new, from the point of view of mitochondrial target-
ing, imidazolium cation was carried out. In both cases, the modification of the lipid bilayer
was carried out by the method of noncovalent incorporation of amphiphilic compounds,
which is based on thin lipid film hydration.
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Figure 1. Structural formulas of the investigated compounds.

2. Results and Discussion

Previously developed formulations based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) and cationic surfactants [34,35] were optimized by replacing DPPC with soy
L-α-phosphatidylcholine (PC) and cholesterol (Chol). It is known that liposomes based
on lipids with unsaturated bonds in the hydrophobic tails (for example, soy PC) are char-
acterized by high membrane permeability and low stability [40]. Such disadvantages
of liposomal systems can be prevented by adding Chol to the liposome composition by
improving the packaging of phospholipids and affecting the rigidity and fluidity of the
lipid bilayer [41], thereby leading to an increase in the stability of liposomes [42]. The
formulation requires careful selection of the component ratio, so the lipid/surfactant molar
ratio was varied over a wide range, namely, 50/1, 35/1, and 25/1. Because size and elec-
trokinetic potential are of significant importance in creating nanoscale delivery systems,
the first step involved measuring the physicochemical characteristics of liposomes, namely,
the hydrodynamic diameter (Dh), polydispersity index (PdI), and zeta potential (ζ), using
dynamic and electrophoretic light scattering (DLS/ELS). The hydrodynamic diameter of
the modified liposomes was approximately 100–120 nm with a PdI of no more than 0.24
(Table 1). It is worth noting that the modification of the liposomes with cationic surfactants
led to a slight compaction and reduction in size compared with the unmodified liposomes.
According to the monitoring of the liposome stability over time, the systems remained
stable for more than two months. During the storage period, the liposomal formulations
maintained a high degree of monodispersity (the PdI was less than 0.27) and a size of no
more than 134 nm (Table 1).

Because the main task of the modification of the liposomes with surfactants was the
cationization of the liposome surface, special attention was devoted to measuring the zeta
potential of the nanoparticles. As shown in Figure S1a,b, increasing the hydrophobicity of
TPPB-n and IA-n(OH) led to an increase in the positive charge of the liposomes. For instance,
in the series of liposomes modified with IA-n(OH), the zeta potential value increased for
the dodecyl, tetradecyl, and hexadecyl homologues in lines +26 mV, +39 mV, and +44.2 mV,
respectively. Such an effect of the surfactant tail is reliably documented both by our research
group and by others [35,43–45]. For the tetradecyl homologue, a sufficient zeta potential
was achieved. It is interesting that the zeta potential of the liposomes modified with IA-
n(OH) increased smoothly depending on the surfactant hydrocarbon tail length, while the
values for the liposomes with TPPB-n changed insignificantly (Figure S1a,b). Additionally,
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increasing the concentration of TPPB-n and IA-n(OH) in the lipid bilayer contributed to a
slight increase in the liposome zeta potential (Figure S1c,d). After 2 months of storage, the
zeta potential of the IA-n(OH) liposomes decreased, while the zeta potential of the TPPB-n
liposomes, on the contrary, increased, which was also shown earlier [36]. In addition, for
the liposomes modified with a surfactant with a tetradecyl tail, the lowest PdI values were
observed for both homologous series. A PdI value below 0.3 is enough for phospholipid
vesicles [46]. But in the region of the PdI from 0 to 0.3, there is a narrow interval of PdI
values below 0.2, in which highly monodisperse particles are present [47]. Therefore, the
tetradecyl homologue was selected after comprehensive evaluation of the zeta potential
and PdI values.

Table 1. Physicochemical properties of empty PC/Chol/TPPB-n and PC/Chol/IA-n(OH) liposomes
at various lipid/surfactant molar ratio, 4 ◦C.

Formulation Dh, nm PdI ζ, mV Dh, nm PdI ζ, mV

1st Day 2 Months

PC 131 ± 1 0.214 ± 0.013 +1.8 ± 0.9 115 ± 1 0.105 ± 0.008 −13 ± 1

PC/Chol 133 ± 5 0.215 ± 0.022 −7.0 ± 0.2 112 ± 1 0.118 ± 0.023 −14 ± 1

50/1

PC/Chol/TPPB-10 152 ± 1 0.239 ± 0.003 +29 ± 2 114 ± 2 0.102 ± 0.010 +31 ± 3

PC/Chol/TPPB-12 102 ± 1 0.116 ± 0.018 +30 ± 2 100 ± 1 0.145 ± 0.008 +35 ± 2

PC/Chol/TPPB-14 120 ± 1 0.085 ± 0.012 +33 ± 2 106 ± 1 0.086 ± 0.012 +37.2 ± 0.5

PC/Chol/TPPB-16 98 ± 1 0.103 ± 0.018 +38 ± 2 120 ± 1 0.124 ± 0.010 +44 ± 1

PC/Chol/IA-10(OH) 150 ± 1 0.200 ± 0.012 +10.5 ± 0.2 96 ± 2 0.078 ± 0.013 +3.3 ± 0.4

PC/Chol/IA-12(OH) 104 ± 1 0.177 ± 0.002 +26 ± 1 116 ± 4 0.269 ± 0.037 +13 ± 1

PC/Chol/IA-14(OH) 111 ± 1 0.083 ± 0.012 +39 ± 1 113 ± 1 0.090 ± 0.011 +27 ± 1

PC/Chol/IA-16(OH) 109 ± 1 0.105 ± 0.011 +44.2 ± 0.4 121 ± 1 0.168 ± 0.006 +25.1 ± 0.5

