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Abstract

Signal processing in dielectric spectroscopy implies that it is necessary to ,nd a ‘true’ ,tting function (having a cer-
tain physical meaning), which describes well the complex permittivity and impedance data. In dielectric spectroscopy for
description of complex permittivity/impedance data researches usually use the empirical Cole–Davidson (CD) and Havriliak–
Negami (HN) equations that contains one relaxation time. But the parameters ,guring in CD and HN equations do not have
clear physical meaning as well as ,tting parameters entering into linear combination of several CD or HN equations. For
description of dielectric (especially asymmetric) spectra we suggest the complex permittivity functions containing two or
more characteristic relaxation times. These complex susceptibility functions correspond in time domain to new type of kinetic
equation containing non-integer (fractional) integrals and derivatives. We suppose that these kinetic equations describe a
wide class of dielectric relaxation phenomena taking place in heterogeneous substances. To support and justify this statement
the special recognition procedure has been developed that helps to identify this new kinetic equation from raw dielectric data.
It incorporates the ratio presentation (or RP) format and separation procedure. Separation procedure was turned out to be
helpful in detection of number of relaxation processes (each process is described by a characteristic relaxation time) taking
place in the dielectric material under consideration. We suppose that this procedure can be applicable also for identi,cation
of fractal noises.
? 2003 Elsevier B.V. All rights reserved.

PACS: 61.25.Em; 77.22.Gm; 05:40:− a; 02.60.Ed.; 06.20.Dk.; 07.05.Kf
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1. Introduction

Signal processing in dielectric spectroscopy im-
plies description of a complex permittivity function
and impedance in terms of an analytical function.
Most of the experimental studies show that the di-
electric ac response in many dielectric materials

∗ Corresponding author.
E-mail address: nigmat@knet.ru (R.R. Nigmatullin).

especially for glass-forming materials is hardly being
explained by the “classical” Debye dielectric function
[3,7–11,21,23–25]

�(j!) = �′(!)− j�′′(!) = �∞ +
�(0)− �∞
1 + j!=!p

: (1)

Generally, the experimentally observed non-Debye
ac response of glass-forming hydrogen-bonded sub-
stances as well as that of a variety of solid dielectric
materials in a remarkable wide range of frequencies
have been found to exhibit much more broadening in

0165-1684/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
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its loss curves and in many cases suKers from asym-
metry. The most conventional empirical analytical
dielectric expression that is often used to describe
the generalized broadened asymmetric relaxation loss
peak observed in many dielectric materials over a
wide frequency range is the conventional Havriliak–
Negami (HN) equation [25,8,6]

�HN(j!) = �′(!)− j�′′(!) = (�(j!)− �∞)=�0

=
�(0)− �∞

[1 + (j!=!p)�]�
; (2)

where �HN (j!) is the HN complex susceptibility with
the real and imaginary components �′(j!) and �′′(j!),
respectively, and �0 = 8:854 × 10−12 F=m is the per-
mittivity of free space. The parameter � (0¡�6 1)
is a measure of the broadness of a symmetric dielec-
tric relaxation curve and � (0¡�6 1) is the shape
parameter of an asymmetric relaxation curve. The re-
laxation curve with �=�=1 corresponds to the “ideal”
Debye-type ac response. When �=1, the HN-equation
reduces to the well-known Cole–Cole (CC) empirical
dielectric function. Another non-Debye dielectric be-
havior is obtained from the HN-expression for �= 1,
which is known as the Cole–Davidson (CD) empirical
function. Here, this type of behavior will be collec-
tively termed as the Debye-type response [19]. It has
been reported [11] that the experimental ac relaxation
curves of water–polymer mixtures can be described
by the CC-dielectric function. On the other hand, the
regime close to the so-called 
-relaxation peaks in
the observed loss–frequency curves of glass-forming
glycerol and propylene carbonate (PC) has been de-
scribed [10,23] well by the CD empirical equation.
However, in water mixtures with small organic com-
pounds such as polyhydroxyl alcohol [21] the primary
dielectric relaxation process exhibiting a broad and
asymmetric relaxation curve has been described by the
Fourier transform of the Kohlrausch–Williams–Watts
(KWW) function [21,25,8] that gives the complex per-
mittivity function in the form

�(j!) = �∞ + [�(0)− �∞]
∫ ∞

0
[− d�(t)=dt]

×exp(−j!t) dt (3a)

with

�(t) = exp�−(t=
)�K �; (3b)

where the parameter �K (0¡�K6 1) is a measure of
the broadness of an asymmetric loss relaxation curve.
It is worth noting here that the Fourier transform of Eq.
(3a) into the frequency domain cannot be expressed
in the form of a simple algebraic expression and so
can be evaluated only numerically [8] and this KWW
function is not usually highly applicable for describing
dielectric behavior in some materials.
Other empirical expressions can be also used to an-

alyze the experimental ac response of dielectrics over
a wide range of frequencies, is the widely used the
Jonscher’s formula [8] that describes the frequency
dependence of �′′(!) of the complex susceptibility
below and above the loss-peak angular frequency !p.

Another empirical permittivity function, which
includes all of Jonscher’s “universal response,” the
Debye-, CC-, and CD-dielectric functions as its spe-
cial cases and which also takes into account the
contribution of dc conduction, which may be encoun-
tered experimentally at the low-frequency side, has
been recently proposed by Raicu [19]

�(j!) = �∞ +
�
j!

