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 The resistance of the brain to defi cient blood supply 
can increase in response to brief episodes of ischemia-reper-
fusion or hypoxia [1], transient hypothermia [2], or other 
moderate stressors able to activate endogenous defense 
mechanisms and increase tissue resistance to subsequent 
severe ischemia [3–5]. This phenomenon is termed pre-
conditioning. Activation of adenosine triphosphate-depen-

dent potassium (K+
ATP) channels is regarded as the main 

component of responses in models of preconditioning [3]. 
Decreases in ATP levels during ischemia lead to opening of 
K+

ATP channels in the plasma membrane; the role of these 
channels is to restore low concentrations of Na+ and Ca2+ 
ions in the cytosol and prevent depolarization. Activation 
of K+

ATP channels in the inner mitochondrial membrane is 
associated with protecting mitochondria against Ca2+ ion 
overload [6]. The leading role in the development of pre-
conditioning is played by the mitochondrial pool [7].
 The role of nitric oxide (NO) in the development of 
ischemic cell damage is just as important. The nature of the 
action of NO depends on the intensity and location of its 
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production and the state of the surrounding tissue. Overpro-
duction of NO in ischemic stroke (IS) induces damage to 
the structural and regulatory components of cells [8], while 
binding of NO to enzymes of the mitochondrial transport 
chain inhibits cellular respiration [9]. Moderate activation 
of the NO system during preconditioning can have neuro-
protective effects, activating enzymes of the antioxidant 
system, triggering antiapoptotic mechanisms, and increas-
ing cerebral blood fl ow [8]. The protective effect of moder-
ate NO production may also be mediated by activation of 
K+

ATP channels [10].
 Increases in local cerebral blood fl ow after hypoxic/
ischemic preconditioning (IPre) can probably occur only in 
the fi rst early phase of preconditioning. Blood fl ow under-
goes centralization during the fi rst hours after hypoxic pre-
conditioning. A signifi cant role in the adaptive response of 
brain vessels induced by oxygen defi cit is played by com-
pensatory increases in oxygen extraction from venules [11]. 
Then, after several days, IPre has no effect on basal blood 
fl ow in the cerebral cortex [12–14]. At the same time, IPre 
affects the rate of restoration of blood fl ow in the penumbra 
zone after occlusion of the middle cerebral artery (OMCA), 
which makes a contribution to producing the protective ef-
fect of preconditioning [15].
 The aims of the present work were to study the role of 
ATP-dependent potassium K+

ATP channels in mediating the 
neuroprotective effects of IPre and pharmacological pre-
conditioning (PPre) and to assess changes in blood levels of 
NO metabolites in conditions of cerebral ischemia.
 Materials and Methods. Experiments were performed 
on white male mongrel rats (n = 86; weight 300–500 g). 
Studies were performed in compliance with the require-
ments of the Bioethics Commission of Lomonosov Moscow 
State University. The study involved two experimental stag-

es (Table 1). The fi rst stage addressed the effects of block-
ade of K+

ATP channels (glibenclamide) on the size of isch-
emic lesions (series I), the protective effect of the delayed 
phase of IPre (series II), and the possibility of modeling the 
effects of preconditioning by pharmacological (diazoxide) 
activation of K+

ATP channels (series III).
 The second stage addressed the effects of cerebral 
ischemia on components of the NO system: levels of NO 
metabolites were measured in experimental animals of se-
ries I–III, as were the effects of OMCA on the content of 
hemoglobin-bound NO (Hb-NO) in venous blood in rats of 
experimental series IV.
 Modeling of IS. In experimental series I–IV, IS was mod-
eled under general anesthesia with chloral hydrate (400 mg/
kg, i.p.) using an advanced method with electrocoagulation of 
right frontal branch of the MCA and adjacent vein with simul-
taneous ligation of the ipsilateral carotid artery [16–18].
 Modeling of the phenomenon of preconditioning of ce-
rebral IPre in experimental series II was performed 24 h be-
fore OMCA by transient clamping of the right and left com-
mon carotid arteries for 5 min with 5-min reperfusion over 
1 h. Cerebral PPre was induced in series III by intraventricu-
lar administration of 10 μl of a 6 mM solution of the nonse-
lective K+

ATP channel blocker diazoxide (Sigma) into the 
right lateral ventricle (AP –1.0 mm, L 2 mm, V –4.5 mm) 24 h 
before OMCA. Prior blockade of K+

ATP channels in series I 
and II was with glibenclamide at a dose of 20 mg/kg.
 Assessment of the severity of ischemic damage. The 
extent of necrosis in series I and II was determined as the 
proportion (%) of damaged tissue to the total area of the 
hemisphere cortex in brain sections 1–2 mm thick stained 
with 2,3,5-triphenyltetrazolium chloride.
 Determination of venous serum levels of NO and its me-
tabolites. Levels of nitrates (NO3

