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Abstract—Strict superharmonicity of generalized reduced module as a function of a point (we call it
Mityuk’s function) is established for the subclass of countably connected domains with unique limit
point boundary component. The function just mentioned was first studied in detail by I.P. Mityuk
and plays now an important role in the research of the exterior inverse boundary value problems of
the theory of analytic functions in the multiply connected domains. At the heart of such a research
one can see the fact that the critical points of Mityuk’s function are only maxima, saddles or semi-
saddles of corresponding surface. This fact is followed from the above strict superharmonicity.
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1. INTRODUCTION AND PRELIMINARIES

Theory of the exterior inverse boundary value problems (IBVP) for simply connected domains has
been worked out early in 1950th by M.T. Nuzhin and F.D. Gakhov (see, e.g., [1] and [2]). Essential
break in the treating of the solvability problem for the exterior IBVP in finitely connected domains has
been accomplished in 1983: an approach proposed by M.I. Kinder has led to the appearance of the
paper [3]. The opened problems and perspectives were so attractive that the investigation project [4–12]
which has formed on this way developed up to the middle of 1990th (see [13]).

One of the project activities dealt with the expansion of the obtained finitely connected results to the
infinitely connected case. The start has been given to this activity by A.V. Kazantsev in his thesis [9]
where he studied the simplest case—with the unique limit point boundary component.

It turns out that the multiply connected “pattern” proposed in [3] and [8] remains valid also in the
case below where it will be built on by more or less complicated constructions concerned with the
convergence of the function sequences generating by the countable connectivity of the domains in
question. Nevertheless, the installation of the above constructions into a whole one will be begun
with countably connected version of the strict superharmonicity property of Mityuk’s function—multiply
connected counterpart of the logarithm of the inner mapping radius. One can consider this property as
a board on which the above “pattern” is installed.
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Central link of the “pattern” is presented by the connection of the exterior IBVP and Mityuk’s
function. Let us briefly describe this connection along the lines of [13].

Solution of the exterior IBVP in the multiply connected case D has the form

z(w) =

∫
f ′(w)F−2(w, a)dw, w ∈ D.

Here f(w) is the holomorphic function in D solving the interior IBVP with respect to the initial data
that we have in the exterior problem. Function F (w, a) maps the domain D conformally and univalently
onto the unit disk with concentric circular slits such that the outer boundary component of the domain
D corresponds to the unit circle, and F (a, a) = 0. Pole w = a is find from the Gakhov equation [3]

f ′′(w)/f ′(w) = 2φ′
1(w,w)/φ(w,w), (1)

where φ(w, a) = F (w, a)/(w − a) and φ′
1(w,w) = (∂/∂w)φ(w,ω)|ω=w . The roots of the equation (1)

are the critical points of the surface defining by the equation M = M(w) where the function

M(w) = (2π)−1 ln(|f ′(w)|/|φ(w,w)|) (2)

has been introduced and was studied by I.P. Mityuk [14]. His posing recognizes the value M(w) as the
generalized reduced module of the domain f(D) at the point f(w) relative to the component of ∂f(D)
corresponding to the outer component of ∂D under the mapping f . Let us call (2) Mityuk’s function,
and we will say that Mityuk’s radius is defined by

Ω(w) = exp[2πM(w)]. (3)

Nuances in the definitions of quantities M(w) and Ω(w) as the functions of a point or a domain were
examined in [15] for the simply connected case. In the report [16] the quantity (2) was said to be Mityuk’s
functional. The function (3) has been called in [9] the modified inner mapping radius.

Under the strict superharmonicity of the function M(w) in the domain D we means

∂2M(w)

∂w∂w̄
< 0, w ∈ D. (4)

For the finitely connected D’s an inequality (4) has been proved in [4] and played an important role in the
study of the stationary points characteristics of the function M(w) and in the evaluation of a number of
the corresponding exterior IBVP solutions.

