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Abstract—We refined the axiomatics of asymmetric logics. For logics X (km, k) of family subsets
of the km-element set X, which cardinal numbers are multiples of k£ we completely described the
cases in which X (km, k) a) is symmetric or b) is asymmetric. For an infinite set {2 and a natural
number n > 2 we constructed the concrete logics £ and completely described the cases in which
these logics are asymmetric. For asymmetric logics £ we determine when both the set A € £ and its
complement A° are atoms of the logic £. Let a symmetric logic £ of a finite set £2 be not a Boolean
algebra, and let A be an algebra of subsets from €2, and assume that £ C A. Then there exists a
measure on &, that does not admit an extension to a measure on A.
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1. INTRODUCTION

Let Q be a non-empty set. Denote by 2 the set of all subsets of the set . A family £ C 2% is called
a set logic on §) (see [1—3]), if the following conditions hold:

(i)Qeg

(i)Ae&=A=Q\Aeg;

(iii) AuB € Eiorall A, B € £with An B = 0.

A set logic & is called a o-class, if {Ap}22, CE, ApNAy =0(n#m)=UX A, €& Acharge
on set logic £ is a mapping v : £ — R, such that

A BeE, ANB=0=v(AUB)=v(A)+v(B).

A measure on £ is a charge v such that v(A) > Oforall A € £. liv(Q) = 1, then the measure v is called
a state (ora probability measure).

We study a o-classes, and also charges and measures on them. This is related to “the generalized
measure theory” [2, 3], which can be considered as nearest to the classical (here * the classical” means
on “o-algebras of sets”) version of measure theory on quantum logics [1, 2]. On the quantum logic
approach in the axiomatics of physical systems see [4, Chap. VI, §5]. If £ is a set logic (i.e., a concrete
logic), then the family S of all states on £ is complete and the pair (€, S) satisfies all the requirements of
a physical systems model [4, Chap. VI, §6].

We continue the investigations of [5—15], pay particular attention to classes of a) symmetric and
b) asymmetric set logics. In Corollary 3, we refined the axiomatics of asymmetric logics. For logics
X (km, k) of family subsets of the km-element set X, whose cardinal numbers are multiples of & we
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1230 BIKCHENTAEV et al.

completely describe the cases in which X (km, k) a) is symmetric (Proposition 3) or b) is asymmetric
(Proposition 4). For an infinite set 2 and a natural number n > 2 we construct the concrete logics £
(Lemma 3) and completely describe the cases in which these logics are asymmetric (Theorem 1). For
asymmetric logics £ we determine when both the set A € £ and its complement A€ are atoms of the
logic £ (Theorem 2). Also we study charges and measures on set logics.

2. NOTATION AND DEFINITIONS

Put Q, ={1,2,...,n} forevery number n € N. The following statement is well-known.
Lemma 1. /f € is a set logic, then the following condition holds:

(iv)yB\ A€ Eforall A,B € £ with A C B.

Indeed, from B¢ C A€ we have AN B¢ = (). Hence, AU B¢ € & by (iii) and

(AUB)=A°NB=B\A€cg.

Afamily £ € 29 s a set logic if and only if it satisfies conditions (i) and (iv). Let us verify sufficiency (i.e.,
fulfilment of (ii) and (iii)).

(ii)[fAe & then AC Qe & hence, R\ A= A€ €.

(iii)[f A,Be Eand AN B =0, then A C B®and B°\ A = B°N A° € &; therefore, AUB = (B°N
Ac)¢ e €.

Example 1. Let £ C 2% be a set logic and T' € £ \ {#}. Then, the family

Er={Aec|ACT}

is the set logic with the maximal element T'. Since T' € &7, we should verify (iv). [ A, B € &7, A C B,
then A,Be & and AC BCT. Hence, B\ ACT and by Lemma | we have B\ A € &, therefore,
B \ Ae ET.

By definition, an atom in a set logic £ is a minimal with respect to inclusion element of the set £ \ {(0}.
The set of all atoms in £ we denote by a(E). It is easy to see that £ is the set of all sums of elements of
the set a(€) (a sum is the union of a family of sets, any two of which have the empty intersection). For

AecEputE(A) =E\{0,Q,A4, A}
A state m, on alogic € of subsets of 2 is called concentrated at a point x € Qifforall A € €

m(A) = 1, if x €A,
’ 0, if z=z¢ A

For A, B C € define their symmetric difference
AAB=(A\B)U(B\A)=(ANB)U(BNA°)=(AUB)\ (AN B).
Then, A°AB = AAB® = (AAB)¢ and A°AB® = AAB.

