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Abstract—We refined the axiomatics of asymmetric logics. For logics X(km, k) of family subsets
of the km-element set X , which cardinal numbers are multiples of k we completely described the
cases in which X(km, k) a) is symmetric or b) is asymmetric. For an infinite set Ω and a natural
number n ≥ 2 we constructed the concrete logics En

Ω and completely described the cases in which
these logics are asymmetric. For asymmetric logics E we determine when both the set A ∈ E and its
complement Ac are atoms of the logic E . Let a symmetric logic E of a finite set Ω be not a Boolean
algebra, and let A be an algebra of subsets from Ω, and assume that E ⊂ A. Then there exists a
measure on E , that does not admit an extension to a measure on A.
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1. INTRODUCTION

Let Ω be a non-empty set. Denote by 2Ω the set of all subsets of the set Ω. A family E ⊆ 2Ω is called
a set logic on Ω (see [1–3]), if the following conditions hold:

(i) Ω ∈ E ;
(ii) A ∈ E ⇒ Ac := Ω \ A ∈ E ;
(iii) A ∪B ∈ E for all A,B ∈ E with A ∩B = ∅.
A set logic E is called a σ-class, if {An}∞n=1 ⊂ E , An ∩Am = ∅ (n 
= m) ⇒ ∪∞

n=1An ∈ E . A charge
on set logic E is a mapping ν : E → R, such that

A,B ∈ E , A ∩B = ∅ ⇒ ν(A ∪B) = ν(A) + ν(B).

A measure on E is a charge ν such that ν(A) ≥ 0 for all A ∈ E . If ν(Ω) = 1, then the measure ν is called
a state (or a probability measure).

We study a σ-classes, and also charges and measures on them. This is related to “the generalized
measure theory” [2, 3], which can be considered as nearest to the classical (here “ the classical” means
on “σ-algebras of sets”) version of measure theory on quantum logics [1, 2]. On the quantum logic
approach in the axiomatics of physical systems see [4, Chap. VI, §5]. If E is a set logic (i.e., a concrete
logic), then the family S of all states on E is complete and the pair (E ,S) satisfies all the requirements of
a physical systems model [4, Chap. VI, §6].

We continue the investigations of [5–15], pay particular attention to classes of a) symmetric and
b) asymmetric set logics. In Corollary 3, we refined the axiomatics of asymmetric logics. For logics
X(km, k) of family subsets of the km-element set X, whose cardinal numbers are multiples of k we
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completely describe the cases in which X(km, k) a) is symmetric (Proposition 3) or b) is asymmetric
(Proposition 4). For an infinite set Ω and a natural number n ≥ 2 we construct the concrete logics En

Ω
(Lemma 3) and completely describe the cases in which these logics are asymmetric (Theorem 1). For
asymmetric logics E we determine when both the set A ∈ E and its complement Ac are atoms of the
logic E (Theorem 2). Also we study charges and measures on set logics.

2. NOTATION AND DEFINITIONS

Put Ωn = {1, 2, . . . , n} for every number n ∈ N. The following statement is well-known.
Lemma 1. If E is a set logic, then the following condition holds:
(iv) B \ A ∈ E for all A,B ∈ E with A ⊂ B.
Indeed, from Bc ⊂ Ac we have A ∩Bc = ∅. Hence, A ∪Bc ∈ E by (iii) and

(A ∪Bc)c = Ac ∩B = B \ A ∈ E .

A family E ⊂ 2Ω is a set logic if and only if it satisfies conditions (i) and (iv). Let us verify sufficiency (i.e.,
fulfilment of (ii) and (iii)).

(ii) If A ∈ E , then A ⊂ Ω ∈ E , hence, Ω \A = Ac ∈ E .
(iii) If A,B ∈ E and A ∩B = ∅, then A ⊂ Bc and Bc \ A = Bc ∩Ac ∈ E ; therefore, A ∪B = (Bc ∩

Ac)c ∈ E .
Example 1. Let E ⊂ 2Ω be a set logic and T ∈ E \ {∅}. Then, the family

ET = {A ∈ E | A ⊂ T}
is the set logic with the maximal element T . Since T ∈ ET , we should verify (iv). If A,B ∈ ET , A ⊂ B,
then A,B ∈ E and A ⊂ B ⊂ T . Hence, B \ A ⊂ T and by Lemma 1 we have B \A ∈ E , therefore,
B \ A ∈ ET .

