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A B S T R A C T

We propose a simple analytical approximation for the radial distribution function (RDF) in a single-component
Yukawa fluid. The proposed RDF depends on the two input parameters – the non-ideality parameter and the
structure (screening) parameter , which determine the thermodynamic state of Yukawa systems. We demon-
strate that various physical properties can be directly calculated using the proposed RDF. In particular, the
internal energy and pressure, the excess entropy in the pair approximation, and the dispersion relation of
longitudinal acoustic-like collective excitations are calculated. These theoretical results are compared with the
results from molecular dynamics simulations and good overall agreement is observed in the investigated regime
of screening and coupling parameters.

The structure of an equilibrium liquid is characterized by the pre-
sence of the so-called short-range order, which determines significantly
various physical properties of the liquid state. The radial distribution
function (RDF) g r( ) is a structural characteristic, which contains in-
formation about relative positions of the particles (molecules) in the
system. This function characterizes pair correlations in many-particle
systems [1–3] and it appears in the expressions for the basic thermo-
dynamic properties such as the internal energy, pressure, and the pair
excess entropy. Last quantity is used to approximate the actual excess
entropy (with a varying degree of accuracy depending on the state
point) and that stems from the difficulty of computing the higher order
terms of the Nettleton-Green expansion [4,5]. In addition to the func-
tion g r( ), it is also necessary to know the interparticle potential u r( ) in
order to calculate analytically these thermodynamic properties. The
pairwise interaction potential of the form

u r
r

r( )~ 1 exp ,
(1)

is known as the Yukawa (screened Coulomb) potential [1–3,6]. Yukawa
potential has been proven to be a suitable model to test various ap-
proximations in the theory of condensed matter. Its repulsive character
mimics interaction between charged particles immersed into a neu-
tralizing medium (like e.g. plasma). For example, in the case of the
particles of the same charge Ze, where Z is the charge number and e is

the electron charge, the potential becomes

=u r Ze r
r

( ) ( ) exp( / )
4

,s
2

0 (2)

where s is the Debye screening length, associated with the presence of
neutralizing medium and 0 is the vacuum permittivity. The time scale
of charge density fluctuations in the system is determined by the plasma
frequency

= Z e
m

,p
2 2

0 (3)

where is the density of particles in the system and m is the particle
mass.

The equilibrium thermodynamics of Yukawa systems is specified by
the two key dimensionless parameters: the non-ideality (or coupling)
parameter and the structural (or screening) parameter [1–3]. The
non-ideality parameter

= Ze
ak T

( )
4 B

2

0 (4)

represents the ratio of the pair interaction energy (excluding the
screening effects) evaluated at the mean interparticle distance to the
average energy of the thermal motion of the particles. In expression (4),
the quantity =a (3/4 )1/3 is the so-called Wigner-Seitz radius. The
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structural parameter is determined as the ratio of a to the Debye
screening length s:

= a .
s (5)

In the limit = 0, the potential (2) reduces to the bare Coulomb
potential. In the opposite limit , it approximates the hard-sphere
interaction potential. Given the expressions (4) and (5), the formula for
the potential can be rewritten in the dimensionless form as follows

=u x x
x

( ) exp( ) , (6)

where = k T1/( )B and =x r a/ .
Recently, it has been demonstrated [7–9] that the so-called one-step

approximation for the RDF, of the form

=g x x x( ) ( )(1st)
eff (7)

can be used within the framework of the quasilocalized charge ap-
proximation (QLCA) [10,7,11–13] to obtain particularly simple analy-
tical expressions for the dispersion of longitudinal and transverse col-
lective excitations in Yukawa fluids. Here x( ) is the Heaviside step-
function and xeff is the effective correlational hole radius, which can be
determined by requiring that the internal energy or pressure are cor-
rectly evaluated from the approximation (7). Note that the approx-
imation (7) is at first glance better appropriate for a rarefied gas of hard
spheres (and real gases at sufficiently high temperatures [14]). How-
ever, it turns out to be a good approximation also for fluids with soft
long-range interactions, when the cumulative contribution from long
distances (where g x( ) 1) is dominant. Nevertheless, the simplest form
(7) does not account for the most prominent signature of the liquid
state, which is manifested in the characteristic maximum of the RDF.

A rather accurate parameterization of the Yukawa RDF has been
devised in Ref. [15]. The expression is based on combining a Coulomb
RDF parameterization with an appropriate effective coupling parameter
that maps Yukawa fluids into Coulomb fluids (such an effective cou-
pling parameter has been identified in molecular dynamics (MD) si-
mulations in Ref. [16]). In spite of considerable success of this attempt,
the fundamental difference between Coulomb and Yukawa systems
renders impossible a perfect match between their static structures
through an effective coupling parameter [15].

