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Abstract: In this review, we explore systemization of knowledge about the triggering effects of non-
genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis
(RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were
analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender
factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in
the body with the impact of these factors being non-specific, but these common challenges may be
decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of
this particular disease is associated with the presence of congenital loci minoris resistentia. The more
frequent non-genetic factors form tangles of interdependent relationships and, thereby, several inter-
dependent external factors hit one vulnerable basic process at once, either provoking or reinforcing
each other. Understanding the specific mechanisms by which environmental and individual factors
impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis
and, if the factor is modifiable, might be useful for the prevention or delay of its development.

Keywords: rheumatoid arthritis; environmental factors; infection; mental stress; perinatal factors;
gender

1. Introduction

Rheumatoid arthritis (RA) is a recognized model of multifactorial diseases, developing
as an inappropriate response to environmental challenges in a genetically predisposed
individual. Indeed, less than 30–60% of RA risk is due to the genetic propensity, whereas
40–70% is due to the influence of non-genetic factors [1]. Therefore, the study of the role
of non-genetic factors in RA development is of great interest. In addition, in contrast to
genetic predisposition, if we have a clear idea of the prognostic significance of these factors,
we can manipulate at least some of them in order to prevent or delay RA onset. Even if we
cannot eliminate or weaken the effect of any factor, providing clearer understanding of the
pathogenic mechanisms of its effect on persons at risk can contribute to the development of
approaches to safe therapy by inhibiting undesirable effects in the preclinical RA stages.
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In this review, we discuss systematization of the knowledge regarding pathogenic
mechanisms that have a triggering effect of non-genetic factors leading to RA development.

2. Methods

PubMed publications were selected using the following keyword pairs: “RA and
risk factors” (since 1969–2022years–10,120 results, Figure 1) and “RA and environment”
(1949–2022years–2933 results, Figure 1), as well as “RA and family aggregation”, “RA and
ethnicity”, “RA and socioeconomic indicators”, “RA and perinatal factors”, “Perinatal
programming and immune system”, “RA and gender”, “Immune system and sex hor-
mones”, “RA and age”, “Immune system and age”, “RA and body mass index”, “Obesity
and inflammation”, “RA and eating habits”, “RA and coffee”, “Caffeine and immune
system”, “Alcohol and immune system”, “RA and alcohol”, “RA and smoking”, “RA and
pollutants”, “RA and ecologic factors”, “RA and occupational hazards”, “Immune system
and ecologic factors”, “RA and mental stress”, “Mental stress and pathogenesis”, “Mental
stress and immune system”, “RA and sleep deprivation”, “Sleep deprivation and immune
system”, and “RA and infections”.

Figure 1. Results of PubMed publications searching with keywords (A) “RheumatoidArthritis and
risk factors” (10,120 results in 1969–2022), (B) “Rheumatoid arthritis andenvironment” (2933 results
in 1946–2022).

After analyzing most of the publications, we selected the most informative of them
and tried to create a complete picture of the possible relationships of RA and risk factors.

2.1. Facts of Genetic and Non-Genetic Factor Interplay

A detailed review of the genetic background of RA is not the subject of this article, but
it makes sense to mention some of the particularly pertinent known facts.

2.1.1. RA-Associated HLA-DRB1

Allele variants (Shared epitopes, SE) show significance due to increased density of DR4
and DR1 molecule expression on antigen-presenting cells, leading to noticeable presentation
of low-affinity peptides—a process of little importance for the development of a T-cell
response at a more typical physiological density of DR molecules [2]. Presentation of
low-affinity auto-peptides leads to autoreactive T cell activation.
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A pronounced SE association and anti-cyclic citrullinated peptide antibodies (ACCP),
but not rheumatoid factor (RF) production, is well documented. In a number of experimen-
tal models, the stability of SE complexes (DRB1*01and*04) with citrullinated proteins and
other arthritogenic antigens was demonstrated to be increased in comparison with antigens
not present in RA pathogenesis. And, in addition, the interaction of these complexes with
T-lymphocyte receptors (TCR), as well as their influence on T-lymphocyte proliferation and
Th1 cytokine response development, was demonstrably increased [3–8].

The affinity of TCR binding to HLA molecule–antigen complexes plays an important
role in the lymphocyte maturation: too strong or too weak binding leads to a corresponding
removal of clones. Despite their inconsistency, the experimental results demonstrated that
interaction of these complexes with TCRs is optimal for the development of an immune
response to citrullinated peptides and activation of proinflammatory cytokine synthesis.

The list of non-genetic factors triggering HLA gene expression:

1. Expression is due to appearance of citrullinated peptides in the infectious inflamma-
tory sites [9];

2. Smoking leads to the exposure of citrullinated proteins in the respiratory tract [10];
3. Both SE and aryl hydrocarbon receptor (AhR)—a transcription factor mediating

xenobiotic effects of many pollutants (including tobacco)—act as signal transduction
ligands facilitating differentiation of Th17 cells and osteoclasts; nuclear factor kappaB-
mediated synergistic interaction between the SE and AhR pathways was demonstrated
in severe arthritis in mice [11].

