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This paper is dedicated to the experimental study of learning properties of systems, based on polyani-
line (PANI) memristive devices. Signals with different forms, amplitudes, frequencies have been used as
external stimuli and it has been demonstrated their different influence over memristive device conduc-
tance. According to the obtained results, pulse width modulation seems the most adequate method for
the implementation of neuromorphic circuits.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

During recent 12 years memristive devices [1,2] attract signifi-
cant attention, as analogues of biological synapses in electronic cir-
cuits [3-5]. We see a lot of applications and implementations in-
cluding STDP [6-11], memristor crossbars [12] and different types
of neural networks [13-16].

Recently the progress in memeristive devices indicated the
milestone when it has been demonstrated the prototype of the
synaptic prosthesis [17] that effectively connects two not con-
nected naturally neurons in the slice of rat neocortex.

There are different materials used to realise memristive de-
vices[18-20]. The working principle of the most of them is based
on the growth of conducting filaments in thin insulating films be-
tween metal oxide layers with successive variation of their con-
ductance [21,22]. This mechanism is rather random and could not
be well controlled, that leads to the uncertainty of voltage values,
required for switching in ON and OFF conductivity state, not only
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from one device to the other, but also within different cycles of
the same device [23]. This fact makes it difficult to use these de-
vices for neuromorphic applications and it is the main reason why
the additional circuitry is usually required to work with these un-
certainties. However, rather gradual resistance switching has been
observed recently in similar systems [24].

Conductivity switching is intrinsically noisy phenomenon in
such kinds of devices [25,26]. Similarly to well-known effects in
complex systems [27-30], noise can play a positive role also in
memristive devices [31-33].

With that in mind, it has been proposed that polyaniline based
memristive devices can become a perspective alternative, since ON
and OFF voltages are fixed and depend only on the device architec-
ture [34,35].

Up to now there is only one paper, dedicated to the noise effect
on this type of memristive device [36]. It has been demonstrated
that external noise plays a positive role also in this case.

The working principle of this device is based on the signifi-
cant difference of polyaniline conductivity in its reduced and ox-
idized states. Redox reactions occur in the active zone of con-
tact of polyaniline with solid electrolyte (polyethylene oxide + Li-
ClO4). Variation of the electronic conductivity in polyaniline chan-
nel is due to the ion motion between the conducting polymer and
solid electrolyte as it was directly shown spectroscopic methods
[37] and X-ray fluorescence [38], and described by the developed
models [39,40].
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Fig. 1. Schematic of the internal structure of the organic memristive device and test
setup connection 1 and 2 connected to gold electrodes, 3 connected to silver wire.

The first successful demonstration of the use of these devices as
a synapse consisted of reconstruction of a part of nervous system
of the pond snail Lymnaea stagnalis responsible for learning during
feeding [41]. It is to note, that the implemented circuit not only
imitated the association of initially neutral stimulus with the pres-
ence of food, but also reconstructed the architecture of the part of
nervous system, where memristive devices were directly integrated
in the position of synapses.

Three recently published papers underline other important
properties required for parts of nervous system prosthesis. In par-
ticular, they demonstrate the importance of the temporal corre-
lation of pre- and post-synaptic spikes on the conductivity state
of the memristive device. First, it has been demonstrated that the
strength of the memristive connections depends not only on the
number of passed pulses but also on the their frequency[42]. Sec-
ond paper shows, that STDP (spike timing dependent plasticity)
learning mechanism can be implemented in circuits, based on or-
ganic memristive devices [43,44]. Finally, the organic memristive
device was used as synaptic connection between two nervous cells
from the rat neocortex [17] using natural spiking of neurons.

The possible utilisation of memristive devices as a key model
elements of circuits, mimicking biological neurons, was studied
and electronic circuit prototypes were proposed [45-47]. To make
further improvements, we consider that it is necessary to study the
influence of different training signals types, in order to make the
most efficient use of the memristive devices in our schemes.