35/1

PC/Chol/TPPB-10 110 ± 1 0.092 ± 0.023 +28.8 ± 0.6 122 ± 1 0.130 ± 0.021 +33 ± 1

PC/Chol/TPPB-12 104 ± 1 0.134 ± 0.014 +31 ± 1 103 ± 1 0.137 ± 0.022 +45 ± 3

PC/Chol/TPPB-14 109 ± 1 0.083 ± 0.012 +35 ± 1 108 ± 2 0.138 ± 0.019 +42 ± 1

PC/Chol/TPPB-16 102 ± 1 0.119 ± 0.008 +30.3 ± 0.3 122 ± 1 0.147 ± 0.012 +47 ± 4

PC/Chol/IA-10(OH) 106 ± 2 0.204 ± 0.034 +12.4 ± 0.6 99 ± 2 0.133 ± 0.028 +7.5 ± 0.5

PC/Chol/IA-12(OH) 94 ± 1 0.100 ± 0.015 +31 ± 1 113 ± 5 0.237 ± 0.015 +19 ± 2

PC/Chol/IA-14(OH) 110 ± 1 0.094 ± 0.002 +41 ± 1 116 ± 1 0.101 ± 0.014 +26 ± 3

PC/Chol/IA-16(OH) 107 ± 1 0.151 ± 0.004 +49.2 ± 0.4 132 ± 3 0.217 ± 0.004 +34 ± 3

25/1

PC/Chol/TPPB-10 113 ± 1 0.076 ± 0.019 +39 ± 1 114 ± 1 0.101 ± 0.004 +38 ± 1

PC/Chol/TPPB-12 120 ± 1 0.137 ± 0.032 +42 ± 1 103 ± 1 0.114 ± 0.004 +43 ± 3

PC/Chol/TPPB-14 111 ± 1 0.133 ± 0.005 +38.8 ± 0.5 122 ± 1 0.124 ± 0.012 +47 ± 2

PC/Chol/TPPB-16 123 ± 1 0.097 ± 0.009 +40.3 ± 0.4 119 ± 2 0.103 ± 0.006 +53 ± 2

PC/Chol/IA-10(OH) 108 ± 1 0.203 ± 0.006 +15 ± 1 97 ± 2 0.120 ± 0.024 +6 ± 2

PC/Chol/IA-12(OH) 97 ± 1 0.132 ± 0.004 +35 ± 1 134 ± 3 0.255 ± 0.004 +25 ± 0.8

PC/Chol/IA-14(OH) 111 ± 1 0.101 ± 0.023 +45 ± 1 117 ± 1 0.103 ± 0.010 +35 ± 1

PC/Chol/IA-16(OH) 112 ± 1 0.094 ± 0.018 +51 ± 1 131 ± 4 0.207 ± 0.107 +38 ± 1

To confirm the morphology and size of the obtained aggregates, microphotographs
of the PC/Chol/TPPB-14 (50/1) liposomes were obtained using transmission electron
microscopy (TEM). The microphotographs revealed the formation of spherical vesicles,
mainly with a diameter of 80 ± 17 nm (Figure 2a,b). As can be seen, a slight polydispersity
was observed in the system, which is also reflected in the diagram obtained by processing
the photographs with the ImageJ software. Nevertheless, this is insignificant, and the data
are in good agreement with the light scattering data (Figure 2c).
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Figure 2. (a) Micrograph of liposomes obtained by TEM; (b) size distribution of liposomes in a TEM
micrograph by number obtained using ImageJ software; (c) number-averaged size distribution of
particles determined by DLS for PC/Chol/TPPB-14 at a molar ratio of 50/1, 25 ◦C.

The first step of assessing the biological activity of mitochondria-targeted nanopar-
ticles is cellular internalization. A cellular uptake experiment was carried out by flow
cytometry [48] using both unmodified and modified liposomes containing the fluorescent
lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)
(ammonium salt) (DOPE-RhB) on the PANC-1 and HuTu 80 cell lines (Figures 3 and 4). It
can be observed that the fluorescence intensity within the cells demonstrated a discernible
increase upon exposure to the liposomes, indicating a significant uptake of the liposomes
by the PANC-1 and HuTu 80 cells compared with the control. However, in the case of the
PC/Chol/TPPB-14 and PC/Chol/IA-14(OH) liposomes, this effect was more significant,
indicating an enhanced penetrating ability of the modified liposomes. This can be explained
in terms of liposome surface charge: positively charged liposomes interact with negatively
charged cell membranes through electrostatic interactions, facilitating their internalization
into cells [49]. A similar result was demonstrated by other researchers, which confirms the
positive effect of nanoparticle cationization [50–53]. It is worth noting that the fluorescence
intensity in the case of the HuTu 80 cell line was lower for all the systems compared to the
PANC-1 cell line (Figures 3 and 4). It can be explained in terms of the concentrations of
the liposomes used for the experiment. The cytotoxicity of the investigated systems was
higher in the case of the HuTu 80 cell line compared to the PANC-1 cells. For experiments
involving the determination of the cellular uptake of liposomes, it is necessary to dilute the
liposomes to concentrations below the IC50 values to ensure cell viability. In the case of the
HuTu 80 cell line, the liposomes were diluted much more compared to the PANC-1 cell
line, thereby leading to a reduction in the amount of fluorescent probe in the system, which
in turn results in a reduced fluorescence intensity of the liposomes inside the cells.

A qualitative analysis of the cellular uptake was also conducted using fluorescence mi-
croscopy for the PC/Chol and PC/Chol/TPPB-14 (50/1) systems as an example (Figure S2).
The blue fluorescence in the presented images corresponds to the localization of DAPI,
which can bind strongly to adenine and thymine-rich areas of DNA, thereby identify-
ing the cell nuclei. The red fluorescence reflects the localization of the liposomes with
the fluorescent lipid DOPE-RhB. According to the obtained results, the PC/Chol and
PC/Chol/TPPB-14 liposomes did indeed have the ability to penetrate the cells and localize
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around the nuclei. However, this effect was more pronounced in the case of the modified
liposomes, as also demonstrated in Figures 3 and 4.
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Figure 4. Cellular uptake of unmodified and modified (50/1) liposomes, i.e., (a) PC/Chol/TPPB-
14 and (b) PC/Chol/IA-14(OH) by HuTu 80 cells. Statistical analysis was performed using the
Mann–Whitney test. (*) p < 0.01 compared to control; (**) p < 0.01 compared to PC Chol.

