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ABSTRACT: The extract obtained at supercritical fluid extraction
from plant raw material is essentially multicomponent. A
multicomponent mass-transfer model at the particle scale is
developed to account for the non-ideality of the chemical
interactions between solute components. The oil is represented
by two pseudo-components, and the gradient of the chemical
potential is considered the driving force for the mass transfer. The
model is based on the regular solution and Gibbs energy
approaches to the thermodynamic modeling of phase equilibria
that take place in the raw material with a high initial oil content.
The Stefan−Maxwell approach is used to balance the drag effect/
chemical interactions and the driving force of diffusion in a non-
equilibrium multicomponent solution. It is demonstrated that the
two solute components may act as “co-solvents”, thus facilitating the extraction of each other, or as “anti-solvents”, thus decreasing
the overall extraction rates. At least a 60% relative error in the overall flux from the particle surface is observed when the developed
model is compared against a simplified approach that considers the solution as an ideal system. It is found that while the flowing fluid
accumulates the extracted solute, the phase separation may take place in the pore volume of the packed bed. Possible conditions of
phase separation in the pores of the packed bed are discussed.

1. INTRODUCTION
The process of supercritical fluid extraction (SFE) employs
fluids (solvents) at temperatures and pressures above or near
the corresponding critical conditions. Carbon dioxide (CO2) is
one of the most used solvents because it is environmentally
friendly and non-toxic; has a moderate critical temperature,
∼31 °C; and can be easily separated from the extract by
reducing the pressure. The new technology is widely used in
pharmaceutical production and in the food and biofuel
industries.1,2 The extraction of natural compounds from
plant matrices (ground seeds, leaves, petals, etc.) remains
one of the most common applications of the SFE process.3−5

In particular, pumpkin,6 rape,7 sunflower seeds,8,9 apricot
kernels,10 and others with a high oil content are sources of
valuable natural compounds such as (un)saturated acids, e.g.,
triacylglycerols (TAGs), and vitamins.
Extraction under supercritical conditions takes place in a

cylindrical vessel (extraction column) where particles of
ground raw material are placed to form a porous packed
bed. The solvent is introduced into the vessel, and the
operational temperature (40−70 °C) and pressure (30−70
MPa) are set. Then, the fluid is pumped through the bed at a
given flow rate under the applied pressure gradient. During the
extraction process, the solvent diffuses along the internal
transport channels inside the plant particles.11−14 It penetrates

into the oil-containing plant cells, dissolving the extractable oil
components, which move to the surface of the ground material
to be transported further by the fluid flow to the outlet cross
section of the extraction column. The gradients of the chemical
potentials of the non-uniformly distributed dissolved oil
components inside individual particles are the driving forces
of extraction.
The solute (extractable compounds) of the raw material

(ground seeds) is a multicomponent mixture of organic
molecules�TAGs.15,16 Any TAG species is a set of three fatty
acids esterified with a glycerol, C3H5(OH)3. So, the species are
identified by the triplet of their organic acids. The most
abundant ones are palmitic (P), stearic (St), and oleic (O)
acids. Consider TAGs of high-oleic sunflower oil (HOSO) and
fully hydrogenated palm oil (FHPO) as typical examples. The
major TAG acids of HOSO are linoleic (14−40%) and oleic
(75−85%) ones followed by palmitic, stearic, and linolenic
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acids and so on. The TAGs of FHPO are mainly composed of
stearic (∼55%) and palmitic (∼42%) acids.
The triplets of acid molecules can esterify with glycerol in

various combinations. The OOO TAG with three oleic acid
molecules is the most abundant species in HOSO (∼61%).
Accordingly, the TAG composition of HOSO can be viewed as
a two-component mixture of OOO TAG and a pseudo-
component representing all other fractions. Two major TAG
components, PStSt (41.7%) and PPSt (39.3%), constitute up
to ∼80% of FHPO. They are followed by StStSt (11.4%).
Mathematical models for SFE usually describe the extraction

kinetics only globally, regarding the extract as a single pseudo-
component. However, sophisticated SFE models are needed to
better represent the multi-component nature of the solute.
Such an approach was recently developed by Sovova ́ et al.17,18
to describe the extraction of volatile oil and cuticular waxes of
Ruta graveolens. The authors incorporated the local equilibrium
relations of Goto et al.19 and del Valle and Urrego20 into the
thermodynamic counterpart of the model.21 The considered
type of raw material and extractable compounds are very
different from the fatty oil of seeds. The volatile oil has a
relatively low solute content with a larger diversity of solute
molecules. The desorption processes dominate in the volatile/
essential oil extraction. The model17,18 is derived for finely
ground plant material with short diffusion paths inside particles
and easily accessible extract. Since some of the investigated
extract components, like cuticular waxes, are found only on the
particle surface,22 the internal mass-transfer resistance has been
neglected. While the assumptions are reasonable for the
volatile oil extraction, they do not correspond with the seed oil
extraction, where the solute is uniformly distributed within the
plant material volume. So, further theoretical investigation is
needed to understand and describe the fatty oil extraction
processes.
In the special case of seed oil extraction, the principal

mechanisms of hydrodynamic and mass-transfer phenomena in
the single pseudo-component approximation are fully covered
in the framework of the so-called shrinking core (SC)
model.14,23−26 The model takes into account the (1) dynamic
multiphase oil distribution on the particle scale, (2) internal
resistance to the solute mass transfer, and (3) high initial oil
content in the raw material. According to the original, single-
component SC approach, two zones exist in the particle during
extraction. The outer transport zone occupies the particle
volume between the particle surface and the extraction front.
Here, the oil phase is exhausted, and only the solvent (or
solution) phase with dissolved solute exists. The internal part
of the particle volume, its core, within the extraction front
contains two phases at thermodynamic equilibrium: the
original single-component oil phase in plant cells and the
solvent phase with the equilibrium solute content in transport
channels. The two zones are separated by the sharp boundary
(front) where the oil dissolution takes place. Then, the oil
diffuses through the transport zone to the particle surface along
the transport channels. The oil concentration decreases from
the equilibrium value at the core surface to the near-zero value
at the particle surface, thus maintaining the gradient of its
chemical potential�the driving force of the mass transfer.
It is suggested here that multiple fronts dividing the

respective cores and transport zones for individual components
can be introduced to describe the multi-component extraction.
Each pair of core/transport zone covers the entire particle
volume. Particle parts shared among multiple cores contain a

mixture of corresponding oil components. Several existing
approaches25,26 follow this schematization phenomenologi-
cally, introducing two sets of apparent diffusion coefficients
and saturation concentrations to be constrained in experi-
ments.
From a thermodynamic point of view, the key moment here

is that the joint equilibrium concentrations of dissolved
components in the solvent phase are determined by the
composition of the oil phase in cells. Consider a special case of
a two-component solute, when a transport zone of component
S1 overlaps with the core of component S2. While the S2
component distributed between two phases is in a local
thermodynamic equilibrium, the chemical potential of
component S1 is influenced by the presence of the second
component. This situation can only be described within the
framework of a rigorous thermodynamic approach. Fick’s law
with constant concentration-independent tensor is not
straightforwardly applicable to this problem.
The aim of the present work is to develop a sophisticated

