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THE TOPOLOGIES OF LOCAL CONVERGENCE IN MEASURE
ON THE ALGEBRAS OF MEASURABLE OPERATORS

A. M. Bikchentaev UDC 517.983:517.986

Abstract: Given a von Neumann algebra M of operators on a Hilbert space H and a faithful normal
semifinite trace τ on M, denote by S(M, τ) the ∗-algebra of τ -measurable operators. We obtain
a sufficient condition for the positivity of an hermitian operator in S(M, τ) in terms of the topology tτl
of τ -local convergence in measure. We prove that the ∗-ideal F(M, τ) of elementary operators is
tτl-dense in S(M, τ). If tτ is locally convex then so is tτl; if tτl is locally convex then so is the
topology twτl of weakly τ -local convergence in measure. We propose some method for constructing
F -normed ideal spaces, henceforth F -NIPs, on (M, τ) starting from a prescribed F -NIP and preserving
completeness, local convexity, local boundedness, or normability whenever present in the original. Given
two F -NIPs X and Y on (M, τ), suppose that AX ⊆ Y for some operator A ∈ S(M, τ). Then the
multiplier MAX = AX acting as MA : X → Y is continuous. In particular, for X ⊆ Y the natural
embedding of X into Y is continuous. We inspect the properties of decreasing sequences of F -NIPs
on (M, τ).
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Introduction

Suppose that a von Neumann operator algebra M acts on a Hilbert space H and τ is a faithful normal
semifinite trace on M with τ(I) = +∞. This article continues the study of [1–10], of the properties of the
topologies tτl of τ -local convergence in measure and twτl of weakly τ -local convergence in measure on the
∗-algebra S(M, τ) of τ -measurable operators. The topologies tτl and twτl match the order structure of
the hermitian part of S(M, τ) better than the classical topology tτ of convergence in measure [2, 6, 7, 9].

In this article, Theorem 1 establishes a sufficient condition for the positivity of a hermitian operator
in S(M, τ) in terms of tτl. Finding such conditions is an important problem attracting many researchers;
see, for instance, [11–13] and the bibliographies therein. It is well known that each τ -measurable operator
is a linear combination of four positive τ -measurable operators. In view of the operator inequality

|X + Y | ≤ U |X|U∗ + V |Y |V ∗, X, Y ∈ S(M, τ), |X| =
√
X∗X,

where U, V ∈ M are suitable partial isometries (see [14]), to prove the triangle inequality for an F -normed
ideal space, henceforth spelled F -NIP, on (M, τ), it suffices to verify the triangle inequality for the F -norm
just for pairs of positive τ -measurable operators.

In Theorem 2 we show that the ∗-ideal F(M, τ) of elementary operators is tτl-dense in S(M, τ).
Therefore, the space Lp(M, τ) with 0 < p < ∞ is tτl-dense in S(M, τ); see Corollary 1. Recall that the
tτ -closures of the ∗-ideal F(M, τ) and the spaces Lp(M, τ) with 0 < p < ∞ coincide with the ∗-ideal
S0(M, τ) of all τ -compact operators.

Theorem 3 shows that if tτ is locally convex then so is tτl; if tτl is locally convex then so is twτl.
We propose some method for constructing “weighted” F -NIPs on (M, τ) starting from a prescribed
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F -NIP and preserving completeness, local convexity, local boundedness, or normability whenever present
in the original; see Theorem 4 and Corollaries 4, 5. Weighted F -NIPs on an abelian von Neumann
algebra arise naturally in studying integral operators. In this case M 	 L∞(Ω,Σ, μ) and τ(f) =

∫
Ω f dμ,

where (Ω,Σ, μ) is a localizable measure space.

Given two F -NIPs X and Y on (M, τ), suppose that AX ⊆ Y for some operator A ∈ S(M, τ). Then
the multiplier MAX = AX acting as MA : X → Y is continuous. In particular, for X ⊆ Y the natural
embedding of X into Y is continuous (see Theorem 5) which yields a new proof of the key Lemma 4.3
of [15]. Theorem 6 studies the properties of decreasing sequences of F -NIPs on (M, τ).