–) and nitrites (NO2
–) were 

TABLE 1. Experimental Groups

Experimental series Group names Manipulations

Series I
OMCA (n = 10) Control: 400 μl/kg DMSO i.p. 30 min before OMCA

Glib (n = 9) 20 mg/kg (5 mg/100 μl DMSO) glibenclamide (Sigma) i.p. 30 min before OMCA

Series II

OMCA (n = 10) Control: 400 μl/kg DMSO i.p. 24 h 30 min before OMCA

IPre (n = 10) 400 μl/kg DMSO i.p. 30 min before IPre, OMCA 24 h after IPre

IPre + Glib (n = 10) 20 mg/kg (5 mg/100 μl DMSO) glibenclamide i.p. 30 min before IPre, OMCA 24 h after IPre

Series III

OMCA (n = 6)
Control: intraventricular administration of 5 μl of DMSO + 5 μl buffer solution 24 h before 
OMCA

PPre (n = 7)
Intraventricular administration of 10 μl of 6 mM diazoxide solution (in 5 μl DMSO + 5 μl buffer 
solution) 24 h before OMCA

Series IV

Int (n = 6) Intact animals

OMCA (n = 18)
Electrocoagulation of the frontal branch of the MCA and adjacent veins with simultaneous liga-
tion of the ipsilateral carotid artery, six rats at each time point

DMSO – dimethylsulfoxide.
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determined in venous serum collected from animals of series 
I–III one week before modeling focal ischemia and then 5, 
24, and 72 h after OMCA. NO3

– was reduced to NO2
– with 

vanadium (III) chloride; total concentrations were deter-
mined using the Griess color reaction. Optical densities of 
solutions were measured using a Multiscan EX Primary EIA 
V 2.1-0 spectrophotometer at a wavelength of 492 nm.
 Measurements of hemoglobin-bound NO (Hb-NO) 
levels in animals of series IV were made by electron para-
magnetic resonance (EPR) using a Bruker ER 200E SRC 
spectrometer in range X (9.50 GHz) at a temperature of 
77 K [19]. Two types of paramagnetic complexes were de-
tected in venous blood: complexes of NO with hemoglobin 
heme in different planes, i.e., the R and T conformers.

 Results were analyzed statistically in Excel 2010, 
SPSS 17.0, and Statistica 8.0. Data are presented as means 
(M) ± standard deviations (σ). Studies of the relationship 
between dependent sets were performed using the Spearman 
rank correlation coeffi cient (r). Dependent sets were com-
pared using the nonparametric Wilcoxon test. Pairs of inde-
pendent sets were compared using the nonparametric 
Mann–Whitney test (U test) and Fisher’s test. Differences 
were regarded as signifi cant with error probabilities of less 
than 0.05.
 Results
 The role of K+ channels in mediating the neuroprotec-
tive effect of preconditioning. The results of stage I of the 
study are presented in Table 2. In conditions of acute cere-

Fig. 1. Dynamics of changes in total NO3
– and NO2

– contents and R and T conformers of Hb-NO complexes 
in the blood of rats with ischemic stroke. Data are shown as % of NO metabolite levels in intact animals 
(baseline). p < 0.05: *Wilcoxon’s test, comparison of NO3

– and NO2
– levels (OMCA vs. baseline); 

**Wilcoxon’s test, comparison of the level of Hb-No T conformers (OMCA vs. Int).

TABLE 2. Dynamics of Changes in Serum NO3
– and NO2

– Concentrations and Lesion Sizes in the Cerebral Cortex in Rats with IS

Time of blood collection
% of baseline NO3

– and NO2
– concentrations

Lesion area, %
5 h 24 h 72 h

Series I
OMCA 146 ± 62¤ 124 ± 56 101 ± 45 12.7 ± 5.9

Glib 107 ± 64 69 ± 38* 62 ± 54 15.1 ± 8.2

Series II

OMCA 134 ± 58¤ 109 ± 60 103 ± 42 14.9 ± 7.2

IPre 110 ± 45 81 ± 24 71 ± 40 9.4 ± 3.7#

IPre + Glib 136 ± 39 73 ± 49* 81 ± 30 16.8 ± 9.2

Series III
OMCA 107 ± 26 61 ± 27¤ 64 ± 13¤ 13.4 ± 3.4

PPre 110 ± 28 63 ± 22 75 ± 22 9.1 ± 4.0

p < 0.05: *Mann–Whitney U test for experimental groups compared with controls; #Fisher’s test, IPre vs. IPre + Glib; ¤Wilcoxon’s test for control groups 
compared with baseline.
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bral ischemia, blockade of K+
ATP channels with gliben-

clamide (series I, Glib) had no effect on the size of the dam-
age zone. IPre performed 24 h before OMCA (series II, 
IPre) signifi cantly decreased infarct size, by 37%. In the 
group of rats receiving glibenclamide 30 min before IPre 
(series II, IPre + Glib), the size of the necrosis zone was 
comparable with that in control animals and was statistical-
ly signifi cantly larger than that in rats with IPre. Activation 
of K+

ATP channels with diazoxide 24 h before OMCA (series 
III, PPre) led to the development of a protective effect anal-
ogous to that of cerebral IPre.
 Effects of activation and inhibition of K+

ATP channels 
on the total content of blood NO3

– and NO2
– in rats with IS. 