The modification of liposomes with cationic amphiphile with delocalized positive
charge enhances the ability of the resulting systems to penetrate the internal membrane of
organelles [14,54]. To determine the potential use of PC/Chol/TPPB-14 and PC/Chol/IA-
14(OH) liposomes for drug delivery, their ability to colocalize with mitochondria was
investigated (Figures 5 and 6). The HuTu 80 and PANC-1 cell lines were selected for the
experiment. The mitochondria of the living cells were stained with Mito-Tracker Green
FM (Figures 5a and 6a), the colocalization of which with DOPE-RhB (Figures 5b and 6b)
indicates that the liposomes reached the mitochondria of the tumor cells. A qualitative
analysis of the fluorescence signal distribution in the images obtained through confocal
microscopy revealed a greater uptake of the modified liposomes by the cell mitochondria
compared with the unmodified liposomes, which can be seen from the superimposition of
the red and green channels, giving a yellow color (Figures 5c and 6c).

To quantitatively assess the degree of colocalization, the Pearson Correlation Coeffi-
cient (PCC) was calculated. The PCC, a measure of the linear relationship between variables,
ranges from−1 to 1. In this scale,−1 signifies a negative linear correlation, 0 denotes no cor-
relation, and 1 indicates a positive correlation [55]. As evident from the presented diagrams,
the PCC values for the PC/Chol/TPPB-14 and PC/Chol/IA-14(OH) liposomes were higher
compared with the values for the unmodified liposomes for both the HuTu 80 and PANC-1
cell lines (Figures 7 and 8). It is worth noting that the difference in colocalization efficiency
between the liposomes modified with TPPB-14 and IA-14(OH) was minimal, except for
the PANC-1 cell line: the colocalization degree of the PC/Chol/TPPB-14 liposomes was
significantly higher than that of the PC/Chol/IA-14(OH) liposomes (PCC = 0.95 ± 0.03
and 0.52 ± 0.11, respectively) (Figures 7a and 8a).
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One of the approaches in the treatment of chemotherapy-resistant oncological diseases
involves the use of oxidative phosphorylation blockers, also known as mitochondrial
poisons [39]. The combination of such mitochondrial-targeted nanoscale drug delivery
systems with mitochondrial poisons represents a promising direction [56,57]. One such
compound is rotenone (ROT), an isoflavonoid commonly used as a pesticide for animals,
agricultural crops, and fisheries management [58]. It is known that ROT has the ability
to inhibit the mitochondrial function of cells by inhibiting the mitochondrial complex I,
which is widely used to model Parkinson’s disease in laboratory animals [59–61], as well
as to study the role of the mitochondrial respiratory chain during apoptosis [62]. Some
researchers have demonstrated the ROT effectiveness in triggering apoptosis of tumor cells
through the production of reactive oxygen species in cells [63,64]. Despite these properties,
ROT has not found widespread use as a conventional drug for the treatment of cancer. This
might be attributed to its high activity, non-selective action, and toxicity toward normal cells.
In this regard, its encapsulation in liposomal systems targeting the mitochondria of tumor
cells can significantly reduce its toxicity to normal cells. Therefore, at the next stage, ROT
was loaded into the cationic liposomes, with a primary focus on determining the optimal
loading concentration and physicochemical characteristics of liposomes. For this purpose,
the extinction coefficient of ROT in various media was first determined (Table S1). Figure 9
demonstrates the encapsulation efficiency (EE) values for five different concentrations of
ROT in the PC/Chol/TPPB-14 (50/1) liposomes as an example. According to the results,
the most optimal loading concentration of ROT was 0.1 mg/mL. It is worth noting that at
concentrations above 0.1 mg/mL, liposomes can encapsulate more ROT. However, this
leads to inefficient use of the drug substance, which is economically impractical, and may
affect the stability of liposomes and toxicity toward normal cells. Therefore, maintaining
the optimal concentration of 0.1 mg/mL was a reasonable choice for further studies.
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Because the incorporation of a hydrophobic substrate into liposomes can directly im-
pact the physicochemical properties of the nanocarriers, the physicochemical characteristics
of ROT-loaded nanocarriers were monitored over time (Table 2). At this stage of the study,
attention was focused on two lipid/surfactant molar ratios, namely, 50/1 and 35/1. This is
due to the fact that an increase in the surfactant concentration can adversely affect the toxi-
city of the entire formulation (Table S2) [65]. There was no noticeable effect of ROT on the
physicochemical characteristics of the liposomes; the particle diameter was approximately
110 nm. The zeta potential of both the empty and ROT-loaded liposomes also converged
almost completely (Table 2). As in the case of the empty liposomes, the zeta potential of the
TPPB-n of the liposomes increased after 2 months of storage, while the zeta potential of
the IA-n(OH) liposomes, on the contrary, decreased (Table 2), which confirms the pattern
described earlier (Table 1). Similar results were obtained for the PC/Chol/IA-n(OH) system
at a molar ratio of the components of 25/1 (Table S3). Although liposomes loaded with
hydrophobic substrates tend to be less stable [66], the liposomes with ROT showed good
stability over time, with the PdI for many systems below 0.1. In addition to the DLS data,
the efficiency of the liposome encapsulation toward the ROT was determined for all the
systems (Table 2). It has been shown that the surfactant hydrocarbon tail length and the
lipid/surfactant ratio had an insignificant effect on the EE, and the values exceeded 90%.

