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Resonant tunneling is studied theoretically for the asymmetric double-barrier antiferromagnetic

tunnel junction (DAMTJ) with a bias voltage is applied. In this nanostructure, the direction

of magnetization of the middle ferromagnetic layer is parallel (antiparallel) to the direction of

magnetization of the top layer and antiparallel (parallel) to the direction of magnetization of

the bottom ferromagnetic layer. Analytical expression for the transmission coefficient of the

double-barrier nanostructure is received, which is expressed through single-barrier transmission

coefficients taking into account the voltage drop on each barrier and spin degrees of freedom

of the electron conductivity. The theoretical model of spin-polarized conductance and tunnel

magnetoresistance in asymmetric DAMTJ in the quasi-classical approximation is developed.

The dependences of the transmission coefficient and tunnel magnetoresistance on the applied

voltage under resonant conditions are shown.

PACS: 72.25.-b, 73.40.Gk, 75.76.+j, 75.75.-c.

Keywords: spin-polarized conductance, magnetic tunnel junction, nanostructures, tunnel magnetore-
sistance.

This work, dedicated to the 85th anniversary of my teacher,

Professor B.I. Kochelaev, represents the latest research

carried out by the author in recent years

1. Introduction

High tunneling magnetoresistance (TMR) is now well known in Fe/MgO/Fe and CoFe(B)/MgO/

CoFe(B) magnetic tunnel junctions (MTJs). Besides single barrier MTJs (SBMTJs), double

barrier MTJs (DBMTJs) have also extensively studied and investigate for the novel physical

properties and applications in spintronics devices [1, 2]. Compared with SBMTJs, DBMTJs

have larger V1/2 (voltage where TMR decreases to its half maximum value), which is desirable

for practical applications. With a thin ferromagnetic (FM) layer sandwiched by two MgO lay-

ers, quantum well states can lead to oscillations in the transmission as a function of interlayer

thickness [3], also Coulomb blockade and Kondo-assisted tunneling phenomena have been re-

ported [4]. Besides these phenomena, quantum well state and resonant tunneling could also be

observed in double-barrier tunnel junction [5,6]. It is well known that the resonance condition for

the symmetrical double-barrier structure is a basis for understanding the resonance phenomena

in symmetrical multibarrier structures.

For the first time theoretical study of resonant tunneling has been made by Breit and Wigner,

in the context of resonant enhancement of the neutron capture cross section observed in nuclear

physics [7]. Resonant tunneling has since become relevant for solid state physics as well, in

particular because of the proposal by Tsu and Esaki [8] to build multiple barrier “superlattice”

devices using semiconductor heterostructures. Evidence for resonant tunneling through a double

barrier structure was first reported by Chang, Esaki and Tsu [9]. As in most of the subsequent

experiments, they measured the current-voltage characteristic to detect the resonance as a nega-

tive differential resistance at finite bias. Although a lot of studies have been made, the tunneling

mechanisms in both SBMTJs and DBMTJs are still unclear. Generally, the value of the trans-
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Resonant magnetoresistance in double-barrier antiferromagnetic tunnel junction

Figure 1. Schematic drawing of the cross section of the asymmetrical double-barrier antiferromagnetic

tunnel junction is shown. The top t and bottom b of ferromagnetic layers are electrodes

of the junction, Lw is the thickness of the middle ferromagnetic layer; L1 and L2 are the

thickness of the insulators. Arrows indicate the magnetization of the electrodes and the

middle ferromagnetic layer in the parallel and antiparallel alignments. The small dashed

arrow indicates the direction of the electron conduction trajectory with the incidence angle θt
measured from the z-axis, which perpendicular to the layers.

mission coefficient of conduction electron is reduced when a voltage is applied. Therefore, it

is very important for device designing to investigate the resonance conditions by taking into

account the effect of electric field. Several theoretical studies for resonant tunneling phenomena

in double-barrier quantum well structures under an applied voltage have been performed by

using the multistep rectangular approximation, real-time diagrammatic technique [10] or the

Airy function with quasi-classical approximation [11,12].

In this article we derive an analytical expression of the transmission coefficient and the reso-

nance conditions in an asymmetric double-barrier antiferromagnetic tunnel junction (DAMTJ).