+
�(0)− �∞

[(j!
)
 + (j!
)1−�]�
: (4)

Traditionally, the measured ac permittivity-
frequency data is interpreted and analyzed quantita-
tively by the use of expression (2) or its linear com-
binations. To achieve such quantitative permittivity
data analysis, some sort of a non-linear curve-,tting
programs [5,18] to the model chosen are usually em-
ployed. Usually, the use of the empirical dielectric
expressions is often criticized for they often involve
adjustable parameters that are sometimes diOcult to
justify and understand their physical signi,cance.
Moreover, a conventional non-linear curve-,tting
method usually results in a best curve ,t to the ex-
perimental data with a number quantifying how good
the ,t is and yields a set of values for the adjustable
parameters involved, which are always presumed to
represent the behavior of such data. However, such
,tting programs can ,t, given enough adjustable
variables, almost any theoretical/empirical model,
but they cannot tell one which theory/model should
apply. Consequently, the deduced ,tting parameters
might be illusive or misleading, as one often obtains
diKerent sets of values for them, corresponding to
diKerent “local” minima in the statistical function
used in the minimization procedure, which give best
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,ts to the same model chosen. Only when a “global”
minimum is arrived at through the minimization pro-
cedure, the obtained set of ,tting parameters can be
considered to be physically well behaved and reliable
for further analysis. In general, it is rather diOcult
to develop some additional justi,ed criteria which is
helpful in diKerentiation of conventional or, in other
words, the imposed data curve-3tting approach from
an approach which does not contain initially supposed
empirical functions and contains some veri,cation
criteria for justi,cation of a “true” chosen hypothesis.

2. Formulation of the problem

For describing the asymmetric peaks in dielectric
spectra we suggest to use new complex dielectric func-
tions, which can be expressed as

�(j!) = �∞ +
�(0)− �∞
1 + R(j!)

: (5)

The complex function R(j!) is determined by the fol-
lowing expressions:

(a) for equivalent scheme with two recap elements
(resistance+capacitance; they form one com-
bined element with intermediate impedance
properties between pure resistance and capaci-
tance [13]) connected in parallel

R(j!) = (j!
1)�1 + (j!
2)�2 ; (6a)

(b) for equivalent scheme with two recap elements
connected in series

R(j!) = [(j!
1)−�1 + (j!
2)−�2 ]−1: (6b)

Here we want to stress one principal feature of these
functions, viz., expressions (6) contain two character-
istic relaxation times forming in the most cases one
loss peak belonging to one function (5). These two re-
laxation times constitute one function and are formed
without additive combinations of the two “simple”
functions usually combined by the HN (2), KWW (3)
or Raicu (4) functions containing only one param-
eter of relaxation. It is necessary to mark here that
these complex functions (6) are not a new empirical

supposition. They have been recognized with the use
of special procedure initially suggested in papers [1].
Functions (6) incorporate a single recap element

or combination of several recaps elements in order to
rePect the fractal nature of a sample interior and/or
interfacial/electrode phenomena [4] through a general
impedance form having intermediate characteristics
with a “fractional” power-law frequency response of
the type [22,12,16,13]

Z�(j!) ≡ R0(j!
)−�: (7)

Here 
 is considered as a characteristic relaxation time
of a fractal subsystem, R0 is a dimensional parameter.
The power-law exponent is supposed to be located
in the interval 06 �6 1, but in some cases it can
be beyond of this interval [13]. Each recap element,
besides its own exponent �, is dominant in a certain
frequency range !min6!6!max, which cannot be
sometimes achieved by the experimental setup used;
this frequency limit should rePect the existence of a
fractal structure formed in many mesoscopic systems.
Let us consider the kinetic equation in fractional

derivatives of the following type:

[
�11 D
�1
t0 + 
�22 D

�2
t0 ](P(t)− P(t0)) + P(t) = 0: (8)

Here P(t) is a value of the total polarization, the op-
erator Dq

a (06 q6 1) de,nes the Riemann–Liouville
non-integer diKerential operator [17]

Dq
af(x)

=
d
dx

[Dq−1
a f(x)]

=
d
dx

[
1

�(1− q)

∫ x

a
(x − y)−qf(y) dy

]
: (9)

The parameters 
1;2 determine some characteristic
times, which provide the conservation of dimension in
the both parts of Eq. (8). It is easy to ,nd the stationary
solution of the kinetic equation (8). We present the
solution in the form

P(t) = �(j!) exp[j!t]: (10)
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Taking into account the value of the integral

D�
−∞[exp(j!t)]

=
d
dt

[
1

�(1− �)

∫ t

−∞
(t − u)−�ej!u du

]

=(j!)� exp(j!t) (11)

and initial condition P(−∞) = 0 it is easy to ,nd the
expression for complex susceptibility

�(j!) =
�(0)

1 + (j!
1)�1 + (j!
2)�2
: (12)

This expression totally corresponds to the complex
permittivity written in form (5) with complex function
R(j!) taken from (6a).
Let us consider another kinetic equation

[
−�1
1 D−�1

t0 + 
−�2
2 D−�2

t0 ](P(t)− P(t0)) + P(t)

= 0: (13a)

It can be presented also in equivalent form as

[
−�1
1 D−�1

t0 + 
−�2
2 D−�2

t0 ]−1P(t) + (P(t)− P(t0))

= 0: (13b)

Here fractional exponents are supposed to be located
in the interval (06 �1; �26 1). Formally the last
equation coincides with Eq. (8) but with one essen-
tial diKerence. It represents the kinetic equation con-
taining the fractional integral operators. The linear
combination of fractional integral operators taken in
the inverse form leads again to a complex operator of
fractional derivative. The stationary solution of this
equation can be found by analogy with (8). At initial
condition P(−∞)=�(0) exp[j(!− j�)t] (� → 0) [that
corresponds to the adiabatic switching of the electric
,eld at t = −∞] it is easy to ,nd the expression for
complex susceptibility. It can be written as

�(j!) =
[(j!
1)−�1 + (j!
2)−�2 ]�(0)
1 + [(j!
1)−�1 + (j!
2)−�2 ]

=
�(0)

1 + [(j!
1)−�1 + (j!
2)−�2 ]−1 (14)

and corresponds to the expression of the complex per-
mittivity (5) with R(j!) taken from (6b).

