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HYPONORMAL MEASURABLE OPERATORS AFFILIATED
TO A SEMIFINITE VON NEUMANN ALGEBRA
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Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra M. We study the
cases when a hyponormal τ -measurable operator (or a restriction of it) is normal. We obtain a criterion
for the hyponormality of a τ -measurable operator in terms of its singular value function. The set of all
τ -measurable hyponormal operators is closed in the topology of τ -local convergence in measure. This
assertion is a generalization of Problem 226 from the book “Halmos P.R., A Hilbert Space Problem
Book, Second edition, Springer, New York (1982)” to the setting of unbounded operators. The set of
all τ -measurable cohyponormal operators is closed in the topology of τ -local convergence in measure
if and only if the von Neumann algebra M is finite.
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1. Introduction

Bounded hyponormal operators on a Hilbert space are the contents of articles by many researchers
(see, for instance, [1–7] and the references therein). In the context of semifinite von Neumann algebras,
the author published the articles [8–13] on the properties of (unbounded) τ -measurable hyponormal
operators (also see [14]). Suppose that a von Neumann operator algebra M acts in a Hilbert space H;
Mpr is the lattice of projections in M; τ is a faithful normal semifinite trace on M; S(M, τ) is
the ∗-algebra of all τ -measurable operators; S(M, τ)h is the Hermitian part of S(M, τ); μ(t;X) is
the singular value function of an operator X ∈ S(M, τ). We list the main results of our article;
some of them are new even for the algebra M = B(H) with τ = tr. If T ∈ S(M, τ)h, P ∈ Mpr,
and the operator A := PT is hyponormal then TP = PT and A = PTP ∈ S(M, τ)h (Theorem 2).
If an operator T ∈ S(M, τ) is hyponormal, P ∈ Mpr, and TP = λP for some λ ∈ C then TP = PT and
the operator T |PH is normal (Theorem 3). An operator T ∈ S(M, τ) is hyponormal (cohyponormal)
if and only if μ(t;TP ) ≥ μ(t;T ∗P ) (respectively, μ(t;T ∗P ) ≥ μ(t;TP )) for all t > 0 and P ∈ Mpr

with τ(P ) < +∞ (Theorem 6). In particular, an operator T ∈ S(M, τ) is normal if and only if
μ(t;TP ) = μ(t;T ∗P ) for all t > 0 and P ∈ Mpr with τ(P ) < +∞ (Corollary 3). The set of all
τ -measurable hyponormal operators is tτl-closed (Theorem 7). This assertion is a generalization of [15,
Problem 226] to unbounded operators. The set of all τ -measurable cohyponormal operators is tτl-closed
if and only if the von Neumann algebra M is finite (Corollary 4).

2. Definitions and Notation

Let M be a von Neumann algebra of operators on a Hilbert space H, let Mpr be the lattice of
projections (P = P 2 = P ∗) in M, let I be the unity of M, and let P⊥ = I−P for P ∈ Mpr. Let M+ be
the cone of positive elements in M, let ‖·‖ be the C∗-norm on M, and let M1 = {X ∈ M : ‖X‖ ≤ 1} be
the unit ball of M. Given P,Q ∈ Mpr, write P ∼ Q (the Murray–von Neumann equivalence) if P = U∗U
and Q = UU∗ for some U ∈ M; say that M is finite if I is equivalent to no projection P ∈ M \ {I}.
The notation P 	 Q means that P ∼ R for some R ∈ Mpr with R ≤ Q.
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A mapping ϕ : M+ → [0,+∞] is a trace if ϕ(X + Y ) = ϕ(X) + ϕ(Y ) and ϕ(λX) = λϕ(X) for all
X,Y ∈ M+, λ ≥ 0 (here 0 · (+∞) ≡ 0) and ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace ϕ is called

• faithful if ϕ(X) > 0 for all X ∈ M+, X �= 0;
• normal if Xi ↗ X (Xi, X ∈ M+) implies ϕ(X) = supϕ(Xi);
• finite if ϕ(I) < +∞;
• semifinite if ϕ(X) = sup{ϕ(Y ) : Y ∈M+, Y ≤X, ϕ(Y )<+∞} for everyX ∈M+ (see [16, Chap-
ter V, Section 2; 17, Chapter 1, Section 1.15]).