We demonstrate the existence of sharp spin-dependent quantum well states within the middle

FM layer from calculation of the transmission coefficient and round-trip phase shift at an ap-

plied voltage. The dependences of the TMR on the applied voltage under resonant conditions are

shown, see Sec. 4. In DAMTJ, the direction of magnetization of the top FM layer is antiparallel

to the alignment of magnetization of the bottom FM layer; while the middle FM layer can change

its direction of magnetization, see Fig. 1. The resonant tunneling transmission characteristics

are studied theoretically in more detail by taking into account mass difference between the FM

layers and the barrier layers. In this structure, we can obtain a comparatively low resonance

spin-depended level which may be favorable for device applications. In Sec. 3, the analytical

expressions for the transmission coefficient and the resonance condition are derived by using the

Airy function and transfer matrix method. In Sec. 4, the spin-polarized conductance through

the DAMTJ is calculated on the basis of the quasi-classical theory [13]. The basic mathematical

expressions and calculation details can be found in article [14]. The final section is a summary.

2. Model of asymmetrical DAMTJ

As shown in Fig. 1, the DAMTJ consist of three planar ferromagnetic layers of thicknesses t,

Lw and b, respectively, separated by two a nonmagnetic insulators of thicknesses L1 and L2 of

several angstroms. This gives a three-dimensional model of the double-barrier antiferromagnetic

nanostructure FMt/I1/FMw/I2/FMb, because the magnetization of the layers FMt and FMb is

2 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.)
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Figure 2. Schematic planar potential barriers separating three degenerate electron gas regions of equal

chemical potential, but with shifted Fermi levels because of the voltage V applied across the

barriers are shown. The dispersion laws of the spin sub-bands of majority (M) of the electrons

and the spin sub-bands of minority (m) of the electrons in FM layers with antiferromagnetic

alignment of magnetizations also are shown. The notation ↓<↑ for the FMt layer means

that the magnetization of the layer is aligned upward. The arrows inside the brackets (↓>↑)
correspond to the case when the magnetization in the FMw layer is inverted. Then, the

direction of magnetization in the FMw layer will correspond to the magnetization direction

(downward) of the FMb layer. The electron spin-conduction channels passing through the

minority (m) and/or majority (M) spin sub-bands are shown by lines: short-dot, dash-dot,

dash-dot-dot and dashed. The U1 and U2 are the heights of the barriers above Fermi energy.

The V1 and V2 are voltage drop across the first and second barriers, respectively.

always directed antiparallel. Typical materials for the constituents of the junction are Co, CoCr,

CoFeB, Fe, and NiFe for ferromagnets and Al2O3 and MgO for insulating nonmagnetic barriers.

Note, that FMw layer is with a lower coercivity as compared to the FMt and FMb layers.

The one-dimensional schematic energy diagram of the asymmetrical double-barrier structures

under an applied voltage is shown in Fig. 2, where L1 and U1 are the barrier width and the barrier

height for the left-hand side barrier layer, L2 and U2 are those for the right-hand one, Lw, is the

well width. The five regions are specified by the coordinates z1, z2, z3 z4. The double planar

barrier is forming a quantum well with quasi-bound state at energy ER. The voltage drop in

the left-hand side barrier (top insulating layer I1) and that in the right-hand (bottom insulating

layer I2) one are by the following equations:

V1 =
ε2L1

ε1L2 + ε2L1
V, V2 =

ε1L2

ε1L2 + ε2L1
V, (1)

where V is the total applied voltage, ε1,2 are the dielectric permittivities of the barriers.

In the Fig. 2 the large parabolas represent dispersion law for the electrons from the majority

(M) conductance spin sub-bands. The small parabolic curves belong to electrons of the minority

(m) conductance spin sub-bands. The arrows above the Fermi level show the direction magneti-
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zations of the FM layers. The notation ↓< ↑ for the FMt layer means that the magnetization of

the layer is aligned upward. The arrows inside the brackets (↓> ↑) correspond to the case when

the magnetization in the FMw layer is inverted. Then, the direction of magnetization in the

FMw layer will correspond to the magnetization direction of the FMb layer. The electron spin-

conduction channels passing through the minority and/or majority spin sub-bands are shown

by lines: dash-dot-dot, dashed, short-dot and dash-dot. The Fermi energy EF origin is taken at

the bottom of the conduction band of the region FMw material.