2.1.2. Non-HLA Gene Polymorphisms

About 100 RA susceptibility loci were identified with SNP accumulation in T-cell and
B-cell pathways, nuclear factor kappa B (NFkappaB) and Jak/STAT-signaling cascades,
cytokine signaling pathways, proliferation and/or impaired hematopoietic and immune
cells [12–15]. Collectively, RA-associated non-HLA gene polymorphisms are due to the
insufficient inhibition of immune cell activity and to an excessive and long proinflammatory
reply to external challenges.

The list of non-genetic factors triggering expression of these genes:

4. Infections due to activation of NFkappaB and Jak/STAT-signaling cascades, cytokine
signaling pathways, immune cells proliferation, appearance of citrullinated peptides
in the infectious inflammatory site [16–21];

5. Smoking due to citrullinated proteins exposure in lungs [22,23];
6. Miscarriage, complicated pregnancy, childbirth leading to a Th1-immune reaction

flare-up and proinflammatory cytokine expression [24];
7. Obesity linked to increased proinflammatory cytokine levels [25];
8. Mental stress and sleep deprivation due to increased proinflammatory cytokine levels [26–28].

2.2. Complex Non-Genetic Factors
2.2.1. Family Aggregation

The obvious components of RA family clustering are genetic risk and shared envi-
ronmental factors [29]. Heritability of ACCP-positive RA is~50% and of ACCP-negative
RA is ~20% [29]; therefore, genetic and non-genetic factors might be of relatively equal
importance for seropositive RA development, whereas non-genetic factors might be more
important for seronegative RA. Study of the contribution of SE, 76 other gene SNPs and
non-genetic factors determined to be shared by the family members (smoking, alcohol
intake, parity, silica exposure, BMI, fatty fish consumption, socio-economic status) demon-
strated: (1) SE together with 76 SNPs explained about 20% of the familial risk [30] and
(2) studied non-genetic risk factors did not explain any significant part of the familial risk
in both seropositive and negative RA. Therefore, family history of RA remains an important
independent risk factor for RA. Many non-genetic factors besides the ones studied might
be due to the RA family clustering with an essential cumulative effect.

The list of triggering and protective family associated factors:



Int. J. Mol. Sci. 2022, 23, 8140 4 of 25

• Genetic;
• Infections;
• Microbiome;
• Lifestyle;
• Ecology (when living together);
• Unknown??

2.2.2. Ethnicity

The overall adult RA prevalence is approximately 0.5%; however, considerable vari-
ation exists between ethnicities, with a higher prevalence observed in those of European
ancestry (0.3–1.1%) than in those of Asian ancestry (0.1–0.5%) [31,32], and even higher
prevalence (approximately 5–7%) has been reported in Native American populations [33].
That is due to the known genetic differences between the populations as well as the
obvious but not-well-studied differences in non-genetic factors (lifestyle, eating habits,
socio-economical differences and so on).

Some examples of the known ethnic genetic specificity [15,34–36]:

HLA-DRB1 SEs: in Europeans—HLADRB*0401, HLA-DRB*0404, HLA-DRB*0101,
in Asians—HLADRB*0405, HLA-DRB*0101, HLA-DRB*0901
PTPN22 SNPs confirmed for Europeans, rare in Asians
TRAF1/C5 confirmed for Europeans, suggested for Asians
STAT4 confirmed both for Europeans and Asians
CD40 confirmed for Europeans, no associations for Asians
CTLA4 confirmed both for Europeans and Asians
PADI4 suggested for Europeans, confirmed for Asians
FCRL3 suggested for Europeans, confirmed for Asians

The list of suggested ethnicity-associated triggering and protecting factors:

• Genetic;
• Lifestyle;
• Eating habits;
• Mentality;
• Socioeconomic indicators;
• Climate.

2.2.3. Socioeconomic Indicators

A lower educational level ≤ 8 years (OR = 2.42, 95% CI 1.18–4.93 vs. University
degree) and living in poverty contributed (OR = 2.96, 95% CI 1.88–4.65, p < 0.001) to
RA development [37,38].

An a priori list of provoking/protective socioeconomic factors:

• Professional activity—lower status—more professional occupational hazards?
• Lifestyle
• Food habits
• Lower status—fewer opportunities to protect/improve one’s health
• Less education—less understanding of the importance of regular examinations
• Living condition quality—overcrowding, uncomfortable housing—infections

2.3. Anthropological Indicators
2.3.1. Perinatal and Early Life Factors

Twin studies demonstrated a high sensitivity of the fetal genome to the effects of
various factors of maternal origin.

In monozygotic twins sharing a chorionic shell during the intrauterine development,
the pattern of gene methylation differed from that in pairs who developed in two separate
chorionic shells. In adulthood, this can lead to significant differences in organs and system
functioning in these genetically identical individuals [39]. The impact of perinatal factors on
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the development of cardiovascular diseases, type II diabetes, and obesity has been demon-
strated [40–42]. The bulk of publications on this issue was devoted to allergic diseases.
A correlation ofTh1/Th2/Th17cytokine levels, pro-inflammatory cytokine/chemokine
indexes, and IgE levels in peripheral blood of pregnant women at 34 weeks of gestation
and in umbilical cord blood of their newborns was demonstrated, persisting one year after
delivery [43]. A relationship of cytokine levels in mother and her child and a number of
disorders of fetal immune system maturation might be due to epigenetic modeling during
prenatal development and abnormal gene expression [44,45]. Such programming of the
fetal immune system under conditions of a complicated pregnancy might occur in families
with a history of RA. Infections during the first year of life were associated with increased
risk of seronegative RA (OR = 2.6). Maternal smoking during pregnancy changes the
pattern of newborn gene methylation; the abnormally methylated gene clusters included
significant impact on RA pathways related to cell cycle, angiogenesis, T cell regulation
and other white blood cell related pathways, which increased the risk for RA develop-
ment [46,47]. Peculiarities of prenatal development and pregnancy abnormalities were
not necessarily closely tied to future RA development and even might be protective. For
example, low birth weight (OR = 0.7), being small for the gestational age (OR = 0.5) and
preterm birth (OR = 0.6) were shown to have a borderline protective effect [48].