Most of the results are new even for the ∗-algebra M = B(H) of all bounded linear operators on H
which is equipped with the canonical trace τ = tr.

1. Notation and Definitions

Consider a von Neumann algebraM of operators on a Hilbert spaceH. Denote byMpr the projection
lattice (P = P 2 = P ∗) in M; and by I, the identity of M. So P⊥ = I −P for P ∈ Mpr. Denote by M+

the cone of positive elements of M. A projection P ∈ M is minimal or an atom, if Q ∈ Mpr and Q ≤ P
implies that either Q = 0 or Q = P . A von Neumann algebra M is atomic whenever each nonzero
projection in M majorizes a nonzero minimal projection.

A mapping ϕ : M+ → [0,+∞] is a trace whenever ϕ(X+Y ) = ϕ(X)+ϕ(Y ) and ϕ(λX) = λϕ(X) for
all X,Y ∈ M+ and λ ≥ 0, with 0 · (+∞) ≡ 0, and ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace ϕ is faithful
whenever ϕ(X) > 0 for all X ∈ M+ with X �= 0, semifinite whenever ϕ(X) = sup{ϕ(Y ) : Y ∈ M+,
Y ≤ X, ϕ(Y ) < +∞} for each X ∈ M+, and normal whenever Xi ↗ X with Xi, X ∈ M+ implies that
ϕ(X) = supϕ(Xi); see [16, Chapter V, § 2].

An operator in H, not necessarily bounded or densely defined, is affiliated to the von Neumann
algebra M whenever it commutes with every unitary operator in the commutator M′ of M. Henceforth,
τ stands for a faithful normal semifinite trace on M and Mpr

τ = {P ∈ Mpr : τ(P ) < ∞}.
A closed operator X affiliated to M whose domain D(X) is dense in H is τ -measurable whenever,

given ε > 0, there exists P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The set S(M, τ) of all
τ -measurable operators forms a ∗-algebra with the operations of conjugate transpose, multiplication by
scalars, and strong addition and multiplication obtained by closing the ordinary operations [17, Chap-
ter IX]. Given a family L ⊂ S(M, τ), denote by L+ and Lh the positive and hermitian parts of L.
Denote by ≤ the partial order on S(M, τ)h generated by the proper cone S(M, τ)+. If X ∈ S(M, τ)

and X = U |X| is the polar decomposition of X then U ∈ M and |X| =
√
X∗X ∈ S(M, τ)+.

Endow the ∗-algebra S(M, τ) with the topology tτ of convergence in measure [17, Chapter IX, § 2]
whose base of neighborhoods of zero consists of the sets

U(ε, δ) = {X ∈ S(M, τ) : ∃Q ∈ Mpr (‖XQ‖ ≤ ε and τ(Q⊥) ≤ δ)}, ε > 0, δ > 0.

It is known that 〈S(M, τ), tτ 〉 is a complete metrizable topological ∗-algebra; furthermore, M is dense
in 〈S(M, τ), tτ 〉. To indicate the convergence of a net {Xj}j∈J ⊂ S(M, τ) to X ∈ S(M, τ) in the

topology tτ , we write Xj
τ−→ X and say that {Xj}j∈J converges to X in measure τ .

Denote by μ(X, t) a rearrangement of X ∈ S(M, τ), meaning a nonincreasing right-continuous
function μ(X, ·): (0,∞) → [0,∞) defined as

μ(X, t) = inf{‖XP‖ : P ∈ Mpr, τ(P⊥) ≤ t}, t > 0.