Existence of the conformal and univalent mapping of an infinitely connected domain onto a circular
slit disk has been established by H. Grötzsch [17, 18].

Let’s introduce the class of domains under consideration.
Definition. Class D is defined to be the set of domains D ⊂ C satisfying the following

conditions:
1) D is bounded by countably many isolated boundary components Ln, n ≥ 0, each of which is

a closed analytic contour, and by the unique limit point boundary component {α}, α ∈ int L0, so

∂D =
(⋃

n≥0 Ln

)
∪ {α};

2) there exists an exhaustion {Dn}n≥1 of D by an increasing sequence of the domains Dn =

D \ int ln, n ≥ 1, where ln ⊂ D is an analytic contour that has the diameter dn and contains all of
Lk’s beginning with k = n in its interior; furthermore, ln+1 ⊂ int ln, n ≥ 1, and

lim
n→∞

dn = 0. (5)

One can easily prove the following
Proposition 1. If D is a domain of the class D, then for any ε > 0 there is a number N such

that for all k ≥ N the inclusion Lk ⊂ Kε(α) := {w ∈ C : |w − α| < ε} takes place.
In what follows, we will assume that D is in the class D, and the domains Dn, n ≥ 1, constitute an

exhaustion of D according to the condition 2) in the above definition.
Let for any fixed point ω ∈ D the function F (w,ω) maps the domain D conformally and univalently

onto the circular slit unit disk such that L0 corresponds to the unit circle, and, moreover, F (ω, ω) = 0
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and F ′
w(ω, ω) > 0. In the same way, let for an arbitrary number n ≥ 1 and for any fixed point ω ∈ Dn the

function Fn(w,ω) maps the domain Dn conformally and univalently onto the unit disk with n concentric
circular slits where Fn(ω, ω) = 0, (Fn)

′
w(ω, ω) > 0, and L0 corresponds to the unit circle again. The

results of [19] yield the following
Proposition 2. For any fixed ω ∈ D the convergence limn→∞ Fn(w,ω) = F (w,ω) is uniform on

each compact subset of points w ∈ D.
Assertion just stated enables us to transfer the properties of the mapping functions from the finitely

connected case to the infinitely connected one. So, for example, we have the symmetry |F (w,ω)| =
|F (ω,w)|, w,ω ∈ D, inherited by the function F (w,ω) from the functions Fn(w,ω), n ≥ 1.

Canonical representations F (w,ω) = (w − ω)φ(w,ω) and Fn(w,ω) = (w − ω)φn(w,ω), n ≥ 1, ex-
tend the above symmetry to the functions φ(w,ω) and φn(w,ω), n ≥ 1. Therefore, if the statement
of Proposition 2 is transferred to the convergence limn→∞ |φn(w,ω)| = |φ(w,ω)| (version of such a
transferring will be given below), then it can be done in two forms—uniformly in w on compact subsets
of D for any ω ∈ D, and uniformly in ω on compact subsets of D for any w ∈ D.

Let now n ≥ 1, and let k0,n(w, ω̄) be the Bergman kernel function of the first kind for the domain Dn

with respect to the class L2
0(Dn) of all functions holomorphic with square integrable module and with

single-valued primitive in Dn [20]. It is known that for such a function the following representation is
carried out (see references in [5])

k0,n(w, ω̄) = (2/π)∂2 ln |φn(w,ω)|/∂w∂ω̄, w, ω ∈ Dn. (6)

Let us consider the function

k0(w, ω̄) = (2/π)∂2 ln |φ(w,ω)|/∂w∂ω̄, w, ω ∈ D, (7)

which positivity will be equivalent to the condition (4) of the strict superharmonicity of Mityuk’s
function (2).

Our main result is the following theorem.
Theorem 1. Let D be the domain of the class D. Then

k0(w, w̄) > 0, w ∈ D. (8)

Justification of this assertion exhausts the rest of the paper. Let’s note only two following statements
(as it is noted above, the first of them is the reformulation of the Theorem 1).

