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ABSTRACT 

In this study we present a method for interpretation of gravimetric data obtained on 

spherical surface based on wavelet transform with the so-called “native” wavelet basis. 

We show that this apporach has several distinct advantages over commonly used 

methods, including a simple way of obtaining formal solutions of the inverse problem 

and easy identification of the causative sources.  
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1. Introduction 

Developing of new systems for processing and interpretation geophysical data is one of 

important direction in contemporary geophysics. For this purpose many researchers 

have been applying the wavelet transform – the modern mathematical tool which has 

proven itself to be useful for solving various geophysical problems, including 

processing and interpretation of gravity and magnetic data.  

In the works [1] and [2] were used wavelet transform with wavelets based on vertical 

[1] or horizontal [2] derivatives of the gravitational potential of a two-dimensional or 

three-dimensional point mass.  Such approach allow to receive information about 

parameters of causative sources. Close approach was applied in work [3], where was 

offered to use wavelet functions built on the basis of the Poisson kernel of the integral 

transformation that is used in geophysics for the analytic continuation of harmonic 

fields. In [4], the authors described separating regional gravity anomalies into 

components and studying of geological structures using mother wavelet of Halo. Gibert 

and Pessel [5] have showed that the continuous wavelet transform can be used for 

localization of point sources of potential anomalies. 

In order to solve of inverse problems and interpret of gravimetric data in work [1] was 

offered to use a 2D and 3D wavelet transform with the special basis called by authors 

"native". Principal advantages of this kind of wavelet transform is that: 

1. "Native" inverse wavelet transform is also a formal solution of inverse problem of 

gravimetry. 

2. This transform facilitates search of parameters of causative sources. 

This advantages, from our point of view, are important for solution of general 

gravimetric problems, therefore we have decided to take this approach as a basis to 

create of similar transforms for processing gravimetric data obtained on spherical 

surface. The main troubles and their solutions on the way from planar case across 2D-

spherical case toward 3D spherical case will described below. 
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2. Mathematical preliminaries 

 

2D and 3D planar case 

 

Above-mentioned family of "native" wavelets has the form:  

𝜓(𝑛)(ℎ, 𝑥) =
2𝑛−3ℎ𝑛−2

(𝑛 − 2)! 𝜋2𝑓
𝑉(𝑛)(ℎ, 𝑥), 𝑛 > 1 (1) 

where x is horizontal coordinates, h is vertical coordinate (depth), f is gravitational 

constant, function V(n)(x,h) is n-th vertical derivative of the gravitational potential of a 

two-dimensional point mass.  

Figure 1 shows wavelet transform of gravity field V(1) for a single two-dimensional 

point source at a depth of 5 km with the basis functions ψ(n) of (1) for n equal to 4. In 

this case maximum of wavelet coefficients has the same coordinates that causal source. 

 

Figure 1.Gravity field of a two-dimensional single point source located 5 km deep and 

solutions of inverse problem with basis functions ψ(n) from formula (1) for n, equal to 4. 

(1 mGal = 10-5 m/c2). 

 

In three-dimensional case this formula turns into 

 

𝜓(𝑛)(𝑥, 𝑦, ℎ) =
2𝑛−1ℎ𝑛−2

(𝑛 − 2)! 𝑓
𝑉(𝑛)
3𝐷(𝑥, 𝑦, ℎ), 𝑛 > 1 (2) 

 

where superscript «3D» emphasizes the three-dimensional of the model. 
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 2D sphere 

The first radial derivative of the gravitational potential of a two-dimensional point mass 

on 2D-sphere has the follow form 

𝑉𝑟(𝛾) = 2𝑓
𝑅 − 𝐻𝑐𝑜𝑠(𝛾)

𝐻2 + 𝑅2 − 2𝐻𝑅𝑐𝑜𝑠(𝛾)
 (3) 

 

where R is radius of the sphere, γ – zenith angle, h is depth of point mass, H = R - h. 

Function (2) is even and 2πR-periodic, therefore its Fourier transform is 
 

𝑆𝑉𝑟(𝜔) =
2𝐺

𝑅𝜋
∫

[1−𝑞𝑐𝑜𝑠(
𝑡

𝑅
)]𝑒𝑖𝜔𝑡

𝑞2+1−2𝑞𝑐𝑜𝑠(
𝑡

𝑅
)
𝑑𝑡

2𝜋𝑅

0
=

2𝐺

𝜋
∫

[1−𝑞𝑐𝑜𝑠(𝑦)]𝑒𝑖𝑅𝜔𝑦

𝑞2+1−2𝑞𝑐𝑜𝑠(𝑦)
𝑑𝑦

2𝜋

0
, (4) 

 

here q = (R – h) / R. In order to calculate this integral is need the theory of residues. 