Generalizing kinetic equations (8) and (13) contain-
ing fractional derivatives one can expect the following
general structure of kinetic equations describing the
dielectric relaxation phenomenon in time domain for
wide class of dielectric materials
n∑

k=1


�kk D
�k
t0 [P(t)− P(t0)] + P(t) = 0: (15)

In partial cases (n = 1, � = 1 and n = 1, � �= 1)
the last equation describes the known kinetics of De-
bye and Cole–Cole type. The physical meaning of
the last kinetic equation is the following. We suppose
that all relaxation system including a set of strongly
correlated microdipoles can be divided on n subsys-
tems. It might be a set of dipole clusters or ensem-
ble of strongly correlated molecules. Each subsystem
is interacting with thermostat with the help of colli-
sion/rotation mechanism, which is expressed bymeans
of fractional derivative (the physical meaning of the
fractional integral is discussed in [13]). Each subsys-
tem k (k =1; 2; : : : ; n) is characterized by a relaxation
time 
k showing the contribution of the chosen relax-
ation unit into the general process of relaxation. The
number of subsystems, giving an additive contribu-
tion to the general picture of relaxation is de,ned by a
structure of the concrete heterogeneous material con-
sidered. At an initial stage the kinetic equation (15)
can be considered as a reasonable and phenomeno-
logical hypothesis, which is recognized from correct
treatment of raw dielectric data. After identi,cation of
this type of kinetic equation on a wide class of het-
erogeneous materials the further theoretical attempts
should be undertaken in explanation of their micro-
scopic origin. We suppose that this equation describ-
ing the relaxation of the total polarization in a bulk
material can serve a basis of signal processing in di-
electric spectroscopy (DS).
The main purpose of this paper is to ,nd and justify

the procedures that can help to recognize this new type
of kinetic equation in the process of treatment of raw
DS data. If it becomes possible to identify this equa-
tion from analysis of DS data then decisive arguments
can be found in prove that fractal kinetic equations do
exist in Mother-Nature. It will help to reconsider and
generalize the basic kinetic equations of statistical me-
chanics, which incorporates only integer derivatives
and identify new relaxation phenomena that need for
their description the operator of non-integer derivative
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or their linear combination. The rest material of this
paper is organized as follows. Section 3 describes the
so-called ratio presentation (RP) format, which con-
tains additional information for identi,cation of relax-
ation processes taking place in low-frequency domain.
The separation procedure outlined in Section 4 helps
to identify a number of relaxation processes ,guring
in kinetic equation (15). In Section 5, we are analyz-
ing real available DS data for complex susceptibility
received from diKerent laboratories. The last Section
6 is ,nishing this consideration by results and their
discussion.

3. Ratio presentation format

In practice, it is necessary to diKerentiate between
the so-called (low-frequency dispersion) LFD process
(∼ (1=(j!
)
), see also Table 1) and a relaxation pro-
cess described by the Cole–Cole function, and to ,nd
a criterion that helps to detect a mixture of these (and
other) possible processes from their separate contribu-
tions. A solution corresponding to these requirements
can be realized with the use of the ratio

−
(
Re[�(j!)]
Im[�(j!)]

)
≡ Re[1=�(j!)]

Im[1=�(j!)]

= cot(’) +
�∞|D(j!)|
R� sin(’)

: (16)

Here �(j!) ≡ Re[�(j!)] − j Im[�(j!)] and D(j!) ≡
|D(j!)| exp(j’) = 1 + R(j!). The function R(j!)
is de,ned by expression (5). We have explored the
possibilities of this new format in the identi,cation of

Table 1
The relationship between the parameters of the low-frequency
dispersion (LFD) and the Cole–Cole functions, and the parameters
A, B, C from expressions (17) and (18)

LFD A = cot
( "


2

)

�(j!) ≡ �∞ + 1
(j!
)
 B = �∞(2"
)


sin("
=2)

Cole–Cole A =
(
�s+�∞
�s−�∞

)
1

tan("�=2)

�(j!) = �∞ + �s−�∞
1+(j!
)� B = �s

(�s−�∞)(2"
)� sin("�=2)

C = �∞(2"
)�

(�s−�∞) sin("�=2)

individual processes and combinations of diKerent
processes.
The LFD function in ratio format. If the function

D(j!) de,ned by expression (16) coincides with the
LFD function, then simple calculations lead to the ex-
pression

−
(
Re[�(j!)]
Im[�(j!)]

)
= A+ Bf
: (17)

The relationship between the parameters A(�∞; 
; 
)
and B(�∞; 
; 
), and the conventional parameters �∞,
� = 1=

 and 
 are given in Table 1. Fig. 1 shows
the frequency dependence of function (17) for some
concrete values of the ,tting parameters �∞, � and 
.
As one can see from the double-log scale representa-
tion, the LFD function appears as a straight sloping
line when 
 = 1 or as a broken straight line (with
a region that is parallel part to the frequency axis)
when 
¡ 1. The use of expression (17) for recogni-
tion of the existence of an LFD process becomes very
simple. Moreover, the application of expression (17)
eKectively involves the simultaneous ,tting of both
the real and imaginary parts and therefore renders the
whole ,tting procedure much more reliable.
The Cole–Cole function in ratio format: If the

function D(j!) coincides with the part of complex
permittivity de,ning the pure Cole–Cole function
(D(j!) ≡ 1 + (j!
)�)

�(j!) = �∞ +
�(0)− �∞
1 + (j!
)�

;

then the ratio has the form

−
(
Re[�(j!)]
Im[�(j!)]

