

HYPONORMAL MEASURABLE OPERATORS AFFILIATED TO A SEMIFINITE VON NEUMANN ALGEBRA

A. M. Bikchentaev

UDC 517.983+517.986

Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} . We study the cases when a hyponormal τ -measurable operator (or a restriction of it) is normal. We obtain a criterion for the hyponormality of a τ -measurable operator in terms of its singular value function. The set of all τ -measurable hyponormal operators is closed in the topology of τ -local convergence in measure. This assertion is a generalization of Problem 226 from the book “Halmos P.R., A Hilbert Space Problem Book, Second edition, Springer, New York (1982)” to the setting of unbounded operators. The set of all τ -measurable cohyponormal operators is closed in the topology of τ -local convergence in measure if and only if the von Neumann algebra \mathcal{M} is finite.

DOI: 10.1134/S0037446625030061

Keywords: Hilbert space, von Neumann algebra, normal trace, measurable operator, hyponormal operator

1. Introduction

Bounded hyponormal operators on a Hilbert space are the contents of articles by many researchers (see, for instance, [1–7] and the references therein). In the context of semifinite von Neumann algebras, the author published the articles [8–13] on the properties of (unbounded) τ -measurable hyponormal operators (also see [14]). Suppose that a von Neumann operator algebra \mathcal{M} acts in a Hilbert space \mathcal{H} ; \mathcal{M}^{pr} is the lattice of projections in \mathcal{M} ; τ is a faithful normal semifinite trace on \mathcal{M} ; $S(\mathcal{M}, \tau)$ is the $*$ -algebra of all τ -measurable operators; $S(\mathcal{M}, \tau)^h$ is the Hermitian part of $S(\mathcal{M}, \tau)$; $\mu(t; X)$ is the singular value function of an operator $X \in S(\mathcal{M}, \tau)$. We list the main results of our article; some of them are new even for the algebra $\mathcal{M} = \mathcal{B}(\mathcal{H})$ with $\tau = \text{tr}$. If $T \in S(\mathcal{M}, \tau)^h$, $P \in \mathcal{M}^{\text{pr}}$, and the operator $A := PT$ is hyponormal then $TP = PT$ and $A = PTP \in S(\mathcal{M}, \tau)^h$ (Theorem 2). If an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal, $P \in \mathcal{M}^{\text{pr}}$, and $TP = \lambda P$ for some $\lambda \in \mathbb{C}$ then $TP = PT$ and the operator $T|_{P\mathcal{H}}$ is normal (Theorem 3). An operator $T \in S(\mathcal{M}, \tau)$ is hyponormal (cohyponormal) if and only if $\mu(t; TP) \geq \mu(t; T^*P)$ (respectively, $\mu(t; T^*P) \geq \mu(t; TP)$) for all $t > 0$ and $P \in \mathcal{M}^{\text{pr}}$ with $\tau(P) < +\infty$ (Theorem 6). In particular, an operator $T \in S(\mathcal{M}, \tau)$ is normal if and only if $\mu(t; TP) = \mu(t; T^*P)$ for all $t > 0$ and $P \in \mathcal{M}^{\text{pr}}$ with $\tau(P) < +\infty$ (Corollary 3). The set of all τ -measurable hyponormal operators is $t_{\tau l}$ -closed (Theorem 7). This assertion is a generalization of [15, Problem 226] to unbounded operators. The set of all τ -measurable cohyponormal operators is $t_{\tau l}$ -closed if and only if the von Neumann algebra \mathcal{M} is finite (Corollary 4).

2. Definitions and Notation

Let \mathcal{M} be a von Neumann algebra of operators on a Hilbert space \mathcal{H} , let \mathcal{M}^{pr} be the lattice of projections ($P = P^2 = P^*$) in \mathcal{M} , let I be the unity of \mathcal{M} , and let $P^\perp = I - P$ for $P \in \mathcal{M}^{\text{pr}}$. Let \mathcal{M}^+ be the cone of positive elements in \mathcal{M} , let $\|\cdot\|$ be the C^* -norm on \mathcal{M} , and let $\mathcal{M}_1 = \{X \in \mathcal{M} : \|X\| \leq 1\}$ be the unit ball of \mathcal{M} . Given $P, Q \in \mathcal{M}^{\text{pr}}$, write $P \sim Q$ (the Murray–von Neumann equivalence) if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathcal{M}$; say that \mathcal{M} is *finite* if I is equivalent to no projection $P \in \mathcal{M} \setminus \{I\}$. The notation $P \preceq Q$ means that $P \sim R$ for some $R \in \mathcal{M}^{\text{pr}}$ with $R \leq Q$.

Original article submitted September 26, 2024; revised February 14, 2025; accepted April 25, 2025.