Theorem 2. Mityuk’s function (2) is superharmonic in a domain D of the class D.
As in the finitely connected case, Theorem 2 is essentially used at the proof of the following fact which

is traditionally formulated for Mityuk’s radius (see [5]).
Corollary. If D is a domain of the class D, and if a ∈ D is a critical point of the function (3),

then the index γ(a) of this point as a singular one for the vector field gradΩ can assume only
three values: −1, 0 and +1.

Thus, the critical points of the functions (2) and (3) can be only saddles, semi-saddles, and local
maxima of corresponding surfaces.

The last corollary form the background for the proof of the infinity of the critical points set of Mityuk’s
radius in the infinitely connected case.

2. PROOF OF THEOREM 1

Let us fix an arbitrary point w0 ∈ D. Without loss of generality we assume that there exists a radius
ρ > 0 such that the closed disk Kρ(w0) ⊂ D. In fact, the role of the domain D in the last inclusion
is played by an exhaustion element, say Dm, to which (and, therefore, to every Dn with n ≥ m) the
point w0 belongs with some neighborhood. We are interested in the limits of the convergences of
the function characteristics connected with Dn when n → ∞. So, the initial elements of exhaustion
{Dn}n≥1, whether they contain w0, or not, can be neglected, and we acquire the right to set m = 1.

We will divide the proof of the theorem into two parts: 1) we will establish the convergence

lim
n→∞

k0,n(w0, w̄0) = k0(w0, w̄0), (9)
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and then on its base 2) we will receive an inequality (8) where w = w0.

1) By virtue of Proposition 2 the convergence lim
n→∞

Fn(w,ω) = F (w,ω) is carried out uniformly in

w on compact subsets of D for any fixed ω ∈ D. It is convenient to narrow the range of varying for w
and ω from a whole domain D to the disk Kρ(w0) and the disks of smaller radii centered at w0. The
use of Cauchy’s integral formula shows that the convergence lim

n→∞
φn(w,ω) = φ(w,ω) also takes place

uniformly in w, but now on K = Kρ/2(w0) and for any fixed ω ∈ K. It follows that, in turn,

lim
n→∞

ln |φn(w,ω)| = ln |φ(w,ω)| (10)

uniformly in w on the disk K for any fixed ω ∈ K. So, there exists a pointwise limit

lim
n→∞

ln
1

|φn(w,w)|
= ln

1

|φ(w,w)| , w ∈ K. (11)

On the other hand, the function Fn(w,ω) solves the problem max |g′(ω)| on the class �(Dn, ω, L0)
of functions g(w) holomorphic and univalent in Dn with correspondence of the outer contour L0 of the
boundary ∂Dn and the circle |z| = 1 where g(ω) = 0, |g(ω)| ≤ 1, ω ∈ Dn (see [21], p. 644–645). Since
Fn+1(w,ω) ∈ �(Dn, ω, L0), we have |F ′

n+1(ω, ω)| ≤ |F ′
n(ω, ω)| for all n ≥ 1 and ω ∈ Dn. It means that

the sequence of functions 1/|φn(w,w)|, n ≥ 1, increases for any w ∈ K. This increase allows us to
strengthen the pointwise convergence in (11) to uniform one due to the well-known Dini theorem.

It obviously follows from just established uniform convergence in (11) that

lim
n→∞

cn = c (12)

where

cn = −min
w∈K

ln |φn(w,w)|, n ≥ 1, c = −min
w∈K

ln |φ(w,w)|. (13)

In what follows we will needed in the sequence of M. Schiffer’s inequalities for the domains Dn when
n ≥ 1 [22]. We use them in the form

ln
1

|φn(w,ω)|
≥ 1

2
ln

1

|φn(w,w)|
+

1

2
ln

1

|φn(ω, ω)|
, n ≥ 1, (14)

when w,ω ∈ K. Turning n → ∞ in (14) we have

ln
1

|φ(w,ω)| ≥
1

2
ln

1

|φ(w,w)| +
1

2
ln

1

|φ(ω, ω)| (15)

for w,ω ∈ K. Inequalities (14) and (15) permit us to pass from the equalities (13) to the estimates

ln
1

|φn(w,ω)|
≥ cn, n ≥ 1; ln

1

|φ(w,ω)| ≥ c, w, ω ∈ K.

