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УДК 514.822

МАТРИЦЫ ТРЕТЬЕГО ПОРЯДКА С ИНТЕГРАЛЬНЫМИ ОПЕРАТОРАМИ
ФРЕДГОЛЬМА
М.А. Абдуллаева1

1 abdullayevamuhayyo9598@gmail.com; Институт предпринимательства и педагогики имени Денова,
Термиз

В данной работе изучается матрица третьего порядка T , элементами которой
являются одномерные интегральные операторы Фредгольма. Установлено, что число
λ = 0 является бесконечнократным собственным значением матрицы T. Построен
определитель, нули которого являются собственными значениями матрицы T.

Ключевые слова: тор, матрица, оператор Фредгольма, собственное значение.

Теория интегральных операторов является одним из важных разделов функ-
ционального анализа и применяется для решения многих практических задач. В
частности, интегральные операторы Фредгольма играют важную роль в математи-
ческой физике, интегральных уравнениях и спектральной теории. В данной работе
анализируется спектр матрицы, элементами которой являются интегральные опе-
раторы Фредгольма.

ЧерезTd обозначим d-мерный куб (−π;π]d с соответствующимотождествлени-
ем противоположных граней, а через L2(Td) обозначим гильбертово простран-
ство квадратично-интегрируемых (комплексно-значных) функций, определенных
на Td.

Положим
L(3)

2 (Td) := L2(Td)⊕L2(Td)⊕L2(Td).

Это пространство можно записать в следующем виде:

L(3)
2 (Td) = { f = ( f1, f2, f3) : fα ∈ L2(Td), α= 1,2,3}.

В этом случае скалярное произведение элементов f = ( f1, f2, f3) и g = (g1, g2, g3)
L(3)

2 (Td) определяется с помощью равенства

( f , g ) =
∫
Td

f1(x)g1(x)d x +
∫
Td

f2(x)g2(x)d x +
∫
Td

f3(x)g3(x)d x.

В гильбертовом пространстве L(3)
2 (Td) рассмотрим матричный оператор

T :=
 T11 T12 T13

T ∗
12 T22 T23

T ∗
13 T ∗

23 T33


с элементами Ti j : L2(Td) → L2(Td), i ≤ j :

(Ti j f j )(x) = t j i (x)
∫
Td

ti j (s) f j (s)d s, f j ∈ L2(Td), i , j = 1,2,3.

Здесь ti j (·), i , j = 1,2,3 — вещественно-значные непрерывные функции на Td,
а T ∗

i j сопряженный оператор к Ti j . При этом операторная матрица T является

ограниченным и самосопряженным оператором в L(3)
2 (Td).
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По простым вычислениям

(T ∗
i j fi )(x) = ti j (x)

∫
Td

t j i (s) fi (s)d s, fi ∈ L2(Td), i , j = 1,2,3.

Положим

∆(λ) :=

∣∣∣∣∣∣∣∣∣
∆11(λ) ∆12 · · · ∆19
∆21 ∆22(λ) · · · ∆29
...

... . . . ...
∆91 ∆92 · · · ∆99(λ)

∣∣∣∣∣∣∣∣∣ ,

где матричные элементы определяются следующим образом:

∆11(λ) := ∥t11∥2 −λ, ∆12 := (t11, t21), ∆13 := (t11, t31), ∆22(λ) :=−λ;

∆24 := ∥t12∥2, ∆25 := (t12, t22), ∆26 := (t12, t32), ∆33(λ) :=−λ;

∆37 := ∥t13∥2, ∆38 := (t13, t23), ∆39 := (t13, t33), ∆41 := (t21, t11);

∆42 := ∥t21∥2, ∆43 := (t21, t31), ∆44(λ) :=−λ, ∆54 := (t22, t12);

∆55 := ∥t22∥2 −λ, ∆56 := (t22, t32), ∆66(λ) :=−λ, ∆67 := (t23, t13);

∆68 := ∥t23∥2, ∆69 := (t23, t33), ∆71 := (t31, t11), ∆72 := (t31, t21);

∆73 := ∥t31∥2, ∆77(λ) :=−λ, ∆84 := (t32, t12), ∆85 := (t32, t22);

∆86 := ∥t32∥2, ∆88(λ) :=−λ, ∆97 := (t33, t13), ∆98 := (t33, t23);

∆99(λ) := ∥t33∥2 −λ, и∆i j = 0, в остальных случаях.

Сформулируем основной результат работы.
Теорема 1. Число λ = 0 является бесконечнократным собственным значением

оператора T , а нули функции ∆(·) является конечнократными собственными значе-
ниями этого оператора.