In the next stage, the ROT release rate from the modified liposomes was investigated
using the dialysis method [67–69] (Figure 10). It is worth noting that studying the release of
hydrophobic substrates is a challenging task because they are insoluble in water, and it is
not possible to recreate biological conditions in vitro. Therefore, a sodium phosphate buffer
(PBS) (pH = 7.4) and ethanol in a 1:1 ratio were chosen as the release medium. To ensure that
the liposomes remained stable in such an environment, the size and PdI of the liposomes
in water and in the PBS:ethanol medium were first determined using PC/Chol/ROT and
PC/Chol/TPPB-14/ROT systems as the examples (15 mM, 50/1) (Figure S3). As seen from
the graph, the size of the liposomes in the aqueous solution was in the range of 100 nm,
with a polydispersity index of 0.225 ± 0.005 for PC/Chol/ROT and 0.142 ± 0.002 for
PC/Chol/TPPB-14/ROT. Upon addition of the liposomes into the PBS:ethanol medium, the
liposome size increased two-fold, but the systems remained monodispersed with PdI values
below 0.3 (0.230 ± 0.007 for PC/Chol/ROT and 0.226 ± 0.003 for PC/Chol/TPPB-14/ROT)
(Figure S3). It is worth noting that the liposome characteristics in the PBS:ethanol were easily
detected, and there were no signs of aggregate destruction in the light scattering correlation
plots. As seen in Figure 10, the ROT was released more rapidly from the unmodified
liposomes compared with the modified systems. This effect was more pronounced in the
case of the liposomes modified with the imidazolium surfactants (Figure 10a,c). The release
rate of ROT from the IA-14(OH) liposomes depends on the surfactant concentration: a
higher concentration led to an increased release rate (Figure 10a). Presumably, in this case,
the higher surfactant concentration results in greater destabilization of the lipid bilayer and
subsequent ROT leakage from the lipid bilayer. A similar assumption was made by other
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researchers in the context of liposome stability in the presence of hydrophilic fluorescein
and hydrophobic rhodamine [66]. Interestingly, in the case of TPPB-14 and IA-10(OH), there
was no statistically significant impact of the surfactant concentration on the ROT release
rate (Figure 10b and Figure S4, respectively). Meanwhile, more noticeable differences were
observed when varying the surfactant hydrocarbon tail length. For both IA-n(OH) and
TPPB-n, increasing the length of the surfactant alkyl tail led to an increase in the ROT
release rate (Figure 10c,d). This phenomenon can also be explained in terms of a decrease
in the critical micelle concentration with an increase in the surfactant hydrocarbon tail
length [70,71], which can lead to an increase in the ability of the surfactants to loosen the
lipid bilayer and leakage of ROT from liposomes [72–74]. However, it should be noted that
the differences between the surfactants with C16 and C10 did not exceed 10%. Considering
the fact that the release profiles of ROT change and depend on the liposome composition, it
can be concluded that the liposomes remain stable during dialysis, and ethanol does not
significantly contribute to the rate of substrate release. Otherwise, the ROT release profiles
from the dialysis bag would be identical because free ROT would release from the dialysis
bag after liposome disruption.

Table 2. Physicochemical characteristics of PC/Chol/TPPB-n and PC/Chol/IA-n(OH) liposomes
loaded with ROT (0.1 mg/mL) at two lipid/surfactant molar ratios, 4 ◦C.

Formulation EE, %
Dh, nm PdI ζ, mV Dh, nm PdI ζ, mV

1st Day 2 Months

50/1

PC/Chol/TPPB-10 91 ± 2 110 ± 1 0.103 ± 0.005 29 ± 1 121 ± 1 0.099 ± 0.017 29 ± 1

PC/Chol/TPPB-12 94 ± 1 119 ± 2 0.115 ± 0.011 31 ± 1 123 ± 2 0.115 ± 0.018 31 ± 1

PC/Chol/TPPB-14 94 ± 1 114 ± 1 0.109 ± 0.011 33 ± 1 115 ± 1 0.098 ± 0.027 31 ± 1

PC/Chol/TPPB-16 95 ± 2 116 ± 2 0.106 ± 0.005 25.5 ± 0.7 120 ± 2 0.098 ± 0.017 34 ± 3

PC/Chol/IA-10(OH) 97 ± 1 109 ± 1 0.068 ± 0.011 6.4 ± 0.5 125 ± 2 0.124 ± 0.007 3.2 ± 0.4

PC/Chol/IA-12(OH) 97 ± 1 109 ± 1 0.083 ± 0.004 25.4 ± 0.1 118 ± 1 0.146 ± 0.003 8.5 ± 0.1

PC/Chol/IA-14(OH) 96 ± 2 111 ± 1 0.075 ± 0.003 36.2 ± 0.5 124 ± 1 0.169 ± 0.012 14.3 ± 0.5

PC/Chol/IA-16(OH) 98 ± 1 110 ± 1 0.090 ± 0.003 39 ± 1 119 ± 1 0.160 ± 0.005 13.2 ± 0.5

35/1

PC/Chol/TPPB-10 91 ± 3 114 ± 2 0.116 ± 0.015 31 ± 1 110 ± 2 0.096 ± 0.014 37.2 ± 0.3

PC/Chol/TPPB-12 92 ± 2 138 ± 3 0.250 ± 0.006 34 ± 2 106 ± 2 0.072 ± 0.008 44 ± 1

PC/Chol/TPPB-14 94 ± 1 122 ± 1 0.203 ± 0.019 35 ± 1 114 ± 1 0.082 ± 0.020 45 ± 3

PC/Chol/TPPB-16 93 ± 1 117 ± 1 0.172 ± 0.001 32 ± 1 120 ± 1 0.171 ± 0.013 48 ± 2

PC/Chol/IA-10(OH) 89 ± 2 109 ± 1 0.095 ± 0.007 9 ± 1 151 ± 3 0.282 ± 0.016 7.2 ± 0.2

PC/Chol/IA-12(OH) 94 ± 2 110 ± 2 0.109 ± 0.002 30.2 ± 0.2 117 ± 1 0.107 ± 0.025 24 ± 1

PC/Chol/IA-14(OH) 92 ± 1 118 ± 1 0.155 ± 0.013 40 ± 1 113 ± 2 0.127 ± 0.004 35 ± 1

PC/Chol/IA-16(OH) 94 ± 2 115 ± 2 0.133 ± 0.014 45.1 ± 0.2 115 ± 1 0.072 ± 0.008 28 ± 1