The set of τ -compact operators S0(M, τ) = {X ∈ S(M, τ) : limt→∞ μ(X, t) = 0} is an ideal of S(M, τ)
and the set of elementary operators F(M, τ) = {X ∈ M : (∃s > 0) μ(X, t) = 0 ∀t > s} is an ideal of M.
The topology tτ is also determined by the F -norm ρτ (X) = inft>0max{t, μ(X, t)}, X ∈ S(M, τ).
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Lemma 1 [18]. Take X,Y,Xj ∈ S(M, τ) for j ∈ J . Then
(i) μ(X, t) = μ(|X|, t) = μ(X∗, t) for all t > 0;
(ii) μ(X∗X, t) = μ(XX∗, t) for all t > 0;
(iii) if |X| ≤ |Y | then μ(X, t) ≤ μ(Y, t) for all t > 0;
(iv) if X ∈ M then limt→+0 μ(X, t) = supt>0 μ(X, t) = ‖X‖;
(v) μ(XY, t+ s) ≤ μ(X, t)μ(Y, s) for all t, s > 0;
(vi) μ(|X|α, t) = μ(X, t)α for all α > 0 and t > 0;

(vii) Xj
τ−→ X ⇐⇒ μ(Xj −X, t) → 0 for each t > 0.

Denote the linear Lebesgue measure on R by m. Define the noncommutative Lebesgue space Lp,
with 0 < p < ∞, associated with (M, τ) as

Lp(M, τ) = {X ∈ S(M, τ) : μ(X, ·) ∈ Lp(R
+,m)}

with the F -norm (a norm for 1 ≤ p < ∞) ‖X‖p = ‖μ(X, ·)‖p, X ∈ Lp(M, τ).

2. The Topologies of Local Convergence in Measure on S(M, τ )

The topology tτ of convergence in measure can be localized as follows. Given ε, δ > 0 and P ∈ Mpr
τ ,

define the sets

V(ε, δ, P ) = {X ∈ S(M, τ) : ∃Q ∈ Mpr (Q ≤ P, ‖XQ‖ ≤ ε and τ(P −Q) ≤ δ)},

W(ε, δ, P ) = {X ∈ S(M, τ) : (∃Q ∈ Mpr) (Q ≤ P, ‖QXQ‖ ≤ ε and τ(P −Q) ≤ δ)}.
The space S(M, τ) becomes a topological vector space if endowed with the topology tτl of τ -local,
respectively twτl of weakly τ -local, convergence in measure whose base of neighborhoods of zero consists

of the family Θ = {V(ε, δ, P )}ε,δ>0;P∈Mpr
τ
, respectively Θ = {W(ε, δ, P )}ε,δ>0;P∈Mpr

τ
. We write Xi

τ l−→ X

and Xi
wτl−→ X to indicate tτl-convergence and twτl-convergence. Using the standard techniques for

von Neumann algebra reduction, we can show (see also [3, 6]) that Xi
τ l−→ X, respectively Xi

wτl−→ X,

if and only if XiP
τ−→ XP , cf. [1, p. 114], respectively PXiP

τ−→ PXP , cf. [1, p. 114; 2, p. 746],
for all P ∈ Mpr

τ . It is clear that twτl ≤ tτl ≤ tτ and twτl-convergence coincides with convergence in
measure in 〈S(PMP ) = PS(M, τ)P, tτ(P ·P )〉 for all P ∈ Mpr

τ . We can also define the topologies tτl

and twτl in terms of nonincreasing rearrangements. The family Θ̃ = {Ṽ(ε, δ, P )}ε,δ>0;P∈Mpr
τ
, where

Ṽ(ε, δ, P ) = {X ∈ S(M, τ) : μ(XP, δ) < ε}, also determines a base of neighborhoods of zero for tτl. If
τ(I) < ∞ then tτ = tτl = twτl.

If M = B(H) is the ∗-algebra of all bounded linear operators on H and τ = tr is the canonical
trace then S(M, τ), S0(M, τ), Lp(M, τ), and F(M, τ) coincide with B(H), the ideal S∞(H) of compact
operators, the Schatten–von Neumann ideal Sp(H), and the ideal F(H) of finite-rank operators on H
respectively. The topology tτ coincides with the norm topology ‖ · ‖, while tτl and twτl, coincide with the
topologies of strong and weak operator convergence, respectively. We have

μ(X, t) =
∞∑

n=1

sn(X)χ[n−1,n)(t)

for t > 0, where {sn(X)}∞n=1 is the sequence of s-numbers of the compact operator X and χA is the
indicator of some set A ⊂ R.