A mapping $\varphi : \mathcal{M}^+ \rightarrow [0, +\infty]$ is a *trace* if $\varphi(X + Y) = \varphi(X) + \varphi(Y)$ and $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{M}^+$, $\lambda \geq 0$ (here $0 \cdot (+\infty) \equiv 0$) and $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is called

- *faithful* if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+$, $X \neq 0$;
- *normal* if $X_i \nearrow X$ ($X_i, X \in \mathcal{M}^+$) implies $\varphi(X) = \sup \varphi(X_i)$;
- *finite* if $\varphi(I) < +\infty$;
- *semifinite* if $\varphi(X) = \sup\{\varphi(Y) : Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}$ for every $X \in \mathcal{M}^+$ (see [16, Chapter V, Section 2; 17, Chapter 1, Section 1.15]).

An operator on \mathcal{H} , not necessarily bounded or densely defined, is *affiliated* to a von Neumann algebra \mathcal{M} whenever it commutes with all unitary operators in the commutant \mathcal{M}' of \mathcal{M} . Henceforth, τ stands for a faithful normal semifinite trace on \mathcal{M} ; $\mathcal{M}_\tau^{\text{pr}} = \{P \in \mathcal{M}^{\text{pr}} : \tau(P) < +\infty\}$. A closed operator X affiliated to \mathcal{M} whose domain $\mathcal{D}(X)$ is dense in \mathcal{H} is τ -*measurable* whenever, given $\varepsilon > 0$, there exists $P \in \mathcal{M}^{\text{pr}}$ such that $P\mathcal{H} \subset \mathcal{D}(X)$ and $\tau(P^\perp) < \varepsilon$. The set $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a $*$ -algebra under the taking of adjoint operators, the multiplication by scalars, and the strong addition and multiplication obtained as the closure of the ordinary operations (see [18, Chapter IX; 17, Chapter 2, Section 2.3]). Given a family $\mathcal{L} \subset S(\mathcal{M}, \tau)$, denote by \mathcal{L}^+ and \mathcal{L}^h the positive and Hermitian parts of \mathcal{L} . Denote by \leq the partial order on $S(\mathcal{M}, \tau)^h$ generated by the proper cone $S(\mathcal{M}, \tau)^+$. If $X \in S(\mathcal{M}, \tau)$ and $X = U|X|$ is the polar decomposition of X then $U \in \mathcal{M}$ and $|X| = \sqrt{X^*X} \in S(\mathcal{M}, \tau)^+$. An operator $A \in S(\mathcal{M}, \tau)$ is *hyponormal* whenever $A^*A \geq AA^*$; and A is *cohyponormal* whenever A^* is hyponormal.

The $*$ -algebra $S(\mathcal{M}, \tau)$ is endowed with the topology t_τ of convergence in measure (see [18, Chapter IX, Section 2; 17, Chapter 2, Section 2.5]) with a fundamental system of neighborhoods of zero constituted by the sets

$$U(\varepsilon, \delta) = \{X \in S(\mathcal{M}, \tau) : \exists P \in \mathcal{M}^{\text{pr}} (\|XP\| \leq \varepsilon \text{ and } \tau(P^\perp) \leq \delta)\}, \quad \varepsilon > 0, \delta > 0.$$

It is known that $(S(\mathcal{M}, \tau), t_\tau)$ is a complete metrizable topological $*$ -algebra [17, Chapter 2, Sections 2.3 and 2.5] and \mathcal{M} is complete in $(S(\mathcal{M}, \tau), t_\tau)$ [17, Chapter 2, Section 2.5]. For the convergence of a net $\{X_j\}_{j \in J} \subset S(\mathcal{M}, \tau)$ to $X \in S(\mathcal{M}, \tau)$ in the topology t_τ , the notation $X_j \xrightarrow{\tau} X$ is used and $\{X_j\}_{j \in J}$ is said to *converge to X in the measure τ* .

Denote by $\mu(t; X)$ the *singular value function* of $X \in S(\mathcal{M}, \tau)$, meaning the nonincreasing right-continuous function $\mu(\cdot; X) : (0, +\infty) \rightarrow [0, +\infty)$ defined by

$$\mu(t; X) = \inf\{\|XP\| : P \in \mathcal{M}^{\text{pr}}, \tau(P^\perp) \leq t\}, \quad t > 0.$$

Lemma 1 [19]. *Suppose that $X, Y \in S(\mathcal{M}, \tau)$ and $A, B \in \mathcal{M}$. Then*

- (i) $\mu(t; X) = \mu(t; |X|) = \mu(t; X^*)$ for all $t > 0$;
- (ii) if $|X| \leq |Y|$ then $\mu(t; X) \leq \mu(t; Y)$ for all $t > 0$;
- (iii) $\mu(t; AXB) \leq \|A\|\|B\|\mu(t; X)$ for all $t > 0$;
- (iv) $\mu(s + t; X + Y) \leq \mu(s; X) + \mu(t; Y)$ for all $s, t > 0$;
- (v) $\mu(t; f(|X|)) = f(\mu(t; X))$ for all continuous functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ with $f(0) = 0$ and $t > 0$.