Finally, there was found following ultimate result: 
 

𝑆𝑉𝑟(𝜔) = 2𝑓𝑒
−𝑅|𝜔|𝑙𝑛(

1

𝑞
)
= 2𝑓𝑒−ℎ𝑘|𝜔|, (5) 

 

where function 

ℎ𝑘 = −𝑅𝑙𝑛 (
1

𝑞
) = −𝑅𝑙𝑛 (1 −

ℎ

𝑅
) (6) 

 

might be named "seeming" depth. Here we should compare the result (6) with formula 

of Fourier spectrum of gravity anomaly of two-dimensional point source in planar case: 
 

𝑆𝑉𝑧(𝜔) = 2𝐺𝑒−ℎ|𝜔| (7) 

 

Comparison of (5) and (7) shows that radial derivative of the gravitational potential of a 

two-dimensional point mass on 2D-sphere and its planar analogue have the same 

formula of Fourier spectrum taking but different parameters of depth into account 

formula (6). On figure 2 was shown gravity anomaly on plane for  2πR-periodic set of 

gravity sources and the same anomaly on the sphere for single point mass. 
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Figure 2. Comparison of the potential field on a plane of 2πR-periodic set of sources 

and potential field on the sphere of single source. The depths of sources of both models 

(3000 and approximately 4055 km) are linked by formula (6).  

A: dotted black line corresponds potential field of planar model, solid red line 

corresponds field of spherical model.  

B: red circle corresponds the source of spherical model, black filled circles correspond 

2πR -periodic set of sources of planar model.  

This result allowed to consider a data obtained on 2D-spherical surface as a data on the 

plane but with other depth parameters of causative sources, consequently if we perform 

wavelet transform with "native" basis we will get solution of inverse problem on 2D-

sphere as well as on plane. 

3D sphere 

When we tried to transfer the results described above from 2D-sphere to 3D-sphere we 

had encountered some problems. 

At first, there is problem with integration of data on the sphere. At second, formula (6) 

do not working in 3D case for first radial derivative of potential. Fortunately we have 

proved that the same formula (6) is working for data of potential of point mass 

measured on the sphere. 

Detailed description our approaches of solution this problems exceed the limits of this 

article so we going to describe it in our next paper. 
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3. Synthetic samples 

Figure 3 shows the consecution of actions to building "native" wavelet transform on the 

2D-sphere. At first, is required to construct regular "native" wavelet transform for 

sweep of function of radial derivative of potential (see figures (A) and (B)). Next, is 

required to correct depth (scale parameter of wavelet transform) on the strength of 

formula (6) (figure (C)). Finally, the wavelet coefficients were converted to spherical 

form (figure D).  
 

Figure 3. The wavelet transform on the 2D-sphere on an example of three causative 

sources. 
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A: The sweep of function of radial derivative of potential. 

B: The “native” continuous wavelet transform.  

C: field of wavelet coefficients after correction of depth. 

D: recalculated field of wavelet coefficients on the 2D-sphere. 

Circles indicate location of the sources in the model, and black dots – positions 

from the inverse solution. 

Note, that initial locations of the sources in the model, and positions from the inverse 

solution is almost identical.  

The similar example for gravimetric data on 3D-sphere was presented on figure 4.  

 

 

Figure 4. The wavelet transform on the sphere on an example of single causative source 

located 3000 km deep. 

A: The sweep of function of potential. 

B: The “native” continuous wavelet transform. 

C: field of wavelet coefficients after correction of depth. 

D: recalculated field of wavelet coefficients on the sphere. 
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Circle indicates location of the source in the model, and black dot position 

from the inverse solution. 

 

4. Practical sample 

As a practical example on figure 5 was shown a slice of “native” wavelet transform of 

geopotential function obtained on spherical Earth's surface, that corresponds to depth 

150 km.  

 

Figure 5.  A slice of “native” wavelet transform of potential obtained on Earth's 

surface, that corresponds to depth 150 km. 

For calculating were used gravimetric data of International Centre for Global Earth 

Models (ICGEM) (http://icgem.gfz-potsdam.de/ICGEM). 
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5. Conclusion 

The technique of consistent creation of wavelet-transform on the sphere presented in 

this study is based on the use of "native" wavelet basis.  Its most distinctive feature is 

that this wavelet transform provides a formal solution of inverse problem of gravimetry. 

Besides it is important the fact that transform facilitates search of parameters of 

causative sources. 

It is also worth pointing out that nearly all of the techniques used in this study can be 

directly applied to other potential-field geophysical problem. 
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