All groups showed similar dynamics of changes in total ve-
nous serum NO3

– and NO2
– concentrations (see Table 2): at 

5 h after OMCA, the control groups (series I and II) showed 
statistically signifi cant increases in NO3

– and NO2
– concen-

trations (see Fig. 1); by 24 h and 3 days after modeling of 
IS, concentrations approached baseline levels or were be-
low baseline (series III). Analysis of between-group differ-
ences revealed a link between inhibition of K+

ATP channels 
with glibenclamide 30 min or 24 h before OMCA and de-
creases in NO3

– and NO2
– concentrations, regardless of pre-

conditioning (series I, Glib; series II, IPre + Glib). Activation 
of K+

ATP channels with diazoxide had no effect on serum 
NO3

– and NO2
– concentrations (series III, PPre).

 Among the control groups, analysis of the relationship 
between the total concentration of NO metabolites and the 
size of the ischemic lesion zone demonstrated an inverse cor-
relation. The animals with the smallest necrosis zones had 
high NO3

– and NO2
– levels 72 h after OMCA (r = –0.556, 

p = 0.003). However, rats given glibenclamide (the Glib and 
IPre + Glib groups) showed a direct relationship – the larg-
est necrosis zones were accompanied by high NO3

– and 
NO2

– concentrations 24 h after IS (r = 0.529; p = 0.024). 
There were no signifi cant correlations in the groups of ani-
mals with IPre or PPre.
 Dynamics of changes in blood Hb-NO contents. The 
blood of rats with IS 24 h after OMCA showed at 42% in-
crease in the level of the R-conformer of Hb-NO complexes 
(see Fig. 1), with no statistically signifi cant difference from 
the group of intact animals (p = 0.078). For the T conformer, 
blood Hb-NO complexes in control animals showed the op-
posite situation (see Fig. 1) – levels were 75% lower than in 
intact animals at 24 h after OMCA (p = 0.043).
 Discussion. Chloral hydrate was used as anesthetic 
– this is a long-acting aliphatic agent. This anesthesia has 
no neuroprotective action and allows for adequate assess-
ment of the effects of test compounds on lesion size. The 
model used here stably reproduced IS; the level of MCA 
occlusion – at the frontal branch – was selected such that 
necrosis developed in the frontoparietal part of the cortex 
without affecting subcortical structures, avoiding complica-
tions related to visceral functions and death of the animals. 
Simulta neous coagulation of the veins adjacent to the MCA 

and ligation of the ipsilateral carotid artery stabilized necro-
sis zone size and decreased the number of animals used in 
the experiment.
 These studies used the nonselective blocker of plasma 
membrane and mitochondrial K+

ATP channels gliben-
clamide, at a dose of 20 mg/kg, and the activator of the same 
channels diazoxide, both dissolved in DMSO; doses and 
injection times were determined on the basis of published 
data [20, 21]. Selection of nonselective agents was based on 
the fact that in conditions of ischemia, both types of K+

ATP 
channel are activated in cells. Our studies addressed the 
suggestion that the activity of different types of NO syn-
thase is primarily affected by the state of plasma membrane 
K+

ATP channels, while the state of the mitochondrial nitrite 
reductase systems and NO synthase is affected by the state 
of mitochondrial K+

ATP channels. The task was to evaluate 
the complex contribution of K+

ATP channels to regulating 
the contents of NO and its metabolites in the bodies of the 
experimental animals.
 All experiments were performed 24 h after IPre, the 
effect being maximal at this time point [3]. Administration 
of glibenclamide 30 min before OMCA had no effect on 
necrosis zone size, so blockade of both cellular and mito-
chondrial K+

ATP channels in conditions of IS is not import-
ant for generating damage and the drug itself eliminated the 
effects of IPre in our experiments. The model of PPre with 
intraventricular administration of diazoxide was selected as 
one of the most effective and reproducible, as only a fi fth of 
the diazoxide circulating in the blood can cross the blood-
brain barrier (the brain/plasma ratio is 0.20) and have direct 
actions on K+