If M is abelian, i.e., commutative; then M 	 L∞(Ω,Σ, μ) and τ(f) =
∫
Ω f dμ, where (Ω,Σ, μ) is

a localizable measure space, S(M, τ) coincides with the algebra of all measurable complex functions f
on (Ω,Σ, μ) bounded outside a set of finite measure. The topology tτ is the usual topology of convergence
in measure and tτl coincides with twτl and available topology of convergence in measure on the sets of
finite measure.
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Theorem 1. Suppose that X,Y ∈ S(M, τ) with Y = Y ∗ and Xn τl−→ 0 as n → ∞. If X∗Y X ≤ Y
then Y ≥ 0.

Proof. The assumption X∗Y X ≤ Y implies the chain of inequalities

Y ≥ X∗Y X ≥ X∗2Y X2 ≥ · · · ≥ X∗nY Xn ≥ · · · .

Take the Jordan decomposition Y = Y+ − Y− into the positive and negative parts with Y+Y− = 0 and
put |Y | = Y+ + Y−. Given an arbitrary projection P ∈ Mpr

τ , write down the equalities

PX∗nY XnP = PX∗nY+X
nP − PX∗nY−X

nP, n ∈ N.

For each t > 0 claims (ii), (vi), and (v) of Lemma 1 yield

μ(PX∗nY+X
nP, t) = μ(

√
Y+X

nP, t)2 ≤ μ(
√

Y+, t/2)
2μ(XnP, t/2)2 → 0 as n → ∞.

Hence, X∗nY+Xn wτl−→ 0 as n → ∞, see claim (vii) of Lemma 1. Similarly we obtain X∗nY−Xn wτl−→ 0
as n → ∞. By the twτl-continuity of the addition (A,B) �→ A+B from S(M, τ)× S(M, τ) to S(M, τ),

we have X∗nY Xn wτl−→ 0 as n → ∞. Thus, Y ≥ 0. �
Theorem 2. The ∗-ideal F(M, τ) is tτl-dense in S(M, τ).

Proof. Step 1. Take X ∈ S(M, τ) and its polar decomposition X = U |X|. If (Xj)j∈J ⊂ F(M, τ)

and Xj
τ l−→ |X| then by the separate tτl-continuity of multiplication [5, Theorem 1] we have UXj

τ l−→
U |X| = X. Therefore, it suffices to show that

∀X ∈ S(M, τ)+ ∃ (Yj)j∈J ⊂ F(M, τ) (Yj
τ l−→ X).

Step 2. Take X ∈ S(M, τ)+ such that X = Y + Z with Y ∈ M+ and Z ∈ S0(M, τ)+ [19]. If
Z =

∫ ∞
0 λ dEλ is the spectral representation then the operator Zn =

∫ n
1/n λ dEλ lies in the cone F(M, τ)+

for each n ∈ N. We have

Z − Zn =

∫

[0,1/n)

λ dEλ +

∫

(n,∞)

λ dEλ ≡ Zn,1 + Zn,2, n ∈ N.

It is obvious that ‖Zn,1‖ ≤ 1
n ; hence, Zn,1

τ−→ 0 as n → ∞. Take the projection sr(A) onto the support

of A ∈ S(M, τ)h. We have sr(Zn,2) = E⊥
n ; since by assumption Z is τ -measurable and the trace τ is

normal, we infer that τ
(
E⊥

n

)
→ 0 as n → ∞. Consequently, Zn,2

τ−→ 0 as n → ∞. Thus, Zn
τ−→ 0

as n → ∞.
Suppose that Mpr

τ = (Pj)j∈J . Then I =
∨

j∈J Pj because the trace τ is semifinite. We have

Yj = Y Pj ∈ F(M, τ) for all j ∈ J . Since Pj
τ l−→ I, for every projection P ∈ Mpr

τ we obtain YjP
τ−→ Y P .