List of hypothetical links of perinatal factors and RA risk in predisposed individuals:

Intrauterine fetal infections⇒ immune system programming
Maternal infection during pregnancy⇒ programming of fetal immune system
Complicated pregnancy and childbirth⇒ fetal immune system programming
Microbiome—maternal origin, breast feeding/bottle feeding
Maternal smoking
Early life infection⇒ programming the immature immune system and impact forma-
tion of the microbiome

2.3.2. Gender Associated Factors

Sexual dimorphism in expression of human rheumatic diseases involves immunomod-
ulatory effects of post-puberty levels of sex steroid hormones [49]. Due to the presence of
hormone receptors on immune cells [50], sex hormones might influence different aspects
of immune system functioning and potentially affect the risk, activity and progression
of RA [51]. Sex hormones undergo complex dynamics during pregnancy, childbirth, the
postpartum period, and the onset of menopause [52–55].

These multidirectional changes in sex hormones are superimposed on the effects
of adrenocorticotropic hormone and cortisol with well-known impacts on the immune
system and inflammation. Moreover, the levels of corticosteroid production are different in
normal and complicated pregnancies [55]. Low maternal cortisol may influence the fetal
hypothalamic–pituitary–adrenal axis (HPA) and disease patterns later in life following a
complicated pregnancy [56]. A negative association between maternal cortisol and infant
birth weight was demonstrated [57].

We tried to link sex-related events and associated hormonal fluctuations with the
impact on the development of RA (Supplementary Table S1).

Repeated normal pregnancies, childbirth, postpartum breastfeeding with normal
feedback in the network of sex hormones and glucocorticoids⇒ bursts of production of
these hormones with a protective effect⇒ reduced RA risk;

Normal pregnancy with hidden feedback impairments in the sex hormone network
and glucocorticoids⇒ RA onset within 1 year after delivery;

Adverse pregnancy as a clinical manifestation of feedback impairments in the network
of sex hormones and glucocorticoids⇒ RA triggering

Menopause⇒ decrease in hormone levels and their protective effects⇒ RA risk
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2.3.3. Age

RA affects any age group, with the peak occurring during the sixth decade of life [58,59].
The triggering role of age might be due to the decline in host immunity with promotion of
immune reactivity to self-antigens, weakened antimicrobial immunity, predisposition for
tissue inflammation and osteoarthritis due to chronic microtraumas of joint tissues [60,61].

Impact of age on the immune system and joint tissues [61]:

• Weakened antimicrobial immunity;
• Susceptibility to respiratory infections;
• Reactivation of chronic viral infections;
• Predisposition for tissue inflammation;
• Osteoarthritis due to chronic microtraumas of joint tissues.

2.3.4. Body Mass Index

Obesity is recognized as a chronic low-grade systemic inflammatory state, NFκappaB
and NLRP3 inflammasome signaling pathways and proinflammatory cytokine transcription
being the key events [25].

Obesity effects on the immune system [62] due to RA triggering: effector/memory
T-cell population increase, impoverishment of TCR diversity, M2 to M1 macrophage shift
in adipose, increase in the TH1 cell population and decrease in the Treg cell numbers in
adipose, NF-kB cascade activation in PBMCs, increased production of MIF, IL-6, TNF-a,
MMP-9 mRNA expression in PBMCs, inhibition of phagocytic activity of PBMCs and
increased infection susceptibility [62]. Chronic joint tissue microtraumas is additive.

Link of BMI and RA:

• Overweight⇒ chronic low grade, systemic inflammatory state
• Microbiome structure peculiarities
• Overweight⇔ stress⇔ sleep deprivation
• Overweight⇒ infections
• Overweight⇒ chronic joint tissue microtraumas

2.3.5. Eating Habits

Diets containing fatty fish (marine omega-3 fatty acid, OA3FA) are beneficial for RA
prevention and reduce the need for nonsteroidal anti-inflammatory drugs [63]. RA devel-
opment is associated with lower levels of OA3FA, especially in ACCP-positive persons at
risk. Three mechanisms were described: (I) OA3FA inhibits proinflammatory eicosanoid
production (prostaglandinE2 and leukotriene B4), which in turn inhibits NFkappaB activa-
tion and proinflammatory interleukin production, ultimately resulting in autoreactive B
cells and synoviocyte activation and maturation; (II) OA3FA promotes cell surface receptor
expression (vascular cell adhesion molecule (VCAM)-1, and PPARγ in monocytes) or repres-
sion (CCL5,HLA-DQ/DR), leading to reduction of Th17 differentiation, enhancement of
Foxp3+CD4+T cells regulatory functions, promotion of M2 polarization and (III) interaction
between OA3FA and the SE is suspected as an inverse association between OA3FA concen-
trations, and SE+RF (OR = 0.26), or SE+ACCP (OR = 0.44) was reported in RA risk cohorts.
The other promising approach for protection might be the Mediterranean diet with low
saturated fat content, contributing to a decrease in RA activity [64]. Though the evidence is
insufficient to unconditionally include this diet in the recommendations for RA patients, at
least there is reason for more in-depth research, since it was demonstrated that this diet
may lower RA severity due to antioxidant and anti-inflammatory properties [65,66].