In this work we tried to identify roles of external stimuli on the
resistive switching capabilities of organic memristive devices.

2. Materials and methods

The internal structure of the memeristive device is presented
in Fig. 1 [48]. The technology of the memristive device production
is as following: polyaniline (PANI in Fig. 1, Mw=10° Da, Sigma-
Aldrich) is dissolved in

N-methylpirrolidome (NMP) with a concentration of 3 g/L and
then diluted with 9:1 NMP/Toluene mixture to receive the solution
with a concentration of 0.3 g/L. Polyethylene oxide (PEO in Fig. 1,
Mw = 6x10° Da. Sigma-Aldrich) is dissolved in the 0.23 mole
lithium perchlorate aqueous solution with the concentration of
50 g/L. After that electrolyte solution is diluted with a 1 mol HCI
aqueous solution in a ratio of 9:1 (PEQ/HCI). The PANI active chan-
nel is formed on a silicon oxide substrate with preliminary evap-
orated and photolithographically patterned gold electrodes (Au in
Fig. 1) by the Langmuir-Schaefer technique.

The distance between electrodes that is referenced as d in
Fig. 1 is set to 10 um. 10 PANI layers are consequentially trans-
ferred on these substrates. After transferring the PANI films are
dried and doped in HCl vapor. The area around the active chan-
nel is covered by a Kapton film to avoid redox reactions outside of
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Fig. 2. I-V curves of Ip current of experimental memristive device. Coloured lines
indicate the test number that runs the voltage loop from —0.5 to +0.8V.
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Fig. 3. I-V curves of I; current of experimental memristive device. Coloured lines
indicate the test number that runs the voltage loop from —0.5 to +0.8V.

the channel (Kapton in Fig. 1). Later a drop of PEO electrolyte is
placed on the active zone and dried in a airflow, right before the
drop is dried completely, we insert the silver wire with a diameter
of 50 um into the drop (Ag in Fig. 1).

We used the Keysight B2902A Precision Source/Measure Unit
for I-V curve measurement and the AM measurement whereas for
the PWM and the FM we use the NI PXle-4140 Source Measure
Unit. In our experiments the input voltage is applied to the gold
electrodes (voltage label in Fig. 1) in the range: —0.5...+ 0.8V,
this range is adequate for the redox reactions in our PANI mem-
ristive device, necessary for the resistive switching, but does not
cause the irreversible overoxidation processes.

3. Results
3.1. Current-voltage characteristics

In order to understand basic dynamics of the memristive device
resistive switching the current-voltage characteristics have been
studied (Figs. 2, 3).

The voltage loop we used during experiments was in the range
of —0.5...+ 0.8 V with the step of 0.02 V and duration of each step
0.02 s. We started from 0V and increased the voltage up to 0.8V
and then reduced down to —0.5V.

We applied this voltage loop multiple times consequently to
check the stability of the I-V characteristics of the device. We mea-
sure two currents: going through the device Ip and the ionic cur-
rent coming through the electrolyte Iz shown in Fig. 1.
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Fig. 2 shows typical I-V curves of the current Ip, measured
across the device. During the experiment the voltage of the switch-
ing from high resistance state to a low one of the device was
always stable corresponding to ~ +0.3V (that corresponds to ~
800 kw with +0.4V and about 5 — 6 kw with +0.8 V). The max-
imum current value decreased continuously during successive cy-
cles of the applied voltage loop from 200 A down to 150 uA, and
this correlates with previous PANI memristive devices experiments
[48].

The I-V curve of the ionic current (Ig) is shown in Fig. 3 and
it represents oxidizing (positive maximum) and reduction (nega-
tive minimum) potentials of the PANI film with the same trend to
decrease during the experiment from loop to loop applied.