)
= A+ Bf−� + Cf�: (18)

The relationships between the ,tting parameters A, B,
C and initial parameters de,ning the Cole–Cole func-
tion (i.e. �∞, R�, 
 = 1=!p, �) are given in Table 1.
The principle diKerence between expressions (17) and
(18) is the appearance of a low-frequency branch
(∼B) that helps to diKerentiate easily between the LFD
process and the Cole–Cole relaxation process. Fig. 2
shows presentation (18) of the Cole–Cole function, for
certain values of the ,tting parameters in double-log
scale. The appearance of the low-frequency branch
transforms the shape of the ratio-format spectrum from
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Fig. 1. Imitation of low-frequency dispersion (LFD) process. Circles represent the LFD function with 
 = 1, 
LFD = 0:0001, �∞ = 7,
squares represent the LFD with 
 = 0:9, 
LFD = 0:0001, �∞ = 7.
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Fig. 2. The Cole–Cole function in the RP format with parameters � = 0:98, 
 = 0:01, �s = 150, �∞ = 7.

that of a broken line (characteristic of an LFD process)
into a pro,le resembling the letter “V”. We wish to
stress here, that the function appears in the V-shaped
form, even in cases, when the normal presentation
exhibits only the tail of this process. It can be ex-
plained by the fact that the frequency minimum of this

function is found from the relationship

fV =
(
B
C

)1=2�

=
(
�s
�∞

)1=2� 1
2"


(19)

and always is shifted to the high-frequency region be-
cause of the ratio �s=�∞�1.
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Fig. 3. Open circles represent the combination of LFD and Cole–Cole function, with parameters �Cole–Cole = 0:98, 
Cole–Cole = 0:01,
�s = 350, �∞ =7, 
LFD = 0:001, 
=0:9. Open squares represent a single LFD with parameters 
LFD = 0:001, 
=0:9, �s = 7. Solid squares
represent a ‘pure’ Cole–Cole function with parameters �Cole–Cole = 0:98, 
Cole–Cole = 0:01, �s = 350, �∞ = 7.

Ratio format for the combination of an LFD and
Cole–Cole function: The general expression for the
complex permittivity of a linear combination of the
Cole–Cole function and the LFD is described by

�(j!) = �∞ +
�

(j!)

+

R�
1 + (j!
)�

: (20)

Presentation in the RP format leads to the expression

−
(
Re[�(j!)]
Im[�(j!)]

)

=
A+Bf�1+Cf�2+Df�1+�2+Ef2�2+Ff2�2+�1

G+Hf�2+If�1+�2+Jf2�2
;

(21)

where !=2"f, R�= �s − �∞, and A, B, C, D, E, F ,
G, H , I and J are constants determined by initial pa-
rameters entering into the previous expression (20).
The analytical relationships between the conventional
parameters and these new parameters are rather cum-
bersome and are not given in this paper. However, the
visual presentation of expression (21) allows one to
notice a peak created by the combination of these two
processes that provides evidence of the coexistence of
two processes (see Fig. 3).

Ratio format for the combination of an LFD and
two Cole–Cole functions: The general expression for
the complex permittivity of a linear combination of
the two Cole–Cole functions and the LFD is des-
cribed by

�(j!) = �∞ +
�

(j!)

+

R�1
1 + (j!
1)�1

+
R�2

1 + (j!
2)�2
; (22)

where ! = 2"f, R� = �s − �∞. Application of the
RP format leads to a quite complex expression and is
not given here. However, the visual presentation of
expression (22) allows one to see again the invariable
form of the double V-shaped function depicted in
Fig. 4 (arrows 1 and 2) created by the additive
combination of the two Cole–Cole processes and a
peak (arrow 3) created by the contribution of LFD
process.
Ratio format for the series combination of two re-

cap elements: The general expression for the complex
permittivity combined by of two recap elements, in
series, is given by Eq. (5) with R(j!) from (6b). The
application of the RP format to this function leads to



2440 R.R. Nigmatullin, S.I. Osokin / Signal Processing 83 (2003) 2433–2453

0.01 0.1 1 10 100 1000 10000 100000 1000000 1E7

1

10

3

2

1

R
e 

(ε
)/

Im
(ε

)

f (Hz)

Fig. 4. Open circles represent the linear combination of LFD and two Cole–Cole functions in RP format, with parameters �Cole–Cole1 = 0:85,

Cole–Cole1 = 0:0002, �s1 = 100, �Cole–Cole2 = 0:95, 
Cole–Cole2 = 0:02, �s2 = 800, �∞ = 2, 
LFD = 0:001, 
 = 0:8. Arrows 1 and 2 show
the ,rst and second Cole–Cole processes as inverted peaks, and arrow 3 shows the peak obtained as a the result of the combination of
the second Cole–Cole peak with LFD function.

the expression

Re[�(j!)]
Im[�(j!)]

=
A+Bf�1+Cf�2+Df�1+�2+Ef�1−�2+Ff−�1+�2

Gf�1+Hf�2
:

(23)

Numerical veri,cation of expression (23) shows that
the function describes a single asymmetric peak. Fig. 5
clearly demonstrates this asymmetric behavior (which
is characterized by the downward displacement of the
high-frequency branch), obtained for a model spec-
trum. Here the asymmetry always appears on the right
side of V-shaped function. This asymmetry therefore
diKerentiates between a model de,ned by two recap
elements combined in series and a model de,ned by
a single Cole–Cole function, which is characterized
by mirror-like symmetry with respect to the minimum
frequency.
Ratio format for the parallel combination of two

recap elements: The general expression for the com-
plex permittivity for two recap elements, combined in
parallel, is given by Eq. (5) with R(j!) from (6a).

Again, the application of the RP format leads to the
expression

−
(
Re[�(j!)]
Im[�(j!)]

)
=
A+ Bf�1 + Cf�2

Df�1 + Ef�2
; (24)