ATP channels in brain cells [22, 23].
 Levels of NO3

–, NO2
–, and Hb-NO were measured in 

venous serum 5, 24, and 72 h after OMCA. These time 
points were selected on the basis of the activities of the con-
stitutive and inducible NO synthases on development of IS: 
5 h covers the period at which only constitutive NO syn-
thases function, while measurements at 24 and 72 h allow 
assessment of inducible NO synthase [24].
 Assessment of necrosis zone size after preconditioning 
24 h before modeling of IS showed that IPre and PPre had 
identical protective effects. Prior administration of gliben-
clamide eliminated the protective effect of IPre, which is 
evidence of the key role of on K+

ATP channels in mediating 
the protective effects of the delayed phase of precondition-
ing on the brain in rats.
 Analysis of results from measurements of NO3

–, NO2
–, 

and Hb-NO complexes in the blood of rats with IS showed 
complex changes. Decreases in the levels of Hb-NO in the 
R conformation were seen during the fi rst 5 h after OMCA; 
in normal conditions, this conformer accounts for about 
90% of the total quantity of Hb-NO complexes. In condi-
tions of decreased tissue oxygen levels and on exposure to 
various other regulatory factors (2,3-diphosphoglycerate, 
acidosis, hypercapnia), some of the R-conformers of Hb-NO 
complexes can release oxygen from the Hb-bound state and 



62 Deryagin, Gavrilova, Buravkov, et al.

convert to T conformers, which signifi cantly weakens reten-
tion of the NO ligand [25–27]. Released NO can be oxi-
dized to NO3

– and NO2
–, and consistent increases in these 

ions were seen in the blood of experimental animals in par-
allel with decreases in the concentrations of hemoglobin R 
conformers. Thus, Hb-NO complexes in the R conforma-
tion can simultaneously function as a depot and as a carrier 
and, with the R → T transformation in conditions of isch-
emia, as an NO donor; NO release can have regulatory ac-
tions. We cannot exclude the possibility that the increases in 
NO3

– and NO2
– levels were due to endothelial NO synthase 

activated by ischemia. NO3
– and NO2

– levels normalized by 
one day after experimental IS. The situation with Hb-NO 
complexes changed fundamentally: R conformers dominat-
ed and blood levels of T conformers became minimal. This 
T → R transition can be explained as reduction of accumu-
lated NO3

– and NO2
– to NO with subsequent formation of 

Hb-NO complexes, while activation of inducible NO syn-
thase occurs predominantly in damage zones.
 At 72 h after OMCA, blood levels showed normaliza-
tion of levels of Hb-NO complexes, with the R → T transi-
tion and release of NO molecules. NO3

– and NO2
– levels 

were not different from baseline. Correlation analysis re-
vealed an inverse relationship between increases in serum 
NO3

– and NO2
– levels in control animals on post-IS day 3 

and lesion size. This result indirectly points to the neuropro-
tective effect of moderate NO production in the vascular 
bed during formation of the ischemic necrosis zone, which 
may be linked with NO-mediated vasodilation and im-
provements in collateral circulation [8].
 In animals given glibenclamide, the correlation be-
tween necrosis zone size and serum NO3

– and NO2
– concen-

trations one day after OMCA was direct. Published data in-
dicate that microglial cells show increases in the expression 
of K+

ATP channels in microglial cells [28], while gliben-
clamide signifi cantly increases the extent of activation of 
microglial cells, leading to increases in the production of 
cytokines, NO, and reactive oxygen species (ROS) [29]. 
Excess production of ROS on the background of NO gener-
ation by inducible NO synthase and subsequent involve-
ment of NO in free-radical reactions can explain the de-
creases in NO3

– and NO2
– concentrations one day after IS in 

rats which had received glibenclamide before OMCA. The 
NO molecule is a weak nitrosylating agent, though NO ac-
tivity increases signifi cantly on formation of more aggres-
sive compounds, including superoxide [30], and in reac-
tions with sulfhydryl radicals generated on oxidation of 
thiols [31]. This may lead to the fact that a proportion of NO 
molecules are not oxidized to low-toxic NO3

– and NO2
– but 

form complexes with cell components [32]. This results in 
cell damage and death in the infl ammation zone. Further 
understanding of the mechanisms of these changes requires 
additional studies.
 Thus, K+

ATP channels occupy a key position in the de-
velopment of the protective effects of preconditioning on 

the brain in rats with ischemic lesions. Apart from a role in 
the processes of preconditioning, K+

ATP channels evidently 
have a special position in regulating the intensity of microg-
lial infl ammatory processes in ischemic tissues. Studies of 
the dynamics of changes in blood NO metabolite levels pro-
vide only an indirect view of the actual processes regulating 
the production of this short-lived molecule. A fuller concept 
is obtained by complex analysis of components of the NO 
system, which involves the concept of storage of NO by 
blood proteins. The link between the K+

ATP channels system 
and the NO system at the cellular and subcellular levels, as 
well as the mechanisms controlling the free NO level in the 
circulation, requires further study.
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