Thus, the functions − ln |φn(w,ω)| − cn, n ≥ 1, and − ln |φ(w,ω)| − c, harmonic in ω ∈ K, are non-
positive for any fixed w ∈ K, hence ([23], p. 37)∣∣∣∣∣

∂

∂ω̄
ln

1

|φn(w,ω)|

∣∣∣∣
ω=w0

∣∣∣∣∣ ≤
2

ρ

[
ln

1

|φn(w,w0)|
− cn

]
, w ∈ K, n ≥ 1. (16)

Due to the relations (10) and (12) the right-hand side of (16) tends to the function −2[ln |φ(w,w0)|+
c]/ρ uniformly on K when n → ∞, so it is uniformly bounded on K. Then the sequence of derivatives
−(∂/∂ω̄) ln |φn(w,w0)| from the left-hand side (16) is also uniformly bounded on K. Furthermore,
by Stoilov’s theorem about the invariance of the uniform convergence (currently in ω) under the
differentiation ([24], p. 37), which is applicable here due to (10) and to the symmetry of functions
φn, n ≥ 1, and φ in w,ω ∈ K, the above sequence of derivatives pointwise converges in w ∈ K to
the derivative −(∂/∂ω̄) ln |φ(w,w0)|. According to Golusin’s theorem ([21], p. 20) the pointwise
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convergence just stated in w is uniform on the disk Kρ/3(w0). Applying Stoilov’s theorem once again,
but now to the latter convergence, we establish the convergence

lim
n→∞

∂2

∂w∂ω̄
ln

1

|φn(w,w0)|
=

∂2

∂w∂ω̄
ln

1

|φ(w,w0)|
, (17)

uniform on Kρ/4(w0). By virtue of (6) and (7) the relation (17) with w = w0 is exactly the conver-
gence (9).

2) Let us introduce the notations connected with the complements to the exhaustion domains
{Dn}n≥1. Let B0 = C\int L0; Bn = int Ln, bn = int ln, and D̃n = C\D̄n for n ≥ 1; D̃ = C\D̄. Then
we consider the following functions [20]

Γn(w, w̄) =
1

π2

∫∫

D̃n

dxdy

|z − w|4 =
1

π2

⎧⎪⎨
⎪⎩

n−1∑
k=0

∫∫

Bk

dxdy

|z − w|4 +

∫∫

bn

dxdy

|z − w|4

⎫⎪⎬
⎪⎭ , n ≥ 1,

Γ(w, w̄) =
1

π2

∫∫
D̃

dxdy

|z − w|4 =
1

π2

∞∑
k=0

∫∫

Bk

dxdy

|z − w|4 , z = x+ iy. (18)

By the Proposition 1 the series in the right-hand side of (18) converges for any fixed w ∈ D, i. e. the
function Γ(w, w̄) is correctly defined. For any fixed w = w0 ∈ D we have

lim
n→∞

Γn(w0, w̄0) = Γ(w0, w̄0), (19)

which is proved by the direct estimation of the difference Γn(w0, w̄0)− Γ(w0, w̄0) owing to (5) and
Proposition 1.

If we apply the convergences (9) and (19) to the following sequence of the Bergman–Schiffer
inequalities [20]

k0,n(w, w̄) ≥ Γn(w, w̄), w ∈ Dn, n ≥ 1,

with w = w0, then we get the inequality k0(w0, w̄0) ≥ Γ(w0, w̄0). The latter and the property Γ(w0,
w̄0) > 0, checked directly, imply the estimate (8) with w = w0. In view of an arbitrariness of the choice
of w0 ∈ D the Theorem 1 is proved.
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