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DOUBLY PERIODIC RIEMANN BOUNDARY VALUE

PROBLEM FOR NON-RECTIFIABLE CURVES

Abstract. The known results on the doubly periodic Riemann

boundary value problem concern the case of piecewise-smooth contours.

In the present paper we study it for non-rectifiable curves in terms of so

called Marcinkiewicz exponents.

Introduction

Let τ1, τ2 be non-zero complex values such that Im τ1
τ2

̸= 0. In what

follows Bm,n stands for (mτ1 + nτ2)−transfer of set B ⊂ C, i.e., Bm,n :=

{z ∈ C : z−mτ1 − nτ2 ∈ B}, m, n ∈ Z. We consider open parallelogram

P with vertices at the points (±τ1 ± τ2)/2, and domain D with Jordan

boundary Γ such that 0 ∈ D ⊂ P . We put

D+ :=

m,n=+∞∪
m,n=−∞

Dm,n, D− := C \D+, Γ :=
+∞∪

m,n=−∞

Γm,n.

The doubly periodic Riemann boundary value problem is stated as

follows. Given Hölder continuous functions G(t) ̸= 0 and g(t) on Γ. To

find a function Φ(z) analytic in D+ and in D−, satisfying the periodicity

conditions

(1) Φ(z + τj) = Φ(z), j = 1, 2,

and the conjugation condition

(2) Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ.

Here G(t) and g(t) are extended onto Γ by periodicity, and Φ+(t) and

Φ−(t) are the limit values of Φ(z) for z tending to t ∈ Γ from D+ and

D− correspondingly.
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This problem is one of versions of the Riemann boundary value prob-

lem (see [1, 2]). Its detailed solution for piecewise smooth curves Γ was

obtained by L.I. Chibrikova [3, 4] and later by Lu Jianke [5, 6]. The pe-

riodic Riemann problem admits various applications in elasticity theory

(see [7]). Let us note also that related with doubly periodic Riemann

problem ideas are helpful in theory of elliptic functions (see, for instance,

[8]). Various modifications and generalizations of periodic and doubly

periodic Riemann boundary value problems for piecewise smooth curves

keep interest until our days; see, for instance, [9]. In all studies of this

class of boundary value problems assumption of piecewise smoothness of

the curves is essential, because their solutions base on certain properties

of curvilinear integrals over Γ. That integrals are defined in custom-

ary sense for rectifiable Γ only, and properties of corresponding integral

operators are connected with smoothness of contours of integration.

The Riemann boundary value problem (for non-periodic case) on non-

rectifiable curves was solved in earlier 1980th (see, for instance, the pi-

oneer work [10] and recent survey [11]). Recently these results were im-

proved by means of new metric characteristics of non-rectifiable curves,

so called Marcinkiewicz exponents (see [12, 13, 14]). In the present pa-

per we apply these characteristics for solution of the problem (2). In the

sections 1 and 2 we describe properties of the Marcinkiewicz exponents

and solve the jump problem, i.e., the problem (2) with G(t) ≡ 1. The

last section contains solution of the Riemann problem.

1. The Marcinkiewicz exponents

Here we introduce the Marcinkiewicz exponents and study their prop-

erties.

Let a closed Jordan curve Γ be boundary of finite domain D. We fix

a finite measurable domain Ω such that D ⊂ Ω, and denote D∗ = Ω \D.

We assume that Γ has null square, i.e. the domains D and D∗ are

measurable, and put

Ip(D) =

∫∫
D

dxdy

distp(z,Γ)
, z = x+ iy.

Definition 1. The values

m+(Γ) = sup{p : Ip(D) <∞}, m-(Γ) = sup{p : Ip(D∗) <∞}

are called inner and outer Marcinkiewicz exponents of the curve Γ corre-

spondingly. The value

m(Γ) := max{m+(Γ),m-(Γ)}
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is its Marcinkiewicz exponent.

The term ”Marcinkiewicz exponent” is explained by the fact that char-

acterization of plane sets in terms of certain integrals over their comple-

ments was proposed first by Marcinkiewicz (see, for instance, [15]).

Clearly, the outer Marcinkiewicz exponent does not depend on domain

Ω. In what follows we put Ω = P .

Theorem 1. Any curve Γ satisfies inequalities 1 ≥ m+(Γ) ≥ 2 − dmΓ,

1 ≥ m-(Γ) ≥ 2−dmΓ, where dmΓ is upper metric dimension of Γ (see its

definition below). If the curve Γ is rectifiable, then m+(Γ) = m-(Γ) = 1.