For a more detailed understanding of the kinetics of the ROT release from the lipo-
somes, the obtained dependencies were processed by two kinetic models, namely, the
Korsmeyer–Peppas and Higuchi models (Figure 10 and Figure S5, respectively). Based on
personal experience and the literature data, these two models have proven most suitable
for characterizing the kinetics of substrate release from liposomes [36,73,75–78]. According
to the presented graphs (Figure 10), the Korsmeyer–Peppas model better described the
release profiles of ROT from the modified liposomes than the Higuchi model (Figure S5),
because the correlation coefficient (R2) in all the cases exceeded 0.98 (Table 3). For the
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IA-10(OH) liposomes, this trend was also confirmed (Table S4). The presented values of
the rate constant confirm the judgments made above: an increase in the concentration of
IA-14(OH) led to a slight increase in the ROT release rate, as well as an increase in the
length of the surfactant hydrocarbon tail. Interestingly, based on the diffusion release
exponent values (n), the mechanisms of the ROT release from the PC/Chol/IA-n(OH)
and PC/Chol/TPPB-n liposomes were different. The PC/Chol/IA-n(OH) liposomes were
characterized by Fickian diffusion (n < 0.45), while for the PC/Chol/TPPB-n liposomes,
the release mechanism changed to non-Fickian diffusion (0.45 < n < 0.89) [79,80], which
means that in the case of liposomes modified with triphenylphosphonium surfactants, a
synergistic effect of diffusion of the drug substance and the dissolution of the phospholipid
bilayer of liposomes is observed during the release [81]. The absorption spectra of ROT for
all the systems are shown in Figures S6–S11.
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PC/Chol/TPPB-14; (c) the IA-n(OH) hydrocarbon tail length at molar ratio of 50/1; (d) the TPPB-n
hydrocarbon tail length at molar ratio of 50/1, 37 ◦C.

The main challenge in the field of cancer treatment is the insufficient selectivity of
the systems toward tumor cells [82,83]. Therefore, the next step of the biological activity
study was focused on evaluating the cytotoxicity of the ROT-loaded liposomes toward
the tumor and normal cell lines in vitro. For this purpose, the HuTu 80, PANC-1, Chang
liver, and WI-38 cell lines were selected. As evident from the data presented in Table 4,
free ROT exhibited a considerably high cytotoxicity toward the tumor cells (the IC50 was
2.8 µM). For comparison, IC50 values for doxorubicin are also within the micromolar
range depending on the cell line [84]. It is important to note that free ROT exhibited a
sufficiently high selectivity index (SI > 173) toward the HuTu 80 cell line, which increased
upon encapsulation into the PC/Chol/TPPB-14 liposomes (SI = 307). This result indicates
a synergistic effect of the combination of the modified TPPB-14 liposomes with ROT. It
is worth noting that the cytotoxicity of TPPB-n was also quite high, with the maximum
selectivity index observed for TPPB-12 and TPPB-14 (Table S2). For all the modified systems,
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a sufficiently high selectivity toward the tumor cells was observed. However, the SI values
for the modified liposomes did not exceed the SI of free ROT (Table 4). Additionally, a
significant finding is that the IC50 values of the investigated formulations toward the HuTu
80 cell line were much lower than those for the PANC-1 cell line. This suggests that the
effectiveness of nanoparticles depends not only on their physicochemical characteristics
but also on the cell type [85].

Table 3. The Korsmeyer–Peppas and Higuchi kinetic model fitting parameters of ROT release from
PC/Chol/IA-n(OH) and PC/Chol/TPPB-n liposomes at various lipid/surfactant molar ratio.

Formulation Lipid/Surfactant
Molar Ratio

Korsmeyer–Peppas Higuchi

kKP n R2 kH R2

PC/Chol - 30.52 ± 0.57 0.496 ± 0.014 0.9968 30.36 ± 0.24 0.9971

PC/Chol/IA-14(OH)
50/1 29.29 ± 0.35 0.340 ± 0.009 0.9973 24.26 ± 0.84 0.9288

35/1 33.56 ± 0.47 0.325 ± 0.011 0.9961 27.31 ± 1.05 0.9098

25/1 33.92 ± 0.44 0.354 ± 0.010 0.9971 28.51 ± 0.91 0.9415

PC/Chol/TPPB-14
50/1 23.24 ± 0.90 0.623 ± 0.028 0.9914 27.05 ± 0.73 0.9723

35/1 23.18 ± 0.76 0.614 ± 0.023 0.9940 26.30 ± 0.82 0.9646

25/1 23.15 ± 0.70 0.591 ± 0.022 0.9943 25.52 ± 0.70 0.9719

PC/Chol/IA-10(OH)

50/1

25.30 ± 0.35 0.344 ± 0.011 0.9964 21.03 ± 0.71 0.9317

PC/Chol/IA-12(OH) 24.23 ± 0.40 0.379 ± 0.013 0.9958 20.99 ± 0.56 0.9611

PC/Chol/IA-14(OH) 28.94 ± 0.35 0.341 ± 0.009 0.9973 23.96 ± 0.83 0.9288

PC/Chol/IA-16(OH) 27.18 ± 0.63 0.389 ± 0.018 0.9921 23.82 ± 0.62 0.9641

PC/Chol/TPPB-10 25.28 ± 1.50 0.593 ± 0.043 0.9782 28.32 ± 0.81 0.9682

PC/Chol/TPPB-12 27.66 ± 1.22 0.547 ± 0.032 0.9855 29.31 ± 0.58 0.9834

PC/Chol/TPPB-14 28.70 ± 1.27 0.546 ± 0.032 0.9853 30.34 ± 0.60 0.9834

PC/Chol/TPPB-16 34.38 ± 1.51 0.476 ± 0.033 0.9809 33.39 ± 0.65 0.9817

kKP is the release constant taking into account the structural and geometric characteristics of the dosage form,
%/minn; kH is the Higuchi release constant, %/min1/2.