By definition, an atom in a set logic E is a minimal with respect to inclusion element of the set E \ {∅}.
The set of all atoms in E we denote by α(E). It is easy to see that E is the set of all sums of elements of
the set α(E) (a sum is the union of a family of sets, any two of which have the empty intersection). For
A ∈ E put Ẽ(A) = E \ {∅,Ω, A,Ac}.

A state mx on a logic E of subsets of Ω is called concentrated at a point x ∈ Ω if for all A ∈ E

mx(A) =

{
1, if x ∈ A;

0, if x /∈ A.

For A,B ⊂ Ω define their symmetric difference

A�B = (A \B) ∪ (B \A) = (A ∩Bc) ∪ (B ∩Ac) = (A ∪B) \ (A ∩B).

Then, Ac�B = A�Bc = (A�B)c and Ac�Bc = A�B.

3. SYMMETRIC AND ASYMMETRIC CONCRETE LOGICS

Proposition 1. Let E be a set logic and A,B ∈ E . Then,

A ∩B ∈ E ⇐⇒ A ∪B ∈ E .

Proof. “⇐”. By Lemma 1 we have (A ∪B) \ A = B \A ∈ E . Therefore, B \ (B \ A) = A ∩B ∈ E
by Lemma 1.

“⇒”. Since Ac ∪Bc = (A∩B)c ∈ E , by the above proved Ac ∩Bc ∈ E and A∪B = (Ac ∩Bc)c ∈ E .
�

Corollary 1. Let E be a set logic and A,B ∈ E . If A ∩B ∈ E , then A�B ∈ E .
Proof. Since A ∪B ∈ E , we have A�B = (A ∪B) \ (A ∩B) ∈ E by Lemma 1. �

Corollary 2. Let E be a set logic on Ω and B ⊂ Ω. Then,

B ∈ E ⇐⇒ ∃A ∈ E (A ∩B,A ∪B ∈ E).
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Proof. “⇒”. We choose A ∈ {B,Bc}.
“⇐”. For C = A∩B ∈ E we have A ∩C = C ∈ E and by Corollary 1 we obtain A�C = A \B ∈ E .

Now B = (A ∪B) \ (A \B) ∈ E by Lemma 1. �

Definition 1. A set logic E is called a symmetric logic, if it meets condition
(v) A�B ∈ E for all A,B ∈ E .
A family E ⊂ 2Ω is a symmetric logic if and only if it satisfies conditions (i) and (v) [9, Proposition 1].
Definition 2 [11]. A set logic E is called an asymmetric logic, if it meets condition
(vi) A ∩B ∈ E ⇐⇒ A�B ∈ E for all A,B ∈ E .
From Corollary 1 follows
Corollary 3. For a set logic E the following conditions are equivalent:
(vii) if A,B ∈ E and A�B ∈ E , then A ∩B ∈ E ;
(viii) E is an asymmetric logic.
A set logic E is an algebra of sets if and only if E is symmetric and asymmetric [11, Proposition 4.5].
Lemma 2. Let E be a symmetric logic and a mapping ν : E → R meet condition
(ix) ν(A�B) ≤ ν(A) + ν(B) for all A,B ∈ E .

Then, ν(A) ≥ 0 for all A ∈ E .
Proof. For A = B = ∅ from (ix) we obtain ν(∅) = ν(∅�∅) ≤ 2ν(∅), hence ν(∅) ≥ 0. Now for every

A ∈ E by (ix) we have 0 ≤ ν(∅) = ν(A�A) ≤ 2ν(A). �

A measure ν on a symmetric logic E is called �-subadditive, if it meets condition (ix). From
Lemma 2 follows that every charge ν on a symmetric logic E , which satisfies condition (ix), is a �-
subadditive measure. The following assertion is known (see [9, Lemma 1]); here we present its new
proof.

Proposition 2. For a measure ν on a symmetric logic E the following conditions are equivalent:
(x) ν is �-subadditive;
(xi) ν(A�B) ≤ ν(A�C) + ν(C�B) for all A,B,C ∈ E .
Proof. (x)⇒(xi). By associativity and commutativity of the operation � of symmetrical difference,

we have
ν(A�B) = ν(A�B�(C�C)) = ν((A�C)�(B�C)) ≤ ν(A�C) + ν(C�B)

for all sets A,B,C ∈ E .
(xi)⇒(x). Suppose that condition (xi) holds, but (x) does not hold. Then, there exist sets A,B ∈ E

such that ν(A�B) > ν(A) + ν(B). Therefore,

ν(Ω)− ν(A�B) < ν(Ω)− ν(A)− ν(B).

