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ABSTRACT
An approach for computing propagation constants ol diclectric waveguides with arbitrary circuii of
cross section is presented. The method is demonstraled by a numerical example of waveguides with
circular and squarte cross sections. The convergence of this method is analyzed.
We shall now consider the propagation of clectromagncetic waves in a eylindrical dielectric waveguide
with constant permuttivity & cmbedded into a medium with constant permittivity #<g,. The cross
scetion of the waveguide S, is an arca bounded with twice continuously differentiable circuait . ‘The
permeability g4 is equal to 1 everywhere. Ulectromagnetic waves in such a structure satisfy the source-
free Maxwell equations
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We represent unknown funetions in the fotm of
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in terms of longitudinal magnetic and electric components # = E:, P ,ﬁ:, we reduce the initial

problem to the spectral problem (sce [1]) of finding such values of paramcter F which allow to obtain
nontrivial solutions of system of the [elmholz equations
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and Reichard condition at infinity = Z a I[l(ll)(;gzr)e "R Here,
v — B,
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X = \/k(,?‘nf — P kg =@ gy 5 = ey, jo L2 df0e(d/av) is  tangential (normal)
derivative. We search for £ in the Riemann surface A of the function Inp,(f). If /A lies in the main
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physical” shect Ay of this surface, which satisly the conditions Imp>0 and —— <arpgy, <—,
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then funciions E:, 1_1 decrcasce exponentially in infinity. If /4 lics i the sheet A%, which satisty the

conditions fnzy;20 and ~—§ sargy, < 35, then functions #_, 11 increase exponentially in infinity.,
The numerical method of computing the propagation constants 4 is presented in [1]. We usc the
expressing unknown functions in terms of potential theory basic problem reduced to an equivalent
system of singular infegral equations with nonlinear introducing of spectral parameter 4 in kernels.
The Galerkin method with trigonometric basis was suggested for numerical solution of this system.,
This method was used only for finding real dispersion characteristics.

The aim of present work was to test this method for finding complex propagation constants. First, we
analyze singularitics of kernels of integral operators. [t was proved that these singularitics can he
extracted analytically. Integral operators with singularitics were represented as a sum of operator
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without singularitics and operator with known cigenfunctions and cigenvalues, We use the Galerkin
method based on cigenfunctions ol singular operators. A program complex for numerical solution of
this system was developed.

The method has (wo parameters, i.c. M-number of the integration point and N-number of basis
functions in the Galerkin inethod. Our experiments show that the method has an interior convergence
by M and N.

Virst, the circutar cross section with radius R example was considered. In this case it 1s possible to
formulate characteristic equation rigorously for the propagation constant 4 (se¢ |2]). 'The calculations
was done with =2, &=/, kyk=4. The differcnces A between the cxact solation and approxitnating
solution and the number of points of integration M for four roots arc presented in Figl. Here
h=p / ky . Increasing N does not make effect in this case because Galerkin’s method resulting system
1s cquivalent to characteristic equation, Besides, we can sce that it is not necessary to take large M to
obtain a good accuracy.
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To analyze such complex modes we applied

‘ R the method of [2], see lig2. The solid
- curves arc Tor characteristic equation, the
. ] squares denote values computed by our
. method. Here V = k()R(&'l — &y )A &0,
. &=1.
, , ‘ ‘ ey
p
As scen (Fig 2), Re(f) changes its sign [or .

V=V, It means that /2 moves from AI() to

2 R . . .
Ay Numerical experiments for wavegaide
wilh square cross section were carried out.
Their result coincidences with [1] are
presented in Fig3. We specify the square as

e

e 2m . 2 o (J , . . .
) = Foﬂ,) L 5ne . Here p=-——, dis the length of squarc side. The dependence of
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caleulation accuracy on the number of basis functions N for p=0.7 is shown in Figd. As one can sce,
the methed is convergent by N,
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