where !=2"f, A, B, C, D and E are some constants
determined by initial parameters of expression (5)
with R(j!) from (6a). Numerical veri,cation of ex-
pression (24) shows that the function describes also
a single asymmetric peak. Fig. 6 clearly demonstrates
this asymmetric behavior (which is characterized by
the downward displacement of the low-frequency
branch), obtained for a model spectrum. Here the
asymmetry always appears on the left side of the
V-shaped function. This asymmetry therefore dif-
ferentiates between a model de,ned by two recap
elements combined in parallel from a model de,ned
by a Cole–Cole function, which is characterized by
mirror-like symmetry with respect to the minimum
frequency and a model de,ned by two recap ele-
ments in series, which is characterized by right-hand
asymmetry.
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Fig. 5. The RP format for two recap elements combined in series. They are described by function (5) with R(j!) from (6b) with parameters:
�1 = 0:98, 
1 = 0:005, �2 = 0:6, 
2 = 0:01, �s = 200, �∞ = 1:5. Dashed line shows the position of the high-frequency branch in the case of
the negligible inPuence of the second process (provided by the second recap element). Arrow shows the movement of the high-frequency
branch due to inPuence of the second process. Hence, we have a ‘dropping’ asymmetry due to the falling down of the high-frequency branch.
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Fig. 6. The RP format for two recap elements combined in parallel. They are described by function (5) with R(j!) from (6a) with
parameters: �1 = 0:98, 
1 = 0:001, �2 = 0:6, 
2 = 0:05, �s = 1000, �∞ = 2. Dashed line shows the position of the low-frequency branch,
when the inPuence of the second process (provided by the second recap element) is negligibly small. Arrow shows the movement of
the low-frequency branch due to inPuence of the second process. Hence, we have a ‘dropping’ asymmetry due to falling down at the
low-frequency branch.
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General features of the ratio presentation format:
This investigation shows that the RP format helps to
diKerentiate, at least qualitatively, between diKerent
functions (including LFD, Cole–Cole and more com-
plex functions presented by expression (5) (with the
complex function R(j!) from (6a) and (6b)), and their
linear combinations.
For all functions considered above in the ratio for-

mat, one obtains all ,tting parameters simultaneously
for both parts of complex permittivity, except �∞ and
�s. It follows from Table 1 that one can obtain reliable
values only for the ratio �s=�∞. This statement follows
from de,nition (16). However, separate values of �∞
and �s can be obtained easily by ,xing initially their
ratio and then making one of the parameters Poat free
(usually �s) until the best ,t is obtained in the normal
presentation format.
Finishing this section we would like to stress one

important point. Expression (16) coincides with cotan-
gent of dielectric loss and from the ,rst sight it is not
necessary to introduce new de,nition and de,ne it as
new format. As far as we know the ‘old’ format taken
in the form of a tangent loss angle was not investi-
gated properly in the sense of giving new additional
information in comparison with usual presentation of
DS data. The logarithm taken from cotangent loss an-
gle gives new possibilities in diKerentiation of a true
LFD process from a ‘tail’ of relaxation process with a
peak located out admissible frequency window. That
is why it has a sense to determine this presentation as
a new RP format.

4. Separation procedure

Identi,cation of the actual combination of the phys-
ically meaningful recap elements can be achieved rel-
atively easily by employing the ECs data curve-,tting
method [1,14,15] in conjunction with a proper ana-
lytical procedure to separate the contributions of the
diKerent recap elements to the dielectric permittiv-
ity/impedance functions describing the observed be-
havior. This procedure helps in diKerentiation of the
complex permittivity functions expressed by formu-
lae (5) with (6a) or (6b) in the form of linear com-
bination of power-law functions. Both functions give
an asymmetric peak, but their asymmetry is diKerent.
The ,rst function (5) with (6a) creates an asymmetric

broadening near the low-frequency branch, while the
second combination (5) with (6b) creates an asym-
metric broadening at the high-frequency branch. But
for the case of a small asymmetry, when the contri-
bution of the second process entering either in combi-
nation of (5) with (6a) or (5) with (6b) is small, it is
quite diOcult to decide what is the type of asymmetry
we have. This problem related to detection of small
asymmetry contribution can be resolved by the use
of the following treatment. Let us express the initial
complex permittivity function in the following form:

�(j!) = �s − R�
1 + R−1(j!)

= �∞ +
R�

1 + R(j!)
; (25)

where complex relaxation function R(j!) combining
all possible processes can be expressed either

R(j!) = (j!
1)�1 + (j!
2)�2 (26a)

or

R−1(j!) = (j!
1)−�1 + (j!
2)−�2 : (26b)

Relationship (25) can be transformed, respectively,
into a couple of equations

1 + R(j!) =
R�

�(j!)− �∞
; (27a)

1 + R−1(j!) =
R�

�s − �(j!)
: (27b)

These equations can help to distinguish between
spectra formed by combination (25) with (26a) from
another possible combination (25) with (26b). The
imaginary parts of the left sides of Eqs. (27) form a
linear combination of two power-law functions for
R(j!) (as expressed by (26a) or by (26b), respec-
tively), it follows that these two power-law functions
can be easily recognized by the use of the separation
procedure ,rstly used in papers [1].
The separation procedure implies the multiplication

of the right sides of equations (27a) and (27b) by the
factor !
d , where 
d (de,ned as separation exponent)
should be located between �1 and �2 with opposite
sign. For both cases of spectra from Eq. (25) with
(26a) and (25) with (26b), this procedure should give
the U-shaped curve. However, if we pass the spec-
trum formed by Eq. (25) with (26a) through the right
part of Eq. (27b) then instead of U-shaped curve we
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obtain a ‘hump’ at any values of separation exponent.
Similarly, if we pass the spectrum formed by combi-
nation (25) with (26b) through the right part of Eq.
(27a) (which is ‘tuned’ for recognition of functions
(25), (26b)) then it becomes impossible to obtain the
desired U-shaped curve (again no matter what a value
is chosen for 
d).