Since Ac�B = (A�B)c and Ω \A = Ac, we have

ν(Ac�B) + ν(B) < ν(Ac) = ν(Ac�(C�C)) = ν((Ac�C)�C)

≤ ν((Ac�C)�B) + ν(B�C)

= {for C = Ac} = ν(B) + ν(B�Ac).

We obtain a contradiction. Proposition is proved. �

Corollary 4. For a measure ν on a symmetric logic E the mapping

(A,B) �→ d(A,B) := ν(A�B) (E × E → R
+)

defines the pseudometric d on E if and only if ν is �-subadditive.
Example 2. If in conditions of Example 1 the set logic E is symmetric (respectively, asymmetric),

then the logic ET also is symmetric (respectively, asymmetric).
Example 3 ([11, Example 4.2]). Let Ω = {zn}∞n=1 be a sequence of complex numbers and Ω ∈ �1,

i.e., the series
∑∞

n=1 zn is absolutely convergent. Let Λ ∈ {Q,R} and z =
∑∞

n=1 zn. Recall that every
permutation of the sequence {zn}∞n=1 retain absolute convergence and the sum z. A family

EΛ,Ω =

{
I ⊂ Ω |

∑
x∈I

x = λz for some λ ∈ Λ

}
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is an asymmetric logic (the sum of the empty sequence by definition is equal to zero, hence, ∅ ∈ EΛ,Ω).
Moreover, ER,Ω is a σ-class and EQ,Ω is its sublogic.

Example 4 ([11, Example 4.3]). Let A be the Lebesgue σ-algebra on Ω = [0, 1], μ be a linear
Lebesgue measure with μ(Ω) = 1. Then, EQ,μ = {A ∈ A | μ(A) ∈ Q} is an asymmetric logic.

Example 5 ([13, Example 4.4]). Let Ω be an infinite set. Put

B = {A ⊆ Ω | card(A) is finite or card(Ω \A) is finite},

Eeven
Ω = {A ⊆ Ω | card(A) is even or card(Ω \ A) is even} ⊂ B.

Then, B is an algebra of subsets of Ω and Eeven
Ω is a symmetric logic.

Recall that on Eeven
Ω every state is �-subadditive [13, Proposition 4.4].

Definition 3 [16]. Consider numbers k,m ∈ N and let X = {x1, x2, . . . , xkm}. Denote by
X(km, k) the family of all subsets of X such that their cardinalities are multiples of k:

X(km, k) = {A ⊂ X | card(A) = ik, i = 0, 1, 2, . . . ,m}.
Then, E = X(km, k) is a set logic with α(E) = {A ⊂ X | card(A) = k}.

Every function f : X → R defines a charge νf on a set logic X(km, k) by the formula

νf (A) =
∑
x∈A

f(x), A ∈ X(km, k).

Such charges are called regular. It was shown in [16] that every measure on a set logic X(km, k) admits
the unique extension to a charge on the algebra 2X . The proof of this fact is based on an interesting
combinatorial lemma, asserting that km− 1 of some k-element sets can be choosen as generators of
the logic X(km, k).

In [17], the author presented a direct proof of this fact; he also described the extreme points of the state
space of the logic X(km, k) and the automorphisms of this logic. He also showed that for any charge ν
on the set logic X(km, k) for m ≥ 3 there exists the unique function f : X → R such that ν = νf .

Proposition 3. The set logic X(km, k) on X is a symmetric logic if and only if a) m = 1 and
k ∈ N is arbitrary or b) k ∈ {1, 2} and m ∈ N is arbitrary.

Proof. For condition a) we have X = {x1, . . . , xk} and the set logic X(km, k) = {∅,X} is
symmetric. For condition b) we consider separately cases k = 1 and k = 2.

Case I. Let k = 1 and m ∈ N be arbitrary. Then, X = {x1, . . . , xm}, and the set logic X(km, k) =

2X , clearly, is symmetric.
Case II. Let k = 2 and m ∈ N be arbitrary (by already analyzed case a), we assume that m ≥ 2).

Then, X = {x1, x2, . . . , x2m} and the logic X(km, k) is isomorphic to the well-known symmetric logic
E = {A ⊂ Ω2m | card(A) is even}.

