# Integral Properties of the Classical Warping Function of a Simply Connected Domain 

R. G. Salakhudinov*<br>Lobachevsky Research Institute of Mathematics and Mechanics, Kazan Federal University<br>Received October 23, 2009


#### Abstract

Let $u(z, G)$ be the classical warping function of a simply connected domain $G$. We prove that the $L^{p}$-norms of the warping function with different exponents are related by a sharp isoperimetric inequality, including the functional $u(G)=\sup _{x \in G} u(x, G)$. A particular case of our result is the classical Payne inequality for the torsional rigidity of a domain. On the basis of the warping function, we construct a new physical functional possessing the isoperimetric monotonicity property. For a class of integrals depending on the warping function, we also obtain a priori estimates in terms of the $L^{p}$-norms of the warping function as well as the functional $u(G)$. In the proof, we use the estimation technique on level lines proposed by Payne.


DOI: 10.1134/S0001434612090143
Keywords: warping function, isoperimetric inequality, isoperimetric monotonicity, torsional rigidity, Payne inequality, level lines, Schwartz symmetrization.

## 1. INTRODUCTION

Let $G$ be a simply connected domain in the plane. By $u(x, G)$ we denote the warping function of the domain, i.e., the solution of the following boundary-value problem:

$$
\begin{gather*}
\Delta u=-2, \quad x \in G \\
u=0, \quad x \in \partial G \tag{1}
\end{gather*}
$$

The existence and uniqueness of the warping function is one of the classical results of the theory of partial differential equations.

Note that another interpretation of the boundary-value problem (1) is related to the theory of flow of a viscous fluid in a tube with fixed cross-section (see, for example, [1]).

One of the important physical functionals of a domain in the torsion theory of rods with given crosssection is the torsional rigidity defined by the Saint-Venant formula [2]

$$
\begin{equation*}
P(G):=2 \int_{G} u(x, G) d x \tag{2}
\end{equation*}
$$

Another important characteristic of the function $u(x, G)$ in the mechanics of liquid flow is related to the volume of underground water in a porous medium owing to the infiltration flow to a drainage basin. Up to a constant, the volume of water is given by the functional

$$
H(G):=\int_{G} \sqrt{u(x, G)} d x
$$

Another important example of a physical functional [3] involving the warping function is

$$
\begin{equation*}
u(G):=\sup _{x \in G} u(x, G) . \tag{3}
\end{equation*}
$$

[^0]
[^0]:    *E-mail: Rustem.Salahudinov@ksu.ru