Consider the ballistic motion of an electron through DAMTJ assuming that the electron with

energy EF is incident from the left (in Fig. 1 with top) and transmits to the right along the axis

z direction (in Fig. 1, downward). For the antiferromagnetic alignment of the magnetizations

of the top and bottom FMt(b) electrodes the middle layer FMw may invert direction of the

magnetizations, then the electron with spin up, s = ↑, moves in the following spin sub-bands:

MMm and Mmm. These are two spin channels of conduction. For the electron with spin down

s = ↓ alignment the electron moves in the following spin sub-bands: mMM and mmM. These are

another two spin channels of conduction. Note that in our model the direction of the conduction

electron spin s = ↑ (↓) is conserved during the tunnel and resonance. Here, we assume that the

effect of the space charge built up in the quantum well is neglected, that the voltage drop occurs

only across the barrier regions. The conduction band edge is flat with zero field for simplicity

in the three FM regions (FMt, FMw and FMb).

3. Transmission coefficient and resonance condition

In the section, we will derive analytical expressions for the transmission coefficient and the

resonance condition in asymmetrical double-barrier structures with quantum well under a dc

bias field. For these it is necessary to find the full wave function Ψs (z; kx, ky), where kx, ky
are the components of the wavevector that satisfy the law of momentum conservation under

a dc bias field. In the one-dimensional case, the states of motion of the conduction electron

can be found from solutions of the Schrodinger equation. The solutions of the Schrödinger

equations for the electron in all FM regions and that in the trapezoidal potential regions (barrier

regions) are well known (see for example [15]). Another equivalent description is via the transfer

matrix [11, 16]. The transfer matrices are equivalent descriptions for transmission through the

intermediate region of the heterostructures. A convenient property of the transfer matrix is

the multiplicative composition rule: the transfer matrix of a number of disordered regions in

series separated by ideal leads is the product of the individual transfer matrices. To be more

explicit consider the local, single-particle potential U (z) in the Hamiltonian of the system.

The potential is piecewise smooth and it is assumed that the fundamental set of solutions

of the Schrödinger equation in the FM subspaces
{
ϕ+
l,s (z) , ϕ−l,s (z)

}
, l ∈ {t, w, b} are known.

The fundamental set of solutions of the Schrödinger equation in the appropriate insulators are{
ψ+
l,s (z) , ψ−l,s (z)

}
, l ∈ {1, 2}. Therefore, the transfer matrix for transporting the wave function

consists of a linear combination of eigenfunctions with appropriate coefficients Al,s, Bl,s, and

their derivatives in the interval [t, b]. A free wave ϕ+
t,s (z) =

√
mt/kt,s exp

(
ikt,sz

)
incident

from the top is scattered off the potentials and partly transmitted to the bottom, ϕ+
b,s (z) =√

mb/kb,s exp
(
ikb,sz

)
, where kt(b),s are the components of Fermi wavenumbers for electrons of

spin sub-bands of FMt(b) layers and mt(b) are the effective masses. The wave function in FMw

layer have the same form ϕ+
w,s (z) =

√
mw/kw,s exp

(
ikw,sz

)
. Matching of these functions leads

to the following equation for the transfer matrix:

4 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.)
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Ab,s

Bb,s

)
= TM2b,s

(
At,s

Bt,s

)
, (2)

where we identify At,s = ain, Bt,s = bout, Ab,s = aout, Bb,s = bin in terms of in- and out-scattering

states of the conductor. For example, the transfer matrix for the first barrier is determined by

the product of matrices

TM1 =

(
ϕ+
w (z2) ϕ−w (z2)

ϕ′+w (z2) ϕ′−w (z2)

)−1(
ψ+
1 (z2) ψ−1 (z2)

ψ′+1 (z2) ψ′−1 (z2)

)
×

×

(
ψ+
1 (z1) ψ−1 (z1)

ψ′+1 (z1) ψ′−1 (z1)

)−1(
ϕ+
t (z1) ϕ−t (z1)

ϕ′+t (z1) ϕ′−t (z1)

)
.

(3)

Here and further for simplicity we omit the spin index. Similarly, you can find the transfer

matrix TM2 for the second barrier. The conservation of probability density in stationary state

implies that detTM1(2) = 1. Transfer matrix the whole system can be found from the product

of matrices TM1 and TM2: TM2b = TM2 · TM1. From the transmission matrix TM2b the

transmission coefficient through the system can be calculated.