Сформулированная теорема 1 важна при изучении числовой области значений
и кубической числовой области значений [1] матрицы T. Ясно, что функция ∆(·) яв-
ляется полиномом 9-й степени. Таким образом, матрица T имеет не более 9 соб-
ственных значений с учетом кратности. Поскольку T — самосопряженный опера-
тор, эти собственные значения являются действительными. Это очень удобно для
определении числовой области значения матрицы T .

Литература

1. Rasulov T.H., Tretter C. Spectral inclusion for diagonally dominant unbounded block operator matrices //
Rocky Mountain Journal of Mathematics. – 2018. – Vol. 1. – P. 279–324.

THE THIRD ORDER MATRICES WITH FREDHOLM INTEGRAL OPERATORS

M.A. Abdullaeva

In this work, we study a third-order matrix T whose elements are one-dimensional Fredholm integral
operators. It is established that the number λ = 0 is an infinitely multiple eigenvalue of the matrix T.

A determinant, whose zeros are the eigenvalues of the matrix T is constructed.
Keywords: torus, matrix, Fredholm operator, eigenvalue.
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ИНТЕГРАЛЬНЫЕ НЕРАВЕНСТВА ИЗОПЕРИМЕТРИЧЕСКОГО ТИПА
Ф.Г. Авхадиев1

1 avkhadiev47@mail.ru; Казанский (Приволжский) федеральный университет

Пользуясь гиперболическим радиусом и расстоянием отточки до границы области, мы
доказываем новые изопериметрические неравенства и их обобщения для функций.

Ключевые слова: гиперболический радиус, изопериметрическое неравенство.

Пусть Ω ⊂ C — область, имеющая хотя бы одну конечную граничную точку.
Для конечносвязных областей G ⊂ Ω с кусочно-гладкими границами ∂G ⊂ Ω мы
изучаемизопериметрическое неравенство вида A(G) ≤ q(Ω)L(∂G), предполагая, что
площади A(G) и периметры L(∂G) определены формулами

A(G) =
Ï

G

d xd y

dist2(z,∂Ω)
, L(∂G) =

∫
∂G

|d z|
dist(z,∂Ω)

,

где z = x + i y , а константа q(Ω) := supG A(G)/L(∂G). Свойство q(Ω) <∞ присуще не
всем областям Ω. Нами получен следующий критерий конечности q(Ω).

Теорема 1.ПустьΩ⊂C—область, такая, чтоΩ ̸=C. Изопериметрическая кон-
станта q(Ω) будет конечной величиной тогда и только тогда, когда граница ∂Ω обла-
сти Ω является равномерно совершенным множеством, причем q(Ω) удовлетворяет

неравенству q(Ω) É 2
(
πM0(Ω)+ (Γ(1/4))4

4π2

)2
, где M0(Ω) — евклидов максимальный мо-

дуль области Ω, Γ — гамма функция Эйлера.

Пусть теперьΩ⊂C— область, имеющая не менее трех граничных точек. Тогда
в ней корректно определена метрика Пуанкаре λΩ(z)|d z| с гауссовой кривизной
κ=−4. По определению, гиперболический радиус R(z,Ω) := 1/λΩ(z). Справедлива

Теорема 2. Пусть Ω ⊂ C — область, имеющая не менее трех граничных точек.
Тогда для любой конечносвязной подобластиG ⊂Ω с кусочно-гладкой границей ∂G ⊂Ω
имеет место неравенствоÏ

G

d xd y

R2(z,Ω)
É 1

4

∫
∂G

|∇R(z,Ω)|
R(z,Ω)

|d z|.

Далее мы строим новые интегральные неравенства, содержащие произволь-
ные функции f ∈ C 1(G). Эти новые неравенства являются универсальными в том
смысле, что не содержат неопределенных констант.

Теорема 3. Пусть Ω ⊂ C — область гиперболического типа, и пусть p ∈ [1,∞).
Предположим, что G ⊂ Ω — конечносвязная подобласть с кусочно-гладкой границей
∂G ⊂Ω. Тогда для любой вещественнозначной функции f ∈ C 1(G) имеет место нера-
венствоÏ

G

| f (z)|p d xd y

R2(z,Ω)
É pp

4p

Ï
G

|(∇ f (z),∇R(z,Ω))|p d xd y

R2−p (z,Ω)
+ p

4

∫
∂G

| f (z)|p |∇R(z,Ω)|
R(z,Ω)

|d z|,

где z = x + i y ∈G,
(∇ f (z),∇R(z,Ω)

)
— скалярное произведение градиентов функций.
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При n Ê 3 метрика Пуанкаре и гиперболический радиус заданы явными фор-
мулами для n-мерного шара и полупространства. В общем случае (см. [1] и [2]) ги-
перболический радиус определен для областей Ω ⊂ Rn гиперболического типа, в
которых существует функция R(·,Ω) : Ω → (0,∞), удовлетворяющая нелинейному
уравнению Лиувилля R(x,Ω)∆R(x,Ω) = (n/2)|∇R(x,Ω)|2 −2n и граничному условию
R(x,Ω)|(∂Ω)\{∞} = 0.