3. SYMMETRIC AND ASYMMETRIC CONCRETE LOGICS
Proposition 1. Let £ be a set logic and A, B € &. Then,
ANBeé <« AUuBEe¢.

Proof. “<". By Lemma | we have (AU B)\ A= B\ A € £. Therefore, B\ (B\A)=ANBecé&
by Lemma 1.

“=". Since A°U B¢ = (AN B)° € £, by theabove proved AN B € £and AUB = (A°N B°)¢ € £.
(]

Corollary 1. Let £ be a set logicand A,B € E. I[fANB €&, then AAB € &.
Proof. Since AU B € &, we have AAB = (AUB) \ (AN B) € £ by Lemma 1. O
Corollary 2. Let £ be a set logic on Q and B C . Then,

Bel«—=3JAcE(ANB,AUBEE).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.46 No.3 2025



ON AXIOMATICS OF SYMMETRIC AND ASYMMETRIC 1231

Proof. “=". We choose A € {B, B‘}.

“<”.ForC=ANB e Ewehave ANC = C € & and by Corollary 1 we obtain AAC' = A\ B € €.
Now B=(AUB)\ (A\ B) € £ by Lemma 1. 0

Definition 1. A set logic € is called a symmetric logic, if it meets condition

(V) AAB € & forall A,B € €.

A family € C 2% is a symmetric logic if and only if it satisfies conditions (i) and (v)[9, Proposition 1].

Definition 2[11]. A set logic £ is called an asymmetric logic, if it meets condition

(Vi)ANBe &« AAB e jJorall A,B € €.

From Corollary 1 follows

Corollary 3. For a set logic € the following conditions are equivalent:

(vii)if A,B € Eand AAB € €, then ANB €&,

(viii) € is an asymmetric logic.

A set logic £ is an algebra of sets if and only if £ is symmetric and asymmetric [11, Proposition 4.5].

Lemma 2. et £ be a symmetric logic and a mapping v : £ — R meet condition

(ix)v(AAB) <v(A) +v(B) forall A,B € €.
Then, v(A) > Oforall A € €.

Proof. For A = B = () from (ix) we obtain v()) = v(DAD) < 2v(0), hence v(0) > 0. Now for every
A € Eby(ix)wehave 0 < v(0) = v(AAA) < 2v(A). O

A measure v on a symmetric logic £ is called A-subadditive, if it meets condition (ix). From
Lemma 2 follows that every charge v on a symmetric logic £, which satisfies condition (ix), is a A-
subadditive measure. The following assertion is known (see [9, Lemma 1]); here we present its new
proof.

Proposition 2. For a measure v on a symmetric logic € the following conditions are equivalent:

(x) v is A-subadditive;

(xi)v(AAB) < v(AAC) +v(CAB)forall A,B,C € €.

Proof. (x)=-(xi). By associativity and commutativity of the operation A of symmetrical difference,
we have

V(AAB) = v(AABA(CAC)) = v((AAC)A(BAC)) < v(AAC) + v(CAB)

forall sets A, B,C € €.
(xi)=(x). Suppose that condition (xi) holds, but (x) does not hold. Then, there exist sets A,B € £
such that v(AAB) > v(A) + v(B). Therefore,

v(Q) —v(AAB) < v(Q) —v(A) — v(B).
Since A°AB = (AAB)¢and 2\ A = A€, we have
v(A°AB) 4+ v(B) < v(A®) = v(A°A(CAC)) = v((A°AC)AC)
<v((A°AC)AB) +v(BAC)
= {for C = A°} =v(B) +v(BAA®).
We obtain a contradiction. Proposition is proved. O
Corollary 4. for a measure v on a symmetric logic € the mapping
(A,B) — d(A, B) := v(AAB) (€ x £ = R")

defines the pseudometric d on £ if and only if v is N-subadditive.

Example 2. If in conditions of Example 1 the set logic £ is symmetric (respectively, asymmetric),
then the logic &7 also is symmetric (respectively, asymmetric).

Example 3 ([11, Example 4.2]). Let Q@ = {2,}72, be a sequence of complex numbers and € ¢4,
i.e., the series > | z, is absolutely convergent. Let A € {Q,R} and z = >"°7 | z,. Recall that every
permutation of the sequence {z,}5 ; retain absolute convergence and the sum z. A family

Eng = {ICQ | Za;:)\z for some )\GA}

zel
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is an asymmetric logic (the sum of the empty sequence by definition is equal to zero, hence, 0 € £, o).
Moreover, &g q is a o-class and Eg g is its sublogic.
Example 4 ([11, Example 4.3]). Let A be the Lebesgue o-algebra on Q = [0, 1], u be a linear
Lebesgue measure with p(£2) = 1. Then, &g, = {A € A| u(A) € Q} is an asymmetric logic.
Example 5 ([13, Example 4.4]). Let © be an infinite set. Put

B={ACQ]|card(A) isfiniteor card(Q\ A) isfinite},

EJN ={ACQ|card(A) isevenor card(Q\ A) iseven} C B.