For realization of the separation procedure and
proper usage of expressions (25) it is necessary to
know initial values of �s and �∞. For ,nding of their
initial values one can use the presentation of the real
part of complex permittivity in normal and modu-
lus (1=�(j!)) formats, respectively. If an admissible
dielectric spectrum is located in frequency window

!min6!6!max; (28a)

then initial values of �s and �∞ can be found from
expressions

�s = max(Re �(j!min); [Re(1=�(j!min)]−1);

�∞ =min(Re �(j!max); [Re(1=�(j!max)]−1): (28b)

Usually the values obtained in these two formats do
not coincide with each other, so after their separate
calculations it is necessary to take their extreme values
as it shown by last expression.
One can stress also a useful property of complex

function R(j!), which helps to ,nd the necessary cor-
rections to the values of �s and �∞ de,ned by expres-
sion (28b). It easy to notice that at the given range of
frequencies this function should have monotonic be-
havior, i.e. R(j!) → ∞ (at ! → ∞) and R(j!) → 0
(at ! → 0). Model calculations show that the cor-
rected values of �s and �∞, obtained from the con-
dition that behavior of the complex function R(j!)
should be positive and monotonic, are very close to
the given ones, in spite of the fact that ‘true’ values
of �s and �∞ are located out from frequency window
and cannot be calculated with the use of conventional
non-linear ,tting procedure.
This separation procedure can help to reveal a pres-

ence of a small process between two large recognized
processes. If this intermediate hidden process takes
place then after realization of the separation procedure
we obtain the U-shaped curve with a small ‘hump’
located between two raising limiting branches. The

number of local humps identi,ed with the help of sep-
aration procedure at certain value of 
d can help in
identi,cation of a true structure of kinetic equation
(15) for the concrete dielectric material under consid-
eration.

5. Analysis of available experimental data

In this section, we shall try to apply the previ-
ously developed additional procedures for treatment
of available raw experimental data measured for com-
plex permittivity.
The raw DS data were obtained for salol and have

been measured in laboratory of F. Kremer (Faculty
of Physics and Geology, Leipzig University, Leipzig,
Germany). Figs. 7 and 8 show by open ,gures the
real and imaginary parts of complex permittivity for
salol at several temperatures. Fig. 9 shows the same
spectra in ratio presentation (RP) format. Analyzing
this picture one can notice at least two processes, viz.,
high-frequency process (arrows 1) and low-frequency
process (arrows 2). As for low-frequency process the
normal presentation (Figs. 7 and 8) does not allow
to determine whether it is a ‘true’ LFD or a ‘tail’ of
some process with the peak (in normal presentation)
located at the lower frequency range outside of the
experimental frequency window. This question can be
resolved with the help of the RP format. RP format de-
picted in Fig. 9 shows that the low frequency process
is the linear combination of the LFD-type process and
Cole–Cole-type process with the peak (in normal pre-
sentation) located at the lower frequency outside of
the experimental frequency window. Arrow 3 points
at the V-shaped curve at the lowest frequency region.
So in accordance with the properties of RP format it
can be identi,ed as the Cole–Cole process.
Next step is the use of the separation procedure.

Fig. 10 shows the result of the application of the sep-
aration procedure (case (27b)) to the initially identi-
,ed high-frequency process. On this picture one can
see the identi,ed U-shaped curve with a small hump
between two branches. But this hump is so small that
we can neglect it in future analysis. Application of
the separation procedure for Eq. (27a) cannot give
the U-shaped curve. This analysis gives us evidence
that in this case (for high-frequency process) there
are at least two processes with complex permittivity
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Fig. 7. Open ,gures and solid lines represent the real parts of complex permittivity for salol (phenyl salicylate C13H10O3) (by F. Kremer)
and correspondingly ,tting curves obtained by the ,tting procedure with the use of Eqs. (29), (30) (separately for low- and high-frequency
regions) at some temperatures. Arrows 1 and 2 show the high- and low-frequency processes.
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Fig. 8. Open ,gures and solid lines represent the imaginary parts of complex permittivity for the salol and correspondingly ,tting curves
obtained by the ,tting procedure with the use of Eqs. (28), (29) (Separately for low- and high-frequency regions) for several temperatures.
Arrows 1 and 2 show the high- and low-frequency processes. Two arrows (4) show the minimum between two processes.

expressed by the formula:

�1(j!) = �1∞ +
R�1

1 + R1(j!)
; (29a)

R−1
1 (j!) = (j!
1)−�1 + (j!
2)−�2 : (29b)

As it has been detected previously in the RP format
the low-frequency process of the Cole–Cole type (see
Fig. 9) has the V-shaped identi,ed curve with admix-
ture of asymmetric part. This gives us an evidence
to say that the low-frequency part of spectra can be
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Fig. 9. The RP format for complex permittivity of the salol for several temperatures. Arrows 1 and 2 show the high- and low-frequency
processes. Arrow 3 shows the V-shaped asymmetric curve.

0.01 0.1 1 10 100 1000 10000 100000 1000000 1E7

1

 T=229K

Possible third process

α d=0.3

Im
 (

∆ε
  (ε

 s-
ε (

jω
 ))
)*

fα δ 

f (Hz)

Fig. 10. Open squares with solid line represent the imaginary part Im(R�=�s−�(j!))f
d for the salol at the temperature T=229:15 K: 
d=0:3.
The dashed line shows the behavior for the case when the third process is absent. The shown arrow points out the third process.

described by the linear combination of the LFD and
complex function with two recaps combined in paral-
lel. So the complex permittivity function is expressed
by the formula:

�2(j!) = �2∞ +
�

(j!)

+

R�2
1 + R2(j!)

; (30a)

R2(j!) = (j!
3)�3 + (j!
4)�4 : (30b)

All possible measured frequency data for salol were
,tted by the use of Eqs. (29) and (30). (Separately
for low- and high-frequency regions). The results
of the ,tting procedure for some temperatures are
shown in Figs. 7 and 8 by solid lines. The temperature
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Fig. 11. Open ,gures and solid lines represent the temperature dependencies of the ,rst and second relaxation times (high-frequency process)
for the salol and correspondingly ,tting curves obtained by the ,tting procedure with the use of the conventional Arrhenius equation. The
chosen ,tting function and the results of the ,tting procedure (values of the ,tting parameters) for these data are collected in Table 2.
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Fig. 12. Open ,gures and solid lines represent the temperature dependencies of the third and fourth relaxation times (low-frequency
process) for the salol.

dependencies of the characteristic relaxation times are
shown in Fig. 11 (for high-frequency process) and
Fig. 12 (for low-frequency process). The temperature
dependence of the ,rst and the second relaxation times
has simple Arrhenius behavior. The results of the