Теорема 4. Пусть n Ê 3, p ∈ [1,∞), и пусть Ω ⊂ Rn — область гиперболического
типа. Предположим, что G ⊂ Ω — подобласть с границей ∂G ⊂ Ω, состоящей из
конечного числа кусочно-гладких поверхностей размерности n − 1. Тогда для любой
вещественнозначной функции f ∈ C 1(G) имеет место неравенство∫

G

| f (x)|2
Rn(x,Ω)

d x É 1

n(n −2)

∫
G

|∇ f (x)|2
Rn−2(x,Ω)

d x + 1

2n

∫
∂G

| f (x)|2 |∇R(x,Ω)|
Rn−1(x,Ω)

dS,

где x = (x1, x2, ..., xn) ∈Ω, d x = d x1d x2...d xn, dS — дифференциальный элемент (n−1)-
мерной площади.

Теорема 5. Пусть n Ê 2, p ∈ [1,∞) и H1 = {x ∈ Rn : x1 > 0}, где x = (x1, x2, ..., xn).
Предположим, что G ⊂ H1 — подобласть с границей ∂G ⊂ H1, состоящей из конечного
числа кусочно-гладких поверхностей размерности n −1. Тогда для любой веществен-
нозначной функции f ∈ C 1(G) имеет место неравенство∫

G

| f (x)|p
xn

1

d x É pp

(n −1)p

∫
G

|∇ f (x)|p
x

n−p
1

d x + p

n −1

∫
∂G

| f (x)|p
xn−1

1

dS.

Теоремы 1—5 приведены в наших кратких сообщениях [3] и [4].

Работа выполнена при финансовой поддержке Российского научного фонда
(проект№ 23-11-00066) и Научно-образовательного математического центра При-
волжского федерального округа (соглашение 075-02-2024-1438).
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ISOPERIMETRIC TYPE INTEGRAL INEQUALITIES

F.G. Avkhadiev

Using the hyperbolic radius and the distance from a point to the boundary of a domain we prove new
isoperimetric inequalities and obtain their generalizations for functions.
Keywords: hyperbolic radius, isoperimetric inequality.
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О ПАРАХ ПРОСТРАНСТВ КОРРЕКТНОЙ ПОСТАНОВКИ ДЛЯ ОДНОГО КЛАССА
НЕЛИНЕЙНЫХ ДРОБНО-ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ
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Рассматривается вопрос выборапарыпространств корректнойпостановки нелиней-
ного интегрального уравнения с дробным интегралом в смысле Римана-–Лиувилля. Ис-
следование ведется в случае, когда дробные интегралы разных порядков содержатся
как вне, так и внутри интеграла. Указаны две пары пространств, соответствующие
двум случаям зависимостей порядков дробных интегралов.

Ключевые слова: пространство Гёльдера, нелинейное уравнение, интегральное
уравнение, дробный интеграл, корректная постановка.

Пусть фиксированы вещественные числа 0 < α,β < 1. Рассмотрим нелинейное
дробно-интегральное уравнение вида

A(x) ≡ F (t , (Iα+x)(t ),

σ(t )∫
0

Φ(t , s, (I
β
+x)(s))d s) = y(t ), 0 ≤ t ≤ 1, (1)

где F,Φ – известные непрерывные функции, σ(t ) ≡ 1 или σ(t ) = t ,0 ≤ t ≤ 1. Здесь I
γ
a+

– левосторонний дробно-интегральный оператор Римана–Лиувилля порядка γ> 0
(см., например, в [1, с. 42]:

(I
γ
a+x)(t ) = 1

Γ(γ)

t∫
0

x(τ)dτ

(t −τ)1−γ ,

Γ(·) – гамма-функция.
Будем предполагать, что уравнение (1) имеет единственное решение x∗(t ) в

некотором шаре из пространства C [0,1] непрерывных функций, функция Φ имеет
производную по третьему аргументу в точке x∗(·), а F – производную по второму и
третьему аргументам в указанной точке. При этих условиях для изучения вопросов
корректной постановки и построении приближений к решению можно воспользо-
ваться методом гладких операторов.

Очевидно, что вопрос выбора пары пространств корректной постановки зави-
сит от зависимости между параметрами α,β. Возможны два случая: 1) α ≥ β; 2)
α < β.