mathematical model of fatty oil extraction at SFE conditions
within the framework of the SC approach. The model
rigorously considers the internal resistance to the mass transfer
of dissolved oil components along the inter-cell transport
channels in the plant material and the multicomponent nature
of the oil. The oil phase is presented as a “mechanical mixture”
of two components. The size of TAG molecules prevents their
self-diffusion and statistical mixing. Mathematically, neither
excess terms nor statistical contributions to the thermody-
namic potential are considered. Thus, equivalently, the oil
phase is considered a set of two interpenetrating phases
composed of different TAG species.
The solution, i.e., the solvent phase, is described as a regular

solution with a pair-wise interaction parameter per pair of
components in the mixture: three parameters, Ω1, Ω2, and Ω,
are introduced. They are explained in Section 2.2. A limiting
scenario of an ideal solution is considered as well and
compared with the model based on the regular solution
approach. The limiting case is considered when all three
parameters tend to zero.
The Gibbs free energy is employed as a thermodynamic

basis to define the equilibrium states and describe the co-
existence conditions of phases.27 Thus, the chemical potentials
of solvent-phase components are straightforwardly obtained.
The chemical potential, i.e., its spatial gradient, is the
fundamental quantity used in the non-equilibrium thermody-
namics28 to describe the diffusion fluxes on the particle scale.
Another quantity is the tensor of diffusion coefficients, which is
a function of the local solution composition in isothermal−
isobaric conditions of SFE. Finally, the constitutive relations of
the mass fluxes of solution components with the chemical
potential gradients are derived in the framework of the Stefan−
Maxwell approach.29−31 It is shown that the second
component may act either as a co-solvent, facilitating the
extraction rates of the first component, or as an anti-solvent
decreasing the overall extraction rates. Finally, possible
conditions of multiphase fluid flow existence on the packed
bed scale are discussed.

2. THERMODYNAMIC EQUILIBRIA IN THE SYSTEM
OIL + CO2

2.1. The Oil Phase. The oil phase is considered a
“mechanical mixture” of two pseudo-components designated
as S1 and S2. From a thermodynamic point of view, this
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assumes that any chemical interactions or statistical contribu-
tions to the Gibbs energy of the oil phase, as a whole, are
neglected, and the oil is treated as a mixture of two
interpenetrating phases of individual oil components, S1 and
S2. Once one of these compounds is exhausted through
dissolution and diffusion in the solvent phase, the oil becomes
a remainder single-compound phase. The thermodynamic state
of each pure component at extraction conditions (temperature
T and pressure p) is considered its reference state.
Solvent molecules dissolve in the oil phase as well.32

However, this fact is not well-studied and is typically ignored in
SFE modeling. In the present article, the focus is on the
description of the solution phase. It is assumed that the
thermodynamic state of the oil phase S1 + S2 is not affected by
the solvent molecules dissolved in it.
Accordingly, the Gibbs energy of nt(oil) = n1(oil) + n2(oil) moles

of the oil phase (see the Nomenclature section for definitions)
at the chosen reference state is zero:

G
RT

0
(oil)

=
(1)

as well as the chemical potentials of each oil component Si, i =
1, 2:

RT
i0, 1, 2i

(oil)

= =

2.2. The Solvent Phase. The solvent (or solution) phase
is a mixture of CO2 molecules with a limited amount of two
pseudo-components of oil, S1 and S2, dissolved in it. The
supercritical extraction conditions of the solvent (pure CO2)
are the reference state for the solution, and xi

(CO2) = ni
(CO2)/

nt
(CO2), i = 1, 2, are the molar fractions of oil component Si
dissolved in the solvent phase, and x0

(CO2) = n0
(CO2)/nt

(CO2) = 1 −
x1
(CO2) − x2

(CO2) is the molar fraction of solvent molecules. The
phase in a thermodynamically stable state exists only at a low
content of dissolved oil components, xi

(CO2) → 0, i = 1, 2.
Otherwise, pure oil precipitates as a separate phase if xi

(CO2)

exceeds certain values, and the ternary system becomes
heterogeneous.
2.2.1. Regular Solution Approach. First, let us consider a

two-component system Si + CO2, assuming that the other oil
component, Sj≠i, is absent. A typical plot of the Gibbs energy of
the (Si + CO2) solution as a function of molar concentration
xi(CO2) is shown in Figure 1 by the black curve at different Ω
values (see the caption). The energy graphs have a parabolic
form with their minimum at x̅i

0(CO2) < 0.2.
The regular solution model (or Gibbs energy expansion) is

aimed at representing the solid curve within the range where
the phase is stable. Accordingly, the three-component system
suggests the following expansion for the Gibbs energy of nt

(CO2)

moles of the solvent-phase molecules:
xi
(CO2) → 0:

G
RT

n g n g

n x n x n x

n x x x x x x

ln ln ln

( )

(CO )

1
(CO )

1
(CO )

2
(CO )

2
(CO )

reference state

1
(CO )

1
(CO )

2
(CO )

2
(CO )

0
(CO )

0
(CO )

ideal mixing

(CO )
1 1

(CO )
0
(CO )

2 2
(CO )

0
(CO )

1
(CO )

2
(CO )

excess terms

2
2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

= +

+ + +

+ + +
(2)

with

n n n n

x x x

,

1
t
(CO )

1
(CO )

2
(CO )

0
(CO )

1
(CO )

2
(CO )

0
(CO )

2 2 2 2

2 2 2

= + +
+ + =

where the superscript (CO2) refers to the solvent phase, Ωi are
the solvent−Si binary interaction parameters and Ω is the S1−
S2 binary interaction parameter within the solvent medium.
Finally, the transition energy RTgi

(CO2) is the molar Gibbs
energy that the oil molecule Si gains upon transition from the
oil phase (the reference state) to the solvent phase.
The corresponding chemical potentials of all three

components at xi
(CO2) < x̅i

0(CO2) are expanded as follows as
the partial derivatives of the Gibbs energy:

RT RT
G
n

g x x

x x x x

1

ln (1 )

( )

1
(CO ) (CO )

1
(CO )

1
(CO )

1
(CO )

1
(CO )

1 0
(CO )

2
(CO )

2 2
(CO )

0
(CO )

2 2

2

2 2 2

2 2 2 2

= + +

+ (3)

RT RT
G
n

g x x

x x x x

1

ln (1 )

( )

2
(CO ) (CO )

2
(CO )

2
(CO )

2
(CO )

2
(CO )

2 0
(CO )

1
(CO )

1 1
(CO )

0
(CO )

2 2

2

2 2 2

2 2 2 2

= + +

+ (4)

RT RT
G
n

x x x x

x x

1

ln (1 )( )

0
(CO ) (CO )

0
(CO )

0
(CO )

0
(CO )

1 1
(CO )

2 2
(CO )

1
(CO )

2
(CO )

2 2

2

2 2 2 2

2 2

= + +

(5)

To simplify the following discussion, we set Ωi = 0 (if not
stated explicitly) and consider various extraction regimes,
characterized with different Ω values. This approach will be
called the regular solution model at Ω ≠ 0.