,tting procedure with the use of Arrhenius equation
are also shown in Fig. 11 by solid lines. The pa-
rameters obtained from these ,tting procedures are
collected in Table 2. As for the third and fourth relax-
ation times they have very unusual (close to random)
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Table 2
The ,tting parameters describing temperature dependence of relaxation times

Data Fitting function Fitting parameters

Salol 
1 Ordinary Arrhenius 
A = 2:8× 10−63

E = 32632

Salol 
2 Ordinary Arrhenius 
A = 4:1× 10−56

E = 28686

Pure glycerol 
1 Generalized Arrhenius (32) 
A = 7:9× 10−49


(∞) = 
A exp(C) ∼ ∞
E = 23751
C = 6:26× 1018

Hd = 9211

Pure glycerol 
2 Generalized Arrhenius (32) 
A = 4× 10−55


(∞) = 
A exp(C) ∼ ∞
E = 23568
C = 1200
Hd = 1055

Pure glycerol 
3 Generalized Arrhenius (32) 
A = 1:65× 10−163


(∞) = 
A exp(C) = 2:3× 1017

E = 47746
C = 414:8
Hd = 223:8

temperature behavior, which cannot be described by
simple Arrhenius relationship. This dependence gives
us an evidence to state that low- and high-frequency
parts of this dielectric spectrum might have com-
pletely diKerent physical nature.
The second set of experimental data for pure glyc-

erol was obtained in laboratory of Prof. Y. Feldman
(Hebrew University, Israel). Figs. 13 and 14 show by
open ,gures the real and imaginary parts of complex
permittivity of pure glycerol for several temperatures.
Fig. 15 shows the same spectra in RP format. Analyz-
ing these pictures one can notice at least two processes:
high-frequency process (arrows 1) and low-frequency
process (arrows 2). As for low-frequency process the
normal presentation (Figs. 13 and 14) does not al-
low to determine whether it is an LFD or a ‘tail’
of some process with the peak (in normal presenta-
tion) located at the lower frequency outside of the ex-
perimental frequency window. This question can be
resolved with the help of the RP format. RP format de-
picted in Fig. 15 shows that the low-frequency process
is the Cole–Cole-type process with the peak (in normal

presentation) located at the lower frequency outside of
the experimental frequency window. Arrow 3 points
out to a small U-turn at the lowest frequency region.
So, in accordance with the properties of RP format it
can be identi,ed as a Cole–Cole process.
Next step is the usage of the separation procedure.

Fig. 16 shows the result of the application of the sepa-
ration procedure (case (27b)). On this picture one can
see the U-shaped curve with small hump between two
branches. Application of the separation procedure for
Eq. (27a) cannot give the V-shaped curve. This gives
us evidence to say that in this case we can have at least
three processes with complex permittivity expressed
by formulae:

�(j!) = �∞ +
R�

1 + R(j!)
; (31a)

R−1(j!) = (j!
1)−�1 + (j!
2)−�2 + (j!
3)−�3 : (31b)

All possible frequency data for pure glycerol were
,tted by the use of Eq. (31) without low-frequency
identi,ed process expressed probably by Cole–Cole
function. (the existing non-linear ,tting software
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Fig. 13. Open ,gures and solid lines represent the real parts of complex permittivity for pure glycerol and correspondingly ,tting curves
obtained by the ,tting procedure with the use of the equivalent scheme with three recap elements in series (Eqs. (31)) for several
temperatures. Arrows 1 and 2 show the high- and low-frequency processes.
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Fig. 14. Open ,gures and solid lines represent the imaginary parts of complex permittivity for pure glycerol and correspondingly the
,tting curves obtained by the ,tting procedure with the use of the equivalent scheme with three recap elements in series (Eqs. (31)) for
several temperatures. Arrows 1 and 2 show the high- and low-frequency processes. Arrows 4 show the minimum between two processes.

does not allow ,tting ,nally the whole curve in-
cluding low-frequency part). The ,tting procedure
realized with the help of Eq. (31) describes quite well
these raw experimental data. That is why for ,tting

procedures with these data we chose the equiv-
alent scheme incorporating three recap elements.
The results of the procedure for some temperatures
are shown in Figs. 13 and 14 by solid lines. The
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Fig. 15. The RP format for complex permittivity of pure glycerol for several temperatures. Arrows 1 and 2 show the high- and low-frequency
processes. Arrow 3 shows the upturn on low frequency, which rePects a ‘tail’ of low-frequency process of the Cole–Cole type.
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Fig. 16. Open squares with line represent the imaginary part of the R�=(�s − �(j!))f
d for pure glycerol data at the temperature
T =−74◦C: 
d = 0:36. Dashed line shows the behavior in case of absence of the third process. The arrow points out on the third process.

temperature dependencies of the characteristic re-
laxation times are shown in Fig. 17. All three re-
laxation times for pure glycerol have non-Arrhenius

temperature dependencies. Moreover, the ,rst pro-
cess with the longest relaxation time demonstrates a
possible critical point at the temperature T ∼ 232 K.
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Fig. 17. Open ,gures and solid lines represent the temperature dependencies of the three relaxation times for pure glycerol and correspondingly
,tting curves obtained by the ,tting procedure with the use of the generalized Arrhenius equation (32). Arrow points out on the possible
critical temperature. The chosen ,tting function and the results of the ,tting procedure (values of the ,tting parameters) for these data are
collected in Table 2.

Such temperature behavior of the relaxation time can
be described by the generalized Arrhenius formula,
suggested in [20]:


(T ) = 
A exp
(
E
T

+ C exp
[
−Hd

T

])
: (32)

The results of the ,tting procedure with the use of this
equation are also shown in Fig. 17 by solid lines. The
parameters obtained from these ,tting procedures are
collected in Table 2.