The topology t_τ of convergence in measure can be localized as follows: Given $\varepsilon, \delta > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$, define the sets

$$\mathcal{V}(\varepsilon, \delta, P) = \{X \in S(\mathcal{M}, \tau) : \exists Q \in \mathcal{M}^{\text{pr}} (Q \leq P, \|XQ\| \leq \varepsilon, \text{ and } \tau(P - Q) \leq \delta)\}.$$

The space $S(\mathcal{M}, \tau)$ becomes a topological vector space with respect to the topology $t_{\tau l}$ of τ -*local convergence in measure* with a neighborhood of zero $\Theta = \{\mathcal{V}(\varepsilon, \delta, P)\}_{\varepsilon, \delta > 0; P \in \mathcal{M}_\tau^{\text{pr}}}$. We use the symbol $X_i \xrightarrow{\tau l} X$ for denoting $t_{\tau l}$ -convergence. Employing the standard technique of reducing von Neumann algebras, we can show (also see [20, 21]) that $X_i \xrightarrow{\tau l} X$ if and only if $X_i P \xrightarrow{\tau} XP$ for all $P \in \mathcal{M}_\tau^{\text{pr}}$, cf. [22, p. 114]; clearly, $t_{\tau l} \leq t_\tau$. See [20, 21; 23–25] for the properties of the topology $t_{\tau l}$. If the trace τ is finite then $t_\tau = t_{\tau l}$ is the minimal metrizable topology coordinated with the ring structure in $S(\mathcal{M}, \tau)$ [26].

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$ is the $*$ -algebra of all bounded linear operators on \mathcal{H} and $\tau = \text{tr}$ is the canonical trace then $S(\mathcal{M}, \tau)$ coincides with $\mathcal{B}(\mathcal{H})$; the topology t_τ coincides with the topology of the norm $\|\cdot\|$; $t_{\tau l}$ coincides with the topology of the strong operator convergence. We have

$$\mu(t; X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1, n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^{\infty}$ is the sequence of the s -numbers of a compact operator X ; χ_A is the indicator of a set $A \subset \mathbb{R}$ [27, Chapter II].

If \mathcal{M} is abelian (i.e., commutative) then $\mathcal{M} \simeq L^\infty(\Omega, \Sigma, \nu)$ and $\tau(f) = \int_{\Omega} f d\nu$, where (Ω, Σ, ν) is a localizable measure space; the $*$ -algebra $S(\mathcal{M}, \tau)$ coincides with the algebra of all measurable complex functions f on (Ω, Σ, ν) that are bounded everywhere outside a set of finite measure (with functions equal almost everywhere identified). The function $\mu(t; f)$ coincides with the nonincreasing rearrangement of the function $|f|$; see [28] for the properties of rearrangements.

3. The Main Results

Lemma 2 [29, Lemma 2]. *If $T \in S(\mathcal{M}, \tau)^+$, $P \in \mathcal{M}^{\text{pr}}$, and $PT + TP \geq 0$ then $TP = PT$.*

Theorem 1. *Suppose that $T \in S(\mathcal{M}, \tau)^+$ and $P \in \mathcal{M}^{\text{pr}}$. The following hold:*

- (i) *if $U = 2P - I$ and $T - UTU \geq 0$ then $TP = PT$;*
- (ii) *if $Q \in \mathcal{M}^{\text{pr}}$ with $PQ = 0$ and*

$$T(P - tQ) + (P - tQ)T \geq 0 \quad (1)$$

for some $t > 0$ then $TP = PT$ and $TQ = QT = 0$.

PROOF. (i): From the inequality $T - (2P - I)T(2P - I) \geq 0$ we obtain

$$PT + TP - 2PTP \geq 0.$$

Since $PTP \geq 0$, we have $PT + TP \geq 0$. By Lemma 2, $TP = PT$.

(ii): Multiplying both sides of (1) from the left and from the right by the projection Q , we conclude that $-2QTQ \geq 0$. Since $QTQ \geq 0$, we have $QTQ = |T^{1/2}Q|^2 = 0$ and $T^{1/2}Q = 0$. Therefore, $TQ = T^{1/2} \cdot T^{1/2}Q = 0$ and $QT = (TQ)^* = 0$. Now, (1) implies $PT + TP \geq 0$; hence, $TP = PT$ by Lemma 2. The theorem is proved. \square

EXAMPLE 1. The positivity of T is essential in item (ii) of Theorem 1. In the algebra $\mathbb{M}_2(\mathbb{C})$, for the projections $P := \text{diag}(0, 1)$, $Q := \text{diag}(1, 0)$, and the Hermitian matrix

$$T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

we have $T(P - Q) + (P - Q)T = 0$ (cf. (1)), but $TP \neq PT$ and $TQ \neq 0 \neq QT$.