В первом случае выберем δ> 0, удовлетворяющее условиюα+δ< 1. Тогда урав-
нение (1), с учетом известного свойства дробно-интегрального оператора, можно
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рассматривать в паре пространств Гельдера X = Hδ,0 и Y = Hα+δ,0 функций, обра-
щающихся в нуль на левом конце. Такой выбор возможен при выполнении условий
F (0,u, v) = 0, F (t ,u, v),Φ(t , s,u) по t удовлетворяют условию Гёльдера с показателем
α+δ. Этот случай был нами рассмотрен в [2] при σ(t ) ≡ 1.

Во втором случаеα<βпредыдущаяпара ужене позволяет установить коррект-
ную постановку. Здесь за пару пространств можно принять X = Hβ−α,0,Y = Hβ,0, что
требует выполнения условия: функции F (t ,u, v),Φ(t , s,u) по t принадлежат классу
Гёльдера с показателем β.

Доказывается, что выбранные пары пространств искомых элементов и правых
частей представляют пары корректной постановки уравнения (1). При этом точное
решение может быть найдено применением к этому уравнению известных проек-
ционных методов для линеаризованного интегрального уравнения вида

K x ≡ g (t )(Iα+x)(t )+
σ(t )∫
0

h(t , s)(I
β
+x)(s)d s = f (t ), 0 ≤ t ≤ 1.

Результаты распространяются на случай, когда хотя бы один из параметровα,β
больше единицы. Тогда аналогичные указанным выше пространства гладких функ-
ций, задаваемых дробным интегралом Римана–Лиувилля, позволяют установить
корректность задачи Коши для уравнения (1). Если один из параметров α,β явля-
ется натуральным числом, то ситуация становится более простой с учетом извест-
ных результатов по линейным условно корректным интегро-дифференциальным
уравнениям целого порядка.

Литература

1. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые
их приложения. – Минск, Наука и техника, 1987. – 688 с.

2. Агачев Ю.Р., Губайдуллина Р.К., Гуськова А.В.. Сходимость общего "полиномиально-
го"проекционного метода решения одного класса нелинейных интегро-дифференциальных
уравнений дробного порядка// Труды Математического центра имени Н.И. Лобачевского. Материа-
лы Всероссийской школы-конференции ”Лобачевские чтения-2024” — Казань: Изд-во КФУ, 2024. —
Т.68. – С. 9–12.

ON PAIRS OF SPACES OF CORRECT FORMULATION FOR ONE CLASS OF NONLINEAR
FRACTIONAL INTEGRAL EQUATIONS

J.R. Agachev, R.K. Gubajdullina, A.V. Guskova, M.Ju. Pershagin

The question of choosing a pair of spaces for a correct statement of a nonlinear integral equation with
a fractional integral in the Riemann-Liouville sense is considered. The study is conducted in the case
where fractional integrals of different orders are contained both outside and inside the integral. Two
pairs of spaces are indicated, corresponding to two cases of dependences of the orders of fractional
integrals.
Keywords: Hölder space, nonlinear equation, integral equation, fractional integral, correct staging.
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Рассматривается задача Коши для интегро-дифференциального уравнения с дробной
производной Римана–Лиувилля, а именно случай, когда старшая производная нахо-
дится под знаком интеграла. Исследование проводится в паре пространств Соболева
корректной постановки по Адамару. Доказывается для исследуемой задачи сходи-
мость классических полиномиальных методов Галеркина, коллокации, подобластей и
механических квадратур.

Ключевые слова: пространство Соболева, дробная производная, интегро-
дифференциальное уравнение, приближенное решение, проекционный метод,
сходимость метода.

Пусть α,β – вещественные числа, подчиненные условию 0 < β < α < 1,
h(t , s), y(t ) – известные функции на [0,1]2 и [0,1] соответственно.

Рассматривается задача Коши для линейного интегро-дифференциального
уравнения:

x(0) = 0, (1)

x(β)(t )+
1∫

0

h(t , s)x(α)(s)d s = y(t ), 0 < t ≤ 1, (2)

где x(γ)(t ) есть дробная производная Римана–Лиувилля порядка γ (см., напр. [1])

x(γ)(t ) = 1

Γ(1−γ)

d

d t

t∫
0

x(τ)dτ

(t −τ)γ
, 0 < γ< 1, Γ(·)− гамма-функция.

Задача (1), (2) относится к некорректно поставленным по Адамару. В случае
β>α вопрос о корректности постановки этой задачи нами был уже рассмотрен [2].
Исследование в случае β < α осложняется тем, что производная старшего порядка
находится под знаком интеграла.