An operator on H, not necessarily bounded or densely defined, is affiliated to a von Neumann
algebra M whenever it commutes with all unitary operators in the commutant M′ of M. Henceforth,
τ stands for a faithful normal semifinite trace on M; Mpr

τ = {P ∈ Mpr : τ(P ) < +∞}. A closed
operatorX affiliated toM whose domain D(X) is dense inH is τ -measurable whenever, given ε > 0, there
exists P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The set S(M, τ) of all τ -measurable operators is
a ∗-algebra under the taking of adjoint operators, the multiplication by scalars, and the strong addition
and multiplication obtained as the closure of the ordinary operations (see [18, Chapter IX; 17, Chapter 2,
Section 2.3]). Given a family L ⊂ S(M, τ), denote by L+ and Lh the positive and Hermitian parts of L.
Denote by ≤ the partial order on S(M, τ)h generated by the proper cone S(M, τ)+. If X ∈ S(M, τ)

and X = U |X| is the polar decomposition of X then U ∈ M and |X| = √
X∗X ∈ S(M, τ)+. An operator

A ∈ S(M, τ) is hyponormal whenever A∗A ≥ AA∗; and A is cohyponormal whenever A∗ is hyponormal.
The ∗-algebra S(M, τ) is endowed with the topology tτ of convergence in measure (see [18, Chap-

ter IX, Section 2; 17, Chapter 2, Section 2.5]) with a fundamental system of neighborhoods of zero
constituted by the sets

U(ε, δ) = {X ∈ S(M, τ) : ∃P ∈ Mpr (‖XP‖ ≤ ε and τ(P⊥) ≤ δ)}, ε > 0, δ > 0.

It is known that (S(M, τ), tτ ) is a complete metrizable topological ∗-algebra [17, Chapter 2, Sections 2.3
and 2.5] and M is complete in (S(M, τ), tτ ) [17, Chapter 2, Section 2.5]. For the convergence of a net

{Xj}j∈J ⊂ S(M, τ) to X ∈ S(M, τ) in the topology tτ , the notation Xj
τ−→ X is used and {Xj}j∈J is

said to converge to X in the measure τ .
Denote by μ(t;X) the singular value function of X ∈ S(M, τ), meaning the nonincreasing right-

continuous function μ(· ;X) : (0,+∞) → [0,+∞) defined by

μ(t;X) = inf{‖XP‖ : P ∈ Mpr, τ(P⊥) ≤ t}, t > 0.

Lemma 1 [19]. Suppose that X,Y ∈ S(M, τ) and A,B ∈ M. Then
(i) μ(t;X) = μ(t; |X|) = μ(t;X∗) for all t > 0;
(ii) if |X| ≤ |Y | then μ(t;X) ≤ μ(t;Y ) for all t > 0;
(iii) μ(t;AXB) ≤ ‖A‖‖B‖μ(t;X) for all t > 0;
(iv) μ(s+ t;X + Y ) ≤ μ(s;X) + μ(t;Y ) for all s, t > 0;
(v) μ(t; f(|X|)) = f(μ(t;X)) for all continuous functions f : R+ → R+ with f(0) = 0 and t > 0.

The topology tτ of convergence in measure can be localized as follows: Given ε, δ > 0 and P ∈ Mpr
τ ,

define the sets

V(ε, δ, P ) = {X ∈ S(M, τ) : ∃Q ∈ Mpr (Q ≤ P, ‖XQ‖ ≤ ε, and τ(P −Q) ≤ δ)}.

The space S(M, τ) becomes a topological vector space with respect to the topology tτl of τ -local conver-

gence in measure with a neighborhood of zero Θ = {V(ε, δ, P )}ε,δ>0;P∈Mpr
τ
. We use the symbol Xi

τ l−→ X
for denoting tτl-convergence. Employing the standard technique of reducing von Neumann algebras, we

can show (also see [20, 21]) that Xi
τ l−→ X if and only if XiP

τ−→ XP for all P ∈ Mpr
τ , cf. [22, p. 114];

clearly, tτl ≤ tτ . See [20, 21; 23–25] for the properties of the topology tτl. If the trace τ is finite then
tτ = tτl is the minimal metrizable topology coordinated with the ring structure in S(M, τ) [26].