Figure 1. Schematic representation of the molar Gibbs energy of the
two-component system Si + CO2 at xj≠i = 0, gi

(CO2) = ln 10, and Ωi = 0.
The arrow shows the increase of Ω = {−1, −0.5, 0, 0.5, 1}. The black
solid curve is the assumed approximation of the Gibbs energy of the
solvent (solution) phase (eq 2), with only the Si oil component
dissolved in it.33 The black point xi = x̅i

0(CO2) < 0.2 is the equilibrium
solvent-phase composition. The red dashed line is a tie line
representing the two-phase equilibrium of the solvent phase at xi =
x̅i
0(CO2) < 0.2 and a single-component oil phase Si, xi = 1.
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2.2.2. The Limiting Case of an Ideal Solution. The above
thermodynamic model given by eqs 2−5 can be further
simplified in the ideal solution limit for the solvent phase at Ω
→ 0:

RT
g x iln , 0, 1, 2i

i i

(CO )ideal
(CO ) (CO )

2

2 2= + =
(6)

In this case, as shown in Section 3.5, the mass balance
equations can be solved explicitly.
2.3. General Thermodynamic Phase Equilibria in the

Ternary System. Depending on the overall composition of
the three-component system, various sets of phases can co-
exist in equilibrium at SFE conditions, i.e., (3) S1 + S2 +
solution, (2) Si + solution, or (1) solution. The corresponding
phase diagram of the ternary system is shown in Figure 2. The

Gibbs energy of the solvent phase in region 1 is described by
eq 2. Pure (two-phase, two-component) oil is represented by a
line x1 + x2 = 1 and co-exists with the solution phase within
region 3. The oil Gibbs energy is zero according to eq 1. The
Gibbs energy of the two-phase system varies linearly along the
tie (dashed) lines in region 2, and it is a plane in region 3.
The chemical potentials of the oil component Si in different

co-existing phases are equal. It is called diffusive (or material)
equilibrium with respect to component Si. The composition of
the solvent phase in equilibrium with the corresponding oil
component is shown with the blue (for S2) and red (for S1)
curves in Figure 2. The equilibrium molar fractions of
dissolved oil molecules in the solvent phase along the broken

red-blue curve are designated as xi
(CO2) = x̅i, i = 1, 2. Finally, the

red curve in Figure 2 is determined by

x x( , ) 01
(CO )

1 2 1
(oil)2 = (7)

and the blue curve corresponds to

x x( , ) 02
(CO )

1 2 2
(oil)2 = (8)

The three-phase equilibrium, i.e., the triangular region 3 in
Figure 2, is described by the unique solvent-phase composition
x1
(CO2) = x̅1* and x2

(CO2) = x̅2*, while its two other vertices
represent pure oil components (or phases) S1 and S2. The
composition (x̅1*; x̅1*) is the solution of simultaneous eqs 7 and
8. This point is shown by the square marker in Figure 2.
The interaction parameters Ωi are one-to-one related to the

saturation concentration x̅i0 of oil component Si in the solvent
phase in the absence of another component Sj≠i. These
concentrations are shown by circles in Figure 2 and can be
experimentally observed. In the limit of a two-component
system, the respective (CO2 + S1) or (CO2 + S2) chemical
potentials in eqs 3 and 4 reduce to

RT
g x x

x x x

ln (1 ) ,

0, 1

1
(CO )

1
(CO )

1
(CO )

1 1
(CO ) 2

2
(CO )

1
(CO )

0
(CO )

2

2 2 2

2 2 2

= + +

= + = (9)

RT
g x x

x x x

ln (1 ) ,

0, 1

2
(CO )

2
(CO )

2
(CO )

2 2
(CO ) 2

1
(CO )

2
(CO )

0
(CO )

2

2 2 2

2 2 2

= + +

= + = (10)

The saturation concentration x̅i0 in the solvent phase
corresponds to its equilibrium with the oil phase at the zero
chemical potential μi

(CO2) of the dissolved oil component Si and
in the absence of the other component Sj≠i:

x x x

x x x

( , 0) 0,

( 0, ) 0
1
(CO )

1 1
0

2

2
(CO )

1 2 2
0

2

2

= = =

= = = (11)

From eq 11 with the use of eq 9 or 10, we obtain

g x

x
i

ln

(1 )
, 1, 2i

i i

i

(CO ) 0

0 2

2

=
+

=
(12)

Equations 12 relate the experimentally measurable quanti-
ties�equilibrium solution concentrations�with the transition
energies RTgi

(CO2) and interaction parameters Ωi, i = 1, 2.
Once it is assumed that Ωi = 0, the equilibrium

concentration of the solution component, directly follows
from eqs 6 and 12:

x g iexp( ), 1, 2i i
0 (CO )2= =

3. THREE-COMPONENT SC MODEL
3.1. Physical Description of the Model. Particles of

ground seeds (the raw material) are the clusters of plant cells
(1) and transport channels, i.e., intercellular channels (3), as
shown in Figure 3.35 The cells and the transport channels are
separated by permeable cell membranes (6). The solvent phase
with dissolved oil components occupies the transport channels.
The oil phase is distributed in cells in the form of inclusions�
oil bodies (4). The initial content of each pseudo-component,
S1 and S2, of extractable oil compounds per unit volume of the

Figure 2. Phase diagram of the three-component system S1 + S2 +
CO2 with overall compositions corresponding to three (3), two (2),
and single (1) phase equilibria at gi

(CO2) = 1.6118, Ω1 = −Ω2 = −0.4,
and Ω = −1. The horizontal axis is the overall mole fraction x1 of the
oil component S1 in the system.34 The vertical axis is the overall mole
fraction x2 of the oil component S2 in the system. The gray triangle
covers the overall compositions corresponding to the oil−solvent
equilibrium S1 + S2 + CO2. The red curve is the solvent-phase
composition in equilibrium with the pure oil component S1. The blue
curve is the solvent-phase composition in equilibrium with the pure
oil component S2. The dashed lines are tie lines. Domain (1)
represents the single phase of the solvent with dissolved oil
components S1 and S2. The square marker is the joint equilibrium
concentration at saturation (x̅1*, x̅2*) = (0.2021,0.0929) of the solvent
phase in equilibrium with the S1 + S2 oil phase. The circles correspond
to the equilibrium saturation concentrations x̅10 = 0.25 and x̅20 = 0.15 of
solutes in the solvent phase in a two-component system (see eqs
7−12) when the other oil component is absent.
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raw material is designated as Θi, i = 1, 2. At a given
temperature and pressure, the SFE process is governed by the
limiting concentration pair (x̅1*, x̅2*) of these compounds in the
solvent phase at equilibrium with the oil phase.
The permeability of cell membranes and conductivity of

transport channels control the rates of internal mass transfer in
the raw material during SFE. The solvent, penetrating into the
raw material, dissolves the oil molecules up to a particular
saturation concentration (x̅1, x̅2)�the red-blue boundary of
region 1 in Figure 2. The dissolved solute diffuses out of the
cell across the cell membrane into the transport channels.
Following the diffusion path under the gradient of chemical
potential, the solute reaches the particle surface. The local
solvent-phase composition (x̅1, x̅2) depends on the oil phase
composition and follows the broken red-blue curve in Figure 2.
In the region of the particle where the oil exists only in a
dissolved form, the composition of the solvent phase (x1, x2) is
inside region 1; see Figure 2.
In the framework of the multicomponent shrinking core

(MC-SC) model, it is assumed that Θi is relatively high for
every oil component with respect to θ̅i*�the mass density of
oil component Si dissolved in the solvent in the extraction
conditions, i.e., Θi ≫ θ̅i*, i = 1, 2. The resistance of the
transport channels is the principal factor limiting the internal
mass transfer.14,23,36,37 Consequently, a local thermodynamic
equilibrium between the oil in cells and the solvent in
surrounding transport channels is reached instantaneously, and
sharp concentration fronts form and move inside every particle
of the raw material, as schematically shown in Figure 4. A
single front exists per one oil pseudo-component.
For simplicity, flat (plain) particles of thickness 2a are

considered in the research. The Cartesian coordinate z is
introduced in every particle; z = 0 at the particle surface, and z
= a at the particle plane of symmetry. In a three-component
system, two concentration fronts z = as1(t) and z = as2(t) can
be distinguished. Assume s1 > s2. Three intervals, (1) shrinking
core 1, a > z > as1; (2) the overlap of shrinking core 2 and
transport zone 1, as1 > z > as2; and (3) the transport zone 2,
as2 > z > 0, are distinguished. In the first interval, the oil phase
is composed of all two components, and a three-phase
equilibrium, S1 + S2 + CO2, takes place. There is no diffusion
in this region since μ1

(CO2) = μ2
(CO2) ≡ 0 at z > as1, and the fixed

solvent-phase composition (x̅1*, x̅2*) is given by the square
marker in Figure 2.
In interval (2), the oil phase is only presented by component

S2, and a two-phase equilibrium, S2 + CO2, is observed.