Введем в рассмотрение пространство СоболеваW γLp [0,1],1 ≤ p ≤∞, функций,
абсолютно непрерывных на [0,1] и имеющих там дробную производную порядка
γ,0 < γ < 1, принадлежащую пространству Лебега Lp (0,1). Норму в W γLp [0,1]
введем обычным образом:

∥z∥γ;p = ∥z∥p +∥z(p)∥p , 1 ≤ p ≤∞.

Через введенное таким образом пространство W γLp [0,1] определим пару про-

странств (X ,Y ), где Y = W α−βLp [0,1], а X = ◦
W αLp [0,1] – подпространство



Ю.Р. Агачев, А.В. Гуськова 17

W αLp [0,1] функций, удовлетворяющих начальному условию (1), с нормой

∥x∥X = ∥x(β)∥p +∥x(α)∥p .

Задачу (1), (2) будем рассматривать в паре (X ,Y ). Для этого потребуем от
функций h(t , s) и y(t ) дробной дифференцируемости порядка α−β по переменной
t на [0,1]. Тогда наша задача может быть записана в операторной форме

K x ≡ Dx +H x = y (x ∈ X , y ∈ Y ), (3)

где операторы D и H задаются формулами

(Dx)(t ) ≡ x(β)(t ), (H x)(t ) ≡
1∫

0

h(t , s)x(α)(s)d s, x ∈ X .

Показывается, что D : X → Y непрерывно обратимый оператор, а при h ∈
W α−βLp × Lq , где 1/q + 1/p = 1, оператор H : X → Y – вполне непрерывный. Та-
ким образом, уравнение (3) относится к операторным уравнениям, приводящимся
к уравнению второго рода с вполне непрерывным операторам. Последнее означа-
ет, что к задаче (1), (2) можно применять прямые методы решения корректно по-
ставленных задач, в частности, известные полиномиальные и сплайновые методы
Галеркина, коллокации, подобластей, механических квадратур и др.

Для указанных полиномиальных методов решения задачи (1), (2) доказаны
теоремы об их сходимости.
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ON THE APPROXIMATION OF THE SOLUTION OF THE CAUCHY PROBLEM FOR A
CONDITIONALLY CORRECT INTEGRO-DIFFERENTIAL EQUATION OF FRACTIONAL ORDER

J.R. Agachev, A.V. Guskova

The Cauchy problem for an integro-differential equation with a fractional Riemann–Liouville deriva-
tive is considered, namely the case when the highest derivative is under the integral sign. The study is
carried out in a pair of Sobolev spaces of correct Hadamard formulation. The convergence of the clas-
sical polynomial Galerkin method, the methods of collocations, subdomains and mechanical quadra-
tures is proved for the problem under the methods of study.
Keywords: Sobolev space, fractional derivative, integro-differential equation, approximate solution, pro-
jection method, convergence of the method.
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О КАЧЕСТВЕННОЙ КАРТИНЕ ТРАЕКТОРИЙ РЯДА СЕМЕЙСТВ
ПОЛИНОМИАЛЬНЫХ ДИНАМИЧЕСКИХ СИСТЕМ
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Ключевая роль в математическом моделировании физических, экономических, соци-
альных процессов принадлежит динамическим системам, выступающим в роли мате-
матического инструмента для анализа по преимуществу тех явлений, в ходе исследо-
вания которых могут быть проигнорированы флуктуации. При рассмотрении опре-
деляемых уравнениями системы кривых ее фазовое пространство расщепляется на
траектории и изучается их предельное поведение. Особый интерес представляют по-
линомиальные динамические системы. Данная работа развивает и продолжает ори-
гинальное исследование обширного класса динамических систем со взаимно простыми
полиномиальными правыми частями и описывает результаты построения фазовых
портретов в круге Пуанкаре для дополнительного его подсемейства, основанного на
методах локальной качественной теории дифференциальных уравнений и динамиче-
ских систем.

Ключевые слова: динамическая система, взаимнопростыеполиномы, траектория,
сепаратриса, фазовое пространство, фазовыйпортрет, особая точка, кругПуанкаре.

Обширный класс дифференциальных динамических систем, правые части
уравнений которыхпредставляют собоювзаимнопростыеполиномиальныеформы
третьей и второй степеней, рассматривается на расширенной вещественной плос-
кости их фазовых переменных:

d x

d t
= X (x, y),

d y

d t
= Y (x, y).