Proof. The upper metric dimension of compact set F ⊂ C equals to

dmF := lim sup
ε→0

lnN(ε, F )

− ln ε
,

where N(ε, F is the least number of disks of diameter ε covering F . It is

known also as box counting dimension, Kolmogorov dimension and so on

(see, for instance, [18, 19, 20]). This dimension has equivalent definition.

We divide the complex plane into dyadic squares with sides 2−n. Let

M(F, n) stand for number of that squares intersecting F . Then

dmF = lim sup
n→∞

log2M(F, n)

n
.

We consider the Whitney decomposition of domain D+. It consists (see

[15]) of dyadic squares Q such that diamQ ≤ dist(Q,Γ) ≤ C diamQ,

where C is a constant. Hence, for any square Q with side 2−n belonging

to this decomposition we obtain∫∫
Q

dxdy

(dist(z,Γ))p
≤ C

2−2n

(2−n)p

and ∫∫
D+

dxdy

(dist(z,Γ))p
≤

∞∑
n=1

wn · 2n(p−2),

where wn is number of squares with side 2−n in the Whitney decompo-

sition. By the second definition of the upper metric dimension we have

wn ≤ 2nd for any d greater than dmΓ and sufficiently large n. Conse-

quently, the latter integral can be majorized by series
∞∑
n=1

2n(p−2+d), which

converges for p < 2− d. Thus, this integral converges for p ≥ 2− dmΓ,

i.e., m+(Γ) ≥ 2− dmΓ. The proof of inequality for m-(Γ) is analogous.
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Now let us prove inequality m+(Γ) ≤ 1. It suffices to show that∫∫
D+

dxdy
dist(z,Γ)

= ∞. Clearly, we can choose on Γ two points z1 = x1 +

iy1, z2 = x2+ iy2 such that x1 < x2, and these points can be connected

in D+ by a curve λ with real equation y = ψ(x), x1 ≤ x ≤ x2. We

drop a perpendicular from a point z ∈ λ on the real axis, and consider its

segment connecting z with a point of curve Γ inside D+. Let d(z) stand

for the length of this segment, and φ(x) for ordinate of its end point

on curve Γ. Obviously, d(z) ≥ dist(z,Γ), and φ(x) = ψ(x) − d(z) (for

definiteness we assume that λ lies above Γ). Let ∆ be part of domain

D+ concluded between curves λ and Γ. We have

∫∫
D+

dxdy

dist(z,Γ)
≥

∫∫
∆

dxdy

d(z)
≥

x2∫
x1

dx

ψ(x)∫
φ(x)

dy

y − φ(x)

But the last integral diverges, what proves the desired inequality.

The proof of inequality m-(Γ) ≥ 1 is analogous.

The equality m+(Γ) = m-(Γ) = 1 for rectifiable curves is consequence

of the fact that dmΓ = 1 for any rectifiable curve Γ (see [19, 20]).

Theorem is proved.

Example 1. Let us fix values α1, α2, β ≥ 1 and construct two families

of rectangles.

First family. We consider segments In = [2−n, 2−n+1] of real axis,

n = 1, 2, 3, . . . . Every segment we divide into 2[nβ] equal parts; here [nβ]

is entire part of nβ. We denote the points of division of In by xn,j, where

j is number in decreasing order. The first family consists of rectangles

pn,j = {x, y : xn,j − Cn ≤ x ≤ xnj, 0 ≤ y ≤ 2−n}, where Cn = 1
2
aα1
n ,

where an is distance between the division points on the segment In, I.e.,

2−n−[nβ]. We denote the union of all these rectangles by R+. The set R+

belongs to the first quarter of the complex plane.

Second family. Now let In = [−2−n+1,−2−n], n = 1, 2, 3, . . . . As above,

we divide In into 2[nβ] equal parts. We denote the points of division of

In by xn,j, where j is number in increasing order. The second family

consists of rectangles qn,j = {x, y : xn,j + Cn ≥ x ≥ xnj, 0 ≥ y ≥ −2−n},
where Cn = 1

2
aα2
n , where an = 2−n−[nβ]. We denote the union of all these

rectangles by R−. The set R− belongs to the forth quarter of the complex

plane.