Table 4. Cytotoxicity and selectivity index of ROT in unmodified and modified liposomes (molar
ratio is 50/1) toward normal and tumor cell lines.

Formulation

IC50, µM

SIChang Liver/HuTu 80Tumor Cell Lines Normal Cell Lines

HuTu 80 PANC-1 Chang Liver WI-38

ROT 2.8 >1000 484 1000 >173

PC/Chol 5.0 13.2 125 27.4 25

PC/Chol/TPPB-14 0.07 4.9 21.5 3.2 307

PC/Chol/IA-10(OH) 1.3 - >63.5 - >49

PC/Chol/IA-12(OH) 1 - 35 - 35

PC/Chol/IA-14(OH) 1 7.8 >63.5 - >63.5

PC/Chol/IA-16(OH) 0.5 8.8 56.3 - 113

Following the confirmation of the mitochondria-targeting activity of the PC/Chol/TPPB-
14 and PC/Chol/IA-14(OH) liposomes, along with the high selective cytotoxic activity
of the ROT-loaded liposomes, the investigated formulations were tested to validate their
apoptotic activity. To assess the liposome ability to induce apoptosis via the mitochondrial
pathway, the pro-apoptotic properties of the investigated systems were evaluated using
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flow cytometry on the HuTu 80 cell line, using the fluorescent dye JC-10 (Figure 11). JC-10
accumulates in the mitochondrial matrix and forms aggregates (J-aggregates) with red
fluorescence in normal cells with high mitochondrial membrane potential. The membrane
potential decreases in apoptotic cells, and JC-10 starts to diffuse out of the mitochondria,
converting into a monomeric form (J-monomer) and emitting green fluorescence [86,87].
According to the results, a dose-dependent reduction in the mitochondrial membrane
potential was observed after treating the HuTu 80 cells with the liposomal formulations.
The process of apoptosis induction became more pronounced with the addition of the
PC/Chol/TPPB-14/ROT and PC/Chol/IA-14(OH)/ROT liposomes. The obtained results
suggest that the cytotoxic mechanism of the tested systems is attributed to the induction of
apoptosis via the intrinsic mitochondrial pathway.
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Thus, it should be noted that the work once again confirmed the fact that not only tradi-
tional triphenylphosphonium conjugates have mitotropic activity but also other surfactants
with a delocalized positive charge, namely, surfactants with an imidazolium head group,
possess such functionality [34]. The significance of this article is testing the approach of
replacing traditional chemotherapeutic drugs with mitochondrial poisons in the treatment
of resistant forms of cancer, proposed by Viale et al. [39], using modified liposomes. In this
context, rotenone can be considered as a commercially available model substrate to work
out all the stages of the experiment. It is worth noting that rotenone loaded into liposomal
nanocontainers was studied both from a physicochemical point of view (the effect on
liposome encapsulation efficiency, the release rate, and the stability of liposomes) and from
a biological point of view (determining the IC50 values and the apoptosis pathway). The
obtained results provide a full basis for continuing experiments with the formulations
studied in the direction of in vivo research.
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3. Materials and Methods
3.1. Chemicals

L-α-phosphatidylcholine (95%) and fluorescent lipid 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (DOPE-RhB,
>99%) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Cholesterol
(≥99%) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Homologous series of
IA-n(OH) (n = 10, 12, 14, 16) and TPPB-n (n = 10, 12, 14) amphiphiles were synthesized
according to the published methods [70,71]. Hexadecyltriphenylphosphonium bromide
(TPPB-16, ≥98%) was purchased from Alfa Aesar (Haverhill, MA, USA). Rotenone (>95%)
was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). MitoTracker Green
FM (98%) was used to stain mitochondria of living cells (Thermo Fisher Scientific, Waltham,
MA, USA). For cellular uptake assay, 4′,6-diamidino-2-phenylindole (DAPI) was used
(Sigma-Aldrich, St. Louis, MO, USA). Sodium phosphate buffer (PBS) was purchased from
UralChemInvest (Ufa, Russia). Chloroform and ethanol (HPLC) were purchased from
JSC №1 BASE Chemical reagents (Staraya Kupavna, Russia). Liposomal dispersions were
prepared using ultrapure Milli-Q water purified by Simplicity® UV system (Millipore SAS,
Molsheim, France).

3.2. Liposome Preparation

Liposomes were obtained by lipid film hydration method according to the algorithm
published in [88] at a PC/Chol molar ratio of 9/1 (total concentration was 15 mM). Lipo-
somes were modified by incorporating TPPB-n and IA-n(OH) with 10, 12, 14, and 16 carbon
atoms in hydrocarbon tail into the lipid bilayer at surfactant/lipid ratio of 50/1, 35/1,
and 25/1. ROT was also incorporated into the lipid bilayer at the stage of lipid film for-
mation. The lipid film was then hydrated with Milli-Q water, incubated in a water bath
at 60 ◦C within 1 h, followed by 5 cycles of freezing and thawing using liquid nitrogen.
The resulting dispersions were then extruded through a polycarbonate membrane using
an LiposoFast Basic extruder (Avestin, Ottawa, ON, Canada) to obtain aggregates with
diameter of 100 nm. Liposomes were stored at 4 ◦C.

3.3. Dynamic and Electrophoretic Light Scattering (DLS/ELS)

Physicochemical characteristics of liposomes diluted to 2 mM, i.e., hydrodynamic
diameter (Dh), polydispersity index (PdI), and zeta potential (ζ), were determined on
Malvern ZetaSizer Nano instrument (Malvern Instruments Ltd., Worcestershire, UK). The
hydrodynamic diameter and zeta potential were calculated automatically using the Stokes–
Einstein and Smoluchowski equations, respectively, as presented in [43].

3.4. Transmission Electron Microscopy (TEM)

Liposomes with concentration of 5 µM were visualized using transmission electron
microscopy on a Hitachi HT 7700 Exalens instrument (Hitachi, Tokyo, Japan) at an acceler-
ating voltage of 100 kV. Sample was deposited on copper grid (Ted Pella, Pella, IA, USA)
with a carbon-formvar support film and dried at room temperature within 2 h. Diameter of
liposomes was then analyzed using ImageJ software (version number 1.53t).