Не умаляя общности, полагаем, что X (0,1)Y (0,1) ̸= 0. В процессе исследования, пол-
ностью основанного на методах качественной теории обыкновенных дифференци-
альных уравнений — как классических, так и созданных целевым образом в ходе
этой работы — производится естественное расщепление глобального рассматрива-
емого класса динамических систем на семейства и подсемейства ряда последова-
тельных уровней, или слоев, иерархии, для которых получена полная качественная
картина фазовых траекторий систем каждого подсемейства в замкнутом круге Пу-
анкаре [1, 2, 5]. Для различных ветвей расщепления число последовательных уров-
ней иерархии меняется от трех до четырех. Для запуска процесса иерархическо-
го расщепления глобального класса систем вводятся характеристические взаимно
простые полиномы. В зависимости от расположения их (различных) корней на ве-
щественной оси возникает 10 первоначальных семейств высшего иерархического
слоя. Для последующих слоев расщепление основывается на поведении сепаратрис
особых точек и прочих характеристиках фазовых траекторий. Данный этап работы
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посвящен одному из 10 семейств высшего иерархического слоя, а именно семей-
ству (3.1), характеризуемому 3 различными корнями полинома кубического и от-
личнымотних кратнымкорнемквадратичного полинома. В кругеПуанкаре строят-
ся все возможные виды топологически различных фазовых портретов изучаемого
глобального семейства. Показано отсутствие у них предельных циклов [3, 5].

При проведении работы продуктивно использованы специфические методики
КТДУ, перспективные в сферах как теоретической, так и прикладной работы с
динамическими системами в математическом моделировании [3, 4, 5].
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ON THE QUALITATIVE PICTURE OF THE TRAJECTORIES OF SOME OF FAMILIES OF
POLYNOMIAL DYNAMICAL SYSTEMS

I.A. Andreeva

Dynamic systems play a key role in the mathematical modeling of physical, economic, and social
processes, acting as a mathematical tool for analyzing those phenomena which can be studied while
ignoring fluctuations. When considering the curves defined by the equations of a system, its phase
space is split into trajectories and their limiting behavior is studied. Of particular interest are
polynomial dynamical systems. This work develops and continues the original study of an extensive
class of dynamical systems with reciprocal polynomial right-hand sides and describes the results of
constructing phase portraits in the Poincare circle for its additional subfamily based on the methods
of the local qualitative theory of differential equations and dynamical systems.
Keywords: dynamical systems, mutually simple polynomials, trajectory, separatrix, phase space, phase
portrait, singular point, Poincare circle.
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Для любого не более чем счетного множества неотрицательных чисел, содержащего
нуль, установлено существование линейного однородного дифференциального уравне-
ния с наперед заданным порядком n > 2, у которого спектры характеристик колебле-
мости нулей совпадают с этим множеством.

Ключевые слова: дифференциальное уравнение, колеблемость, число нулей, по-
казатель Ляпунова, характеристические частоты, показатели колеблемости.

Для заданного натурального n рассмотрим множество Ẽ n линейных однород-
ных уравнений n-го порядка

y (n) +a1(t )y (n−1) +·· ·+an−1(t )ẏ +an(t )y = 0, t ∈R+ ≡ [0;+∞),

задаваемых наборами непрерывных функций a ≡ (a1, . . . , an) : R+ → Rn , с которыми
в дальнейшем и будем отождествлять сами уравнения. Пространство решений
уравнения Ẽ n обозначим через S (a) и положим

S∗(a) ≡S (a) \ {0}, S n
E = ⋃

a∈Ẽ n

S∗(a).

Для момента t > 0 и функции y : R+ →R через ν0(y, t ) обозначим число ее нулей
на промежутке (0, t ]. Для вектора m ∈ Rn и вектор-функции ψn y = (

y, ẏ , . . . , y (n−1)
)

введем обозначение να(y,m, t ) ≡ να(〈ψy,m〉, t ), где α ∈ {−,0,+}, а 〈·, ·〉 — скалярное
произведение.

Определение [1,2]. Для каждого решения y ∈S n
E
определим следующие характе-

ристики колеблемости: верхняя и нижняя характеристические частоты нулей

ω̂0(y) ≡ lim
t→+∞

π

t
ν0(y, t ), ω̌0(y) ≡ lim

t→+∞
π

t
ν0(y, t );

верхний сильный и нижний сильный показатели колеблемости нулей

ν̂0
•(y) ≡ inf

m∈Rn
lim

t→+∞
π

t
ν0(y,m, t ), ν̌0

•(y) ≡ inf
m∈Rn

lim
t→+∞

π

t
ν0(y,m, t ).

Известно [2], что спектры характеристик колеблемости любого уравнения из
множества Ẽ 2 состоят ровно из одного числа, но зато спектры характеристических
частот нулей дифференциальных уравнений порядка выше двух принадлежат клас-
су суслинских множеств [3,4]. В предположении, что спектры верхней характеристи-
ческой частоты нулей и верхнего сильного показателя колеблемости нулей содержат
точку нуль, справедливо обращение этого утверждения [4,5,6].