Now we show that the set logic X(km, k) is not symmetric in the case of k ≥ 3,m > 1.
Since m ≥ 2 we have card(X) ≥ 2k and the logic X(km, k) possesses two non-intersecting (i.e.,

disjoint) atoms A1 = {a1, a2, a3, . . . , ak} and B1 = {b1, b2, b3, . . . , bk}. Put A = {x, a2, a3, . . . , ak} and
B = {x, b2, b3, . . . , bk}. Then,

A�B = (A\(A ∩B)) ∪ (B\(A ∩B)) = {a2, a3, . . . , ak, b2, b3, . . . , bk}
and card(A�B) = 2k − 2. Since k ≥ 3, we have k < card(A�B) = 2k − 2 < 2k. It means that k is
not a divisor of the natural number 2k − 2. Therefore, A�B /∈ X(km, k). �

Corollary 5. There is a non-�-subadditive state on the symmetric logic X(2m, 2) (m ≥ 2).
Proof. Let E be a finite symmetric logic with the property: “every state on E , which is an affine

combination of concentrated states, is �-subadditive”. Then, E is a Boolean algebra [11, Theorem
4.17]. In particular, if on a finite symmetric logic E every state is �-subadditive, then E is a Boolean
algebra [13, Theorem 4.3]. But the logic X(2m, 2) (m ≥ 2) is not a Boolean algebra. �

If a symmetric logic is not a Boolean algebra, then it contains a sublogic isomorphic to X(4, 2)
[11, Corollary 4.6]. From Lemma 1 it follows that if ν is a measure on an asymmetric logic E , then
ν(A�B) ≤ ν(A) + ν(B) for all A,B ∈ E with A�B ∈ E .
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Corollary 6. Let a symmetric logic E of subsets of a finite set Ω be no Boolean algebra, let A
be an algebra of subsets of Ω and E ⊂ A. Then, there exists a measure on E , that does not admit
an extension to a measure on A.

Proof. Every measure on a Boolean set algebra is �-subadditive. �

Proposition 4. A set logic X(km, k) on X is asymmetric if and only if a) m = 1 and k ∈ N is
arbitrary or b) k is odd and m ∈ N is arbitrary.

Proof. For condition a) we have X = {x1, . . . , xk}, and the set logic X(km, k) = {∅,X}, obviously,
is asymmetric.

Let us consider condition b).
Case I. If k is odd, then we show that the set logic X(km, k) is asymmetric. By Corollary 3 it suffices

to prove that for arbitrary A,B ∈ X(km, k) such that A�B ∈ X(km, k), its intersection A∩B also lies
in X(km, k). Since A,B,A�B ∈ X(km, k), we have card(A) = s1k, card(B) = s2k, card(A�B) =
s3k, where si ∈ N, 0 ≤ si ≤ m, i = 1, 2, 3. Then,

card(A�B) = card[(A\(A ∩B)) ∪ (B\(A ∩B))] = card(A\(A ∩B)) + card(B\(A ∩B))

= card(A)− card(A ∩B) + card(B)− card(A ∩B)

= card(A) + card(B)− 2card(A ∩B),

hence, s3k = s1k+ s2 − 2card(A ∩B) and card(A ∩B) =
(s1 + s2 − s3)k

2
=

s4k

2
, where s4 ∈ N, s4 =

s1 + s2 − s3. Let card(A∩B) = n, where n ∈ N ∪ {0}. If n = 0, then A∩B = ∅ ∈ X(km, k). If n > 0,

then card(A ∩B) =
s4k

2
= n, hence, s4k = 2n. It means that s4k is an even number. Since a number

k is odd, s4 is even. Then, s4 = 2j and
s4
2

= j, where j ∈ N. Therefore, card(A ∩B) =
s4
2
k = jk,

A ∩B ∈ X(km, k) and the logic X(km, k) is asymmetric.
Case II. If k is even, then k = 2t with t ∈ N. We show that the set logic X(km, k) is not asymmetric

(by already analyzed case a), we assume that m ≥ 2).
Since m ≥ 2 we have card(X) ≥ 2k and the logic X(km, k) possesses two non-intersecting (i.e.,

disjoint) atoms A1 = {a1, a2, a3, . . . , a2t} and B1 = {b1, b2, b3, . . . , b2t}. Put

A = {x1, . . . , xt, at+1, . . . , a2t}, B = {x1, . . . , xt, bt+1, . . . , b2t}, then

A�B = (A\(A ∩B)) ∪ (B\(A ∩B)) = {at+1, . . . , a2t, bt+1, . . . , b2t},

card(A�B) = 2t = k and A�B ∈ X(km, k). But A ∩B = {x1, . . . , xt} and card(A ∩B) = t =
1

2
k.