The earliest preclinical events in RA development were proven to start at the barrier
tissue mucosal membranes, including the gut. Although the data on RA association with
microbiome features are extremely contradictory, mainly due to small sample sizes, a priori
it can be assumed that microbiome–local immunity and barrier cell interactions play a role
in the earliest RA stages. So, dietary manipulation of the microbiome might be effective in
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suppressing undesirable events that take place in early RA stages, when the process has
not yet gone awry [67–70].

On the other hand, a Western diet with higher intake of red and processed meats,
sweets, and refined grain associated with elevated inflammatory markers might increase
RA risk [71].

2.4. Salt and RA

Of interest is the number of publications discussing the problem linking RA to sodium
chloride consumption. This problem has not been sufficiently studied with regard to RA,
probably due to significant difficulties in technical methods. However, the in vitro effects
of excess sodium chloride concentrations on immune cells suggest a potential trigger role
in the pathogenesis of RA.

Indeed, salt increased migration of macrophage-like RAW264.7 cells in a dose-dependent
fashion with no migratory response noted in isotonic or hypotonic media controls, or
other osmo-active agents [72], and high NaCl concentrations promoted IFNβ production
and signaling in human and mouse macrophages and inhibited M2 macrophage activa-
tion [73,74]. Dendritic cells treated with high NaCl concentrations produced increased
levels of interleukin-1β and promoted T cell production of cytokines IL-17A and interferon
gamma (IFN-γ) [75].Induction of Th17 response due to the activation of glucocorticoid
kinase 1 (SGK1), a serine/threonine kinase, governing Na(+) transport and salt (NaCl)
homeostasis in the cells, on the one hand, is critical for regulating IL-23R expression and,
on the other hand, for stabilizing the TH17 cell phenotype and controlling the balance
between regulatory Treg and Th17 cells [76]. Therefore, salt promotes the suppression
of Treg proliferation and function as well [76,77]. So, in vitro high salt concentrations
demonstrated a perceptible effect, including triggering Th-17 responses, which is relevant
in RA pathogenesis.

Next, experiments in rodent models demonstrated more severe clinical and histo-
logical arthritis in the high-salt diet and collagen-induced arthritic mice, together with
higher numbers of Th17 cells among splenocytes and increased expression of synovial and
intestinal IL-17, compared to control collagen-induced arthritis (CIA) mice fed a normal
salt diet [78]. Sehnert et al. studied the impact of a low-salt vs. a normal and a high-salt
diet on the CIA and K/BxN serum transfer-induced arthritis (STIA) [79]. In both mouse
models, a low-salt diet significantly decreased arthritis severity, with less inflammatory
joint infiltrates and cartilage breakdown. Moreover, IL-1 receptor blocking (in STIA) re-
duced complement-fixing anti-CII IgG2a levels and decreased anti-CII IgG2a/IgG1 ratios
(as a more Th2-like response). In addition, reduced IL-17 and monocyte chemoattractant
protein-1 levels (in CIA) were demonstrated.

The results of studies on the effect of a salt regimen in humans are less convincing.
On the one hand, a low-salt (6 g/d for months) vs. a high-salt (12 g/d) diet in healthy
individuals led to decrease in the blood monocyte number and reduced production of
proinflammatory cytokines (IL-6 and IL-23), along with an enhanced ability to produce
anti-inflammatory cytokine IL-10 [80]. On the other hand, no impact of a salt regimen on
Treg/Th17 lymphocyte levels and in vitro Th17 cell differentiation was revealed in both
healthy individuals and RA patients [81].

To further focus on RA, a comparison of synovial fluid between RA patients and OA
patients revealed that Na+ and IL-17 were more abundant in RA synovial fluid, indicating
a possible link of salt intake and rheumatoid inflammation [78]. Urinary Na/K ratio
positively and significantly correlated with DAS28-ESR [82]. High daily sodium intake
(estimated from foods plus added salt) in 18,555 individuals, including 392 self-reported
rheumatoid arthritis individuals, showed a significant association with rheumatoid arthritis
(OR = 1.5) [83]. In a nested case-control study, including 386 individuals who had stated
their dietary median of 7.7 years before the onset of symptoms of RA and 1886 matched
controls, revealed a link of high sodium intake with a more than doubled increased RA risk,
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but only among smokers [OR = 2.26) [84]. Jiang et al. revealed that high sodium chloride
consumption enhances the effects of smoking in ACCP RA development [85].