Вопросы реализации наперед заданных спектров нижних характеристик ко-
леблемости до сих пор не были изучены. Возможность реализации не более чем
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счетных спектров характеристических частот нулей и сильных показателей колеб-
лемости нулей гарантирует

Теорема. Для любых n ≥ 3 и не более чем счетного множества S положительных
чисел существует такое уравнение a ∈ Ẽ n , что справедливы равенства

ω̌0(S∗(a)) = ω̂0(S∗(a)) = ν̌0
•(S∗(a)) = ν̂0

•(S∗(a)) = S ⊔ {0},

ω̌0(y) = ω̂0(y) = ν̌0
•(y) = ν̂0

•(y), y ∈S∗(a).

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект
№ 075-03-2024-074/5).
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ON THE REALIZATION OF COUNTABLE SPECTRA OF ZERO OSCILLATION CHARACTERISTICS
OF LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

A.E. Artisevich, A.Kh. Stash

For an at most countable set of non-negative numbers containing zero, the existence of a linear homo-
geneous differential equation with a predetermined order n > 2, for which the spectra of the character-
istics of the oscillation of zeros coincide with this set, has been established.
Keywords: differential equation, oscillation, number of zeros, Lyapunov exponent, characteristic frequen-
cies, oscillation exponents.
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УДК 517.968

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ С ИНТЕГРАЛАМИ РИМАНА-ЛИУВИЛЛЯ И
ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ В ПРОСТРАНСТВАХ ЛЕБЕГА

С.Н. Асхабов1

1 askhabov@yandex.ru; Чеченский государственный университет им. А.А. Кадырова, Чеченский го-
сударственный педагогический университет

Найдены условия при которых операторы дробного интегрирования с переменны-
ми коэффициентами действуют непрерывно из вещественных пространства Лебега
Lp (a,b) в сопряженные с ними пространства и являются строго положительными.
Используя эти условия, при достаточно легко обозримых ограничениях на нелиней-
ности методом монотонных (по Браудеру-Минти) операторов доказаны глобальные
теоремы о существовании, единственности и оценках решения для трех различных
классов неоднородных нелинейных интегральных уравнений.

Ключевые слова: нелинейные интегральные уравнения, операторы дробного ин-
тегрирования, метод монотонных операторов.

В данной работе в вещественных пространствах Лебега Lp (a,b), 1 < p < ∞,
рассматриваются нелинейные уравнения, содержащие операторы левостороннего
Gα

a+ и правостороннегоGα
b− дробного (в смысле Римана-Лиувилля) интегрирования

порядка α> 0 с переменным коэффициентом g (x) на отрезке [a,b]:

(
Gα

a+u
)
(x) = g (x)

Γ(α)

x∫
a

g (t )u(t )d t

(x − t )1−α ,
(
Gα

b−u
)
(x) = g (x)

Γ(α)

b∫
x

g (t )u(t )d t

(t −x)1−α , x ∈ (a,b) ,

где Γ(α) есть гамма-функциюЭйлера. Найдены условия на функцию (коэффициент)
g (x), параметры α и p, при которых операторы Gα

a+ и Gα
b− действуют непрерывно

из пространства Lp (a,b) в сопряженное с ним пространство Lp ′(a,b), p ′ = p/(p −1),
и являются строго положительными.

При этих условиях методом монотонных (по Браудеру-Минти) операторов до-
казаны глобальные теоремы о существовании, единственности и оценках решения
для трех различных классов неоднородных нелинейных интегральных уравнений,
в которые операторы Gα

a+ и Gα
b− входят линейно или нелинейно, либо эти опера-

торы содержат нелинейность под знаком интеграла (случай уравнения типа Гам-
мерштейна). В последнем случае существование и единственность решения удает-
ся доказать без условия коэрцитивности на нелинейность. Из полученных оценок,
в частности, непосредственно вытекает, что при условиях доказанных теорем соот-
ветствующие однородные нелинейные интегральные уравнения имеют лишь три-
виальное (нулевое) решение. Сформулируем некоторые результаты.

Теорема 1. Пусть 0 <α< 1, 2/(1+α) ≤ p <∞, функция g (x) ̸= 0 почти всюду на
[a,b] и такова, что g ∈ L∞(a,b) при p = 2/(1+α),

g ∈ L2p/[p(1+α)−2](a,b) при 2/(1+α) < p ≤ 2,
g ∈ L2p/(p−2)(a,b) при 2 < p <∞.