In this paper we propose a much simpler approximation for RDF,
which depends explicitly on and and exhibits a maximum. Using
this approximation we then calculate the internal energy, pressure, the
pair excess entropy, and the dispersion relation of the longitudinal
collective mode. The calculation is done for nine ( , ) state points with

= 20, 50, 100 and = 1, 1.5, 2. Theoretical results are compared
with the results of MD simulations and reasonable agreement is docu-
mented.

Namely, we suggest the following two-step approximation for the
function g x( ):

= +g x g x x x x x x( ) ( ) ( ) ( ).m
(2st)

1 2 2 (8)

According to Eq. (8), the first maximum of g x( ) is modelled by the
rectangular shape. Here, the distances x1 and x2 determine the left and
right boundaries of the first maximum of the RDF and gm is the mag-
nitude of this maximum. The sketch of this two-step RDF is shown in
Fig. 1, where approximation (8) is compared with a real RDF, typical
for a liquid-like state. We require that the magnitude of the first peak of
the model RDF (8) coincides with that of the real RDF. Other peaks of
the RDF corresponding to the second, third, etc. coordination shells are
ignored in this two-step approximation. We chose to determine the
distance x1 from the condition =g x( ) 0.51 for a real RDF (see Fig. 1).
Then, following Ref. [16], we can express x1 in terms of and as
follows:

=x
b

b
b

1 ln ( )
( )

,1
3

1

2

3 (9)

where

=b 1.575,1

= +b ( ) 0.931 0.422 0.696 ,2
2

= +b ( ) 1.238 0.28 0.644 .3
2

Expression (9) allows us to determine the value of x1 with good
accuracy (the maximum deviation from the simulation results does not
exceed 5.6%). To determine the outer radius of the model RDF max-
imum, x2, we apply the charge neutrality condition:

=g x x dx1 ( ) 1
3

.
0

2

(10)

This condition is strictly valid for Coulomb systems, but remains a
very good approximation for weakly screened Yukawa systems. After
simple algebra we get

=x
x g

g
1

1
.m

m
2
3 1

3

(11)

The quantity gm can be determined from a relation suggested in Ref.
[16]:

= + +a a g a g( ) ( ) ( ) ,m m1 2 3
2 (12)

where the parameters a a( ), ( )1 2 and a ( )3 satisfy the quadratic poly-
nomial

= + + =a c c c( ) , 1, 2, 3,1
( )

2
( )

3
( ) 2

and the dimensionless coefficients c c,1
( )

2
( ) and c3

( ) are constants:
= =c c22.4, 7.881

(1)
2
(1) and = = =c c c9.68; 70.09, 20.283

(1)
1
(2)

2
(2) and

= = =c c c32.48; 52.6, 12.713
(2)

1
(3)

2
(3) and =c 23.733

(3) . From Eq. (12)
we obtain

=
+ +

g
a a a a a

a
( ) ( ) 4 ( ) ( ) 4 ( )

2 ( )
.m

2 2
2

1 3 3

3 (13)

Expression (13) allows us to determine the value of gm with good
accuracy (the maximum deviation from the simulation results does not
exceed 3.3%). Then, the quantity r2 for a particular ( , ) state-point can
be found by solving the system of Eqs. (9), (11) and (13).

Fig. 1. Radial distribution function. The solid line corresponds to the two-step
approximation (8), the dashed line corresponds to a typical RDF of a liquid-like
state.
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The RDF g x( ) enters microscopic equations for various physical
properties. For example, the reduced excess internal energy Uex of the
Yukawa fluid [17–21] is

=U x g x x dx3
2

exp ( ) .ex 0 (14)

Using Eq. (8), we immediately obtain from Eq. (14)

=U
g

F x
g

g
F x3

2
( )

1
( ) ,m m

m
ex
(2st)

2 1 2
(15)

where

= +F x x x( ) ( 1)exp( ).