Dynamic testing of RA in patients who were on a low-salt diet for 3 weeks (with
analysis of urinary sodium excretion for confirmation adherence to the dietary regimen)
and then returned to a normal salt diet revealed a trend toward a reduction in the Th17 cell
frequencies and a countertrend for Treg and return to the previous levels after 2 weeks of
following the normal salt regime with no significant apoptosis or altered proliferation [86].
It should be noted that publications on the problem of the link between RA and the salt
regime are currently scarce. Apparently, given some encouraging findings, further research
is needed for confirmation.

2.4.1. Coffee

The results of the RA link with coffee consumption are ambiguous. On the one
hand an increased risk was demonstrated (>4 cups) for RF-positive and ACCP-positive
RA [87–90]. On the other hand, 1–8 cups per day appeared to have a protective effect [91].
At that level, multiple anti-inflammatory effects of caffeine are quite consistent with the
protective effects of coffee: anti-inflammatory cytokines increased and pro-inflammatory
cytokines decreased production, neutrophils and monocytes chemotaxis were inhibited,
and B-cell antibody production decreased [92]. In addition, some coffee components
possess antioxidant properties [93,94].

2.4.2. Alcohol

On the one hand, moderate alcohol consumption reduces RA risk [66], but on the other
hand, patients who had stopped drinking due to their illness or a desire to improve their
health had worse physical functioning and higher levels in pain-related variables [95,96].

Studies of the mechanisms of alcohol consumption are quite consistent with the pro-
tective effect on RA development. Healthy premenopausal women having one drink/day
had a significant serum increase in estradiol [97], with its remarkable anti-inflammatory
effects. Alcohol consumption decreases systemic inflammation and inflammatory arthri-
tis [98], diminishes response to immunogens and suppresses pro-inflammatory cytokine
synthesis [99]. Alcohol addition to drinking water inhibits clinical signs of arthritis and
joint destruction in mice and upregulation of testosterone production due to the decrease
in NF-kB activation, cytokine/chemokine production and leukocyte chemotaxis [98].

2.4.3. Smoking

The association of smoking and RA is also well-known. In a Swedish cohort of
277,777 male construction workers, chronic smoking was associated with increased RA risk
(RR = 2.1) [100]. The pathophysiological mechanisms involve increased oxidative stress,
apoptosis, development of a systemic proinflammatory state, autoantibody production,
and interplay with genetic factors (Supplementary Table S2).

2.5. Burden of Society
2.5.1. Residence

The incidence of RA in Taiwan cities is higher than in rural areas [101]. In the Polish
cohorts, the physical condition of the sick urban citizens was more severe compared to the
villagers [102]. Swedish studies did not reveal significant differences in RA incidence in
sparsely populated areas and cities [103]. Conflicting results may be due to the ethnogenetic
characteristics of cohorts, environmental differences, size of cities (in a Swedish study, a
settlement with 25,000 inhabitants was considered a large city). The reasons for the heavier
course of RA in cities may be exposure to traffic pollution, overcrowding, and more
intensive contacts due to increased incidence of infections, the more intense rhythm of city
life and provocation of mental stress.
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2.5.2. Mental Stress

Eustress is defined as favorable stress that invokes development of a balanced pro-
tective adaptive response (including Th1→Th2 shift of immune responses) to stressors in
order to mobilize the body’s mental and physical reserves to resolve the situation [104].
This attests at least to the absence of any direct involvement of stress in provoking RA, that
being a Th1-mediated disease. On the other hand, stress-induced shifts in the immune sys-
tem may have serious consequences for susceptibility to infections [105,106]. A number of
studies demonstrated the association of stress with acute respiratory rhinovirus infections,
respiratory syncytial virus, Coronavirus 229E type, parvoviruses and herpesvirus infection
reactivation [107,108]. All these viruses are known to be RA triggers [109–111]. However, in
our opinion, only repetitive episodes of trivial infections are significant for provoking and
maintaining RA activity. It is unlikely that a single infectious episode provoked by a normal
anti-stress adaptive response in turn might provoke RA onset, unless that episode is the last
straw in a series of immune system provocations of the genetically predisposed individual.

With excessive or chronic stress, or if there is a deviation in stress susceptibility,
decompensated stress (distress) develops, and this is precisely the situation that triggers
somatic disease development.

Analysis in the GWAS Catalog [112] revealed 14 matches of RA-and-depression-
associated SNPs (Figure 2).

Figure 2. Search results in the GWAS Catalog: SNPs of 14 genes are associated with both RA and
distress. The numbers of SNPs associated both with RA and distress are circled in red.

The comparison of RA and distress mechanisms indicates the possibility of mutual
potentiation of these conditions (Supplementary Table S3) [113]. That is (1) typical for RA
excessive NFkappaB pathway signaling and proinflammatory cytokine hyperproduction
leading to the abolition or weakening of the Th1→Th2 shift in acute stress and promoting
distress; (2) in RA, the features of HPA functioning with reduced production of glucocorti-
coids by the adrenal glands and, in some patients, a decrease in glucocorticoid receptor
expression with the development of steroid resistance were demonstrated, leading to dis-
tress development via abolition or weakening of the Th1→Th2 immune shift in acute stress;
(3) sympathetic/parasympathetic tone imbalance, detected in the preclinical RA stage, may
contribute to distress development and (4) a reduced or even completely absent immune
system cell response to catecholamines in RA may cancel or weaken theTh1→Th2 immune
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shift. Therefore, a detailed analysis reveals a certain synergy of triggering mechanisms
of distress and RA. Minimal and unobtrusive stress for most individuals, for those with
risk for RA, might provoke a prolonged pro-inflammatory cytokine production. Thus,
the mental stress influence on RA development depends on the intensity of the stress, its
duration, and individual characteristics of the HPA axis, which are obviously determined
by genetic and epigenetic factors.