Theorem 2. *Suppose that $T \in S(\mathcal{M}, \tau)^h$, $P \in \mathcal{M}^{\text{pr}}$, and the operator $A := PT$ is hyponormal. Then $TP = PT$ and $A = PTP \in S(\mathcal{M}, \tau)^h$.*

PROOF. Since $PT^2P = AA^* \leq A^*A = TPT$, multiplying both sides of this inequality from the left and from the right by P , we infer

$$0 \leq PT^2P \leq PTPTP = (PTP)^2 = |PTP|^2.$$

Hence, with the use of the inequality $PTPTP \leq PTITP = PT^2P$, due to the operator monotonicity of the function $f(t) = \sqrt{t}$ ($t \geq 0$), we have

$$\sqrt{PT^2P} \leq |PTP| = \sqrt{PTPTP} \leq \sqrt{PT^2P},$$

i.e., $|PTP| = \sqrt{PT^2P}$. Squaring both sides of the last equality, we get $PTPTP = PT^2P (= PTPTP + PTP^\perp TP)$. Therefore,

$$PTP^\perp TP = |P^\perp TP|^2 = 0$$

and $P^\perp TP = 0$. Thus, $TP = PTP = (PTP)^* = (TP)^* = PT$ and $A = PTP \in S(\mathcal{M}, \tau)^h$. The theorem is proved. \square

Corollary 1. If an operator $A = A^2 \in S(\mathcal{M}, \tau)$ is hyponormal (or cohyponormal) then $A \in \mathcal{M}^{\text{pr}}$.

PROOF. By [30, Theorem 2.21], every operator $A = A^2 \in S(\mathcal{M}, \tau)$ is representable as the product $A = PT$, where $P = A(A + A^* - I)^{-1} \in \mathcal{M}^{\text{pr}}$ and the operator $T = A + A^* - I$ invertible in $S(\mathcal{M}, \tau)$ belongs to $S(\mathcal{M}, \tau)^h$. Now the claim follows from the spectral theorem. If the operator $A = A^2 \in S(\mathcal{M}, \tau)$ is cohyponormal then $A^* = A^{*2}$ is hyponormal. \square

Theorem 3. Suppose that an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal, $P \in \mathcal{M}^{\text{pr}}$, and $TP = \lambda P$ for some $\lambda \in \mathbb{C}$. Then $PT = TP$ and the operator $T|_{P\mathcal{H}}$ is hyponormal.

PROOF. Since $PTT^*P \leq PT^*TP$, we have

$$\begin{aligned} 0 &\leq (PT - \lambda P)(PT - \lambda P)^* = PTT^*P - \bar{\lambda}PTP - \lambda PT^*P + |\lambda|^2P \\ &\leq PT^*TP - |\lambda|^2P - \lambda PT^*P + |\lambda|^2P = PT^*\lambda P - \lambda PT^*P = 0. \end{aligned}$$

Consequently, $T^*P - \bar{\lambda}P = (PT - \lambda P)^* = 0$ and $PT = \lambda P = TP$. We have $T|_{P\mathcal{H}} = PTP$. It is easy to see that

$$\begin{aligned} (PTP)^*PTP &= PT^*PTP = PT^*PPT = PT^*P\lambda P = \lambda PT^*P, \\ PTP(PTP)^* &= PTPT^*P = PPTT^*P = PTT^*P = \lambda PT^*P. \end{aligned}$$

The theorem is proved. \square

Corollary 2. Suppose that an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal, $P_1, P_2 \in \mathcal{M}^{\text{pr}}$, and $TP_1 = \lambda_1 P_1$, $TP_2 = \lambda_2 P_2$ for some nonzero $\lambda_1, \lambda_2 \in \mathbb{C}$, $\lambda_1 \neq \lambda_2$. Then $P_1 P_2 = 0$.

PROOF. For $\lambda_1 \notin \{0, \lambda_2\}$, we have $P_1 T = \lambda_1 P_1$ by Theorem 3, and

$$\lambda_1 \lambda_2 P_1 P_2 = TP_1 TP_2 = TP_1 TP_2 = T \lambda_1 P_1 P_2 = \lambda_1 TP_1 P_2 = \lambda_1 \lambda_1 P_1 P_2 = \lambda_1^2 P_1 P_2.$$

Therefore, $\lambda_1(\lambda_2 - \lambda_1)P_1 P_2 = 0$ and $P_1 P_2 = 0$.

Given $\lambda_2 \notin \{0, \lambda_1\}$, we consider the product $\lambda_1 \lambda_2 P_2 P_1$ and likewise obtain

$$P_2 P_1 = 0 = 0^* = (P_2 P_1)^* = P_1 P_2. \quad \square$$

Theorem 4. Suppose that an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal and $P \in \mathcal{M}^{\text{pr}}$.

- (i) If $0 \leq TP \leq P$ then $TP = PT$.
- (ii) Let $TP = PTP$. Then the operator $T|_{P\mathcal{H}}$ is hyponormal; if $T|_{P\mathcal{H}}$ is normal then $TP = PT$.