However, the solvent phase is a solution of all three species
since the species S1 diffuses from the surface of SC 1 through
interval (2) toward the particle surface. The local solute
concentration (x̅1, x̅2) in the solvent phase in as1 > z > as2
varies following the blue curve in Figure 2. Since the content of
S2 molecules dissolved in the solvent phase is governed by the
equilibrium with the oil phase, one, thermodynamic, degree of
freedom is fixed by μ2

(CO2) = 0. Another degree of freedom
remains. It is due to the non-equilibrium distribution of the
dissolved oil component S1, which is fixed by the differential
mass balance equation (to be discussed in the following
sections). Apparently, the instantaneous dissolution of the oil
component S2 in the solvent in the second interval and a
limited solubility of oil components in the solvent phase
influence the diffusion rates of both components. This process
is considered and described in the next section by relating the
diffusion coefficients to the chemical potentials of dissolved
species in the solvent.
In the last interval, as2 > z > 0, all two components of the oil

phase are exhausted, and both degrees of freedom are fixed by
the mass balance equations with the dependence of diffusion
coefficients on the local composition of the solvent phase.
3.2. Typical Values of Model Parameters. The

measurable quantities are conventionally given in terms of
the mass densities of components. Among them, Θi is the
initial mass per unit volume of the raw material, θ̅i*�the mass
of oil component Si per unit volume of the solvent phase in the
extraction conditions in equilibrium with the oil phase. These
quantities are directly related to the molar densities of
components nj

(CO2), j = 0, 1, 2.
By definition, the fluid density is

n Mf 0
(CO )

0
2=

where M0 = 44 g/mol is the molar mass of CO2.
Similarly, we have

Figure 3. Schematics of oil distribution in cells and transport channels
in a particle of ground raw material. (1), plant cell; (2), cell wall; (3),
intercellular space; (4), oil bodies; (5), inclusions of indissoluble
components; (6), permeable cell membrane. Figure 4. Schematics of the internal oil content distribution in a single

particle of the ground raw material in cells and transport channels.
The superscript (CO2) is omitted. For every component, a
corresponding pair of a transport zone and a core is labeled. The
size of the transport zone is z = as1 and z = as2, respectively. The blue
section of the x1 distribution is in SC 1 and is solely governed by the
phase equilibrium. The green section of x1 distribution is in transport
zone 1. Here, x1 gradually decreases from x̅1* at the core boundary to
the solvent concentration c1 at the particle surface. The concentration
profiles have a more complex structure in the region of SC 2 since it
overlaps with transport zone 1. Therefore, x2 = x̅2(s2) < x2* at the
boundary of the transport zone 2.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c01488
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01488?fig=fig4&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c01488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


n M n x Mi i i t i i
(CO ) (CO )2 2* = *

where Mi ∼ 850 g/mol is the molar mass of the oil component
Si, i = 1, 2.
Typically, ni

(CO2) ≪ n0
(CO2) ≈ nt

(CO2), and

n x M x
M
Mi i i i

i
0
(CO )

0
f

2* * = *
(13)

Thus, the constraint for the MC-SC applicability can be
rewritten in terms of molar concentrations:

x
M
Mi i

i

0
f

*

To estimate the equilibrium molar concentrations (x̅1*, x̅2*)
from eq 13, one obtains

x
M
Mi

i

if

0*
*

Consequently, assuming M0 = 44 g/mol, Mi = 850 g/mol, ρf =
700 kg/m3, and θ̅i* = 15 kg/m3, one arrives at typical values of
x̅i* and x̅i0 on the order of 10−3.
3.3. Stefan−Maxwell Approach for Diffusion Fluxes.

In this section, the superscript (CO2) is omitted, since all the
derivations are related to the solvent phase and the diffusion in
it. Let nj, j = 0, 1, 2, be the molar density of component j in the
solvent phase. The total molar density of the solvent phase is nt
= n0 + n1 + n2. The molar flux Nj of the jth species with respect
to a particle-fixed coordinate reference frame is given by

N n u x N X N N N N

j

, ,

0, 1, 2

j j j j t j t 0 1 2= = + = + +

= (14)

where Xj is the molar diffusion flux of species j relative to the
molar average reference velocity u,

N n u n u n u n ut t 0 0 1 1 2 2= + +

of the multicomponent solvent phase in the z direction, and uj
is the velocity of the diffusing species. All fluxes and velocities
are related to the overall cross-sectional area, which passes
through the cells as well as the channels.
The multicomponent diffusion affected by the local

multiphase thermodynamic equilibrium is modeled in the
framework of the Stefan−Maxwell approach.30,38,39 To derive
the equations for diffusion fluxes, let us consider species 1 first.
The driving force −dμ1/dz for transport in the positive z
direction is balanced by the friction between species 1 and
other two species, 0 and 2, in the system. We may expect that
the frictional drag between species, i.e., 1 and 2, will be
proportional to the difference of velocities (ul − u2) and to the
concentration of the mixture, i.e., the mole fraction x2 of
component 2. Considering that two drag forces are exerted on
each species in a three-component system

z
x

u u
RT

x
u u

RT
d

d / /
1

0
1 0

01
2

1 2

12
= +

(15)

and multiplying force balance eq 15 for species 1 by x1/RT,
one obtains

x
RT z

x x u x x u x x u x x ud

d
1 1 0 1 1 1 0 0

01

2 1 1 1 2 2

12
= +

(16)

where the factor RT/Đij may be interpreted to be the drag
coefficient between species i and j. The coefficients Đij are
apparent ones and proportional to the volume fraction of
transport channels.24,40

The set of definitions in eq 14 and nj = xjnt as well as a
straightforward relation

x N x N x X x Xi j j i i j j i=

allow rewriting eq 16 in terms of molar diffusion fluxes:

d
x

RT z
x X x X

n
x X x X

n
d

d t t
1

1 1 0 1 1 0

01

2 1 1 2

21
= +

(17)

The force balance for the other two species yields

d
x

RT z
x X x X

n
x X x X

n

d

d t t
0

0 0 1 0 0 1

10

2 0 0 2

20
= +

(18)

d
x

RT z
x X x X

n
x X x X

n
d

d t t
2

2 2 0 2 2 0

02

1 2 2 1

12
= +

(19)

Equations 17−19 are formulated in terms of molar diffusion
fluxes Xj, j = 0, 1, 2. However, they are linearly dependent and
determine only the relative motion of the mixture components.
An additional constraint should be imposed to fix the degrees
of freedom, associated with the overall motion of the mixture
due to the diffusion process.
With this in mind, let us consider the mass densities of the

two interchanging phases in the system. The densities of oil
and the solvent are very close at SFE conditions and equal to
∼700 to 800 kg/m3, and replacement of the oil phase with the
solvent phase occurs at a practically constant mass density. The
overall mass flux of the components in the system is zero:

J J J J J0,0 12 12 1 2+ = + (20)

where

J M X j, 0, 1, 2j j j= = (21)

are the mass diffusion fluxes.
Combining eqs 21 and 20, we get

X
M
M

X
M
M

X0
1

0
1

2

0
2=

and after substitution of X0 into eqs 17 and 19, we arrive at
driving forces di:

( )
d

x
RT z

x x X x X

n
x X x X

n

d

d
M
M

M
M

t t

1
1 1

0 1 1 1 2

01

2 1 1 2

21

1

0

2

0=
+ +

+
(22)

( )
d

x
RT z

x x X x X

n
x X x X

n

d

d
M
M

M
M

t t

2
2 2

0 2 2 2 1

02

1 2 2 1

12

2

0

1

0=
+ +

+
(23)

Equations 22 and 23 can be rewritten in a matrix form:

n d BX d
d

d
X

X

X
, ,t

1

2

1

2
= = =

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjj

y
{
zzzzz
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where

B
B B

B B

M
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x x

x

x
M
M

x

M
M

M
M

x x x

1 1

1 1
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21 22
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To relate the Stefan−Maxwell approach with Fick’s law,

Fick’s diffusion coefficient, D = B−1Γ/RT, and the gradient of
molar concentrations, ∂xi/∂z, the vector d should be given in
terms of thermodynamic factor matrix�tensor Γ of chemical
potential derivatives:41,42

d
RT

x
z

x
z

x
x

x
x

x
x

x
x

,

1

2

1
1

1
1

1

2

2
2

1
2

2

2

= =

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz
Hence, the Stefan−Maxwell approach suggests the factoriza-
tion of Fick’s diffusion coefficient, and distinguishing between
the drag and the chemical (non-ideality) interactions between
species becomes possible. The drag is described by the factor
B−1, while Γ controls the system non-ideality. In the simplest
scenario, in the ideal system, Γ = RT, and Fick’s diffusion
tensor is D = B−1. Thus, the tensor B accounts for the species
concentrations in the solvent phase and disparity of different
species molecules.
Finally, the vector J = (J1; J2) of the mass diffusion fluxes is

related to the molar concentration gradients as follows:

J n
MB

RT

x
z
x
z

M
M

M
,

0

0t

1
1

2

1

2
= =

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

i
k
jjjjj

y
{
zzzzz

(24)

Using eq 20, it is also possible to calculate the mass diffusion
flux of the solvent, J0 = −J12, opposite with respect to the net
oil flux J12 = J1 + J2.
3.4. Particle-Scale Mass Balance Equations and

Model Assumptions. The maximum solute concentration,
x̅i*, in the solvent phase at supercritical conditions remains
small. Thus, assuming x0 ≈ 1, x1 ≈ 0, and x2 ≈ 0, one can
hereinafter consider the case of infinitely low dilution with a
simplified expression for the matrix B:

B
0

0
1 01

02

i
k
jjjjj

y
{
zzzzz

(25)

Thus, Đ0i, i = 1, 2, is interpreted as the apparent binary
diffusion coefficient at infinitely low dilution of species 1 or 2
in the solvent (species 0) in transport channels of the raw
material. The simplified form of matrix B, eq 25, reduces two
parameters, Đ12 and Đ21, in the problem.

The low dilution level of oil components in the supercritical
fluid is typical of the SFE process. Thus, it is assumed that nt ≈
n0 = const.
Finally, the mass diffusion fluxes in eq 24 reduce to the

following simplified form:

J n M x
z RT

i, 1, 2i i i i
i

0 0= =i
k
jjj y

{
zzz (26)

or, equally, calculating the derivative in eq 26, we arrive at

J n M
x

RT x
dx
dz x

dx
dz

i, 1, 2i i i
i i i

0 0
1

1

2

2= + =
i
k
jjjjj

y
{
zzzzz

Within the framework of the MC-SC model, the spatial
distributions of dissolved oil concentrations in the channels of
the corresponding transport zones are assumed to be quasi-
stationary at any moment t,43 i.e.,

as z
J

z
i0: 0, 1, 2i

i> > = =
(27)

Thus, the fluxes of both oil components remain spatially
constant and vary in time only, Ji = Ji(t), i = 1, 2.
Importantly, this uniquely predetermines the concentration

profiles in the region where SC 2 and transport zone 1 overlap,
as1 > z > as2. The local composition of the solvent phase is
fully determined by the diffusion of the dissolved component
S1 at material equilibrium with respect to the oil component S2.
This constraint is described in the framework of the Stefan−
Maxwell approach.
There is a material equilibrium with respect to component

S2 in the overlap region. Here, the local composition can be
predicted explicitly:

x x as z as( , ) 0,2 1 2 1 2> >

This equation agrees with eq 27 and assumes that the diffusion
flux J2 ∼ dμ2/dz of the second component is zero at as1 > z >
as2, while J2 > 0 at z < as2 and J1 > 0 at z < as1. Thus, there
exists a jump in Ji at z = asi, i = 1, 2, related to the rate of ith
core shrinking.
Finally, the problem that governs the overall spatial

distributions of x1 and x2 in the flat particle for every oil
component can be formulated explicitly as

as z
J

z
0: 01

1> > =
(28)

as z as x x as z
J

z

: ( , ) 0; 0:

0

1 2 2 1 2 2

2

> > > >

=
(29)

The corresponding boundary conditions are

x x x c,i z as i i z i0i
| = * | == = (30)

where ci is the molar fraction of oil component Si at the particle
boundary, in the surrounding bulk solution. These quantities
are determined by the extractor-scale mass balance equations.
Once the so-called free oil is exhausted,44,45 the concen-

tration of the surrounding bulk solution becomes relatively
low, and only the extraction of oil from large particles takes
place. Outlet solute concentrations are 1−2 orders of
magnitude smaller than the saturation concentration, and the
bulk solution concentration becomes vanishingly small to affect
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the particle-scale extraction rates. To simplify further analysis
and to ensure the numerical accuracy of the model equation
solution, we consider vanishingly small solute concentrations
on the macro-scale level of the packed bed, ci ∼ 10−6 ≪ x̅i*, i =
1, 2.
The problem in eqs 26−30 for xi(z, t, s1, s2) with μi given by

eqs 3 and 4 for the regular solution model or eq 6 for the ideal
solution limit can be solved in a closed form at any fixed values
s1 and s2. Once the concentration distribution is obtained, one
can calculate the flux Ji(s1, s2), i = 1, 2, taking the gradient of xi.
Another couple of equations relate the diffusion fluxes Ji with

the rates of core shrinking, ∂si/∂t. Let us consider the mass
balance at the core boundaries, z = asi, where the shrinking
rates are balanced by the diffusion fluxes Ji:

a
s
t

J s s
z RT

i( , ) , 1, 2i
i

i i i
i

1 2 0= =i
k
jjj y

{
zzz (31)

Here, θi = xin0Mi ≤ θi* is the mass density of oil component Si
dissolved in the solvent phase in the transport channels.