Hypothetical link of mental stress and RA:
Residence (urban/rural)
Psychological discomfort at work and at home—occupational hazards
⇓⇓⇓
Distress⇒ infections⇒ RA
⇓
NFkappaB signaling pathway and proinflammatory cytokine production⇒ RA

2.5.3. Sleep Deprivation

Regulation of the wake–sleep cycle is controlled by multiple neurochemical and molec-
ular biological cascades, in which, in addition to the neuromodulatory system (in particular
low molecular weight neurotransmitters and neuropeptides), other factors are involved,
including HPA, the NFkappaB signaling system, cytokines, in regulating protein synthesis,
protecting the brain tissue from oxidative or glutamatergic stress [114]. In connection
with the problems discussed in this review, it is important to note that wake–sleep cy-
cle fluctuations in HPA hormone levels (in particular, cortisol and cytokines) occur not
only in the central nervous system but at the periphery as well. While the endocrine
system was long believed to obey circadian rhythms and to be involved in sleep regula-
tion, recently it has become evident that various immune system components also have
a circadian rhythmicity. Therefore, both brain and peripheral cytokines are included in
wake–sleep regulation, the most pro-inflammatory cytokines likely being somnogenic,
whereas most anti-inflammatory cytokines are not. Peak activities of the pituitary hor-
mones, prolactin and growth hormone production as well as another circadian pineal
gland hormone—melatonin—and decrease in cortisol production occur overnight due to
nocturnal sleep with the subsequent morning decrease in activity of nocturnal hormones
and peak activity of cortisol after awakening [115,116]. All of these hormones are known
to regulate immune system activity. Enhanced nocturnal prolactin, GH and melatonin
concentrations as well as low cortisol levels and the following morning changes of the
hormone activity are synergistically due to a Th1 shift at night and return to a Th1/Th2 bal-
ance of immune reactions in the morning [115,117]. These regularities were demonstrated
not just for cytokine production, but in particular for the circadian rhythms of phagocytes
and NK activities [114,117]. Normal circadian balance fluctuations might have a beneficial
effect on the anti-infectious immune reactions. In humans the primary response to viral
antigens following vaccination was enhanced by sleep [118–120]. A variety of disturbances
in sleep duration and quality are due to an imbalance in the complex interactions of HPA
hormones, melatonin and their receptors [116–122]. In particular, recurrent short sleep
sessions were associated with a flatter diurnal cortisol pattern [121]. The disturbed circa-
dian hormone modulation of the immune system leads to alterations in inflammatory gene
expression [123] and upregulation of transcriptional pathways (e.g., NFkappaB) responsi-
ble for the inflammatory response [26], even in individuals in the absence of other health
problems. So, sleep deprivation is associated with increased levels of the inflammatory
markers C-RP [27,28]. Sleep deprivation may be due to the alteration of immune cell
functions [114]: decrease in cell numbers of NK and other lymphocyte subsets, decrease in
NK lytic activity, and decreased phagocytosis. Sleep deprivation might slow the catabolism
of IgG. So, sleep disorders are fraught with a decrease in the effectiveness of anti-infective
immunity. The proinflammatory shifts and disturbances in the HPA hormone activity
caused by sleep deprivation bring these states closer to induction of mental stress and
obesity. This triad is a fairly frequent combination [116,124,125]. Another important aspect
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is that short sleep duration and poor sleep efficiency in both mid and late pregnancy were
associated with higher levels of IL-6 [126], and so, it might be a risk factor for adverse
pregnancy outcomes [127]. In turn, besides the peculiarities of diurnal fluctuations of
HPA hormones and melatonin, sleep disorders may be due to lifestyle factors and the
aging process [128,129]. Therefore, sleep deprivation itself, as well as in connection with
mental stress, obesity and with triggered adverse pregnancy outcomes, might play a role in
provoking RA and its activity.

Sleep deprivation probability in persons under RA risk seems to be rather high.
Various forms of clinically significant sleep disturbance were found in over 60% of RA
patients [130,131]. Poor sleep quality correlated with greater pain severity, joint disability
and RA activity [130,132–134]. High sleep deprivation incidence in RA is likely linked to
the features of circadian ACTH, cortisol and prolactin, as well as melatonin level fluctua-
tions [135–138], due to the demonstrated defect of HPA functioning.

Link of sleep deprivation and RA:
Sleep deprivation⇔Mental stress⇔ Obesity⇒ Proinflammatory shift⇒ RA Sleep

deprivation⇔Mental stress⇒Increased susceptibility to infections⇒ RA
Sleep deprivation⇒ Increased risk of adverse pregnancy⇒RA

2.6. Infections

Microorganisms and viruses are undoubtedly major RA triggers. Possible mechanisms
triggering host autoimmune responses by pathogens are well known: molecular mimicry,
epitope spreading, polyclonal lymphocyte activation, bystander activation and viral per-
sistence [139–142]. All of these processes were demonstrated in RA [80]. The fact is that
these mechanisms are beneficial phenomena, contributing to the immune system’s ability
to attack multiple pathogens.