Consequently, Yj
τ l−→ Y and the assertion follows from the tτl-continuity of addition in S(M, τ). �

Since F(M, τ) ⊂ Lp(M, τ) for 0 < p < ∞, we have

Corollary 1. Every space Lp(M, τ) for 0 < p < ∞ is tτl-dense in S(M, τ).

Theorem 3. (i) If tτ is locally convex then so is tτl.
(ii) If tτl is locally convex then so is twτl.

Proof. (i): If tτ is locally convex then tτ is determined by a family (pj)j∈J of seminorms on S(M, τ)
[20, 1.10.1]. Then the family (pj,P )j∈J ;P∈Mpr

τ
of seminorms on S(M, τ), where pj,P (X) = pj(XP ) for

all j ∈ J , with P ∈ Mpr
τ and X ∈ S(M, τ), is a defining family for tτl.
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(ii): If tτl is locally convex then tτl is determined by a family (qj)j∈J of seminorms on S(M, τ)
[20, 1.10.1]. Then the family (qj,P )j∈J ;P∈Mpr

τ
of seminorms on S(M, τ), where qj,P (X) = qj(PXP ) for

all j ∈ J , with P ∈ Mpr
τ and X ∈ S(M, τ), is a defining family for twτl. �

Recall [19] that the following are equivalent:
(i) M = S(M, τ);
(ii) inf{τ(P ) : P ∈ Mpr, τ(P ) �= 0} > 0;
(iii) tτ coincides with the ‖ · ‖-topology on M.
It is easy to verify that if these conditions hold then M is atomic.

Corollary 2. For an atomic von Neumann algebra M with inf{τ(P ) : P ∈ Mpr, τ(P ) �= 0} = 0, if

∃K > 0
∑

τ(P )<K, P is an atom

τ(P ) < ∞ (1)

then tτl and twτl are locally convex.

Proof. The claim follows from [21, Theorem 3.2] and Theorem 3. �
Corollary 3. Suppose that M is an abelian atomic von Neumann algebra and one of the following

holds: (a) inf{τ(P ) : P ∈ Mpr, τ(P ) �= 0} > 0 or (b) inf{τ(P ) : P ∈ Mpr, τ(P ) �= 0} = 0 and
condition (1). Then tτl = twτl is locally convex.

Proof. The claim follows from [21, Corollary 3.5] and Theorem 3. �

3. Sequences of F -NIPs on (M, τ )

Consider a faithful normal semifinite trace τ on a von Neumann algebra M. A ∗-linear space
X ⊂ S(M, τ) endowed with the F -norm ‖ · ‖X is an F -normed ideal space (F -NIP) on (M, τ) whenever

(i) ‖A‖X = ‖A∗‖X for all A ∈ X ;
(ii) A ∈ X and B ∈ S(M, τ) with |B| ≤ |A| imply that B ∈ X and ‖B‖X ≤ ‖A‖X .
The natural embedding 〈X , ‖ · ‖X 〉 ⊂ S(M, τ) is twτl-continuous (see [22, Theorem 1] as well as [15]).

Regarding the ideal spaces of τ -measurable operators, see [23, 24] and the bibliographies therein.

Example (a “weighted” F -NIP). Consider an F -NIP 〈X , ‖ · ‖X 〉 on (M, τ). If X ∈ X and T ∈ M
with ‖T‖ ≤ 1 then

‖TX‖X ≤ ‖X‖X , ‖XT‖X ≤ ‖X‖X ; (2)

for Y /∈ X we write ‖Y ‖X = +∞. If A ∈ S(M, τ)h then for

‖X‖X (A) ≡
∥
∥
∥
∥
AX +XA

2

∥
∥
∥
∥
X
, X ∈ X (A) = {Y ∈ S(M, τ) : AY + Y A ∈ X},

we have

‖X∗‖X (A) =

∥
∥
∥
∥
AX∗ +X∗A

2

∥
∥
∥
∥
X
=

∥
∥
∥
∥
(AX∗ +X∗A)∗

2

∥
∥
∥
∥
X
= ‖X‖X (A).