The coupled system of eqs 26−31 governs the particle-scale
mass transfer in the framework of the two-component SC
approach.
3.5. Ideal Solution Approach. A special limiting case, i.e.,

Ω1 = Ω2 = Ω = 0, of a regular solution model is an ideal
approach. The corresponding thermodynamic relations for
chemical potentials are given by eq 6. The overall SFE model
based on these simplified relations, which ignore any pairwise
interactions of molecules in the solution, has been introduced
earlier25 and applied in ref 26 to modeling the selective
extraction of phosphatidylcholine. The approach allows for the
closed-form solution of model equations and can be
considered a reference for the more sophisticated cases,
when the species interactions are taken into account.
Substituting eq 6 into eq 26, calculating the partial

derivatives ∂μi/∂z, and introducing the mass density of the
solute components,

n x Mi i i0=

we obtain the overall solute flux per unit area of particle
surface:

Figure 5. (A) Particle scale solute concentration distribution in the transport channels outside the inner SC 1, z/as1 < 1, during extraction. Red
curves, x1(z); blue curves, x2(z). The dashed curves correspond to the ideal solution model, eqs 6, 33, and 35, the solid curves − general, regular
solution approach, eqs 26−31. The saturation concentrations are x̅i0 = 2 × 10−3 and s2/s1 = 0.5. Solute interaction parameters from top to bottom Ω
= { − 164.5, − 120,0,440}. (B) Phase diagram of the three-component mixture at Ω = − 164.5. Blue curve, solvent-phase composition at
equilibrium with the oil component S2; red curve, solvent-phase composition at equilibrium with the oil component S1. The gray polygon is the
three-phase equilibrium domain. The black curve is the parametric plot of {x1(z); x2(z)} distributions from panel (A). Each curve has two
segments. The first segment follows the blue curve and corresponds to the interval s2/s1 ≤ z/as1 ≤ 1 inside the particle. The second segment is
inside the single-phase equilibrium domain. So, it corresponds to the outer transport zone interval 0 ≤ z/as1 ≤ s2/s1. (C) Chemical potential
distributions corresponding to the plots in panel (A). (D) Dimensionless flux ji, i = 1, 2, as a function of position within a particle. The definition of
dimensionless flux ji is given by eq 36.
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z

J J J,i
id

i
i id id id

0 12 1 2= = +
(32)

Equation 32 is Fick’s law with the diffusion coefficients of
species equal to the respective Stefan−Maxwell parameters Đ0i.
The analytical expression for the flux in eq 32 can be derived

explicitly.36 In the simplified approach, the diffusion of every
species is independent of the other component concentration,
particularly, x̅i* = x̅i0, and a linear concentration distribution
sets on in the transport zone of flat particles:

x x z as x c z, ; , 0i i i i i
0= = = =
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i i
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=
(33)

The solute concentration is constant, xi = x̅i0, in the ith
shrinking core.
After substitution of eq 33 into eq 32, one arrives at
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Hereinafter, in further consideration, we assume Đ01 = Đ02 =
Đ, M1 = M2 = M, and x̅10 = x̅20 = x̅0 and neglect c1 and c2
compared to x̅i0 and reduce eq 34 to
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(35)

Finally, the simplified relations in eq 35 can be compared to
the overall flux
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predicted in the case of chemical interactions between species
in the solvent phase. Accordingly, the scaled fluxes become
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3.6. Solute Concentration in the Pores of the Packed
Bed. Two different pairs of time scales typical of the SFE
process can be introduced.24,40 The first pair is associated with
the time required for the depletion of component Si in a
particle of half-thickness a:

t a i, 1, 2i

i i
sc
(1)

0

2

0
=

On the other hand, the fluid flowing through the packed bed
tends to reach the saturation concentration θ̅i0. The saturation
is attained for a particular component i within a typical time

t
a s

i, 1, 2i

i
sc
(2)

2

0
=

In the framework of a high initial oil content, the inequality tsc(1)
≫ tsc(2) is true. So, the transport zone thickness si cannot change
significantly, while the solution concentration ci increases from
0 to x̅i0.

Finally, one can study the evolution of the solute
concentration in the pores of the packed bed in the framework
of fixed value of si, and the equation for the local concentration
in the pores of the packed bed takes the following form:

n M c
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( ) di i i
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= =

with the dimensionless time

t
a s

/ .i
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2

0
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4. DISCUSSION
4.1. Particle-Scale Solute Concentrations. The particle-

scale solute concentration distribution in the transport
channels is non-monotonous and significantly non-linear and
depends on the solute interaction parameter Ω, as demon-
strated in Figure 5. Here, the solid curves correspond to the
regular solution approach, eqs 26−31, which is compared with
the ideal solution approach described by eqs 6, 33, and 35 and
shown by the dashed curves.
The composition of the solvent phase in transport channels

is given by the two molar concentrations of solute components,
x1(z) and x2(z), which are strongly interrelated in the
framework of the regular solution approach. The particular
distributions x1(z) and x2(z) are determined by the time-
dependent quantities s2/s1, c1, and c2, and, in the regular
solution, by the fixed triple of solute interaction parameters,
Ω1, Ω2, and Ω. The two parameters, Ωi = 6.2395, i = 1, 2, are
set equal in Figure 5 and fixed so that the pairwise Si + CO2
molar saturation concentrations are x̅i0 = 2 × 10−3. Other
quantities are set as s2 = 0.5s and c1 = c2 = 10−6 ≪ x̅i0. The
values of the third thermodynamic parameter, Ω, are given in
the caption to Figure 5.
Inside of the inner SC 1, z/as1 > 1, the three-phase

equilibrium CO2 + S1 + S2 sets on. So, x2 = x̅2* and x1 = x̅1* take
constant values with respect to z. These values vary with Ω.
The state of equilibrium is shown by the square marker, i.e.,
region 3, in the phase diagram in Figure 2 and in Figure 5B.
The quasi-stationary distributions of solute concentrations in

the transport channels take place outside the innermost core 1,
1 > z/as1 > 0. This interval is covered by panels A, B, and C in
Figure 5. Here, a material equilibrium with respect to the oil
component S2 is observed in the cells, and two sub-intervals,
(1) 1 > z/as1 > s2/s1 and (2) s2/s1 > z/as1 > 0, can be
distinguished. They are separated by the outer SC surface 2 at
z = as2. The oil phase is still present in the first interval as a
pure S2 component, while the phase is absent from the second
interval. Thus, the x2(z) dependence bends sharply at the outer
SC surface, z = as2; see Figure 5. This sharp bend appears in
Figure 5B as well at the point where the black curve moves
aside from the blue one.
In the first sub-interval, 1 > z/as1 > s2/s1, the composition of

the solvent phase corresponds to the two-phase equilibria.
These equilibria are shown by the blue curve in Figure 2 (as a
general example) and in Figure 5B for a particular Ω = −
164.5. Along this curve, the chemical potential μ1(x1, x2)
decreases, taking its maximum value at (x̅1*; x̅2*), while the
chemical potential μ2(x1, x2) ≡ 0. Thus, only the diffusion of
oil component 1 takes place in the “two-component” medium
composed of the solvent with dissolved oil component S2. The
diffusion takes place in the direction opposite to the chemical
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potential gradient, as prescribed by the physical laws. This
suggests that x1 monotonically decreases toward the particle
surface. The oil component S2 responds to the diffusion of
component S1 by phase transition. Once x2 exceeds the x̅2
value, the solution becomes oversaturated with respect to oil
component S2. Thus, its molecules form dispersed nuclei of the
oil phase and precipitate from the solution phase to restore the
equilibrium solvent-phase composition, i.e., μ2(x1, x2) ≡ 0. The
flux of the second component is zero in 1 > z/as1 > s2/s1. The
unidirectional diffusion of both oil components takes place in
the second sub-interval, as2 > z.
The x2(z) distributions shown by the blue curves in Figure