Now we put D(α1, α2, β) := {z = x + iy : −1 ≤ x ≤ 1,−2 ≤ y ≤
0}

∪
R+ \ R− and Γ(α1, α2, β) := ∂D(α1, α2, β). Immediate calculation
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(see details in [14]) shows that

dmΓ(α1, α2, β) =
2β

β + 1
,

m+(Γ(α1, α2, β)) = 1− β − 1

(β + 1)α1

,

m-(Γ(α1, α2, β)) = 1− β − 1

(β + 1)α2

.

Thus, for α1 = α2 = 1 we obtain m+(Γ(α1, α2, β)) = m-(Γ(α1, α2, β)) =

2 − dmΓ(α1, α2, β), but if parameters α1,2 increase from 1 and tends to

∞, then the upper metric dimension is constant, but the Marcinkiewicz

exponents run from 2− dmΓ to 1.

2. Doubly periodic jump problem

The jump problem is a special case of the Riemann problem with

G(t) ≡ 1, i.e., we seek analytic in C \ Γ, continuous in D+ and in D−

function Φ satisfying periodicity condition (1) and boundary conjugation

condition

(3) Φ+(t)− Φ−(t) = g(t), t ∈ Γ.

As above, g(t) is Hölder continuous, i.e.,

sup

{
|g(t′)− g(t′′)|

|t′ − t′′|ν
: t′, t′′ ∈ Γ, t′ ̸= t′′

}
:= hν(g,Γ) <∞

for certain constant exponent ν ∈ (0, 1]. Let Hν(Γ) be a class of all

functions satisfying this condition.

There exist important difference between jump problems in the cases

of rectifiable and non-rectifiable curves Γ. If Γ is rectifiable, then by

virtue of well known Painleve theorem [16] it is removable in class of

continuous functions, i.e., any continuous in a domain B ⊃ Γ and analytic

in B \ Γ function F (z) is analytic in B. Consequently, a solution of the

jump problem on rectifiable curve in unique up to additive constant. But

E.P.Dolzhenko (see [17]) proved that non-rectifiable curve Γ is removable

only in classes Hµ(Γ) for µ > dmH Γ− 1; here dmH stands for Hausdorff

dimension . In this connection we have to include into formulation the

following smoothness condition

(4) Φ± ∈ Hµ(Γ), µ > dmH Γ− 1.

Then solution of the doubly periodic jump problem (1), (3), (4) for non-

rectifiable curve Γ is also unique up to additive constant.
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Now let us study existence of the solution. We apply to function

g(t) (as defined on Γ) the Whitney extension operator E0 (see [15]) and

multiply the result by infinitely smooth function ψ(z) equaling 1 in D

with compact support S. We assume without loss of generality that S ⊂
P . The obtained extension g̃(z) = ψE0g is defined on the whole complex

plane and coincides with g(t) on Γ. If g(t) ∈ Hν(Γ) then g̃(z) ∈ Hν(C).
Moreover, g̃(z) has partial derivatives of any order in C \ Γ and

(5) |∇g̃(z)| ≤ Chν(g,Γ)

dist1−ν(z,Γ)
.

By definition of the Marcinkievicz exponents |∇g̃|p is integrable in D

for p(1− ν) < m+(Γ). Hence, ∇g̃ is integrable in D for ν > 1− m+(Γ).

Analogously, ∇g̃ is locally integrable in C\D for ν > 1−m-(Γ). We iden-

tify any locally integrable in C function F (z) with distribution ⟨F, ω⟩ :=∫∫
C F (z)ω(z)dz ∧ dz. Then for

ν > 1−m(Γ)

there is defined at least one of distributions

⟨g̃ ∂ χ+, ω⟩ := −
∫∫
D

∂g̃ω

∂z
dz ∧ dz, ω ∈ C∞(C),

⟨g̃ ∂ χ−, ω⟩ :=
∫∫
C\D

∂g̃ω

∂z
dz ∧ dz, ω ∈ C∞

0 (C),

where χ+ is distribution corresponding to characteristic function of set

D, and χ− = χ+ − 1. If Γ is rectifiable, then both these distributions

equals to mapping ω →
∫
Γ
g(t)ω(t)dt. Hence, they can be considered as

generalizations of curvilinear integral for non-rectifiable curves (see [21]

and [11]). In particular, the values −
∫∫
D

∂g̃
∂z
dz ∧ dz and

∫∫
C\D

∂g̃
∂z
dz ∧ dz play

role of curvilinear integral
∫
Γ

g(t)dt.