PROOF. (i): For $A := TP$ we have $0 \leq A \leq P$; therefore, $AP = PA = A$ by [31, Chapter 2, Section 2.17]. Likewise, from $0 \leq A^2 \leq P$ we obtain $A^2P = PA^2 = A^2$. Note that $PT^* = (TP)^* = A$ and $PTT^*P \leq PT^*TP$. Then

$$\begin{aligned} 0 &\leq (PT - TP)(PT - TP)^* = PTT^*P - PTT^*P - TPT^*P + TPPT^* \\ &\leq PT^*TP - PTA - AT^*P + A^2 = 2A^2 - PTA - AT^*P \\ &= 2A^2 - PTPA - APT^*P = 2A^2 - PTPA - APT^*P \\ &= 2A^2 - PA^2 - A^2P = 2A^2 - A^2 - A^2 = 0 \end{aligned}$$

and $TP = PT$.

(ii): We have $PT^*TP \geq PTT^*P$ and $T|_{P\mathcal{H}} = PTP$. Let $TP = PTP$. It is easy to see that

$$(PTP)^*PTP = (TP)^*TP = PT^*PT \geq PTT^*P \geq PTPT^*P = PTP(PTP)^*,$$

i.e., the operator $T|_{P\mathcal{H}}$ is hyponormal. Let $T|_{P\mathcal{H}}$ be normal. Then $PTP(PTP)^* = (PTP)^*PTP$ and $P^\perp TP = 0$; therefore,

$$\begin{aligned} 0 &\leq (TP - PT)(TP - PT)^* = TPT^*P - TPT^*P - PTPT^* + PTT^*P \\ &= TPT^* - TPT^*P - TPT^* + PTT^*P = -TPT^*P + PTT^*P \\ &= -PTPPT^*P + PTT^*P \leq -PTPPT^*P + PT^*TP = PT^*P^\perp TP = 0 \end{aligned}$$

and $TP = PT$. The theorem is proved. \square

Theorem 5. Suppose that $T \in \mathcal{M}_1$ and $P \in \mathcal{M}^{\text{pr}}$.

- (i) If $TP \geq P$ then $TP = PT = P$.
- (ii) If T is hyponormal and $TT^*P = P$ (or $\tau(TT^*P) = \tau(P) < +\infty$) then $T^*TP = P$.

PROOF. (i): Since $P \leq TP \leq I$, we have $0 \leq TP - P \leq P^\perp \in \mathcal{M}^{\text{pr}}$. Therefore,

$$0 = (TP - P)P^\perp = P^\perp(TP - P) = TP - P$$

by [31, Chapter 2, Section 2.17] and $TP = P = PT^*$. Owing to $0 \leq TT^* \leq I$, we have

$$0 \leq (PT - P)(PT - P)^* = PTT^*P - PTP - PT^*P + P \leq P - P = 0$$

and $PT = P$.

(ii): If $TT^*P = P$ then $0 \leq (T^*T)^2 \leq T^*T \leq I$ and $P = PTT^*P \leq PT^*TP \leq P$, i.e., $PTT^*P = PT^*TP = P$. (If $\tau(TT^*P) = \tau(P) < +\infty$ then from the estimates $PTT^*P \leq PT^*TP \leq P$ and

$$\tau(P) = \tau(TT^*P) = \tau(TT^*PP) = \tau(PTT^*P) \leq \tau(PT^*TP) \leq \tau(P)$$

by the finiteness of the trace τ , we obtain $PTT^*P = PT^*TP = P$.) Thus,

$$0 \leq (T^*TP - P)^*(T^*TP - P) = P(T^*T)^2P - 2PT^*TP + P = P(T^*T)^2P - P \leq P - P = 0$$

and $T^*TP = P$. The theorem is proved. \square

Theorem 6. An operator $T \in S(\mathcal{M}, \tau)$ is hyponormal (cohyponormal) if and only if $\mu(t; TP) \geq \mu(t; T^*P)$ ($\mu(t; T^*P) \geq \mu(t; TP)$) for all $t > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$.

PROOF. (\Rightarrow): Since $PT^*TP \geq PTT^*P$ for T hyponormal, by items (i), (ii), and (v) of Lemma 1, for all $t > 0$ and $P \in \mathcal{M}^{\text{pr}}$ we have the estimate

$$\mu(t; TP) = \mu(t; (PT^*TP)^{1/2}) = \mu(t; PT^*TP)^{1/2} \geq \mu(t; PTT^*P)^{1/2} = \mu(t; (PT^*TP)^{1/2}) = \mu(t; T^*P).$$