After using a straightforward algebra, can derive the total transmission coefficient T
P(AP)
2b

with an applied voltage and taking into account of spin degree of freedom:

T
P(AP)
2b =

|aout|2

|ain|2
=

[
T−11 T−12 +

(
T−11 − 1

) (
T−12 − 1

)
+

+2
√
T−11

(
T−11 − 1

)√
T−12

(
T−12 − 1

)
cos ΦV

]−1
,

(4)

where we have

T1 =
4m1mtmwktkwt

2
1/π

2

(β1 − γ1)2 + (χ1 + α1)
2 , T2 =

4m2mwmbkwkbt
2
2/π

2

(β2 − γ2)2 + (χ2 + α2)
2 , (5)

of the transmission coefficients in the top side single barrier and the bottom one and

ΦV = φ1 + φ2 + 2kwLw is the total phase shift for one round-trip in the quantum well. Here

φ1 and φ2 are the phase shifts incurred on reflection off the barriers during propagation of an

electron wave. These phases are defined by the formulas

φ1 = arctan

[
2 (χ1γ1 + β1α1)

χ2
1 − γ21 + β21 − α2

1

]
, φ2 = arctan

[
2 (χ2β2 + γ2α2)

β22 − χ2
2 − γ22 + α2

2

]
. (6)

In the Eqs. (5) and (6) the following notation of linear combinations of Airy functions are used:

αl = m2
l kt(w)kw(b) {Ai [ql (0)] Bi [ql (Ll)]− Bi [ql (0)] Ai [ql (Ll)]} ,

βl = mlmw(b)kt(w)tl
{

Ai [ql (0)] Bi′ [ql (Ll)]− Bi [ql (0)] Ai′ [ql (Ll)]
}
,

γl = mlmt(w)kw(b)tl
{

Ai′ [ql (0)] Bi [ql (Ll)]− Bi′ [ql (0)] Ai [ql (Ll)]
}
,

χl = mt(w)mw(b)t
2
l

{
Ai′ [ql (0)] Bi′ [ql (Ll)]− Bi′ [ql (0)] Ai′ [ql (Ll)]

}
,

(7)

where Ai′ [ql] and Bi′ [ql] are the first derivatives of the Airy functions, tl is the factor (see also

Eqs. (5)) has the form tl =
(
2mleVl/~2Ll

)1/3
, for the subscript l = 1, 2. The arguments ql (z) of

the Airy functions for our problem can be written as

ql (z) = tl

z +
~2Ll

(
k
t(w)
F

)2
2mleVl

− Ll (EF + Ul)

eVl

 . (8)
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Figure 3. Dependences of the total transmission coefficient vs applied bias across the asymmetrical

DAMTJ for four spin conduction channels designated in accordance with Fig. 2.

The results of the calculation of the transmission coefficients (4) with the parameters cor-

responding to the experimental data are shown in Fig. 3. These dependences are of the total

transmission coefficient on the applied voltage V for four spin channels MMm, mmM, Mmm

and mMM of conductivity. The curves were calculated with the following parameters of the

structure. The values of the Fermi wavevectors for electrons of spin sub-bands of FM layers

were taken: ktF,↑= 1.1 Å−1, ktF,↓= 0.98 Å−1, kbF,↑= 1.04 Å−1, kbF,↓= 0.975 Å−1, and kwF,↑= 1.0 Å−1,

kwF,↓= 0.97 Å−1, respectively.

The effective masses of conduction electrons in the ferromagnetic layers corresponded to

the free electron mass me. Two dielectric oxide layers had transverse sizes comparable to the

mean free path of conduction electrons. There have thicknesses L1 = 15.0 Å−1, L2 = 19.0 Å−1

and heights of the energy potentials above of Fermi energy are U1 = 0.24 eV, U2 = 0.18 eV. The

dielectric constant in the first barrier is ε1 = 10.1 and that in second barrier ε2 = 9.8, see Ref. [17].

The effective masses of the electrons in the barriers were assumed to be m1(2) = 0.4me [18]. The

thickness of the medial FMw layer equalled Lw = 25.0 Å.