Therefore, the problem is not in these processes as such but is due to: (1) immune
system disability to cope quickly enough with an infectious challenge due to RA-associated
gene SNPs and abnormal downregulation of genes of some innate and adaptive immune
system factors [110,143–147]; (2) imperfect control of the anti-infectious response, namely, in-
adequate lymphocyte activity modulation (PTPN22, CTLA-4,BTLA and other RA-associated
gene SNPs), as well as an enrichment of RA-associated gene SNPs in NFkappaB and
JAK/STAT signaling cascades due to the excessive proinflammatory response [14,148–150]
and (3) the impaired sanitation of the infectious inflammatory focus from pathogenic
and self-modified molecules due to pro-oxidant and antioxidant factor imbalance and
inadequate activity of several enzymes involved in remodeling of the extracellular ma-
trix [151–153]. Our long-term observations of RA patients and their first-degree relatives
demonstrated that the persons under RA risk suffer from frequent and prolonged trivial
infections. The peak of infections was observed within two years before RA onset and
decreased in three years after RA onset. Nevertheless, infections continued playing a role
in maintaining RA activity in the advanced stage of the disease. Increased incidence of
excessive bacterial colonization in feces, urine, skin and nasopharynx samples of advanced
RA patients without signs of infection indicates that the effectiveness of anti-infection
resistance is relative, and a delicate balance may be disturbed. Both the whole set of infec-
tions carried over a year, and certain infections (purulent upper respiratory tract infections,
acute and chronic tonsillitis exacerbations, skin infections and episodes of HSV infection
reactivation) were demonstrated to actually be involved in RA triggering and persistence
of RA activity [110,111,154].

Hypothetical link of infections and RA:
RA-associated HLA alleles⇒ susceptibility to certain trivial infections⇒ increased

infection incidence and duration [155–161].
Technogenic burden (exotoxins, occupational hazards, mental stress, overcrowding)

⇒ infections;
Imbalanced anti-infection resistance⇒ increased susceptibility to trivial infections

⇒ unbalanced anti-infection response (deficiency of some factors of innate immunity,
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prolonged pro-inflammatory cytokine production)⇒ infectious pathogen persistence⇒
lymphocyte inhibitory signaling systems deficiency⇒ impossibility of timely folding of the
immune response;

Certain infections⇒ posttranslational protein modifications in inflammatory sites⇒
violation of readjustment inflammatory focus (imbalance of pro-oxidant and antioxidant
factors, GST, MMP-3)⇒ lymphocyte inhibitory signaling system deficiency⇒ persistent
RF, ACCP, anti-carbamylated protein antibodies (anti-CarP) production.

Occupational Hazards and Eco-Toxicants

The more severe RA in urban settings may be due to the more technogenic atmospheric
emissions. RA incidence was inversely proportional to the distance of the residence from
high-emission motorways [162,163]. Increased RA risk linked with silica, carbon monoxide,
ozone, vapor, gas, dust and fume exposure, and cosmetic-associated mineral oil was
demonstrated in a bulk of studies [164–169].

Another bulk of experiments revealed the impact of various ecotoxicants on basic
intracellular processes, contributing to RA development (Supplementary Table S4). In
particular, ecotoxicant-provoked oxidative stress might be important for moving a person
at risk from one preclinical stage to another and to RA onset [170,171]. There are at least
two mechanisms: (1) generated ROS stimulate activation NFkappaB signaling [172–174]
and (2) oxidative stress can provoke protein carbamylation and the appearance of anti-Carp
antibodies, intensively studied as RA prognostic markers [175,176].

The individual dispersive efficacy of ecotoxicant degradation mechanisms—a so-called
“syndrome of nonspecific increased chemical susceptibility”, in particular, is manifested in
immune disorders. The said dispersion might be due to the SNPs of detoxication system
enzyme genes (Supplementary Table S5). At least three mutations were found to be RA-
associated. Study of the function of the detoxication system can reveal an important link in
the provocation of RA by non-genetic factors. It may turn out that ecotoxicant concentra-
tions considered to be safe for the general population are fraught with RA provocation in
persons at risk (Figure 3).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 24 
 

 

and fume exposure, and cosmetic-associated mineral oil was demonstrated in a bulk of studies [164–
169]. 

Another bulk of experiments revealed t h e  impact of various ecotoxicants on basic intracellu-
lar processes, contributing to RA development (Supplementary Table S4). In particular, ecotoxicant-
provoked oxidative stress might be important for moving a person at risk from one preclinical stage 
to another and to RA onset [170,171]. There are at least two mechanisms: (1) generated ROS stimu-
late activation NFkappaB signaling [172–174] and (2) oxidative stress can provoke protein car-
bamylation and the appearance of anti-Carp antibodies, intensively studied as RA prognostic mark-
ers [175,176]. 