Then, B is an algebra of subsets of 2 and £§" is a symmetric logic.
Recall that on £5*" every state is A-subadditive [13, Proposition 4.4].
Definition 3 [16]. Consider numbers k,m € N and let X = {x1,22,...,2m}. Denote by
X (km, k) the family of all subsets of X such that their cardinalities are multiples of k:
X(km,k) ={A C X |card(A) =ik,i =0,1,2,...,m}.

Then, & = X (km, k) is a set logic with () = {A C X | card(A) = k}.
Every function f : X — R defines a charge v¢ on a set logic X (km, k) by the formula

vi(A) =Y f(z), A€ X(km,k).

z€EA

Such charges are called regular. 1t was shown in[16] that every measure on a set logic X (km, k) admits
the unique extension to a charge on the algebra 2X. The proof of this fact is based on an interesting
combinatorial lemma, asserting that km — 1 of some k-element sets can be choosen as generators of
the logic X (km, k).

In[17], the author presented a direct proof of this fact; he also described the extreme points of the state
space of the logic X (km, k) and the automorphisms of this logic. He also showed that for any charge v
on the set logic X (km, k) for m > 3 there exists the unique function f : X — R such that v = vy.

Proposition 3. The set logic X(km, k) on X is a symmetric logic if and only if a) m = 1 and
k € Nis arbitrary or b) k € {1,2} and m € Nis arbitrary.

Proof. For condition a) we have X = {x1,..., 2} and the set logic X(km,k) = {0, X} is
symmetric. For condition b) we consider separately cases k =1 and k = 2.

Case I. Let k =1 and m € N be arbitrary. Then, X = {x1,...,z,,}, and the set logic X (km, k) =
2X  clearly, is symmetric.

Case Il. Let k =2 and m € N be arbitrary (by already analyzed case a), we assume that m > 2).
Then, X = {z1, z2, ...,z } and the logic X (km, k) is isomorphic to the well-known symmetric logic
E ={A C Qyy | card(A) is even}.

Now we show that the set logic X (km, k) is not symmetric in the case of & > 3,m > 1.

Since m > 2 we have card(X) > 2k and the logic X (km, k) possesses two non-intersecting (i.e.,
disjoint) atoms A; = {a1,as,as,...,ar} and By = {b1,ba,bs,...,bi}. Put A ={x,a9,as,...,ax} and
B = {33‘, bg, b3, ce ,bk} Then,

AAB = (A\(ANB))U (B\(ANB)) = {az,as,...,ar,ba,bs,... b}
and card(AAB) = 2k — 2. Since k > 3, we have k < card(AAB) = 2k — 2 < 2k. It means that k is
not a divisor of the natural number 2k — 2. Therefore, AAB ¢ X (km, k). O

Corollary 5. There is a non-A-subadditive state on the symmetric logic X (2m,2) (m > 2).

Proof. Let £ be a finite symmetric logic with the property: “every state on £, which is an affine
combination of concentrated states, is A-subadditive”. Then, £ is a Boolean algebra [11, Theorem
4.17]. In particular, if on a finite symmetric logic £ every state is A-subadditive, then £ is a Boolean
algebra [13, Theorem 4.3]. But the logic X (2m,2) (m > 2) is not a Boolean algebra. O

If a symmetric logic is not a Boolean algebra, then it contains a sublogic isomorphic to X (4, 2)
[11, Corollary 4.6]. From Lemma 1 it follows that if v is a measure on an asymmetric logic &, then
v(AAB) <v(A)+v(B)forall A, B € £ with AAB € £.
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Corollary 6. Let a symmetric logic £ of subsets of a finite set 2 be no Boolean algebra, let A
be an algebra of subsets of Q) and £ C A. Then, there exists a measure on &, that does not admit
an extension to a measure on A.

Proof. Every measure on a Boolean set algebra is A-subadditive. O

Proposition 4. A set logic X (km, k) on X is asymmetric if and only if a) m =1 and k € N is
arbitrary or b) k is odd and m € Nis arbitrary.

Proof. For condition a) we have X = {x1,..., 2}, and the set logic X (km, k) = {0, X}, obviously,
is asymmetric.