(\Leftarrow): Let $\mu(t; TP) \geq \mu(t; T^*P)$ for all $t > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$. Suppose that $A_- \neq 0$ in the Jordan decomposition

$$T^*T - TT^* = A_+ - A_-,$$

where $A_+, A_- \in S(\mathcal{M}, \tau)^+$ with $A_+A_- = 0$. Let a real $\varepsilon > 0$ be such that the spectral projection $E^{A_-}(\varepsilon, +\infty) = P$ is nonzero. Passing to a subprojection if necessary, we assume that $\tau(P) < +\infty$. We have

$$PT^*TP - PTT^*P = -PA_-P \leq -\varepsilon P,$$

i.e.,

$$PT^*TP + \varepsilon P \leq PTT^*P. \quad (2)$$

Consider the reduced von Neumann algebra $\mathcal{M}_P = P\mathcal{M}P$ with unity P and the reduced faithful normal trace $\tau_P = \tau(P \cdot P)$ on \mathcal{M}_P . Then

$$S(\mathcal{M}_P, \tau_P) = PS(\mathcal{M}, \tau)P.$$

Let $\mu_P(t; \cdot)$ be the singular value function calculated according the trace τ_P ; then by using (2), the well-known representation

$$\mu(t; X) = \inf\{s > 0 : d_X(s) \leq t\}, \quad t > 0$$

(see [19, Proposition 2.2], where $d_X(s) = \tau(E^{|X|}(s, +\infty))$, $s > 0$, is the distribution function of the operator $X \in S(\mathcal{M}, \tau)$ and $E^{|X|}(s, +\infty)$ is the spectral projection of $|X|$ corresponding to the interval $(s, +\infty)$), and employing items (i) and (v) of Lemma 1, we obtain

$$\begin{aligned} \mu(t; T^*P)^2 &= \mu(t; |T^*P|^2) = \mu(t; PTT^*P) = \mu_P(t; PTT^*P) \geq \mu_P(t; PT^*TP + \varepsilon P) \\ &= \mu_P(t; PT^*TP) + \varepsilon = \mu(t; PT^*TP) + \varepsilon = \mu(t; |TP|^2) + \varepsilon = \mu(t; TP)^2 + \varepsilon; \end{aligned}$$

a contradiction. The theorem is proved. \square

Corollary 3. An operator $T \in S(\mathcal{M}, \tau)$ is normal if and only if $\mu(t; TP) = \mu(t; T^*P)$ for all $t > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$.

The topology $t_{\tau l}$ can also be defined in terms of singular value functions. Namely, the family $\tilde{\Theta} = \{\tilde{\mathcal{V}}(\varepsilon, \delta, P)\}_{\varepsilon, \delta > 0; P \in \mathcal{M}_\tau^{\text{pr}}}$, where

$$\tilde{\mathcal{V}}(\varepsilon, \delta, P) = \{X \in S(\mathcal{M}, \tau) : \mu(\delta; XP) < \varepsilon\},$$

defines a neighborhood basis of zero for $t_{\tau l}$.

Theorem 7. The set of all τ -measurable hyponormal operators is $t_{\tau l}$ -closed.

PROOF. Each base neighborhood of an operator $B \in S(\mathcal{M}, \tau)$ in the topology $t_{\tau l}$ has the form

$$V_{\varepsilon, \delta, P}(B) := \{A \in S(\mathcal{M}, \tau) : \mu(\delta; AP - BP) < \varepsilon\},$$

where $\varepsilon, \delta > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$ (also see [20, Section 2; 21, Section 2; 25, Section 3]). Our theorem states that if each such neighborhood of B contains a hyponormal operator then

$$\mu(t; B^*P) \leq \mu(t; BP)$$

for all $t > 0$ and $P \in \mathcal{M}_\tau^{\text{pr}}$ (see Theorem 6). For a fixed $P \in \mathcal{M}_\tau^{\text{pr}}$, consider the projection

$$Q := P \vee s_l(B^*P).$$

Since $s_l(B^*P) \preceq P$, we have $\tau(Q) \leq \tau(P) + \tau(s_l(B^*)) \leq 2\tau(P) < +\infty$ and $Q \in \mathcal{M}_\tau^{\text{pr}}$.

To better understand the idea of using the neighborhood assumption, assume temporarily that a stronger assumption holds; namely, that there exists a hyponormal operator $A \in S(\mathcal{M}, \tau)$ such that

$$AQ = BQ.$$

In this case, passing to the adjoint operators, we have $QA^* = QB^*$, which implies

$$\begin{aligned} \mu(t; B^*P) &= \mu(t; s_l(B^*P)QB^*P) \leq \|s_l(B^*P)\| \mu(t; QB^*P) = \mu(t; QA^*P) \\ &\leq \|Q\| \mu(t; A^*P) = \mu(t; A^*P) \leq \mu(t; AP) = \mu(t; AQP) = \mu(t; BQP) = \mu(t; BP) \end{aligned}$$

for all $t > 0$ by item (iii) of Lemma 1 and Theorem 6 for the operator A .