657



If M = B(H) is the ∗-algebra of all bounded linear operators on H and τ = tr is the canonical
trace then S(M, τ) coincides with B(H); the topology tτ coincides with the topology of the norm ‖·‖;
tτl coincides with the topology of the strong operator convergence. We have

μ(t;X) =
∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of the s-numbers of a compact operator X; χA is the indicator of a set
A ⊂ R [27, Chapter II].

If M is abelian (i.e., commutative) then M � L∞(Ω,Σ, ν) and τ(f) =
∫
Ω f dν, where (Ω,Σ, ν) is

a localizable measure space; the ∗-algebra S(M, τ) coincides with the algebra of all measurable complex
functions f on (Ω,Σ, ν) that are bounded everywhere outside a set of finite measure (with functions equal
almost everywhere identified). The function μ(t; f) coincides with the nonincreasing rearrangement of
the function |f |; see [28] for the properties of rearrangements.

3. The Main Results

Lemma 2 [29, Lemma 2]. If T ∈ S(M, τ)+, P ∈ Mpr, and PT + TP ≥ 0 then TP = PT .

Theorem 1. Suppose that T ∈ S(M, τ)+ and P ∈ Mpr. The following hold:
(i) if U = 2P − I and T − UTU ≥ 0 then TP = PT ;
(ii) if Q ∈ Mpr with PQ = 0 and

T (P − tQ) + (P − tQ)T ≥ 0 (1)

for some t > 0 then TP = PT and TQ = QT = 0.

Proof. (i): From the inequality T − (2P − I)T (2P − I) ≥ 0 we obtain

PT + TP − 2PTP ≥ 0.

Since PTP ≥ 0, we have PT + TP ≥ 0. By Lemma 2, TP = PT .
(ii): Multiplying both sides of (1) from the left and from the right by the projection Q, we conclude

that −2QTQ ≥ 0. Since QTQ ≥ 0, we have QTQ = |T 1/2Q|2 = 0 and T 1/2Q = 0. Therefore,

TQ = T 1/2 · T 1/2Q = 0 and QT = (TQ)∗ = 0. Now, (1) implies PT + TP ≥ 0; hence, TP = PT
by Lemma 2. The theorem is proved. �

Example 1. The positivity of T is essential in item (ii) of Theorem 1. In the algebra M2(C), for the
projections P := diag(0, 1), Q := diag(1, 0), and the Hermitian matrix

T =

(
0 1
1 0

)

we have T (P −Q) + (P −Q)T = 0 (cf. (1)), but TP �= PT and TQ �= 0 �= QT .

Theorem 2. Suppose that T ∈ S(M, τ)h, P ∈ Mpr, and the operator A := PT is hyponormal.
Then TP = PT and A = PTP ∈ S(M, τ)h.

Proof. Since PT 2P = AA∗ ≤ A∗A = TPT , multiplying both sides of this inequality from the left
and from the right by P , we infer

0 ≤ PT 2P ≤ PTPTP = (PTP )2 = |PTP |2.
Hence, with the use of the inequality PTPTP ≤ PTITP = PT 2P , due to the operator monotonicity of
the function f(t) =

√
t (t ≥ 0), we have√

PT 2P ≤ |PTP | =
√
PTPTP ≤

√
PT 2P ,

i.e., |PTP | =
√
PT 2P . Squaring both sides of the last equality, we get PTPTP = PT 2P (= PTPTP +

PTP⊥TP ). Therefore,

PTP⊥TP = |P⊥TP |2 = 0

and P⊥TP = 0. Thus, TP = PTP = (PTP )∗ = (TP )∗ = PT and A = PTP ∈ S(M, τ)h. The theorem
is proved. �
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Corollary 1. If an operator A = A2 ∈ S(M, τ) is hyponormal (or cohyponormal ) then A ∈ Mpr.

Proof. By [30, Theorem 2.21], every operator A = A2 ∈ S(M, τ) is representable as the product
A = PT , where P = A(A + A∗ − I)−1 ∈ Mpr and the operator T = A + A∗ − I invertible in S(M, τ)
belongs to S(M, τ)h. Now the claim follows from the spectral theorem. If the operator A = A2 ∈ S(M, τ)
is cohyponormal then A∗ = A∗2 is hyponormal. �

Theorem 3. Suppose that an operator T ∈ S(M, τ) is hyponormal, P ∈ Mpr, and TP = λP for
some λ ∈ C. Then PT = TP and the operator T |PH is hyponormal.