Let us consider condition b).

Case . 1T k is odd, then we show that the set logic X (km, k) is asymmetric. By Corollary 3 it suffices
to prove that for arbitrary A, B € X (km, k) such that AAB € X (km, k), its intersection A N B also lies
in X(km, k). Since A, B, AAB € X (km, k), we have card(A) = s1k, card(B) = s2k, card(AAB) =
s3k, where s; € N,0 < s; <m,i=1,2,3. Then,

card(AAB) = card[(A\(A N B)) U (B\(AN B))] = card(A\(AN B)) + card(B\(A N B))
= card(A) — card(AN B) + card(B) — card(A N B)
= card(A) + card(B) — 2card(A N B),

— s3)k k
hence, ssk = s1k + s9 — 2card(AN B) and card(AN B) = M = %, where s, € N, 54 =

2
s1+ 89 — s3. Let card(AN B) = n, wheren € NU{0}. [fn =0,then ANB =0 € X(km, k). lin > 0,

k
then card(AN B) = % = n, hence, s4k = 2n. It means that s4k is an even number. Since a number

k is odd, s4 is even. Then, s4, = 25 and %4 = j, where j € N. Therefore, card(AN B) = %k = jk,
AN B € X(km, k) and the logic X (km, k) is asymmetric.

Case Il. 1T k is even, then k = 2t with ¢ € N. We show that the set logic X (km, k) is not asymmetric
(by already analyzed case a), we assume that m > 2).

Since m > 2 we have card(X) > 2k and the logic X (km, k) possesses two non-intersecting (i.e.,
diSjOiﬂt) atoms A1 = {al, az,as, ... ,agt} and Bl = {bl, b2, bg, . ,th}. Put

A:{:cl,...,xt,at+1,...,a2t}, B:{33‘1,...,l‘t,bt+1,...,b2t}, then
AAB = (A\(A N B)) @] (B\(A N B)) = {CLH_l, ‘o 7a2tabt+17 ‘o ,bgt},

card(AAB) =2t = k and AAB € X(km, k). But ANB = {x;,...,2;} and card(ANB) =t = %kz
Therefore, AN B ¢ X (km, k) and the logic X (km, k) is not asymmetric. O
Lemma 3. Let Q be an infinite set and a natural number n > 2. Then, the family
Eh ={A C Q:card(A) =nsorcard(A°) =ns, where seNU{0}}
is a set logic.

Proof. Obviously, 2 € £ and A € £ <= A° € £, i.e., conditions (i) and (ii) of definition of the
set logics hold true. Let us verify (iv): for A, B € £} with A C B we check that B\ A € £5. Three cases
are possible: a) card(A) = nsy, card(B) = nsg with s1,s9 € NU {0}; then s; < s9 and card(B \ A) =
nsy —nsy = n(sy — s1), hence B\ A € £3; b) card(A) = nsy, card(B) = 400 with s; € NU {0}; ¢)
card(A) = card(B) = +o0.

For b) we have card(B€¢) = nsg and (B \ A)° = (BN A°)¢ = B°U A4, and also BN A ={). Since
card((B \ A)¢) = card(B¢) + card(A) = n(s1 + s2) and B\ A € £5.

For ¢) we have card(A¢) = nsi, card(B¢) = nsy and s; > sg by the inclusion B¢ C A°. Since

B\ A= BAA=B‘AA°= A°\ B,
we have card(B \ A) = card(A°\ B¢) =n(s1 — s2)and B\ A € &. 0
Clearly, the logic & lies in algebra B of subsets €2 from Example 5.
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Theorem 1. Let ) be an infinite set and a natural number n > 3 be odd. Then, £ is an
asymmetric logic.

Proof. Let A, B, AAB € &. By Corollary 3 it is necessary to verify that the set AN B lies in £5.
Assume that AN B # () and A # B. Three cases are possible:

a) card(A) = nsy, card(B) = nsy with s1, 59 € N;

b)card(A) = nsy,card(B) = +oo with s; € N;

¢)card(A) = card(B) = +o0.

For a) we have card(AAB) < 400 and card(A N B) < +o0. Since AAB € £, there exists s3 €
N U {0} such that card(AAB) = nss. Then, cardA + card B — 2card(A N B) = nss, and, hence,

card(A) 4+ card(B) —nss  n(sy + s2 —s3) ns*

card(ANB) = 5 = 5 = eN.

*

Since the greatest common divisor (2,n) = 1, the number s* is divisible by 2. % = ™, then card(A N
B) =ns™,and AN B € &£j.