The proof is actually done again by carrying ε and δ along the above chain of reasoning using Lemma 1 on the properties of singular value functions. For arbitrary $t > 2\delta > 0$, we infer

$$\begin{aligned} \mu(t; B^*P) &= \mu(t; s_l(B^*P)QB^*P) \leq \|s_l(B^*P)\| \mu(t; QB^*P) = \mu(t; QB^*P) \\ &= \mu(t; QB^*P - QA^*P + QA^*P) \leq \mu(\delta; QB^*P - QA^*P) + \mu(t - \delta; QA^*P) \\ &\leq \|P\| \mu(\delta; QB^* - QA^*) + \mu(t - \delta; QA^*P) = \mu(\delta; BQ - AQ) + \mu(t - \delta; QA^*P) \\ &\leq \varepsilon + \mu(t - \delta; QA^*P) \leq \varepsilon + \|Q\| \mu(t - \delta; A^*P) \leq \varepsilon + \mu(t - \delta; AP) = \varepsilon + \mu(t - \delta; AQP) \\ &= \varepsilon + \mu(t - \delta; AQP - BQP + BQP) \leq \varepsilon + \mu(\delta; AQP - BQP) + \mu(t - 2\delta; BQP) \\ &\leq 2\varepsilon + \mu(t - 2\delta; BQP) = 2\varepsilon + \mu(t - 2\delta; BP). \end{aligned}$$

If t is a continuity point of $\mu(\cdot; BP)$ then, due to the smallness of ε and δ , we obtain $\mu(t; B^*P) \leq \mu(t; BP)$ and the operator B is hyponormal by Theorem 6. Finally, recall that the singular value function $\mu(\cdot; X)$ ($X \in S(\mathcal{M}, \tau)$) is right continuous on \mathbb{R}^+ and has at most countably many discontinuity points. The theorem is proved. \square

Corollary 4. *The set of all τ -measurable cohyponormal operators is $t_{\tau l}$ -closed if and only if the von Neumann algebra \mathcal{M} is finite.*

PROOF. SUFFICIENCY: Suppose that the set of all cohyponormal operators in $S(\mathcal{M}, \tau)$ is $t_{\tau l}$ -closed. Then the set of all τ -measurable normal operators is $t_{\tau l}$ -closed as the intersection of two $t_{\tau l}$ -closed sets in $S(\mathcal{M}, \tau)$. Recall that the set \mathcal{M}^{iso} of all isometries ($U^*U = I$) is a $t_{\tau l}$ -closed set in $S(\mathcal{M}, \tau)$ [20, Lemma 3.7(3)]. Consequently, the set \mathcal{M}^u of all unitary operators ($U^*U = UU^* = I$) is a $t_{\tau l}$ -closed set in $S(\mathcal{M}, \tau)$. But \mathcal{M}^u is $t_{\tau l}$ -closed if and only if the von Neumann algebra \mathcal{M} is finite [24, Theorem 1(i)].

NECESSITY: A von Neumann algebra \mathcal{M} is finite if and only if the involution $A \mapsto A^*$ is $t_{\tau l}$ -continuous from $S(\mathcal{M}, \tau)$ into $S(\mathcal{M}, \tau)$ [20, Theorem 4.1(5)]. Moreover, if a net $\{X_j\}_{j \in J} \subset (\mathcal{M}, \tau)$ of cohyponormal operators $t_{\tau l}$ -converges to an operator $X \in S(\mathcal{M}, \tau)$ then $X_j^* \xrightarrow{\tau l} X^*$. Since the operators X_j^* , $j \in J$, are hyponormal, X^* is hyponormal; therefore, X is cohyponormal. \square

REMARK 1. In [32], Muratov and Chilin considered another topology of local convergence in measure on algebras of locally measurable operators, different from $t_{\tau l}$. The question of the closedness of the set of all locally measurable hyponormal operators in that topology remains open.

FUNDING

The research was carried out in the framework of the Development Program of the Scientific Educational Mathematical Center of the Volga Federal District (Agreement 075-02-2024-1438).