Note 1. Clearly, the Whitney extension is not unique. But under our

assumptions the generalized integrations g̃ ∂ χ+ and g̃ ∂ χ− do not depend

on choice of extension of Whitney type (in [22] this fact is derived in

terms of box counting dimension; its proof in terms of the Marcinkiewicz

exponents is analogous).

Let us consider the Weierstrass ζ−function

ζ(z) =
1

z
+
∑
h̸=0

(
1

z − h
+

1

h
+

z

h2

)
,
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where h = mτ1 + nτ2, m,n ∈ Z, and the sum is taken for all periods h

excluding h = 0. It is meromorphic quasi-periodic function, i.e., ζ(z +

τ1,2) = ζ(z) + η1,2 for any z ∈ C, where cyclic constants η1,2 are equal

to 2ζ(τ1,2/2), and in parallelogram P this function has single pole at

the origin point with main part z−1. L.I. Chibrikova [4] constructed a

solution of the doubly periodic jump problem for piecewise smooth curve

Γ as integral

Φ(z) =
1

2πi

∫
Γ

g(t)ζ(t− z)dt.

If Γ is not rectifiable, then this integral is undefined, and we seek solution

as convolution of distributions (see [21])

(6) Φ(z) =
1

2πi
g̃ ∂ χ± ∗ ζ = 1

2πi

⟨
g̃ ∂ χ±, ζ(t− z)

⟩
,

where the distribution g̃ ∂ χ± is applied in fact to product ψ(t−z)ζ(t−z)
where smooth function ψ(z) vanishes in small neighborhoods of poles of

ζ and equals to unit in a neighborhood of Γ.

Let us study first function Φ(z) in the plus case. Easy calculations

show that

(7) Φ(z) = g̃(z)c+(z)− 1

2πi

∫∫
D

∂g̃(ξ)

∂ξ
ζ(ξ − z)dξ ∧ dξ,

where g̃ and c+ are periodic extensions of restrictions of functions g̃ and

χ+ on parallelogram P relatively. In other words, c+ is characteristic

function of set D+. As S ⊂ P , since the product g̃c+ has jump g on Γ.

The integral in the last equality exists if derivative ∂g̃(ξ)

∂ξ
is integrable in

D with power p ≥ 2. If p > 2, i.e.,

ν > 1− 1

2
m+(Γ),

then it is continuous in the whole complex plane (see [23]). and the func-

tion Φ(z) satisfies the conjugation condition (3). Clearly, the function Φ

inherits quasi-periodicity of ζ−function:

Φ(z + τ1,2) = Φ(z)− η1,2

∫∫
D

∂g̃

∂z
dz ∧ dz,

i.e., it is periodic if
∫∫
D

∂g̃
∂z
dz∧dz = 0. Let us note finally that the integral

term of equality (7) satisfies the Hölder equation with any exponent lesser

than 1 − 2(1−ν)
m+(Γ)

. This is easy consequence of well known estimates of
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that integrals (see, for instance, [23]) and definition of the Marcinkiewicz

exponents. Hence, if

dmH Γ− 1 < 1− 2(1− ν)

m+(Γ)
,

then we can choose µ such that function Φ will satisfy condition (4).

The case of distribution g̃ ∂ χ− is analogous.

Now we can modify considerations from [4] by terms of the Dolzhenko

theorem [17] and obtain

Theorem 2. Let g ∈ Hν(Γ),

(8) ν > 1− 1

2
m(Γ) and dmH Γ− 1 < 1− 2(1− ν)

m(Γ)
.

Then jump problem (3), (1), (4) for certain µ has a unique up to arbitrary

additive constant solution if and only if
∫∫
D

∂g̃
∂z
dz ∧ dz = 0 for m(Γ) =

m+(Γ) or
∫∫
P\D

∂g̃
∂z
dz ∧ dz = 0 for m(Γ) = m-(Γ). In the first case the

solution is given by formula Φ(z) = 1
2πi

⟨g̃ ∂ χ+, ζ(t− z)⟩+ C, and in the

second case Φ(z) = 1
2πi

⟨g̃ ∂ χ−, ζ(t− z)⟩+C. Here C stands for arbitrary

constant.

As known, the doubly periodic jump problem on piecewise-smooth

curve has single solvability condition∫
Γ

g(t)dt = 0,

unlike the customary jump problem, which is solvable unconditionally.