Proof. Since PTT ∗P ≤ PT ∗TP , we have

0 ≤ (PT − λP )(PT − λP )∗ = PTT ∗P − λPTP − λPT ∗P + |λ|2P
≤ PT ∗TP − |λ|2P − λPT ∗P + |λ|2P = PT ∗λP − λPT ∗P = 0.

Consequently, T ∗P − λP = (PT − λP )∗ = 0 and PT = λP = TP . We have T |PH = PTP . It is easy to
see that

(PTP )∗PTP = PT ∗PTP = PT ∗PPT = PT ∗PλP = λPT ∗P,
PTP (PTP )∗ = PTPT ∗P = PPTT ∗P = PTT ∗P = λPT ∗P.

The theorem is proved. �
Corollary 2. Suppose that an operator T ∈ S(M, τ) is hyponormal, P1, P2 ∈ Mpr, and TP1 = λ1P1,

TP2 = λ2P2 for some nonzero λ1, λ2 ∈ C, λ1 �= λ2. Then P1P2 = 0.

Proof. For λ1 /∈ {0, λ2}, we have P1T = λ1P1 by Theorem 3, and

λ1λ2P1P2 = TP1TP2 = TP1TP2 = Tλ1P1P2 = λ1TP1P2 = λ1λ1P1P2 = λ2
1P1P2.

Therefore, λ1(λ2 − λ1)P1P2 = 0 and P1P2 = 0.
Given λ2 /∈ {0, λ1}, we consider the product λ1λ2P2P1 and likewise obtain

P2P1 = 0 = 0∗ = (P2P1)
∗ = P1P2. �

Theorem 4. Suppose that an operator T ∈ S(M, τ) is hyponormal and P ∈ Mpr.
(i) If 0 ≤ TP ≤ P then TP = PT .
(ii) Let TP = PTP . Then the operator T |PH is hyponormal; if T |PH is normal then TP = PT .

Proof. (i): For A := TP we have 0 ≤ A ≤ P ; therefore, AP = PA = A by [31, Chapter 2,
Section 2.17]. Likewise, from 0 ≤ A2 ≤ P we obtain A2P = PA2 = A2. Note that PT ∗ = (TP )∗ = A
and PTT ∗P ≤ PT ∗TP . Then

0 ≤ (PT − TP )(PT − TP )∗ = PTT ∗P − PTTP − TPT ∗P + TPPT ∗

≤ PT ∗TP − PTA−AT ∗P +A2 = 2A2 − PTA−AT ∗P

= 2A2 − PTPA−APT ∗P = 2A2 − PTPA−APT ∗P

= 2A2 − PA2 −A2P = 2A2 −A2 −A2 = 0

and TP = PT .
(ii): We have PT ∗TP ≥ PTT ∗P and T |PH = PTP . Let TP = PTP . It is easy to see that

(PTP )∗PTP = (TP )∗TP = PT ∗PT ≥ PTT ∗P ≥ PTPT ∗P = PTP (PTP )∗,
i.e., the operator T |PH is hyponormal. Let T |PH be normal. Then PTP (PTP )∗ = (PTP )∗PTP and
P⊥TP = 0; therefore,

0 ≤ (TP − PT )(TP − PT )∗ = TPT ∗P − TPT ∗P − PTPT ∗ + PTT ∗P
= TPT ∗ − TPT ∗P − TPT ∗ + PTT ∗P = −TPT ∗P + PTT ∗P

= −PTPPT ∗P + PTT ∗P ≤ −PTPPT ∗P + PT ∗TP = PT ∗P⊥TP = 0

and TP = PT . The theorem is proved. �
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Theorem 5. Suppose that T ∈ M1 and P ∈ Mpr.
(i) If TP ≥ P then TP = PT = P .
(ii) If T is hyponormal and TT ∗P =P (or τ(TT ∗P )=τ(P )<+∞) then T ∗TP =P .