3.5. Encapsulation Efficiency (EE) and Release Rate of Substrate

The extraction method of unencapsulated substrate in ethanol was used to evaluate
the liposome encapsulation efficiency toward ROT [89,90]. The ROT concentration was
determined spectrophotometrically on Specord 250 Plus (Analytik Jena AG, Jena, Germany)
using a 0.5 cm quartz cuvette (Hellma Analytics, Müllheim, Germany). Encapsulation
efficiency was calculated using the following equation:

EE =
Total amount of substrate−Amount of free substrate

Total amount of substrate
× 100
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The ROT release rate from modified liposomes was analyzed using the dialysis method.
For this purpose, liposomal dispersion was placed in a dialysis bag with a pore size of
3.5 kDa. Dialysis was carried out in PBS:ethanol medium (1:1) at 37 ◦C, with a stirring
speed of 250 rpm. Aliquots (2 mL) were taken from the dialysis medium at fixed time
intervals and absorption spectra were recorded using Specord 250 Plus (Analytik Jena AG,
Jena, Germany). After measurement the aliquot was returned to the dialysis medium. The
absorption maximum of ROT was detected at λ = 295 nm. The extinction coefficient of ROT
in PBS:ethanol medium was equal to 16606 M−1·cm−1 (Table S1). The graphs represent the
percentage of substrate release as the average of at least three experiments, with a standard
deviation of less than 3% for all systems. Release profiles were fitted to Korsmeyer–Peppas
and Higuchi models using OriginPro 8.5 software (OriginLab Corporation, Northampton,
MA, USA) according to the equations presented in [36].

3.6. Cell Culture

HuTu 80 (duodenal adenocarcinoma), PANC-1 (pancreatic carcinoma), and WI-38
(normal embryonic lung cells) cell lines were obtained from the collection of type cultures
of the Institute of Cytology (The Russian Academy of Sciences, Saint Petersburg, Russia).
Chang liver (normal liver cells) cell line was purchased from D.I. Ivanovskiy Institute of
Virology (N.F. Gamaleya National Research Center of Epidemiology and Microbiology of
the Ministry of Health, Moscow, Russia). Cells were seeded on a 96-well Nunc plate with a
density of 5 × 103 cells per well using 100 µL of standard Eagle’s medium. The plate was
then placed in a CO2 incubator at 37 ◦C until a monolayer of cells was formed.

3.7. Cellular Uptake

Cellular uptake of liposomes was analyzed using flow cytometry. Cells were seeded
into 24-well plates (Eppendorf, Hamburg, Germany) at a concentration of 1 × 105 cells
per well. After 24 h of incubation, liposomes with DOPE-RhB were added to the wells.
Cells were then incubated for 24 h in a CO2 incubator. Cellular uptake of liposomes was
analyzed using Guava EasyCyte 8HT flow cytometer (Merck KGaA, Darmstadt, Germany).
After that, cells were fixed, and nuclei were stained with DAPI. The survey was carried
out using a Nikon Eclipse Ci-S fluorescence microscope (Nikon, Tokyo, Japan). Untreated
cells were used as a negative control. A more detailed description of the experiment is
published in [34].

3.8. Cytotoxicity

The cytotoxicity of liposomes toward cancer and normal cells was determined using
the colorimetric MTT test. Liposomes at various dilutions were added directly to the
wells with cells after removing the nutrient medium for 24 h incubation. After that, the
culture medium was removed from wells with following addition of 100 µL of serum-
free nutrient medium containing (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide) (NeoFroxx GmbH, Einhausen, Germany) at a concentration of 0.5 mg/mL. Cells
were then incubated within 4 h at 37 ◦C. Optical density of medium was recorded at
540 nm on an InVitroLogic microplate reader (Medico-Biological Union, Novosibirsk,
Russia). Calculation of the liposome concentration that causes growth inhibition of 50% of
cells (IC50) was made using MLA—“Quest Graph™ IC50 Calculator” (AAT Bioquest, Inc.,
Pleasanton, CA, USA) [91]. A more detailed description of the experiment is published
in [92]. Experiments for all compounds were carried out in triplicate.

3.9. Colocalization Assay

Cells were seeded in 35 mm × 35 mm glass plates. After a 24 h incubation, the
nutrient medium was changed to liposomal dispersion with DOPE-RhB and cells were
further incubated for 24 h. Then, cells were washed twice with PBS and incubated for
20 min in a medium containing Mito-Tracker Green FM to stain the mitochondria. The
fluorescence of dyes was visualized using a Leica SP5 TCS confocal scanning microscope
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(Leica Microsystems, Wetzlar, Germany). The fluorescence emission of DOPE-RhB and
MitoTracker Green FM was collected at 570–700 nm and at 500–540 nm, respectively. The
Pearson Correlation Coefficient (PCC) was used to quantify the correlation between the
fluorescence intensities of two dyes, i.e., colocalization.

3.10. Mitochondrial Membrane Potential

Cells were seeded in 6-well plates at 1 × 106 cells per well and incubated for 24 h
with liposomes. Cells were harvested at 2000 rpm for 5 min, washed twice with cold PBS,
then resuspended in JC-10 (10 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA). After a 10 min
incubation at 37 ◦C, cells were washed three times and suspended in PBS. Apoptosis induction
was studied using Guava EasyCyte 8HT flow cytometer (Merck KGaA, Darmstadt, Germany).

3.11. Statistics

All data processing was performed using Microsoft Excel 2016® (Microsoft, Redmond,
WA, USA) and OriginPro 8.5 (OriginLab Corporation, Northampton, MA, USA). Results
are expressed as the mean ± standard deviation. Analysis of the diameter of the par-
ticles obtained by TEM was performed using ImageJ software (version number 1.53t).
Statistical analysis of cellular uptake results was performed using the Mann–Whitney test.
Significance was tested at the 0.05 level of probability (p).