Next, let us investigate the resonance condition in the model studied here. Because of

0 < T1,s < 1 and 0 < T2,s < 1, as seen in Eq. (4), it is understood that T
P(AP)
2b,s shows a lo-

cal minimum for cos ΦV,s = 1 and a local maximum for cos ΦV,s = −1. Then for

ΦV,s = π + φ1,s + φ2,s + 2kw,sLw = π(2n+ 1), (n = 0, 1, 2, ...) (9)

we obtain the local maximum value of the transmission coefficient by

T
P(AP)
2b,max,s =

[√
T−11,s T

−1
2,s −

√(
T−11,s − 1

)√(
T−12,s − 1

)]−2
. (10)

The phase difference (9) with n= 8 for each spin conduction channel in the asymmetrical DAMTJ

gives the values of the resonance voltages, see Fig. 4. At these voltages, the transmission coeffi-

cient T
P(AP)
2b,s for each spin conduction channel takes the maximum value, see Fig. 3.

The energy dependent transmission coefficient T
P(AP)
2b,s (E) may be obtained from Eq. (4) pro-

vided the phase shift ΦV,s and the transmission coefficients of the individual barriers (5) are

6 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.)
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Figure 4. The resonance phase as a function of the applied voltage calculated with the same parameters

as in Fig. 3. The four curves correspond to the spin conduction channels of electron.

Figure 5. The transmission coefficients as a function of the phase difference ΦV,s under applied voltage

of V = 0.01 V are shown. The curves are calculated with the same parameters as in Fig. 3.

The four curves correspond to the spin conduction channels of electron.

known as a function of energy. The transmission coefficients T
P(AP)
2b,s (E) has a maximum when-

ever ΦV,s = π(2n+ 1), as a consequence of destructive interference of the backscattered partial

waves. Since this is precisely the condition for the existence of a quasi-bound state in the quan-

tum well, the resonance occurs when the energy of the incident electron coincides with the energy

ER of a quasi-bound state. If T1,s = T2,s = Ts and (9) are satisfied, then resonance conditions

occur, which lead to the maximum peak value of the transmission coefficient T
P(AP)
2b,s (E). Note

that if the double barrier structure is symmetric (T1,s = T2,s = Ts), the maximum transmission

coefficient is unity, regardless of the magnitude of the barrier transparencies.

The transmission coefficients through the DAMTJ as a function of the round-trip phase shift

ΦV,s, calculated from Eqs. (4) and (6) are shown in Fig. 5. The plots of T
P(AP)
2b,s as a function of

Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.) 7
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ΦV,s were computed under applied voltage of V = 0.01 V for the same parameters as in Fig. 3.

If the barriers are sufficiently high and thick, both T1,s � 1 and T2,s � 1, and T
P(AP)
2b,s (E)

reduces to the Breit-Wigner form for energies close to a resonance [19] and plots T
P(AP)
2b,s (E) will

be similar of Fig. 5. Next we will discuss it.

The phase shifts incurred on reflection off the barriers are φl,s = −π/2, independent of energy,

see Eq. (9). If the separation of the barriers is Lw, then the resonance condition ΦV,s = π(2n+ 1)

reduces to the familiar Bohr-Sommerfeld quantization condition 2Lw/λ = n+ 1/2 (here

λ = 2π/k, with k =
√

2mE/~). Consider one such state, at resonance energy ER. For en-

ergies close to ER the round-trip phase shift ΦV,s is linear in εR ≡ E − ER, therefore we have

dΦV,s

dE
=
dΦV,s

dkw,s

dkw,s

dE
= 2Lw

(
πρs
Lw

)
=

1

~νs
, (11)

where νs = 1/2π~ρs is the attempt frequency and ρs = (Lw/π ) dkw,s/dE is the density of states

in the quantum well. Close to resonance we may thus write

ΦV,s ≈ π(2n+ 1) + εR/~νs . (12)

By expanding cos ΦV,s ≈ 1− (εR/~νs )2/2 and
√

1− Tl ≈ 1− Tl/2 we then find from Eq. (4):

T
P(AP)
2b,R,s =

T1,sT2,s(
T1,s + T2,s

)2
/4 + (εR/~νs )2

=
Γ1,sΓ2,s

(Γs/2 )2 + (εR/~ )2
, (13)

where Γl,s = νsTl,s are the tunnel rates for an electron approaching the barriers from FMt, FMw

regions with energy E, respectively and Γs = Γ1,s + Γ2,s. Eq. (13), with its characteristic

lorentzian lineshape, is known as the Breit-Wigner formula [7]. However the deviations from

the exact result (4) can be quite large if the barriers transparencies approach unity. With large

applied voltages, the width (at half-height, see Fig. 5) of the peaks becomes larger.