Proof. (i): Since P ≤ TP ≤ I, we have 0 ≤ TP − P ≤ P⊥ ∈ Mpr. Therefore,

0 = (TP − P )P⊥ = P⊥(TP − P ) = TP − P

by [31, Chapter 2, Section 2.17] and TP = P = PT ∗. Owing to 0 ≤ TT ∗ ≤ I, we have

0 ≤ (PT − P )(PT − P )∗ = PTT ∗P − PTP − PT ∗P + P ≤ P − P = 0

and PT = P .
(ii): If TT ∗P = P then 0 ≤ (T ∗T )2 ≤ T ∗T ≤ I and P = PTT ∗P ≤ PT ∗TP ≤ P , i.e., PTT ∗P =

PT ∗TP = P . (If τ(TT ∗P ) = τ(P ) < +∞ then from the estimates PTT ∗P ≤ PT ∗TP ≤ P and

τ(P ) = τ(TT ∗P ) = τ(TT ∗PP ) = τ(PTT ∗P ) ≤ τ(PT ∗TP ) ≤ τ(P )

by the finiteness of the trace τ , we obtain PTT ∗P = PT ∗TP = P .) Thus,

0 ≤ (T ∗TP − P )∗(T ∗TP − P ) = P (T ∗T )2P − 2PT ∗TP + P = P (T ∗T )2P − P ≤ P − P = 0

and T ∗TP = P . The theorem is proved. �
Theorem 6. An operator T ∈ S(M, τ) is hyponormal (cohyponormal ) if and only if μ(t;TP ) ≥

μ(t;T ∗P ) ((μ(t;T ∗P ) ≥ μ(t;TP )) for all t > 0 and P ∈ Mpr
τ .

Proof. (⇒): Since PT ∗TP ≥ PTT ∗P for T hyponormal, by items (i), (ii), and (v) of Lemma 1,
for all t > 0 and P ∈ Mpr we have the estimate

μ(t;TP ) = μ(t; (PT ∗TP )1/2) = μ(t;PT ∗TP )1/2 ≥ μ(t;PTT ∗P )1/2 = μ(t; (PT ∗TP )1/2) = μ(t;T ∗P ).

(⇐): Let μ(t;TP ) ≥ μ(t;T ∗P ) for all t > 0 and P ∈ Mpr
τ . Suppose that A− �= 0 in the Jordan

decomposition
T ∗T − TT ∗ = A+ −A−,

where A+, A− ∈ S(M, τ)+ with A+A− = 0. Let a real ε > 0 be such that the spectral projection
EA−(ε,+∞) = P is nonzero. Passing to a subprojection if necessary, we assume that τ(P ) < +∞.
We have

PT ∗TP − PTT ∗P = −PA−P ≤ −εP,

i.e.,
PT ∗TP + εP ≤ PTT ∗P. (2)

Consider the reduced von Neumann algebra MP = PMP with unity P and the reduced faithful normal
trace τP = τ(P · P ) on MP . Then

S(MP , τP ) = PS(M, τ)P.

Let μP (t; ·) be the singular value function calculated according the trace τP ; then by using (2), the
well-known representation

μ(t;X) = inf{s > 0 : dX(s) ≤ t}, t > 0

(see [19, Proposition 2.2], where dX(s) = τ(E|X|(s,+∞)), s > 0, is the distribution function of the

operator X ∈ S(M, τ) and E|X|(s,+∞) is the spectral projection of |X| corresponding to the interval
(s,+∞)), and employing items (i) and (v) of Lemma 1, we obtain

μ(t;T ∗P )2 = μ(t; |T ∗P |2) = μ(t;PTT ∗P ) = μP (t;PTT ∗P ) ≥ μP (t;PT ∗TP + εP )

= μP (t;PT ∗TP ) + ε = μ(t;PT ∗TP ) + ε = μ(t; |TP |2) + ε = μ(t;TP )2 + ε;

a contradiction. The theorem is proved. �
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Corollary 3. An operator T ∈ S(M, τ) is normal if and only if μ(t;TP ) = μ(t;T ∗P ) for all t > 0
and P ∈ Mpr

τ .

The topology tτl can also be defined in terms of singular value functions. Namely, the family Θ̃ =

{Ṽ(ε, δ, P )}ε,δ>0;P∈Mpr
τ
, where

Ṽ(ε, δ, P ) = {X ∈ S(M, τ) : μ(δ;XP ) < ε},

defines a neighborhood basis of zero for tτl.

Theorem 7. The set of all τ -measurable hyponormal operators is tτl-closed.