The individual dispersive efficacy of ecotoxicant degradation mechanisms—a so-called “syn-
drome of nonspecific increased chemical susceptibility”, in particular,is manifested in immune dis-
orders. The said dispersion might be due to the SNPs of detoxication system enzyme genes (Sup-
plementary Table S5). At least three mutations were found to be RA-associated. Study of the func-
tion of the detoxication system can reveal an important link in the provocation of RA by non-genetic 
factors. It may turn out that ecotoxicant concentrations considered to be safe for the general pop-
ulation are fraught with RA provocation in persons at risk (Figure 3). 

 
Figure 3. Possible mechanisms of implementation of triggering role of ecotoxicants in RA. OS*—
oxidative stress. 

3. Concluding Remarks 
The non-genetic factors modulate basic processes in the body (Figure 4), with the impact of 

these factors on the body being absolutely non-specific. The impact of these ordinary nonspecific 
factors—trivial infections, ecotoxicants in concentrations not exceeding the permissible values, such 
commonplace events as pregnancy, delivery, menopause—on the loci minoris resistentia of a body 
at risk of RA is to initiate an imbalanced protective adaptive response, which may provoke the dis-
ease onset. The most significant and well-known weak links are undoubtedly SE. The expression of 
these RA-associated variants of HLA DR B1 alleles is due to the presentation of low-affinity anti-
gens, activation of autoreactive T lymphocytes and ACCP production. The other significant weak 
link is a poorly controlled and therefore beyond reasonable sufficiency pro-inflammatory response 
due to the bulk of SNPs accumulated in NFkappaB- and Jak/STAT, cytokine signaling pathways 
together with insufficient inhibitory control. It should be noted that RA is a phenotypically hetero-
genic pathology due to the sets of SNPs that differ from case to case. Therefore, hypothetically, there 
may be an RA subtype with congenital susceptibility to infections due to the SNPs of the genes 
involved in anti-infective protection and another RA subtype in persons with an imbalance in sex 
and corticosteroid hormones or an insufficient ecotoxicant detoxication system with matching sets 

Figure 3. Possible mechanisms of implementation of triggering role of ecotoxicants in RA.
OS*—oxidative stress.



Int. J. Mol. Sci. 2022, 23, 8140 13 of 25

3. Concluding Remarks

The non-genetic factors modulate basic processes in the body (Figure 4), with the
impact of these factors on the body being absolutely non-specific. The impact of these ordi-
nary nonspecific factors—trivial infections, ecotoxicants in concentrations not exceeding
the permissible values, such commonplace events as pregnancy, delivery, menopause—on
the loci minoris resistentia of a body at risk of RA is to initiate an imbalanced protective
adaptive response, which may provoke the disease onset. The most significant and well-
known weak links are undoubtedly SE. The expression of these RA-associated variants
of HLA DR B1 alleles is due to the presentation of low-affinity antigens, activation of
autoreactive T lymphocytes and ACCP production. The other significant weak link is a
poorly controlled and therefore beyond reasonable sufficiency pro-inflammatory response
due to the bulk of SNPs accumulated in NFkappaB- and Jak/STAT, cytokine signaling
pathways together with insufficient inhibitory control. It should be noted that RA is a
phenotypically heterogenic pathology due to the sets of SNPs that differ from case to case.
Therefore, hypothetically, there may be an RA subtype with congenital susceptibility to
infections due to the SNPs of the genes involved in anti-infective protection and another RA
subtype in persons with an imbalance in sex and corticosteroid hormones or an insufficient
ecotoxicant detoxication system with matching sets of SNPs. Therefore, it can be assumed
that one or another of the discussed effects may come to the fore in certain RA subtypes.
Given the growing interest in the preclinical stages of RA, which are known to develop
on the mucous membranes, perhaps the most promising line of research is to study the
interplay of barrier tissues, the local immune system and the microbiome in persons at risk
of RA.

Figure 4. Mosaic of weak links of the body at RA risk.

It should be noted that environmental and individual factors affecting the loci minoris
resistentia of a body at risk of RA form tangles of interdependencies, thus increasing their
impact on the development of the disease (Figure 5).
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Many non-genetic factors form the network of interdependent relationships; thus, sev-
eral interdependent external factors can hit one weak body locus at once, either provoking
or reinforcing each other (Figure 6).

Figure 6. Impact of non-genetic factors on weak links of the body under RA risk.
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Given the fact that the ratio of genetic and non-genetic RA risks is considered to
be fifty/fifty, the algorithm for disease risk predicting should include both genetic and
non-genetic factors, as well as any laboratory parameters indicating the negative impact of
these factors. If we want to track down and, if possible, to prevent negative development
of events at the earliest RA stages, the diagnosis of preclinical stages based on the presence
of autoantibody/inflammatory markers is somewhat belated, not to mention that articular
symptoms may be non-specific. This is not an easy task, keeping in mind the non-specific
character of the parameters modified by external factors, the same as in the general popula-
tion. It may be necessary to scale both the intensity of the external influence and the severity
of response to it. The task is further complicated by the fact that the sets of gene SNPs that
can lead to the development of RA can vary greatly from person to person. Indeed, RA is
characterized by a wide variety of clinical manifestations (phenotypic heterogeneity).

That’s why a number of the more radical thinkers even believe that, in fact, the set of
clinical signs that have been known to us since 1782 [177], and which we call "rheumatoid
arthritis", is the outcome of many different pathogenic pathways—or, in other words, a
syndrome resulting from a number of different diseases [52].
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