6. Results and discussion

The signal processing in dielectric spectroscopy is
started from identi,cation of a ‘true’ ,tting function
for description of the measured complex permit-
tivity/impedance data. The conventional procedure
of choosing of an appropriate empirical function
for the ,tting of raw DS data in available fre-
quency/temperature range is not well justi,ed in
dielectric spectroscopy. Usually for the ,tting of
frequency data experimentalists frequently use the
analytical functions (2) or (3) or their linear combi-
nations. But description of frequency data by linear
combinations of dielectric functions in general is not

correct and can be considered only as approximate
procedure. It can be justi,ed only in the case when
we have two diKerent physical phenomena as, for
example, an independent contribution of conductiv-
ity (LFD process) or possible electrode polarization
process aKecting the total relaxation process in a
bulk material. Usually the additive hypothesis can be
justi,ed in resonance spectroscopy for well-resolved
resonance lines, but in dielectric spectroscopy where
two peaks can form frequently one asymmetrical
peak this ‘blind’ copying is far from real data ,tting.
The case is that any complex dielectric spectra is
closely related to the corresponding kinetic equation
for the total macroscopic polarization and to obtain
the unique kinetic equation from additive combi-
nation of simple complex susceptibilities given, for
example, by expressions (2) or (3) represents an un-
solved problem. The general expression for complex
permittivity of type (5), where the uni,ed complex
relaxation function R(j!) can have an arbitrary struc-
ture really corresponds to the structure of a possible
kinetic equation for the total value of macroscopic
polarization in time domain. From this point of
view for each expression (1), (2) and (3) the corre-
sponding kinetic equation can be easily found. But
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unfortunately, experimental veri,cations show that
these expressions taken in a single form cannot de-
scribe the whole dielectric spectra in a set of het-
erogeneous materials. It would be desirable to ,nd
a ‘pattern’ material, which exactly corresponds to a
single HN function but the eigen-coordinates found
in [15b] and specially ‘tuned’ for recognition of this
function did not show its presence in available data
analyzed. The identi,ed functions (6) describing raw
DS data give us a chance to construct true kinetic
equations for describing of dielectric relaxation in
wide class of heterogeneous materials.
Analysis made on real salol and pure glycerol data

con,rms the existence of new kinetic equations of type
(15). The identi,ed function (31) for pure glycerol
representing the stationary solution allows in restoring
the corresponding kinetic equation in time domain. It
can be written in two equivalent forms

[
−�1
1 D−�1

t0 + 
−�2
2 D−�2

t0 + 
−�3
3 D−�3

t0 ]

×(P(t)− P(t0)) + P(t) = 0 (33a)

or

[
−�1
1 D−�1

t0 + 
−�2
2 D−�2

t0 + 
−�3
3 D−�3

t0 ]−1P(t)

+ [P(t)− P(t0)] = 0: (33b)

It is interesting to note that the second form of this ki-
netic equation contains a diKerential operator, which
represents itself the inverse operator to a linear com-
bination of fractional integral operators. This unex-
pected result and the corresponding type of kinetic
equation have a general interest and can be impor-
tant for understanding of kinetic phenomena at whole.
Without recognized of a low-frequency process this
kinetic equation describes the relaxation process in
pure glycerol. It is interesting to note that this iden-
ti,ed kinetic equation naturally de,nes the relaxation
times of possible subsystems involved in the relax-
ation process and allows in ,nding their possible tem-
perature dependencies based on very simple model
suggested in paper [20]. The separation procedure al-
lows in identifying of three relaxation processes tak-
ing place in pure glycerol. This is quite new result
that needs in more careful analysis and further con,r-
mations based on structural peculiarities of this sub-
stance.
We want to stress here that attempts to write true ki-

netic equations were realized by many researches. One

can remind the cluster theory of Dissado and Hill [8],
which unfortunately did not receive the further devel-
opment because the obtained expression for complex
susceptibility function did not describe well the DS
data and the physical meaning of theoretical parame-
ters ,guring in the D–H cluster theory was not clear.
The mode-coupling theory [2] pretending to descrip-
tion of DS data in glass-forming materials cannot give
complete description of DS data [11] and now it is
in the stage of experimental veri,cation. Eq. (15) can
be considered at the initial stage as phenomenological
kinetic equation, which rePects the fractal structure of
subsystems involved in the process of relaxation. Now
it is diOcult to derive this equation microscopically
but nevertheless it is possible to understand the physi-
cal meaning of fractional integral which appears in the
result of averaging of a smooth function (in the given
case the total polarization) over the fractal set [13].
In conclusion we would like to point out that with

the use of the RP format and separation procedure
on can recognize a structure of the desired kinetic
equation and the corresponding ,tting function in
frequency domain (equivalent scheme). After recog-
nition the ,tting procedure was realized by the use
of conventional non-linear least-squares method. And
this fact put forward a problem of determination of
the ‘global’ minimum and searching the ‘true’ values
(physically meaningful) for parameters through the
,tting procedure. As it is well-known [5] non-linear
,tting procedure depends in greater extend on the
initial values of the ,tting parameters and this de-
pendence increases with increasing of the number of
,tting parameters. In our case, we have quite large
number of parameters that complicate the ,tting
procedure. To determine the range for initial values
for some ,tting parameters (
 and �) we used the
so-called EC’s method [1,14,15] together with sepa-
ration procedure i.e. we made the ,tting procedures
based on EC’s method on U-shaped curves, similar
to that shown in Figs. 10 and 16. One of the basic
features of the EC’s method is the determination of
a ‘global’ minimum in the realized ,tting procedure.
It becomes important when we do not know a priori
initial values of parameters, especially in cases, when
the number of the ,tting parameters is suOciently
large. Another important feature of the EC’s method
is a possibility in detection of the most suitable ana-
lytical hypothesis among other proposed hypotheses
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chosen for the ,tting of real experimental data. In the
EC’s representation, the EC’s plots corresponding to
a ‘true’ function should give a set of sloping lines
with ,tting constants that enter into a basic relation-
ship by a linear way. They are related algebraically to
the initial set of the ,tting parameters of the original
function considered. So it becomes possible to use
reliable (close to the desired global minimum) initial
values for 
 and � and perform the non-linear ,tting
procedure for the whole complex function.
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