The reduced excess internal pressure Pex of Yukawa fluids [17–21] is

= +P x x g x xdx
2

( 1)exp ( ) .ex 0 (16)

Then, using Eq. (8), we find

=P
g

G x
g

g
G x

2
( )

1
( ) ,m m

m
ex
(2st)

2 1 2
(17)

where

= + +G x x x x( ) (( ) 3 3)exp( ).2

The microscopic expression for the reduced pair excess entropy Sex2
in the two-particle approximation does not explicitly contain the in-
teraction potential u r( ) and for an isotropic system reads [22]

= +S g x g x g x x dx3
2

( )ln ( ) 1 ( ) ,ex2 0
2

(18)

where pair excess entropy is expressed in units NkB. From Eq. (8) we
find

= +S
g

x g g g g g1
2( 1)

[ ln ( ln 1 )].
m

m m m m mex2
(2st)

1
3

(19)

The interparticle interaction and structural properties determine
also the collective particle dynamics of a system [23,3]. The propaga-
tion of a collective mode is characterized by the so-called dispersion
relation k( ), where is the frequency of these excitations, and k is the
wave number. The exact expression for the dispersion law k( )L of the
longitudinal acoustic-like mode in liquids is not known [24]. Therefore,
the dispersion k( )L is calculated, as a rule, within the framework of
some approximations or theoretical models [23]. For soft interactions
in the plasma-related context, QLCA has been proven to adequately
describe the dispersion relation k( )L , especially in the long-wave-
length regime. For Yukawa fluids the QLCA model yields [10,7,11,12]:

=
+

+k k
k

D k( ) ( ) ,L p
(QLCA)

2

2 2 (20)

where =k ka,

=D k K k g x x
x

dx( ) ( , ) 1 ( ) exp( ) ,
0

and

= + + + +

K k

x x kx
kx

kx
kx

kx
kr

x

kx
kx

( , )

2 1 ( )
3

sin( ) 3cos( )
( )

3sin( )
( )

( )
3

sin( ) 1 .

2

2 3

2

Using the approximation (8), we obtain from Eq. (20)

=+ k g E x
g

g
E x( ) ( )

1
( ) ,L p m

m

m

(QLCA 2st)
1 2

(21)

where

= + +

+
+

E x kx
kx

kx
kx

x

k kx kx
k k

x

( ) 1
3

2cos( )
( )

2sin( )
( )

( 1)

( cos( ) sin( ))
( )

exp( ).

2 3

2

2 2

As follows from Eqs. (15), (17), (19) and (21), the quantities
U P S, ,ex ex ex2 and the dispersion relation k( )L

(QLCA) can be directly cal-
culated for a given ( , ) state-point. In addition, these quantities can
be evaluated on the basis of microscopic expressions (14), (16), (18)
and (20) if the actual RDF is known. The actual RDFs have been cal-
culated using MD simulations [25–29]. These simulations have been
performed for a Yukawa system consisting of 64000 particles in a cubic
cell with the periodic boundary conditions. The simulations have been
done the NVT ensemble. The time step for integration of the equations
of motion has been chosen as = =t t0.01/ /(200 3 )pstep th , where tth is
the time required for the particle to overcome the average interparticle
distance a2 , moving with the thermal velocity =v k T m/Bth .

The results of numerical calculations for the reduced excess internal
energyUex, reduced excess internal pressure Pex and reduced pair excess
entropy Sex2, obtained using the approximation (8) along with those
obtained using the actual RDFs from MD simulations are presented in
Table 1. The relative deviations between theoretical and simulation
results are also given in this table (in percent). It is observed that the
proposed model provides very accurate estimates of Uex and Pex. The
relative deviations from “exact” MD results are usually less than 1%.
This is comparable to the accuracy of other recent approximations
[18,30,20,19]. More accurate integral equation theory models are

Table 1
Reduced excess internal energy Uex , reduced excess internal pressure Pex and reduced pair excess entropy Sex2 of Yukawa fluids evaluated using the actual RDF from
MD simulations. The same quantities (U P,ex

(2st)
ex
(2st) and Sex2

(2st)) are calculated from Eqs. (15), (17) and (19). The relative deviations Uex , Pex and Sex2 between the
theoretical and simulation values are given [in percents].