4. Conclusions

New mitochondria-targeted liposomes based on soy phosphatidylcholine, cholesterol,
and triphenylphosphonium/imidazolium amphiphiles with various hydrocarbon tail
lengths (10, 12, 14, and 16) and lipid/surfactant molar ratios (50/1, 35/1, and 25/1) have
been developed for the treatment of oncological diseases resistant to traditional types of
chemotherapy. Their physicochemical characteristics were investigated, and their stability
was demonstrated for more than 2 months, even in systems with a low concentration
of cationic amphiphiles. Liposomes were characterized by a size of about 100 nm with
high monodispersity (the PdI did not exceed 0.25) and high zeta potential (>+ 30 mV).
The optimal concentration of mitochondrial poison ROT was also selected (0.1 mg/mL)
for loading into liposomes, at which the efficiency of ROT encapsulation exceeded 90%.
The ROT-loaded liposomes noncovalently modified with cationic surfactants showed
high cytotoxicity toward pancreatic carcinoma (PANC-1) and duodenal adenocarcinoma
(HuTu 80) cells with the selectivity index (SI) of 307 compared with the normal Chang
liver cell line. It has been shown by confocal microscopy and flow cytometry that the
modification of liposomes with triphenylphosphonium and imidazolium lipophilic cation
provides a higher degree of penetration and colocalization with tumor cell mitochondria
compared with unmodified carriers, inducing cell apoptosis via the internal mitochondrial
pathway. Thus, these results suggest that the combination of new mitochondria-targeted
liposomes with the mitochondrial poison ROT is a promising strategy for oncological
disease treatment, which can be further tested under in vivo conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28207229/s1. Figure S1: Zeta potential of PC/Chol/
TPPB-n and PC/Chol/IA-n(OH) liposomes by varying: (a) TPPB-n hydrocarbon tail length at a molar
ratio of 50/1; (b) IA-n(OH) hydrocarbon tail length at a molar ratio of 50/1; (c) lipid/TPPB-14 molar
ratio; (d) lipid/IA-14(OH) molar ratio on the preparation day, 25 ◦C.; Figure S2: Qualitative analysis
of cellular uptake study of PC/Chol/DOPE-RhB and PC/Chol/TPPB-14/DOPE-RhB liposomes
by HuTu 80 cells using fluorescence microscopy.; Table S1: Extinction coefficient values of ROT in
various medium, 25 ◦C.; Table S2: Cytotoxicity and selectivity index of TPPB-n on normal and tumor
cell lines.; Table S3: Physicochemical characteristics of PC/Chol/IA-n(OH) modified liposomes
(25/1) loaded with ROT (0.1 mg/mL): encapsulation efficiency (EE), hydrodynamic diameter (Dh),
polydispersity index (PdI) and zeta potential (ζ) over time, 4 ◦C.; Figure S3: Intensity averaged
size distribution of PC/Chol/ROT and PC/Chol/TPPB-14/ROT liposomes in aqueous solution
and in PBS:ethanol medium (1:1), 25 ◦C.; Figure S4: (a) Korsmeyer-Peppas and (b) Higuchi kinetic
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model fitting curves of ROT release from PC/Chol/IA-10(OH) liposomes at various molar ratio
of components, 37 ◦C.; Figure S5: The Higuchi kinetic model fitting curves of ROT release from
modified liposomes by varying: (a) the molar ratio of PC/Chol/IA-14(OH); (b) the molar ratio
PC/Chol/TPPB-14; (c) the IA-n(OH) hydrocarbon tail length at molar ratio of 50/1; (d) the TPPB-n
hydrocarbon tail length at molar ratio of 50/1, 37 ◦C.; Table S4: The Korsmeyer-Peppas and Higuchi
kinetic model fitting parameters of ROT release from PC/Chol/IA-10(OH) liposomes at various
lipid/surfactant molar ratio.; Figure S6: The absorption spectra of ROT at different time intervals
of release for PC/Chol. PBS:ethanol (1:1), 37 ◦C; cuvette thickness = 1 cm; the arrow indicates the
direction of dialysis duration increasing.; Figure S7: The absorption spectra of ROT at different time
intervals of release for PC/Chol/IA14(OH) at molar ratio of: (a) 50/1; (b) 35/1; (c) 25/1. PBS:ethanol
(1:1), 37 ◦C; cuvette thickness = 1 cm; the arrow indicates the direction of dialysis duration increasing.;
Figure S8: The absorption spectra of ROT at different time intervals of release for PC/Chol/TPPB14
at molar ratio of: (a) 50/1; (b) 35/1; (c) 25/1. PBS:ethanol (1:1), 37 ◦C; cuvette thickness = 1 cm;
the arrow indicates the direction of dialysis duration increasing.; Figure S9: The absorption spectra
of ROT at different time intervals of release for PC/Chol/IA10(OH) at molar ratio of: (a) 50/1;
(b) 35/1; (c) 25/1. PBS:ethanol (1:1), 37 ◦C; cuvette thickness = 1 cm; the arrow indicates the direc-
tion of dialysis duration increasing.; Figure S10: The absorption spectra of ROT at different time
intervals of release for: (a) PC/Chol/IA-10(OH); (b) PC/Chol/IA-12(OH); (c) PC/Chol/IA-14(OH);
(d) PC/Chol/IA-16(OH) at molar ratio of 50/1. PBS:ethanol (1:1), 37 ◦C; cuvette thickness = 1 cm;
the arrow indicates the direction of dialysis duration increasing.; Figure S11: The absorption spec-
tra of ROT at different time intervals of release for: (a) PC/Chol/TPPB-10; (b) PC/Chol/TPPB-12;
(c) PC/Chol/TPPB-14; (d) PC/Chol/TPPB-16 at molar ratio of 50/1. PBS:ethanol (1:1), 37 ◦C; cuvette
thickness = 1 cm; the arrow indicates the direction of dialysis duration increasing.
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