5A demonstrate different patterns in the region 1 > z/as1 > s2/
s1, depending on the interaction scenario of S1 and S2 oil
components within the solvent medium. The scenario could be
either a co-solvent or an anti-solvent. The scenarios are typical
attributes of the regular solution approach and cannot be
described in the framework of the ideal solution limit, when x̅i
= x̅i* is constant along the respective (red or blue) curve in the
phase diagram.
The co-solvent scenario is observed for x̅i0 < x̅i* at the

equilibrium solubility x̅i positively correlating with the other
solubility x̅j ≠ i along the curve representing the solvent-phase
concentrations in the phase diagram( Figure 5B). For the
system configuration under consideration, it is at Ω < 0, and
x2(z) decreases toward the outer SC surface, and vice versa, in
the anti-solvent scenario, x̅i0 > x̅i*, the two equilibrium

concentrations x̅1 and x̅2 are negatively correlated at Ω > 0,
and x2(z) increases toward the core surface.
Finally, x1 and x2 tend at the SC 2 surface, z = as2, to the

values marked by circular markers in Figure 2. Thus, x2(z =
as2) → x̅20, and x1(z = as2) → 0. However, this composition is
typically not attained within the first subinterval outside the
inner SC, as1 > z > as2. The boundary concentrations, xi(z =
as2), deviate from their respective limiting values.
In the second sub-interval, as2 > z > 0, there is diffusion of

both solute components under the chemical potential gradient,
which is not affected by the local thermodynamic equilibrium
with the oil phase. The phase is exhausted in this sub-interval.
Both chemical potentials, μ1 and μ2, decrease toward the
particle surface, leading to a constant mass flux along the z
coordinate. Typically, the x1 and x2 distributions decrease
monotonously toward the particle surface where vanishingly
small solute concentrations are assumed, ci → 0.
Compare the described local solvent-phase composition

with the composition obtained in the framework of the ideal
solution approach, eqs 6 and 32−35. In the latter case, the
diffusion follows Fick’s law and any interactions between solute
components in the solvent phase are neglected. The respective
distributions of solute concentration are shown in Figure 5A by
dashed curves. In the transport zones, as2 > z for the blue curve
and as1 > z for the red curve, the solute concentrations vary
linearly, while they remain constant within the respective SCs.
The model based on the regular solution approach is

Figure 6. (A) The fluxes of S1 (the red curves) and S2 (the blue curves) oil components and (B) the overall flux J12 as functions of the outer
transport zone size, s2/s1. (C) Fraction of the individual flux component in the overall flux. The model parameters are fixed at the same values as in
Figure 5. The arrows show the direction of increase in Ω = { −184, −136,640}.
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significantly non-linear. Thus, the detailed particle-scale solute
distribution is poorly approximated in the framework of the
simplified approach.
Therefore, the solute flux at the particle surface�which is

governed by the particle-scale solute concentration distribu-
tion�has to be carefully examined as well.
4.2. Oil Flux at the Particle Surface. There are two fluxes

J1 and J2 of individual components as well as the overall oil
phase flux, J12 = J1 + J2, in the two-component model of solute.
The ratios between these three fluxes and the corresponding
values predicted by the simplified (ideal solution) model, eqs
32−35, are shown in Figure 6 versus relative size s2/s1 of outer
transport zone for different Ω values. The other input model
parameters are same as in Figure 5.
The plots in Figure 6A present the relative fluxes Ji of solute

components S1 and S2. It is important to note that the ratios
deviate from unity, being uniformly larger (at the co-solvent
regime, Ω < 0) or smaller (at the anti-solvent regime, Ω > 0).
Thus, neglecting the chemical interactions between diffusing
components would result in over- or underestimation of the
flux values. In the prescribed simulation conditions at s2 = s1,
the corresponding fluxes become equal since all other model
parameters (diffusion characteristics, molar masses, etc.) are
assumed identical for both components. At smaller ratios s2/s1,
the fluxes diverge, and in the limit of s2 → 0, the deviation from
their corresponding “ideal” analogues increases up to 60%. The
discrepancy level depends on the difference between x̅i* and x̅i0,
and x̅i* ≈ x̅i0 only in a special case of Ω = 0, when the fluxes
become equal, Ji ≈ Jisc.
The overall extraction rates, J12, from an individual particle

are depicted in Figure 6B. The flux J12 is of particular
importance since it is the principal characteristic of the SFE
process in the framework of the one-component solute
approximation. The direct intercomparison of the one- and
two-component models is not straightforward and relies on the
choice of the apparent properties of the components.
Nevertheless, one can compare the overall extraction rates
predicted by the developed two-component model in its two
limiting cases of the “ideal” (eqs 32−35) and “regular” (eqs
26−31) solutions. From Figure 6B, it becomes obvious that
even chemical interactions between the three components in
the solution can lead up to ∼30% changes in the overall flux.

These variations depend on the s2/s1 ratio but become
vanishingly small at s2 ≪ s1. As demonstrated by Figure 6C, the
flux of the solute component S2 prevails over the fluxes of other
components scaled by ∼1/si.
4.3. Oil Precipitation in a Three-Component System.

As a rule, it is assumed that the phase transition on the particle
scale during SFE takes place only at the boundary between the
SC and the transport zone. This assumption is reasonable for
the one-component oil approximation. In the case of the two-
component oil, the phase transition also continuously occurs
within the subinterval 1 > z/as1 > s2/s1. This locally maintains
the material equilibrium with respect to solute component S2,
μ2(x1, x2) ≡ 0, as discussed above and demonstrated in Figure
5A.
As predicted by the two-component oil model, the phase

transitions can take place not only on the particle scale but also
on the scale of the packed bed. The latter phenomenon is of
particular importance and means that the “fluid” leaving the
extractor may be a heterogeneous mixture.
The phase separation on the packed bed scale can occur in

the “anti-solvent” regime at the two additional conditions.
First, if, say, S2 is the precipitating oil component, its
concentration c2 in the solvent has to increase at a higher
rate than that of the concentration c1, i.e., dc2/dt ≫ dc1/dt, or,
in other words, at J2 ≫ J1 and Đ02 ≫ Đ01. From the other side,
if Θ1 = Θ2, then this means that s2≫ s1. As a result, at longer
diffusion paths, the constraint J2 ≫ J1 weakens, and the two
fluxes become equal. Thus, as discussed below, the initial
disbalance in the oil content, Θ1 ≠ Θ2, is needed for the phase
precipitation.
The second condition of the phase separation is related to

the constraint on the lengths of the diffusion paths: ds2/dt <
ds1/dt. In accordance with eq 31, this scenario is possible at J2/
Θ2 < J1/Θ1 with Θ2 > Θ1. The detailed values of Θ2 and Θ1 are
not discussed here. For instance, for further analysis illustrated
by Figure 7, it is assumed that Đ02 = 4Đ01 and s2/s1 = 0.5. The
typical time scales of variations of concentrations ci and
transport zone lengths si have been deduced earlier in Section
3.6. In this case, a continuous disbalance in the components
fluxes is maintained, with J2 ≫ J1; the composition of the
solvent phase {c1; c2} follows the magenta curve and reaches
the two-phase equilibrium in the packed bed (the triangular