The maximum values of transmission coefficients versus the applied voltage are shown in

Fig. 6, which are calculated from formula (10). Denotes of lines are the same as in Fig. 3. It

can be seen that for some values of the applied voltage V , the transmission coefficients for some

Figure 6. Dependences of the maximum value of the transmission coefficient vs applied bias across the

asymmetrical DAMTJ for four spin conduction channels (as denoted by previous figures).

8 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.)
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spin conduction channels can be equal to one. The transmission coefficient peaks (about unit)

appear at voltage 0.125, 0.15, 0.27, 0.45, 0.55 and 1.0 V in the interval 0 ≤ V ≤ 1.0, for different

spin conduction channels.

4. Spin-polarized conductance and tunnel magnetoresistance

If the voltage is applied to the DAMTJ the spin-polarized conductance is generated. This

conductance is induced by the quantum tunneling through the barriers. It is very small and

decays exponentially with an increase in the thickness of the insulators. However, the FMw

layer is represents a quantum well. The motion of electrons in the FMw layer is quantized. For

some parameters of the structure FMt/I1/FMw/I2/FMb there arise resonant conditions. Then

the spin-polarized tunneling conductance will rapidly increase at specific values of the applied

voltage. Note that we already performed the calculation of spin-polarized tunnel conductance

for planar symmetric and asymmetric DBMTJ [14, 20]. In this work, the spin-polarized tunnel

conductance through the asymmetrical DAMTJ with the cross-sectional area of the radius a is

calculated by the formula

GP(AP)
s = G0

(
k
t(b)
F,s a

)2
2

〈
cos θt(b),sT

P(AP)
2b,s

(
V, cos θt(b),s

)〉
, (14)

where G0 is the conductance quantum (G0 = 3.87× 10−5 Ohm−1). The index t or b is selected

by depending on polarity of the applied voltage V . The angle brackets denote averaging over the

angles ϕ and θt(b),s. The angle ϕ lies in the contact plane. The polar angle θt(b),s is defined by a

trajectory of the motion of an electron in the top or bottom electrodes on the direction to the bar-

rier. It is measured from the normal (see Fig. 1) to the contact plane. The absolute values of the

Fermi wavevectors k
t(b)
F,s correspond to the spin sub-bands of electrodes FMt(b). The index s = ↑, ↓

denotes the spin states of electrons in four spin conduction channels, see Fig. 2 and comments.

Note that strong dependence of the transmission coefficient on the position of quantum well

states in the central FMw layer lead to negative differential resistance. This is clearly seen in

the dependences of the conductance on the applied voltage for different directions of magne-

tization of the FMw layer. These dependences are not given in this paper. In Fig. 7, depen-

Figure 7. Dependencies of the tunnel conductances vs applied bias out of plane in the asymmetrical

DAMTJ for two MMm+mmM (solid line) and Mmm+mMM (dashed line) of different channels

at room temperature.
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dences of the tunnel conductance vs applied bias in the GAP
1 = GMMm

↑ +GmmM
↓ (solid line) and

GAP
2 = GMmm

↑ +GmMM
↓ (dashed line) are the sums of the spin-up and spin-down conductance for

at AP alignments of the magnetizations in the DAMTJ. The curves were calculated with the fol-

lowing parameters of the structure: the values of the Fermi wavevectors for electrons of the spin

sub-bands of the FM layers are ktF,↑= 1.09 Å−1, ktF,↓= 0.68 Å−1, kbF,↑= 1.05 Å−1, kbF,↓= 0.71 Å−1,

and kwF,↑= 1.01 Å−1, kwF,↓= 0.99 Å−1, respectively. The effective masses of conduction electrons in

the ferromagnetic layers corresponded to the free electron mass me. The thicknesses of the dielec-

tric oxide layers were taken L1 = 15.1 Å, L2 = 19.1 Å, and heights of the energy potentials above

the Fermi energy are U1 = 0.24 eV, U2 = 0.18 eV. The effective masses of the electrons in the bar-

riers were assumed to be 0.4me. The thickness of the meddle FMw layer was taken Lw = 24.5 Å.