If also AZ = ZA for all Z ∈ S(M, τ) and X,Y ∈ S(M, τ) with |X| ≤ |Y | then |X| = T |Y |T ∗ for some
T ∈ M with ‖T‖ ≤ 1 [25], and (2) yields

‖|X|‖X (A) =

∥
∥
∥
∥
A|X|+ |X|A

2

∥
∥
∥
∥
X
= ‖A|X|‖X = ‖AT |Y |T ∗‖X

≤ ‖AT |Y |‖X = ‖T |Y |A‖X ≤ ‖|Y |A‖X = ‖|Y |‖X (A).

If, moreover, A is invertible in S(M, τ) (regarding invertibility in S(M, τ), see [26, 27]); then 〈X (A), ‖ ·
‖X (A)〉 is an F -NIP on (M, τ); if ‖ · ‖X is a norm on X then ‖ · ‖X (A) is a norm on X (A). Given U ⊂ X ,

put A−1 · U ≡ {A−1U : U ∈ U}. It is obvious that U is convex if and only if so is A−1 · U .
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Theorem 4. Consider an invertible operator A ∈ S(M, τ)h in S(M, τ) with AZ = ZA for all
Z ∈ S(M, τ).

(i) An F -NIP 〈X , ‖ · ‖X 〉 is complete if and only if so is 〈X (A), ‖ · ‖X (A)〉.
(ii) (Xn)

∞
n=1 is a Schauder basis in an F -NIP 〈X , ‖ · ‖X 〉 if and only if (A−1Xn)

∞
n=1 is a Schauder

basis in 〈X (A), ‖ · ‖X (A)〉.
(iii) U ⊂ X is a neighborhood of zero in an F -NIP 〈X , ‖ · ‖X 〉 if and only if A−1 · U is a neighborhood

of zero in 〈X (A), ‖ · ‖X (A)〉.
(iv) U ⊂ X is bounded in an F -NIP 〈X , ‖ · ‖X 〉 if and only if A−1 · U is bounded in 〈X (A), ‖ · ‖X (A)〉.
Proof. Recall that X (A) = {Y ∈ S(M, τ) : MAY = AY ∈ X}, while A,A−1 ∈ S(M, τ)h with

AZ = ZA and A−1Z = ZA−1 for all Z ∈ S(M, τ). Note that (X (A))(A−1) = X and ‖ · ‖(X (A))(A−1) =
‖ · ‖X . Therefore, we just need to establish the sufficiency of each of conditions (i)–(iv).

(i): If (Xn)
∞
n=1 ⊂ X (A) is ‖ · ‖X (A)-fundamental then

‖Xn −Xm‖X (A) = ‖A(Xn −Xm)‖X → 0 as n,m → ∞,

i.e., (AXn)
∞
n=1 is ‖ · ‖X -fundamental. Since the F -NIP 〈X , ‖ · ‖X 〉 is complete, there is X ∈ X such that

‖AXn −X‖X → 0 as n → ∞. Consequently, ‖AXn −A ·A−1X‖X = ‖Xn −A−1X‖X (A) → 0 as n → ∞.
(ii): Suppose that (Xn)

∞
n=1 ⊂ X is a Schauder basis for X [28, Chapter II, § 5], i.e., for each X ∈ X

there exists a unique expansion X =
∑∞

n=1 λnXn into a ‖ · ‖X -converging series with {λn}∞n=1 ⊂ C.
If Y ∈ X (A) then AY ∈ X , and AY =

∑∞
n=1 λnXn by assumption. Since this series ‖ · ‖X -converges,

[22, Theorem 1] shows that
k∑

n=1

λnXn
wτl−→ AY as k → ∞.

Hence, the separate twτl-continuity of multiplication [5, Theorem 1] implies that

A−1
k∑

n=1

λnXn =
k∑

n=1

λnA
−1Xn

wτl−→ Y as k → ∞; (3)

i.e., Y =
∑∞

n=1 λnA
−1Xn.