Uex Uex
(2st) Uex Pex Pex

(2st) Pex Sex2 Sex2
(2st) Sex2

1 20 21.132 21.213 0.38 24.995 25.267 1.09 −0.63 −0.856 35.87
1 50 51.562 51.681 0.23 61.805 62.363 0.9 −1.136 −1.242 9.33
1 100 101.968 101.72 0.24 122.994 123.717 0.59 −1.839 −1.604 12.78

1.5 20 7.029 7.026 0.04 9.371 9.371 0.0 −0.532 −0.738 38.7
1.5 50 16.495 16.525 0.18 22.647 22.621 0.11 −0.937 −1.038 10.8
1.5 100 31.965 31.924 0.13 44.552 44.334 0.49 −1.478 −1.418 4.06

2 20 2.948 2.902 1.56 4.311 4.274 0.86 −0.434 −0.626 44.2
2 50 6.509 6.534 0.38 9.994 10.003 0.09 −0.75 −0.944 25.9
2 100 12.154 12.215 0.5 19.184 19.151 0.17 −1.164 −1.238 6.4
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available, albeit rather more complicated, such as for instance the
variational modified hypernetted chain approach [31], and the iso-
morph-based empirically modified hypernetted chain approximation
[32] and the empirical bridge function approach [33]. The appeal of the
present approach is mostly in terms of its simplicity and physical
transparency. For the reduced pair excess entropy the agreement is not
so good, but increases when the coupling parameter increases. The
entropy is more sensitive to the exact shape of the RDF. This is abso-
lutely not surprising: From Eq. (18) we see that in contrast to the energy
and pressure, the contribution to the reduced pair excess entropy from
the region g x( ) 1 is vanishingly small.

The dispersion relations k( )/L p of the longitudinal acoustic-like
mode are presented in Fig. 2 for the nine ( , ) state-points in-
vestigated. Here, the theoretical results obtained using Eq. (21) are
compared with the results obtained in the framework of the one-step
approximation (7) and MD simulations. In MD simulations, the dis-
persion relations have been evaluated from the location of the maxima
in the spectral density of the longitudinal current (for details see Ref.
[34]).In addition, we estimated the positions of the maxima in the
theoretical spectra of the dynamic structure factor from work [3],
which obtained using the results of the sum-rule approach. As can be
seen from Fig. 2, theoretical results reproduce properly the dispersion
law for the case of low temperature states with = 100 and 50. Some
discrepancy between the theoretical and MD simulation results is ob-
served only for the case of = 20 for the wave number

< <k k k( /2)max max. The main reason for disagreement here is the ne-
glect of the kinetic contribution to the dispersion relation (which is
reasonable at strong coupling, but is not so appropriate at weaker
coupling). It is noteworthy that for all considered ( , ) states, the
theoretical model (21) reproduces very well the features of collective

vibrational dynamics in the wave number range corresponding to the
generalized hydrodynamics: < <k k0 ( /2)max . In particular, the theo-
retical model yields the correct values of the sound velocity:

=c k klim ( )/s k L0 . For example, for the state with = 20and = 1 we
find =c a/( ) 0.97s p , and for the state = 100 and = 2 we obtain

=c a/( ) 0.44s p . Note that the dispersion relations found within the one-
step approximation (7) also reproduce the MD simulation results with a
very good accuracy at long wavelengths [7,8].

The main results of this work can be summarized as follows. The
two-step approximation for the RDF proposed in this work yields
thermodynamic quantities such as the reduced excess internal energy,
the reduced excess internal pressure, the reduced pair excess entropy
and also the dispersion relation k( )L of the longitudinal collective
mode for the Yukawa fluids. In the investigated intermediate screening
and moderate-to-strong coupling regimes, energy, pressure, and the
long-wavelength dispersion relations are all in excellent agreement
with MD simulation results. For these quantities the exact structure of
the RDF is not essential and properly designed models can be quite
useful. For the reduced pair excess entropy the agreement is not so
good, illustrating much stronger sensitivity to the exact shape of the
RDF. In addition, it should be noted that the two-step approximation for
the RDF proposed in this work for a homogeneous Yukawa fluid can
also be generalized for the cases of inhomogeneous fluids, which, for
example, can form at the surface of solid walls [35], as well as for the
cases of two or more component Yukawa fluids [36]. In these cases,
additional information is needed on the position x1 of the left boundary
of the first maximum in the two-step for the RDF approximation, de-
termined from the condition =g x( ) 0.51 .

Fig. 2. Reduced frequency k( )/L p of the longitudinal collective mode of Yukawa fluids versus the reduced wave vector k k/ max for nine ( , ) state-points. Here,
kmax is the position of the main maximum in the static structure factor S k( ). The symbols represent MD results based on the analysis of the spectral density of
longitudinal current fluctuations. Solid curves are the results obtained using Eq. (20) with the actual RDF taken from MD simulations. The dashed curves represent
the results of Eq. (21) with the two-step approximation for RDF and the dash-dotted curves correspond to Eq. (20) with the one-step approximation (7) for RDF [7].
The symbols • represent positions of the maxima in the theoretical spectra of the dynamic structure factor from work [3].
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