The bias voltage dependence of the conductance is asymmetric with regard to positive and

negative voltages when the magnetic electrodes are not identical and the barriers have different

thicknesses. Also the prominent broad valleys in conductance at ∼0.15 V and ∼0.4 V, which

are shown for GAP
1 and GAP

2 tunnel channels in DAMTJ, respectively. These may be ascribed

to the consecutive coherent tunneling of certain spin conduction channel. The predominant

elastic tunneling, where incident electrons from one electrode tunnel to the opposite electrode

through the double-barrier without loss of energy, gives rise to a significant background to the

conductance versus voltage curve.

Now, we consider the functional dependence of the TMR on the voltage drop across the

DAMTJ and the change in its form as a function of the middle ferromagnetic layer FMw and

of the coercivity of the FM layers. It is known that the tunnel conductances of double barrier

MTJs differ with different orientations of the magnetizations of adjacent FM layers and magnetic

electrodes. Therefore, in our case of TMR, we have defined the relationship:

TMR =
GAP

1 −GAP
2

GAP
1 +GAP

2

· 100% . (15)

In Fig. 8, the TMR is shown as a function of the thickness Lw of the middle FMw layer in the

case of V = 0.01 V. The other parameters are the same as in Fig. 3. Some resonant features of

the TMR curves are of particular interest: first, the TMR as a function of Lw shows well-defined

Figure 8. The tunnel magnetoresistance as a function of the middle ferromagnetic layer FMw thickness

Lw in the case of V = 0.01 V, calculated with the same parameters as in Fig. 3.
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peaks, where the height of the peaks decreases monotonously with increasing Lw; secondly, the

TMR peaks periodically repeat every 3.1 Å, corresponding to the wavevectors of the middle FMw

layer: kwF,↑= 1.1 Å−1 and kwF,↓= 0.9 Å−1, with kwF,↑= 0.8 Å−1 and kwF,↓= 0.57 Å−1 the period of

oscillation of the TMR increases to 4.5 Å; thirdly, the TMR increases with increasing effective

masses m1(2) of electrons in the insulating layers. This is not shown in Fig. 8. If the difference

between the kwF,↑ and kwF,↓ wavevectors decreases, then the amplitude values of the TMR (Lw)

dependence decrease. If a non-magnetic metal is used instead of FMw layer, for example, when

kwF,↑= kwF,↓= 0.57 Å, then TMR is zero.

Similar results for a DBMTJ structure with left and right ferromagnetic electrodes but with

non-magnetic middle layer have been shown previously [12]. In this work the periodicity of

the TMR magnitude was investigated for the first time, and it was found that TMR strongly

correlates to quantum well states in the middle layer. The same finding is reproduced by our

calculations. Thus, abrupt periodic variation of the TMR with increasing thickness Lw is related

both to the quantum well states formed in the middle FM layer and to resonant tunneling through

the whole structure.

In Fig. 9 dependences of tunnel magnetoresistance on the applied voltage V are show. The

curves were calculated with the parameters are the same as in Fig. 3. The dashed curve is

obtained at the maximum value of the transmission coefficient, see formula (10). Note that

the change in thickness from 5 Å to 30 Å for the middle FM layer has almost no influence on

the shape of the curve TMR, only the maximum value of the TMR changes. The effect of the

voltage asymmetry at V1/2 arises in the case of different initial set of wavevectors for the each

layer. In addition, the asymmetry effect of the TMR curve is more pronounced under resonant

conditions (dashed curve in Fig. 9).

The presented dependence of TMR (solid curve in Fig. 9) corresponds to the non-resonant elec-

tron tunneling through the DAMTJ. The theoretical calculations showed that the TMR values

of FM/I/FM/I/FM heterostructures with top and bottom FM electrodes antiferromagnetically

magnetized can reach up to 65%. The calculated TMR values are close to the experimental

data [21,22], which, however, were obtained for ordinary double-barrier MTJ.