3.2. Dynamic characteristics

We tested, different types of the modulation of the input sig-
nal of the PANI memristive device such as amplitude modula-
tion (AM), frequency modulation (FM) with defined amplitude, and
pulse width modulation (PWM) with defined frequency and ampli-
tude.

We conducted two kinds of experiments (1) the PANI mem-
ristive device conductance increasing (potentiation), (2) the con-
ductance decreasing (depression). To reduce the instability of the
memristor device characteristics, before each series of experiments,
we applied the control additional voltage cycle (Figs. 2, 3) de-
scribed in the Section 2).

We were not interested in the absolute values of ON and OFF
voltages of the memristive device, but only temporal changes of
the characteristics of its resistance, indicating the effectiveness of
the specific type of modulation. The application of relative param-
eters (resistance gradient) allowed us to reduce the influence of
instability of the characteristics of the memristive device.

Before the AM potentiation experiment, we depressed the de-
vice by the voltage of —0.5V for five minutes whereas before the
AM depression, we potentiated the device by the voltage of +0.7V
also for five minutes.

We ran PWM and FM experiments in 2-channel mode, the Ag-
wire was connected to one of the substrate gold electrodes and
it was used to apply lower voltage to the device. The amplitude
of PWM and FM signals was set to 0.7V, the frequency of the
PWM signal was set to 100 Hz. To initiate the electrochemical reac-
tions in the PANI memristive device we applied the voltage around
0.4V, as it is shown in Fig. 2.

We measured the Ip current once per pulse period during the
application to the memristive device. Sometimes the measurement
of the current was performed not at the moment of a maximal
voltage amplitude applied that's why the FM and PWM figures
have some random pikes (Figs. 5, 9).

Figs. 4-9 show the typical current through the device as the
function of time with different types of applied signals. Figs. 4, 8,
6 show memristive device behaviour during the potentiation and
Figs. 7-9 show the behaviour during the depression.

Fig. 4 indicates the gradual increase of the current Ip with dif-
ferent potentiation voltages during the amplitude modulation ex-
periment. The voltage of 0.3V almost does not affect the PANI
memristive device conductance increasing the current to ~ 10 A
during the 40s. The application of 0.5...0.9V amplitudes affect
the device in much more intensive dynamical way increasing the
current Ip up to 110,150 and 190 uA respectively. It is to note, that
the saturation current for the applied 0.9 V is less than for 0.7 V.
It is due to the fact, that a positive voltage, applied to the device
for a rather long time, should not be higher than 0.7 V, because it
can result in the irreversible overoxidation of polyaniline, that has
higher resistance value [35].
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Fig. 4. Ip current change over time during AM potentiation. The blue line stands
for 0.3V, the red line stands for 0.5V, the green line - 0.7V, the lilac line - 0.9V.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Ip current change over time during FM potentiation The blue line stands for
5Hz, the red line stands for 20Hz, the green line - 100Hz, the lilac line - 250Hz,
the orange line — 500Hz. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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The results of the frequency modulated signal experiments are
presented in Fig. 5. Changing the frequency we observed less sig-
nificant influence over resistance switch than in case of AM effect
over the Ip current. With 5Hz the Ip increased to almost 80 uA
within 40 s. It is interesting, that increasing frequency leads to de-
creasing maximum current value within 40 s period. We suppose
that the possible reason for this is that ions can not manage to
transfer between PEO and PANI layers of the memeristive device
during the short period of time.

In Fig. 6 the PWM signal with low duty cycle 20% has no ef-
fect on conductance of the memeristive device, while input signals
with 40% duty cycle reach almost 40 uA during 40 s, signals with
60% duty cycle reach almost 120 wA within 40 s and has similar to
0.5V of the AM potentiation behaviour (Fig. 4), and 80% duty cy-
cle signals comes close to the 0.7 V of the AM potentiation, getting
slightly above 180 (A during 40s.