Figure 7. (A) Phase diagram of the three-component system. The magenta curve shows the trajectory of the solvent-phase composition {c1; c2}.
(B) Solvent-phase solute concentration as a function of dimensionless time. The figure demonstrates the rates of solute accumulation in the pores
of the packed bed while the solvent passes along the raw material particles. The red solid curve is c1(τ), the blue solid curve is c2(τ), and the black
solid curve is the overall concentration c1 + c2. The dashed curves show the overall molar concentrations in the multiphase fluid.
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marker in Figure 7) at c1 ≪ c2 ≈ x̅1* ≈ x̅2* rather than at c1 ≈ c2
≈ x̅1* ≈ x̅2*. The point (x̅1*; x̅2*) is shown by the square marker
in Figure 7A.
The solvent-phase composition {c1(τ); c2(τ)} for the

described scenario is shown in Figure 7A by the solid magenta
curve, where time τ is a parameter along the curve. The curve
starts at point (0;0), which is the initial (inlet) condition for
the solvent-phase concentration at the pores of the packed bed.
While the solvent travels through the porous medium along
the packed bed, the concentration of the dissolved solute
components increases. However, the diffusion rates of
component S2 are greater than those of S1. A rapid initial
increase of the solute component concentration c2 is observed
at a reasonably small concentration c1. Furthermore, the
magenta curve initially follows the x2 coordinate axis.
Eventually the concentration trajectory in Figure 7A hits the

blue curve, c1 = c1̅, c2 = c2̅, which shows the solvent-phase
compositions in equilibrium with the oil phase composed of
pure S2. From this moment on, the constraint μ2(c1̅, c2̅) ≡ 0 is
fulfilled in the pores of the packed bed, as well as inside the
particles, μ2(x̅1, x̅2) ≡ 0. However, there is no material
(diffusion) equilibrium with respect to the oil component S1
yet, i.e., μ1(c1̅, c2̅) < 0, while μ1 = 0 at the SC surface z = as1.
The diffusion of pure oil component S1 is still observed from
the particles to the pores of the packed bed. The solvent-phase
composition (c1; c2) follows the blue curve and tends to the
point (x̅1*; x̅2*) shown by the green square in Figure 7A. It is a
junction of the blue and the red curves, so μ1(x̅1*, x̅2*) = 0 and
μ2(x̅1*, x̅2*) = 0 simultaneously.
To reach this equilibrium composition, the concentration of

the dissolved oil molecules S2 in the solvent phase must
decrease following the blue curve. Moreover, the concentration
c1 increases accordingly due to the diffusion process. However,
there is no diffusion of the oil component S2, since its chemical
potential is zero in the particles as well as in the packed bed.
So, the only way for the component S2 to decrease its
concentration in the pores is to precipitate as an oil phase, and
the multiphase heterogeneous mixture flows through the
packed bed.
The corresponding time dependence of dissolved oil

components concentrations c1 and c2 is shown by the solid
curves in Figure 7B. The concentrations in the solvent phase
are shown by the solid curves, while the dashed curves show
the overall molar concentrations in the multiphase flowing
fluid. At τ ≈ 2.4 (introduced in Section 3.6), the blue and the
black solid curves split into a solid and a dashed part.
Interestingly, in the simulated regime, the overall concen-
tration c1 + c2 (shown by the black solid curve in Figure 7B)
remains constant once the process reaches the two-phase
equilibrium at τ ≈ 2.4. So, the amount of component S1 that
enters the packed bed pores is equal to the amount of
component S2 that precipitates from the solution.
Finally, the difference between the solid and dashed parts is

the oil concentration that is precipitated as the oil phase. In
this scenario, about 25% of the extracted oil component S2 has
precipitated.

5. CONCLUSIONS
Mathematical modeling of SFE processes based on the use of
scCO2 is very challenging. scCO2 as a solvent is conventionally
utilized for extracting the target components from natural
products that are composed of many substances exhibiting
different solubility. In this case, it is of primary importance to

control the content of target compounds in the extract as well
as the solvent consumption by properly chosen extraction
conditions. However, in practice, the SFE procedure is often
adjusted simply by experience rather than on the basis of
valuable and reliable information delivered by mathematical
models.46 From this point of view, the new approach proposed
and analyzed in this paper is aimed at developing sophisticated
mathematical models of SFE which take into account the
multicomponent nature of the extract and predict the
evolution of the extract composition in the course of
extraction. A particular case of two-component oil extraction
is considered and extends the approaches of earlier
publications to the regular solution approximation.
Previously developed models did not consider interaction

between different species in the solution. It is shown that the
particle-scale extraction rates crucially depend on the
surrounding solution composition and thermodynamic proper-
ties of the oil and solute components that control the mass-
transfer processes. It is demonstrated that in typical SFE
conditions, the “regular solution” correction to the chemical
potentials can lead to a 60% correction of the diffusion flux
toward the particle surface. The correction to the overall flux
J12 is not uniform with respect to the time-dependent model
parameters, such as transport zone thicknesses s1 and s2. Thus,
it is impossible to adjust the ideal and regular solution models
by introducing apparent (effective) parameters.
As a rule of thumb, the effect of the regular solution

correction, given by Ω, on the evolution of the solution
concentrations c1 and c2 can be assessed through the difference
of x̅i0 and x̅i*. The greater the difference, the more important
the solute component interactions.
Unfortunately, the developed approach does not directly

predict conditions of selective extraction of a particular
component, alternately followed by extraction of the other
component. Therefore, it is expected that the optimal and
efficient way to selectively extract a particular oil component is
to adjust pressure and temperature variations in the course of
extraction to manipulate the solubilities x̅i0 and x̅i*.
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■ NOMENCLATURE
a half-thickness of the plane particle of the ground raw

material
c bulk solute concentration in the solvent phase around

the particle
Đij Stefan−Maxwell (drag) diffusion coefficient between

two species i and j
g molar Gibbs energy that the oil molecule Si gains

upon transition from the oil phase (the reference
state) to the solvent phase

G Gibbs energy of a phase
ji scaled mass diffusion flux of species i
Ji mass diffusion flux of species i
M molar mass of an individual component
n number of moles of molecules in the phase
Nj molar flux of species j
R universal gas constant
s transport zone thickness normalized with respect to a
Si ith oil component
t time
T temperature
u velocity of the diffusing species
x molar concentration of the component in the phase
Xi molar diffusion flux of species i relative to the molar

average reference velocity u
Y mass fraction of oil extracted from the packed bed to

the time moment t
z Cartesian coordinate introduced in every particle; z =

0 at the particle surface, and z = a at the particle plane
of symmetry

B factor describing the drag between diffusing species
Γ thermodynamic factor matrix
θ mass density of oil component Si dissolved in the

solvent in the extraction conditions
Θ initial content of pseudo-component S of extractable

oil compounds per unit volume of the raw material
μ chemical potential
τ dimensionless time
Ω S1−S2 binary interaction parameter within the solvent

medium
Ωi solvent−Si binary interaction parameter
BIC broken-and-intact cell
OEC overall extraction curve
MC-SC multicomponent shrinking core (model)
SC shrinking core
TAG triacylglycerol

Subscripts
i index of individual components
sc characteristic scale of the process
t total number of moles in the phase

Superscripts
(CO2) the quantity is related to the CO2 solution phase
(oil) the quantity is related to the oil phase
overbar the quantity is related to the solution phase that is in

equilibrium with the oil phase
* three-phase equilibrium
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