Proof. Each base neighborhood of an operator B ∈ S(M, τ) in the topology tτl has the form

Vε,δ,P (B) := {A ∈ S(M, τ) : μ(δ;AP −BP ) < ε},

where ε, δ > 0 and P ∈ Mpr
τ (also see [20, Section 2; 21, Section 2; 25, Section 3]). Our theorem states

that if each such neighborhood of B contains a hyponormal operator then

μ(t;B∗P ) ≤ μ(t;BP )

for all t > 0 and P ∈ Mpr
τ (see Theorem 6). For a fixed P ∈ Mpr

τ , consider the projection

Q := P ∨ sl(B
∗P ).

Since sl(B
∗P ) 	 P , we have τ(Q) ≤ τ(P ) + τ(sl(B

∗)) ≤ 2τ(P ) < +∞ and Q ∈ Mpr
τ .

To better understand the idea of using the neighborhood assumption, assume temporarily that
a stronger assumption holds; namely, that there exists a hyponormal operator A ∈ S(M, τ) such that

AQ = BQ.

In this case, passing to the adjoint operators, we have QA∗ = QB∗, which implies

μ(t;B∗P ) = μ(t; sl(B
∗P )QB∗P ) ≤ ‖sl(B∗P )‖μ(t;QB∗P ) = μ(t;QA∗P )

≤ ‖Q‖μ(t;A∗P ) = μ(t;A∗P ) ≤ μ(t;AP ) = μ(t;AQP ) = μ(t;BQP ) = μ(t;BP )

for all t > 0 by item (iii) of Lemma 1 and Theorem 6 for the operator A.
The proof is actually done again by carrying ε and δ along the above chain of reasoning using

Lemma 1 on the properties of singular value functions. For arbitrary t > 2δ > 0, we infer

μ(t;B∗P ) = μ(t; sl(B
∗P )QB∗P ) ≤ ‖sl(B∗P )‖μ(t;QB∗P ) = μ(t;QB∗P )

= μ(t;QB∗P −QA∗P +QA∗P ) ≤ μ(δ;QB∗P −QA∗P ) + μ(t− δ;QA∗P )

≤ ‖P‖μ(δ;QB∗ −QA∗) + μ(t− δ;QA∗P ) = μ(δ;BQ−AQ) + μ(t− δ;QA∗P )

≤ ε+ μ(t− δ;QA∗P ) ≤ ε+ ‖Q‖μ(t− δ;A∗P ) ≤ ε+ μ(t− δ;AP ) = ε+ μ(t− δ;AQP )

= ε+ μ(t− δ;AQP −BQP +BQP ) ≤ ε+ μ(δ;AQP −BQP ) + μ(t− 2δ;BQP )

≤ 2ε+ μ(t− 2δ;BQP ) = 2ε+ μ(t− 2δ;BP ).

If t is a continuity point of μ(· ;BP ) then, due to the smallness of ε and δ, we obtain μ(t;B∗P ) ≤ μ(t;BP )
and the operator B is hyponormal by Theorem 6. Finally, recall that the singular value function μ(· ;X)
(X ∈ S(M, τ)) is right continuous on R+ and has at most countably many discontinuity points. The
theorem is proved. �

661



Corollary 4. The set of all τ -measurable cohyponormal operators is tτl-closed if and only if the von
Neumann algebra M is finite.

Proof. Sufficiency: Suppose that the set of all cohyponormal operators in S(M, τ) is tτl -closed.
Then the set of all τ -measurable normal operators is tτl-closed as the intersection of two tτl-closed
sets in S(M, τ). Recall that the set Miso of all isometries (U∗U = I) is a tτl-closed set in S(M, τ)
[20, Lemma 3.7(3)]. Consequently, the set Mu of all unitary operators (U∗U = UU∗ = I) is a tτl -closed
set in S(M, τ). ButMu is tτl-closed if and only if the von Neumann algebraM is finite [24, Theorem 1(i)].

Necessity: A von Neumann algebraM is finite if and only if the involution A �→ A∗ is tτl-continuous
from S(M, τ) into S(M, τ) [20, Theorem 4.1(5)]. Moreover, if a net {Xj}j∈J ⊂ (M, τ) of cohyponormal

operators tτl-converges to an operator X ∈ S(M, τ) then X∗
j

τ l−→ X∗. Since the operators X∗
j , j ∈ J ,

are hyponormal, X∗ is hyponormal; therefore, X is cohyponormal. �
Remark 1. In [32], Muratov and Chilin considered another topology of local convergence in measure

on algebras of locally measurable operators, different from tτl. The question of the closedness of the set
of all locally measurable hyponormal operators in that topology remains open.
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