Figure 9. Bias dependence of TMR for Lw=25.0 Å. The dashed curve is obtained at the maximum value

of the transmission coefficient, see formula (10). The other parameters at which the obtained

TMR curves are the same as in Fig. 3.
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5. Conclusion

Resonant tunneling has been studied theoretically in detail for the asymmetrical double-barrier

antiferromagnetic structure with a ferromagnetic well under an applied voltage by taking into

account the mass difference between the FM layers and the barrier layers. The analytical

expressions of the transmission coefficients and resonance conditions, Eqs. (4), (9), and (10),

have been derived by the transfer matrix method using the Airy function and taking into ac-

count the spin degrees of freedom. The transmission coefficient versus the phase difference has

been examined and was shown that it has the characteristic lorentzian Breit-Wigner lineshape.

It is confirmed that the unity resonance occurs if both conditions, (9) and T1,s = T2,s = Ts,

are satisfied simultaneously, while the under-unity resonance occurs if only the condition

T1,s = T2,s = Ts is satisfied. Strong dependence of the transmission coefficient on the position

of quantum well states in the middle layer lead to negative differential resistance. It is believed

that the derived two conditions, (9) and T1,s = T2,s = Ts, and the above results could be useful

for obtaining resonance energies and for fabricating resonant magnetic tunneling devices.

We have calculated tunnel magnetoresistance in the ballistic tunneling regime in a double-

barrier antiferromagnetic junction with a magnetic central electrode. We showed that in some

cases the resonant tunneling can give rise to large TMR. The calculations were performed under

several approximations. First, we assumed that electron spin is conserved in tunneling events.

It is, however, well known that TMR is reduced when spin-flip tunneling processes are allowed,

despite the fact that such processes usually increase electric current by opening new channels

for electron tunneling. Other scattering processes leading to incoherent tunneling can reduce

the TMR value as well. Second, we used a simple free-electron-like model to describe electronic

structure of the junction. In real ferromagnetic heterojunction however, electronic structure

is much more complex, which can lead to quantitative modifications of the results presented

here. Nevertheless some qualitative features of TMR will survive. The large TMR value we

obtained in our numerical calculations followed from a specific position of the electron spin

subbands in the ferromagnetic electrodes. Another approximation used in our description is

the room temperature. We considered this case since the physical picture is then clear and one

can easily explain all the features of the resonances and TMR. Generally, one may expect an

increase in the tunneling conductance with increasing temperature and a decrease in TMR. It is

shown that the TMR crucially depends on the middle layer thickness and the conduction band

spin-polarizations in FM layers, by cause of the spin-polarized resonant states in the middle

ferromagnetic layer. This illustrates the fact that some regimes of operation of the DAMTJ can

be used for the effect of spin filtering of currents. The theory can be used for explanation of

the tunneling characteristics with the diode effect, and searching for condition of softening the

requirements to magnitude of the current necessary for switching the tunnel magnetic structures

between high and low resistive states.

Acknowledgments

The work is partially funded by the Program of Competitive Growth of Kazan Federal University

and partially supported by RFBR, research project no. 18-02-00204.

References

1. Kronmüller H., Parkin S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials,

Vol. 5: Spintronics and Magnetoelectronics, John Wiley & Sons (2007)

2. Xu Y., Awschalom D.D., Nitta J. (eds.) Handbook of Spintronics, Springer Science + Busi-

ness Media Dordrecht (2016)

12 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 3, 19310 (13 pp.)



N.Kh.Useinov

3. Tao B.S., Yang H.X., Zuo Y.L., Devaux X., Lengaigne G., Hehn M., Lacour D., Andrieu S.,

Chshiev M., Hauet T., Montaigne F., Mangin S., Han X.F., Lu Y. Phys. Rev. Lett. 115,

157204 (2015)

4. Yang H., Yang S.-H., Parkin S.S.P. Nano Letters 8, 340 (2008)

5. Sheng L., Chen Y., Teng H.Y., Ting C.S. Phys. Rev. B 59, 480 (1999)

6. Wang Y., Lu Z.-Y., Zhang X.-G., Han X.F. Phys. Rev. Lett. 97, 087210 (2006)

7. Breit G., Wigner E. Phys. Rev. 49, 519 (1936)

8. Tsu R., Esaki L. Appl. Phys. Lett. 22, 562 (1973)

9. Chang L.L., Esaki L., Tsu R. Appl. Phys. Lett. 24, 593 (1974)
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