Therefore, A ∩B /∈ X(km, k) and the logic X(km, k) is not asymmetric. �

Lemma 3. Let Ω be an infinite set and a natural number n ≥ 2. Then, the family

En
Ω = {A ⊂ Ω : card(A) = ns or card(Ac) = ns, where s ∈ N ∪ {0}}

is a set logic.
Proof. Obviously, Ω ∈ En

Ω and A ∈ En
Ω ⇐⇒ Ac ∈ En

Ω, i.e., conditions (i) and (ii) of definition of the
set logics hold true. Let us verify (iv): for A,B ∈ En

Ω with A ⊂ B we check that B \A ∈ En
Ω. Three cases

are possible: a) card(A) = ns1, card(B) = ns2 with s1, s2 ∈ N ∪ {0}; then s1 ≤ s2 and card(B \A) =
ns2 − ns1 = n(s2 − s1), hence B \ A ∈ En

Ω; b) card(A) = ns1, card(B) = +∞ with s1 ∈ N ∪ {0}; c)
card(A) = card(B) = +∞.

For b) we have card(Bc) = ns2 and (B \ A)c = (B ∩Ac)c = Bc ∪A, and also Bc ∩A = ∅. Since
card((B \A)c) = card(Bc) + card(A) = n(s1 + s2) and B \ A ∈ En

Ω.
For c) we have card(Ac) = ns1, card(Bc) = ns2 and s1 ≥ s2 by the inclusion Bc ⊂ Ac. Since

B \A = B�A = Bc�Ac = Ac \Bc,

we have card(B \ A) = card(Ac \Bc) = n(s1 − s2) and B \ A ∈ En
Ω. �

Clearly, the logic En
Ω lies in algebra B of subsets Ω from Example 5.
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Theorem 1. Let Ω be an infinite set and a natural number n ≥ 3 be odd. Then, En
Ω is an

asymmetric logic.
Proof. Let A,B,A�B ∈ En

Ω. By Corollary 3 it is necessary to verify that the set A ∩B lies in En
Ω.

Assume that A ∩B 
= ∅ and A 
= B. Three cases are possible:
a) card(A) = ns1, card(B) = ns2 with s1, s2 ∈ N;
b) card(A) = ns1, card(B) = +∞ with s1 ∈ N;
c) card(A) = card(B) = +∞.
For a) we have card(A�B) < +∞ and card(A ∩B) < +∞. Since A�B ∈ En

Ω, there exists s3 ∈
N ∪ {0} such that card(A�B) = ns3. Then, cardA+ cardB − 2card(A ∩B) = ns3, and, hence,

card(A ∩B) =
card(A) + card(B)− ns3

2
=

n(s1 + s2 − s3)

2
=

ns∗

2
∈ N.

Since the greatest common divisor (2, n) = 1, the number s∗ is divisible by 2.
s∗

2
= s∗∗, then card(A ∩

B) = ns∗∗, and A ∩B ∈ En
Ω.

For b) we have card(A) = ns1, card(Bc) = ns2, card((A�B)c) = card(A�Bc) < +∞ and
card(A ∩B) < +∞. Let card((A�B)c) = card(A�Bc) = ns3, then

card(A) + card(Bc)− 2card(A ∩Bc) = ns3, card(A ∩Bc) =
n(s1 + s2 − s3)

2
=

ns∗

2
= ns∗∗,

since the greatest common divisor (2, n) = 1. Then, we obtain

card(A ∩B) = card(A \ (A ∩Bc)) = card(A)− card(A ∩Bc) = 3s1 − 3s∗∗ = 3(s1 − s∗∗) = 3s4,

and A ∩B ∈ En
Ω.

For c) we have card(Ac) = ns1, card(Bc) = ns2. Then,

card((A ∩B)c) = card(Ac ∪Bc) � card(Ac) + card(Bc) < +∞.

Since card(A�B) = card(Ac�Bc) = ns3, where s3 ∈ N, we have

card(Ac) + card(Bc)− 2card(Ac ∩Bc) = ns3, card(Ac ∩Bc) =
n(s1 + s2 − s3)

2
=

ns∗

2
= ns∗∗,

since the greatest common divisor (2, n) = 1. Then,

card((A ∩B)c) = card(Ac ∪Bc) = card(Ac�Bc) + card(Ac ∩Bc)

= ns3 + ns∗∗ = n(s3 + s∗∗) = ns4.