For b) we have card(A) =nsy, card(B€) =nsq, card((AAB)¢) = card(AAB®) < 400 and
card(AN B) < +oo. Let card((AAB)¢) = card(AAB€) = nss, then

card(A) + card(B¢) — 2card(AN B®) = nsy, card(AN B°) = ”(81%32_33) - % = ns*,
since the greatest common divisor (2,n) = 1. Then, we obtain
card(AN B) = card(A\ (AN B°)) = card(A) — card(A N B°) = 3s1 — 3s™ = 3(s1 — s™) = 334,
and AN B € &.
For ¢) we have card(A¢) = nsy, card(B¢) = nsy. Then,
card((A N B)¢) = card(A° U B€) < card(A€) + card(B°) < +oc.
Since card(AAB) = card(A°AB¢) = nss, where s3 € N, we have

card(A°) + card(B€) — 2card(A° N B¢) = ns3, card(A°N B°) = TL(SI%M = n2s = ns™,

since the greatest common divisor (2,n) = 1. Then,
card((A N B)¢) = card(A° U B€) = card(A°AB°) + card(A° N B)
=nss +ns™ =n(s3+ ™) = nsy.

Therefore, AN B € &.

If a natural number n > 2 is even, then the logic £ is not asymmetric (it can be verified analogously
to Case Il in the proof of Proposition 4). O

Theorem 2. Let £ be a set logic and A € £. If AAB ¢ & for all B € £(A), then A, A € a(€).
The inverse assertion holds for an asymmetric logic &.

Proof. Since

AcE e Acf and AABE€E < A°AB = (AAB)F €&,

it is suffices to show that A° € a(&). 1T AAB ¢ £ forall B € £(A), then the set (AAB)® = A°AB does
not lie in the logic £ for all B € £(A). In particular, there is no set B € £(A) with B c A¢ (otherwise
A°AB = A°\ B € £ by Lemma 1). Therefore, A° € a(&).

Let now £ be an asymmetric logic and A, A¢ € a(€). There does not exist any set B € £ \ {0} with
B C A¢, B # A°(since A%is anatom), i.e., forevery set B € £(A) exactly one of the following conditions
holds true:

1) BNA®=Aor2) BN A® ¢ £ and BN A° # A°.

In case 1), B D A¢ and B # A€, hence, A D B¢ and A # B¢ # (). Since A is an atom, we have
A = B¢. Therefore, B = A€, a contradiction.
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In case 2), via asymmetry of the logic £, we have BAA® ¢ £. Therefore, AAB = (BAA®) ¢ . O

Example 6. The set logic £ = X (8,4) is not either symmetric or asymmetric (see Propositions 3 and

4). Let X = Qgand A = {1,2,3,5}. Then, A, A° € a(€), and also for B = {1,2,7,8} € £(A) we have
AAB € €.

Example 7. For the symmetric logic £ = X (4,2) we have A, A° € () forall sets A € £\ {0, X }.

Proposition 5. If £ is a finite symmetric logic, then card(E) = 2" for somen € N. In particular,
card(X(2m,2)) = 22"~ jor allm € N.

Proof. We call elements A, B, ... of a symmetric logic £ vectors and define the sum of vectors A and
B as AAB. Let us also define the multiplication operation of vectors by elements of the field Zy = {0, 1}
by the formulas0 x A =0, 1 x A=A (A € &). All of the axioms of a linear space over field Zs clearly
hold in this case. By assumption our space is finite-dimensional; we choose in this space some basis

e1,...,en. Then, all vectors of the space are all possible linear combinations of ey, . . . , ey, of cardinality
2",

For every k € N by binomial theorem we obtain

k k

; <I;> = (1+1)"=2" ;(—1)" <’;> =(1-1F=0.
Therefore, card (X (2m, 2)) = 22"3 @T) e .

=0

Proposition 6. Let £ be a set logicon ), B C Q,and A € £ with AABe€ . Ifa) A= {x}orb)
Eis asymmetric, then B € £.

Proof. [f ANB =10, then AAB=AUB €& and B=(AUB)\ A€& by Lemma |. Let now
AN B #0. For condition a) we have AN B = A, i.e., AC B and z € B. By assumption AAB =
B\ {z} € €. Hence,

B=(B\{z})u{z} €
by axiom (iii) of set logic.

For condition b) we have AN B € £ and A\ (ANB) = AN B¢ € & by Lemma 1. By assumption
AAB € &€ hence BN A° = (AAB) \ (AN B°) € £ by Lemma 1. Therefore,

B=(BNA)U(BNA)€E

by axiom (iii) of set logic. O
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