Uniqueness. Suppose that Y ∈ X (A) admits two distinct representations

Y =
∞∑

n=1

λnA
−1Xn =

∞∑

n=1

αnA
−1Xn.

Then by Theorem 1 of [22] we have

k∑

n=1

λnA
−1Xn

wτl−→ Y,

k∑

n=1

αnA
−1Xn

wτl−→ Y as k → ∞.

Hence, the separate twτl-continuity of multiplication [5, Theorem 1] implies that, see (3),

AY =
∞∑

n=1

λnXn =
∞∑

n=1

αnXn;

this is a contradiction.
(iii): Take an open set U in X ; i.e.,

∀X ∈ U ∃ε = ε(X) > 0 ∀Y ∈ X (‖X − Y ‖X < ε ⇒ Y ∈ U). (4)
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We have to show that

∀X̃ ∈ A−1 · U ∃ε̃ = ε̃(X̃) > 0 ∀Ỹ ∈ X (A) (‖X̃ − Ỹ ‖X (A) < ε̃ ⇒ Ỹ ∈ A−1 · U).
For X̃, Ỹ ∈ A−1 · U there are X,Y ∈ U with X̃ = A−1X and Ỹ = A−1U ; appreciating (4), we have

‖X̃ − Ỹ ‖X (A) = ‖A(A−1X −A−1Y )‖X = ‖X − Y ‖X < ε.

We can take ε̃ = ε.
(iv) A set U ⊂ X is bounded in 〈X , ‖ · ‖X 〉 if and only if for each neighborhood V of zero there is

a real λ > 0 such that U ⊂ λV . In other words, ‖αnXn‖X → 0 as n → ∞ for all sequences (Xn)
∞
n=1 ⊂ U

and (αn)
∞
n=1 ⊂ C with αn → 0 as n → ∞ [29, Chapter 1, Theorem 1.30]. Verify that A−1 · U is bounded

in 〈X (A), ‖ · ‖X (A)〉. Take an arbitrary sequence (Yn)
∞
n=1 ⊂ A−1 · U and (αn)

∞
n=1 ⊂ C with αn → 0

as n → ∞. Then there is (Xn)
∞
n=1 ⊂ U such that Yn = A−1Xn for all n ∈ N and

‖αnYn‖X (A) = ‖αnA
−1Xn‖X (A) = ‖αnAA

−1Xn‖X = ‖αnXn‖X → 0

as n → ∞. �

Obviously, if an F -normed space 〈E , ‖ · ‖E〉 has a Schauder basis then the space is separable. Every
topological vector space with a bounded neighborhood of zero is locally bounded.

Corollary 4. An F -NIP 〈X , ‖ · ‖X 〉 is locally bounded, respectively locally convex, if and only if so
is 〈X (A), ‖ · ‖X (A)〉.

Corollary 5. An F -NIP 〈X , ‖ · ‖X 〉 is normable if and only if so is 〈X (A), ‖ · ‖X (A)〉.
Proof. A topological vector space is normable if and only if it includes a bounded convex neigh-

borhood of zero [29, Chapter 1, Theorem 1.39]. �
Lemma 2. Consider two F -NIPs X and Y on (M, τ) such that 〈Y, ‖ · ‖Y〉 is complete, and a dense

linear subspace Z of X . Take A ∈ S(M, τ) with AZ ⊆ Y and continuous multiplier MA : Z → Y. Then
the continuous extension MA : X → Y of MA to the whole space X is also a multiplier by A.

Proof. Take X ∈ X and Xi ∈ Z such that Xi → X in 〈X , ‖ · ‖X 〉. Then MAXi = MAXi → MAX

in 〈Y, ‖ · ‖Y〉. By [5, Theorem 1] we see that Xi
wτl−→ X, as well as MAXi

wτl−→ MAX. In view of [22,

Theorem 1] the multiplier MA : S(M, τ) → S(M, τ) is twτl-continuous. Therefore, MAXi
wτl−→ MAX,

and so MAX = MAX = AX. �

The analogous result holds for LAX = XA.