Fig. 7 represents the results of the depression of the memris-
tive device conductivity during the amplitude modulation. All ap-
plied voltages show almost similar effect, decreasing conductance
to minimal values during the same period of about 8s. It is in-
teresting that even low positive voltage can lead the memristive
device conductance to decrease (the reduction potential is about
+0.1V). We suppose that all the PANI memristive devices should
use the constant resting voltage on memristive device, in order to
keep resistance from decline. The presence of the positive current
in the case of applied negative voltage is due to the transition pro-
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Fig. 6. Ip current change over time during PWM potentiation. The blue line stands
for 20% of the duty cycle, the red line stands for 40%, the green line - 60%, the lilac
line - 80%. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Ip current change over time during AM depression. The blue line stands for
+0.2V, the red line stands for 0.0V, the green line stands for —0.2V. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 8. Ip current change over time during FM depression. The blue line stands for
20Hz, the red line stands for 50Hz, the green line - 100Hz, the lilac line - 500Hz.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

cesses, connected to the discharge of the capacitor, existing at the
interface between polyaniline and polyethylene oxide.

The FM depression shown in Fig. 8 indicates that lower fre-
quencies provide higher impact over the memristive device con-
ductivity. For example the 500 Hz signal decreases I, to nearly
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Fig. 9. Ip current change over time during PWM depression. The blue line stands
for 20% of the duty cycle, the red line stands for 40%, the green line - 60%, the lilac
line - 80%. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

4 A per 8s, whereas 20Hz decreases the current to 2.5 uA
within same time.

PWM depression shown in Fig. 9, as well shows the consequent
decrease of the conductance with duty cycle increase. Starting at
almost no impact at 20% and coming close to —0.2 V AM dynamics
at 80%.

4. Discussion

We suppose that it is very important to analyse kinetics of the
conductivity variation due to different applied stimuli to memris-
tive devices for the majority of neuromorphic applications. Here
we presented the results, of amplitude, frequency and pulse width
modulations applied to inputs signals.

In the case of AM experiments, we observed a gradual increase
of the output current amplitude and the speed of resistive switch-
ing with the increase of the applied voltage. Switching to the OFF
state was always faster and its kinetics was more or less constant.

In the case of FM experiments, we observed the increase of cur-
rent and the decrease of the resistive switching speed, which is
correlated to the redox reactions, involving ion exchange between
PANI and PEO layers (ion mobility in the solid phase is rather low).
Considering the amplitude of the output current, it seems similar
for all frequencies in the saturation region.

It is to note, that AM and PWM experiments results indicate
very similar kinetics: 190 wA during 40s. The PWM potentiation
shows 180 A during 40 s at 80% duty cycle, keeping in mind, that
100% duty cycle will be same as 0.7V AM.

As for depression, we indicate that differences in current values
are not so high, and main conductance reduction happens within
8...10s, that is faster, than for potentiation (that usually takes
place during whole experiment 40s). Since AM and PWM exper-
iments results shows similar curves, the PWM seems more ade-
quate to use for neuromorphic applications, because it corresponds
better to the biological benchmarks, where the amplitude of spikes
is more or less stable, but the frequency and inter spike intervals
are useful for the potentiation and depression of synaptic strength
in STDP approach.

5. Conclusion

We conducted series of experiments to identify most usefull
and effective way to manage the PANI memristive device resistance
using three modes: AM, FM and PWM for both potentiation and
depression.
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The results of the PANI memristive device potentiation exper-
iments indicated that the highest speed of the resistive switching
was in the case of the AM potentiation with the amplitude of 0.7 V
during 40 s, the value of the Ip current reached almost the 200 uA.
Close to the AM kinetics was demonstrated by pulse width modu-
lation with 180 A reached during 40 s.

For the depression case we indicate similar close speeds of re-
sistive switching with insignificant variations in all three cases of
AM, FM and PWM.

This way we could indicate that most useful way to manage
the PANI memristive device resistance is PWM with duty cycle
80%.
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