Therefore, A ∩B ∈ En
Ω.

If a natural number n ≥ 2 is even, then the logic En
Ω is not asymmetric (it can be verified analogously

to Case II in the proof of Proposition 4). �

Theorem 2. Let E be a set logic and A ∈ E . If A�B /∈ E for all B ∈ Ẽ(A), then A,Ac ∈ α(E).
The inverse assertion holds for an asymmetric logic E .

Proof. Since

A ∈ E ⇔ Ac ∈ E and A�B ∈ E ⇔ Ac�B = (A�B)c ∈ E ,

it is suffices to show that Ac ∈ α(E). If A�B /∈ E for all B ∈ Ẽ(A), then the set (A�B)c = Ac�B does
not lie in the logic E for all B ∈ Ẽ(A). In particular, there is no set B ∈ Ẽ(A) with B ⊂ Ac (otherwise
Ac�B = Ac \B ∈ E by Lemma 1). Therefore, Ac ∈ α(E).

Let now E be an asymmetric logic and A,Ac ∈ α(E). There does not exist any set B ∈ E \ {∅} with
B ⊂ Ac, B 
= Ac (since Ac is an atom), i.e., for every setB ∈ Ẽ(A) exactly one of the following conditions
holds true:

1) B ∩ Ac = Ac or 2) B ∩Ac /∈ E and B ∩Ac 
= Ac.
In case 1), B ⊃ Ac and B 
= Ac, hence, A ⊃ Bc and A 
= Bc 
= ∅. Since A is an atom, we have

A = Bc. Therefore, B = Ac, a contradiction.
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In case 2), via asymmetry of the logic E , we have B�Ac /∈ E . Therefore, A�B = (B�Ac)c /∈ E . �

Example 6. The set logic E = X(8, 4) is not either symmetric or asymmetric (see Propositions 3 and
4). Let X = Ω8 and A = {1, 2, 3, 5}. Then, A,Ac ∈ α(E), and also for B = {1, 2, 7, 8} ∈ Ẽ(A) we have
A�B ∈ E .

Example 7. For the symmetric logic E = X(4, 2) we have A,Ac ∈ α(E) for all sets A ∈ E \ {∅,X}.

Proposition 5. If E is a finite symmetric logic, then card(E) = 2n for some n ∈ N. In particular,
card(X(2m, 2)) = 22m−1 for all m ∈ N.

Proof. We call elements A,B, . . . of a symmetric logic E vectors and define the sum of vectors A and
B as A�B. Let us also define the multiplication operation of vectors by elements of the field Z2 = {0, 1}
by the formulas 0×A = ∅, 1×A = A (A ∈ E). All of the axioms of a linear space over field Z2 clearly
hold in this case. By assumption our space is finite-dimensional; we choose in this space some basis
e1, . . . , en. Then, all vectors of the space are all possible linear combinations of e1, . . . , en, of cardinality
2n.

For every k ∈ N by binomial theorem we obtain

k∑
i=0

(
k

i

)
= (1 + 1)k = 2k,

k∑
i=0

(−1)i
(
k

i

)
= (1− 1)k = 0.

Therefore, card(X(2m, 2)) =
2m∑
i=0

(
2m

2i

)
= 22m−1, m ∈ N. �

Proposition 6. Let E be a set logic on Ω, B ⊂ Ω, and A ∈ E with A�B ∈ E . If a) A = {x} or b)
E is asymmetric, then B ∈ E .

Proof. If A ∩B = ∅, then A�B = A ∪B ∈ E and B = (A ∪B) \A ∈ E by Lemma 1. Let now
A ∩B 
= ∅. For condition a) we have A ∩B = A, i.e., A ⊂ B and x ∈ B. By assumption A�B =
B \ {x} ∈ E . Hence,

B = (B \ {x}) ∪ {x} ∈ E

by axiom (iii) of set logic.

For condition b) we have A ∩B ∈ E and A \ (A ∩B) = A ∩Bc ∈ E by Lemma 1. By assumption
A�B ∈ E , hence B ∩Ac = (A�B) \ (A ∩Bc) ∈ E by Lemma 1. Therefore,

B = (B ∩Ac) ∪ (B ∩A) ∈ E

by axiom (iii) of set logic. �
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