Theorem 5. Consider two F -NIPs X and Y on (M, τ) and suppose that AX ⊆ Y for some operator
A ∈ S(M, τ). Then the multiplier MAX = AX, acting as MA : X → Y, is continuous. In particular, for
X ⊆ Y the natural embedding of X into Y is continuous.

Proof. Verify that the graph of MA is closed. Indeed, if Xn → X in X and AXn → Y in Y then

Xn
wτl−→ X and AXn

wτl−→ Y by [22, Theorem 1]. Then Y = AX because of the separate twτl-continuity
of multiplication [5, Theorem 1]. It remains to apply the Closed Graph Theorem [29, Chapter 2, Theo-
rem 2.15]. �

Remark 1. The topological intersection of an at most countable family of F -NIPs 〈Xn, ‖ · ‖Xn〉 on
(M, τ) is also an F -NIP on (M, τ) with the F -norm

‖X‖X =
∑

n≥1

2−n ‖X‖Xn

1 + ‖X‖Xn

.

Recall that X =
⋂

n≥1Xn; the projective, or initial, topology (see [30, p. 35]) induced by the embeddings
X ⊂ Xn for n ∈ N is the linear topology whose base of neighborhoods of zero consists of all sets of the
form Un1 ∩ · · · ∩ Unm ∩ X , where Un is a neighborhood of zero in Xn. The space X endowed with this
topology is the topological intersection of Xn.
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Theorem 6. Consider a decreasing sequence (Xn)n≥1 of F -NIPs on (M, τ) such that the space
X =

⋂
n≥1Xn is dense in each Xn, some locally bounded F -NIP Y on (M, τ), and A ∈ S(M, τ). Then

AX ⊆ Y if and only if AXn ⊆ Y for some n ∈ N.

Proof. Assume that AX ⊆ Y. Theorem 5 and Remark 1 imply that the multiplier MA : X → Y is
continuous. Suppose that V is a bounded neighborhood of zero in Y. There exists a tuple of neighborhoods
of zero (Uk(⊂ Xk))

n
k=1 such thatMA(X∩U1∩· · ·∩Un) ⊆ V . Since the embeddings Xn ⊂ Xk for k = 1, . . . , n

are continuous, there exist neighborhoods Wk of zero in Xk such that Wk ⊂ Uk for k = 1, . . . , n. Putting
U =

⋂n
k=1Wk, we obtain a neighborhood of zero in Xn satisfying MA(U ∩ X ) ⊆ V . The boundedness

of V is equivalent to the property that the system of its dilations εV with ε > 0 constitutes a base of
neighborhoods of zero in Y. Since for every ε > 0 we have MA(εU ∩X ) ⊆ εV , the mapping MA : X → Y
is continuous in the topology on X induced from Xn. Extend this mapping by continuity to some mapping
from Xn to Y. By Lemma 2 the extended mapping is also a multiplier by A; consequently, AXn ⊆ Y. �

Corollary 6. Consider the same (Xn)n≥1, X , and Y as in Theorem 6. Then X ⊆ Y ⇐⇒ Xn ⊆ Y
for some n ∈ N.

Proof. Apply Theorem 6 to the operator A = I. �

Theorem 7 (cf. [20, Chapter 6, § 6.5]). If X , Y1, . . . ,Yn, . . . is a sequence of F -NIPs on (M, τ)
with 〈X , ‖ · ‖X 〉 complete then X ⊆

⋃∞
n=1 Yn if and only if X ⊆ Yn for some n ∈ N.

Proof. For Xn = X ∩ Yn we have X =
⋃∞

n=1Xn. The Baire Category Theorem implies that for
some n ∈ N the space Xn is a nonmeager set in X . The space Xn regarded as the topological intersection
of X and Yn is an F -NIP on (M, τ) and the embedding Xn ⊂ X is continuous. The Banach Theorem
[31, Chapter III, Theorem 3] yields Xn = X ; i.e., X ⊆ Yn. �
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