This result has topological reasons (the doubly periodic boundary value

problems are equivalent to analogous problems on torus, i.e., the Rie-

mann surface of genus one). In the present paper curve Γ is not recti-

fiable, but this fact does not change topological nature of the problem,

and, as a result, we obtain single solvability condition

(9)

∫∫
D

∂g̃

∂z
dz ∧ dz = 0 or

∫∫
P\D

∂g̃

∂z
dz ∧ dz = 0.

In what follows we call it cyclic condition.
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3. The Riemann problem

Now let us solve the Riemann boundary value problem in class of

doubly periodic functions satisfying condition (4). We consider first ho-

mogeneous problem

(10) Φ+(t) = G(t)Φ−(t), t ∈ Γ,

where G ∈ Hν(Γ) is given function, and it does not vanish on Γ.

We use here the Weierstrass σ-function

σ(z) := z
∏
h̸=0

(
1− z

h

)
exp

(
z

h
+

z2

2h2

)
,

where h = mτ1 + nτ2, m,n ∈ Z, and the product is taken for all periods

h excluding h = 0. It is odd entire function, and its unique null in

domain P is simple and lies at the origin. Therefore, the coefficient G(t)

is representable as G(t) = σϖ(t) exp f(t), where f ∈ Hν(Γ) and 2πϖ is

decrement of argG(t) when traversing of Γ counterclockwise. In addition,

for any z it satisfies equality

σ(z + τj) = −σ(z) exp
(
ηj(z +

τ ∗j
2
)

)
,

where τ ∗j = τ3−j, j = 1, 2 (see, for instance, [4]). Let ν > 1 − 1
2
m+(Γ).

We put

X(z) := σϖ(z) expF (z), F (z) :=
1

2πi

⟨
f̃ ∂ χ+, ζ(t− z)

⟩
.

Clearly, X+(t) = G(t)X−(t) for t ∈ Γ, but it is doubly periodic if and

only if ϖ = 0 and cyclic condition (9) fulfils for function f instead of g.

The minus case is analogous. Thus, there is valid

Theorem 3. Let G ∈ Hν(Γ). Assume that it does not vanish, and ex-

ponent ν satisfies inequalities (8). Then homogeneous Riemann problem

(10), (1), (4) for certain µ has non-trivial solution if and only if ϖ = 0

and function f satisfies cyclic condition. If these conditions are fulfilled,

then general solution contains single arbitrary constant, and otherwise

identical zero is unique solution of the problem.

According [4], we consider now doubly periodic Riemann problem for

functions with poles of orders n1, n2, . . . , nm at m prescribed points. As

a result, we obtain the following theorems.

Theorem 4. Assume that coefficient G(t) does not vanish and belongs

to Hölder class Hν(Γ) with exponent ν satisfying conditions (8). Let
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us fix a value µ from interval
(
dmH Γ− 1; 2(1−ν)

m(Γ)

)
. Then the following

propositions are valid for homogeneous Riemann problem (10), (1), (4)

in the class of functions with poles of orders lesser or equal n1, n2, . . . , nm
at m prescribed points z1, z2, . . . , zm.

i. Let κ := ϖ+n1+n2+ · · ·+nm > 0. Then the problem has κ linearly

independent solutions.

ii. Let κ = 0. Then the problem has non-zero solution if and only if

the cyclic condition fulfils, and linear space of its solutions in this case is

one-dimensional.

iii. Let κ < 0. Then the problem has zero solution only.

Theorem 5. Let G, g ∈ Hν(Γ). Assume that G(t) does not vanish,

and exponent ν satisfies inequalities (8). Fix a value µ from interval(
dmH Γ− 1; 2(1−ν)

m(Γ)

)
. Then the following propositions are valid for Rie-

mann problem (10), (1), (4) in the class of functions with poles of orders

lesser or equal n1, n2, . . . , nm at m prescribed points z1, z2, . . . , zm.

i. Let κ > 0. Then the problem is solvable, and dimension of affine

space of its solutions is κ.

ii. Let κ = 0. Then the problem has either unique solution or one-

parametric family of solutions depending on fulfilment of condition of

cyclic type.

iii. Let κ < 0. Then the problem is solvable if and only if g satisfies

−κ solvability conditions, and under these conditions solution is unique.

Proof of the last two theorems is analogous to considerations of the

book [4], but instead of the Cauchy type integral and its analogs we apply

here constructions of previous sections and E.P.Dolzhenko theorem [17].

The results of sections 1 and 2 belong to D.B.Katz. All other results

are obtained by all three authors in cooperation.
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