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

References

1. Bogdanović K., “A class of norm inequalities for operator monotone functions and hyponormal operators,” *Complex Anal. Oper. Theory*, vol. 18, no. 2, 32, 12 pp. (2024).
2. Uchiyama A., “Decomposition of hyponormal operator,” *Nihonkai Math. J.*, vol. 34, no. 2, 91–102 (2023).
3. Bala N. and Ramesh G., “A representation of hyponormal absolutely norm attaining operators,” *Bull. Sci. Math.*, vol. 171, 103020, 15 pp. (2021).
4. Gu C., Hendricks J., and Rutherford D., “Hyponormality of block Toeplitz operators,” *Pacific J. Math.*, vol. 223, no. 1, 95–111 (2006).
5. Chō M. and Itoh M., “Putnam’s inequality for p -hyponormal operators,” *Proc. Amer. Math. Soc.*, vol. 123, no. 8, 2435–2440 (1995).
6. Curto R.E., Hwang I.S., and Lee W.Y., “Hyponormality and subnormality of block Toeplitz operators,” *Adv. Math.*, vol. 230, no. 4–6, 2094–2151 (2012).
7. Duggal B.P., “On p -hyponormal contractions,” *Proc. Amer. Math. Soc.*, vol. 123, no. 1, 81–86 (1995).
8. Bikchentae A.M., “On normal τ -measurable operators affiliated with semifinite von Neumann algebras,” *Math. Notes*, vol. 96, no. 3, 332–341 (2014).
9. Bikchentae A.M., “Paranormal measurable operators affiliated with a semifinite von Neumann algebra,” *Lobachevskii J. Math.*, vol. 39, no. 6, 731–741 (2018).
10. Bikchentae A., “Paranormal measurable operators affiliated with a semifinite von Neumann algebra. II,” *Positivity*, vol. 24, no. 5, 1487–1501 (2020).
11. Bikchentae A.M., “Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra. II,” *Matematika i Teor. Komp'yutern. Nauki*, vol. 1, no. 2, 3–11 (2023).
12. Bikchentae A.M., “Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra. II,” *Lobachevskii J. Math.*, vol. 44, no. 10, 4507–4511 (2023).
13. Bikchentae A., “Hyponormal measurable operators, affiliated to a semifinite von Neumann algebra,” *Adv. Oper. Theory*, vol. 9, no. 4, 83, 17 pp. (2024).
14. Dëhimi S. and Mortad M.H., “Unbounded operators having self-adjoint, subnormal, or hyponormal powers,” *Math. Nachr.*, vol. 296, no. 9, 3915–3928 (2023).
15. Halmos P.R., *A Hilbert Space Problem Book*. Second edition, Springer, New York (1982).
16. Takesaki M., *Theory of Operator Algebras. I*. Operator Algebras and Non-Commutative Geometry V, Springer, Berlin (2002) (Encyclopaedia of Mathematical Sciences, vol. 124).
17. Dodds P.G., de Pagter B., and Sukochev F.A., *Noncommutative Integration and Operator Theory*, Birkhäuser, Cham (2023) (Progr. Math., vol. 349).
18. Takesaki M., *Theory of Operator Algebras. II*. Operator Algebras and Non-Commutative Geometry VI, Springer, Berlin (2003) (Encyclopaedia of Mathematical Sciences, vol. 125).

19. Fack T. and Kosaki H., “Generalized s -numbers of τ -measurable operators,” *Pacific J. Math.*, vol. 123, no. 2, 269–300 (1986).
20. Bikchentaev A.M., “Local convergence in measure on semifinite von Neumann algebras,” *Proc. Steklov Inst. Math.*, vol. 255, 35–48 (2006).
21. Bikchentaev A.M., “The topologies of local convergence in measure on the algebras of measurable operators,” *Sib. Math. J.*, vol. 64, no. 1, 13–21 (2023).
22. Ciach L.J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra,” *Colloq. Math.*, vol. 55, no. 1, 109–121 (1988).
23. Bikchentaev A.M., “The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra,” *Lobachevskii J. Math.*, vol. 14, 17–24 (2004).
24. Bikchentaev A.M., “Local convergence in measure on semifinite von Neumann algebras. II,” *Math. Notes*, vol. 82, no. 5, 703–707 (2007).
25. Bikchentaev A.M. and Tikhonov O.E., “Continuity of operator functions in the topology of local convergence in measure,” *Proc. Steklov Inst. Math.*, vol. 324, no. 1, 44–52 (2024).
26. Bikchentaev A.M., “Minimality of convergence in measure topologies on finite von Neumann algebras,” *Math. Notes*, vol. 75, no. 3, 315–321 (2004).
27. Gohberg I.Ts. and Krein M.G., *An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space*, Amer. Math. Soc., Providence (1969) (Transl. Math. Monogr., vol. 18).
28. Krein S.G., Petunin Yu.I., and Semenov E.M., *Interpolation of Linear Operators*, Amer. Math. Soc., Providence (1982) (Transl. Math. Monogr., vol. 54).
29. Bikchentaev A.M., “On operator monotone and operator convex functions,” *Russian Math. (Iz. VUZ)*, vol. 60, no. 5, 61–65 (2016).
30. Bikchentaev A.M., “On idempotent τ -measurable operators affiliated to a von Neumann algebra,” *Math. Notes*, vol. 100, no. 4, 515–525 (2016).
31. Strătilă S.V. and Zsidó L., *Lectures on von Neumann Algebras*. Second edition, Cambridge University, Delhi (2019) (Cambridge–IISc Series).
32. Muratov M.A. and Chilin V.I., “Topological algebras of measurable and locally measurable operators,” *J. Math. Sci. (N.Y.)*, vol. 239, no. 5, 654–705 (2019).

Publisher’s Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. AI tools may have been used in the translation or editing of this article.

A. M. BIKCHENTAEV
 KAZAN (VOLGA REGION) FEDERAL UNIVERSITY, KAZAN, RUSSIA
<https://orcid.org/0000-0001-5992-3641>
E-mail address: Airat.Bikchentaev@kpfu.ru