(1)
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Тогда операторы Gα
a+ и Gα

b− действуют непрерывно из Lp (a,b) в сопряженное с ним
пространство Lp ′(a,b) и строго положительны. При этом для любого u ∈ Lp (a,b)
выполняются неравенства

∥Gα
a+u∥p ′ ≤C1 · ∥u∥p , ∥Gα

b−u∥p ′ ≤C1 · ∥u∥p ,

где

C1 =


n(α) · ∥g∥2∞ при p = 2/(1+α),

n(α) · ∥g∥2
2p/[p(1+α)−2] при 2/(1+α) < p ≤ 2,

(b−a)α

α·Γ(α) · ∥g∥2
2p/(p−2) при 2 < p <∞,

(2)

и число n(α) = ∥Iαa+∥2/(1+α)→2/(1−α) = ∥Iαb−∥2/(1+α)→2/(1−α) есть норма операторов

(
Iαa+u

)
(x) = 1

Γ(α)

x∫
a

u(t )d t

(x − t )1−α ,
(
Iαb−u

)
(x) = 1

Γ(α)

b∫
x

u(t )d t

(t −x)1−α , x ∈ (a,b) ,

действующих ограниченно из L2/(1+α)(a,b) в сопряженное с ним пространство
L2/(1+α)(a,b).

Следует отметить, что в случае пространства L2(a,b) вопрос о положительно-
сти различных классов операторов дробного интегродифференцирования детально
изучен в монографии А.М. Нахушева [1], в которой, в частности, обобщаются неко-
торые результаты Ф. Трикоми, С. Геллерстедта и других авторов.

Пусть функция F (x, t ) определена при x ∈ [a,b], t ∈R и удовлетворяет условиям
Каратеодори: она измерима по x почти при каждом фиксированном t и почти при
всех x непрерывна по t . Обозначим через L+

p (a,b) – множество всех неотрицатель-
ных функций из Lp (a,b). Следуя работе [2] доказывается

Теорема 2. Пусть 0 < α < 1, 2/(1 + α) ≤ p < ∞, функция g (x) ̸= 0 почти
всюду на [a,b] и удовлетворяет условию (1). Если нелинейность F (x, t ) удовлетворяет
условиям:
1) |F (x, t )| ≤ m(x)+d3 · |t |1/(p−1), где m ∈ L+

p (a,b), d3 > 0;
2) F (x, t ) строго возрастает по t почти при каждом фиксированном x;
3) F (x, t ) · t ≥ d4 · |t |p/(p−1) −D(x), где D ∈ L+

1 (a,b), d4 > 0;
то уравнение

u(x)+F

x,
g (x)

Γ(α)

x∫
a

g (t )u(t )d t

(x − t )1−α

= f (x)

имеет единственное решение u∗(x) ∈ Lp (a,b) при любом f (x) ∈ Lp (a,b). Кроме того,
если в условиях 1) и 3) m(x) = 0 и D(x) = 0, то:

∥u∗− f ∥p ≤
[

d
p
3 ·d−1

4 ·C1 · ∥ f ∥p

]1/(p−1)
,

где число C1 > 0 определено в (2).

Следуя работе [3], комбинированием метода монотонных операторов и прин-
ципа сжимающих отображений, можно доказать, что решения рассматриваемых
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уравнений можно найти в пространстве L2(a,b) методом последовательных при-
ближений пикаровского типа и получить оценки скорости их сходимости.

Работа выполнена при финансовой поддержкеМинобрнауки РФ (проект FEGS-
2023-0003).
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NONLINEAR EQUATIONS WITH RIEMANN-LIOUVILLE INTEGRALS AND VARIABLE
COEFFICIENTS IN LEBESGUE SPACES

S.N. Askhabov

We have found conditions under which fractional integration operators with variable coefficients act
continuously from the real Lebesgue spaces Lp (a,b) to their dual spaces and are strictly positive. Using
these conditions, under sufficiently easily observable restrictions on the nonlinearity, global theorems
on existence, uniqueness and estimates of the solution for three different classes of inhomogeneous
nonlinear integral equations are proved by the method of monotone (in the sense of Browder-Minty)
operators.
Keywords: nonlinear integral equations, fractional integration operators, method of monotone operators.

УДК 517.98

О ЦЕПОЧКЕ ПРОСТРАНСТВ ДЕ БРАНЖА С ВОСПРОИЗВОДЯЩИМ ЯДРОМ ЭЙРИ
С.А. Бадонова1

1 badonova0116@mail.ru; Санкт-Петербургский государственный университет

Классическим примером цепочки пространств де Бранжа, для которой спектральной
мерой является мера Лебега, служат пространства Пэли–Винера. Они определяются
по воспроизводящему синус-ядру. Доклад посвящен другой цепочке пространств де
Бранжа со спектральной мерой Лебега, для которой воспроизводящим ядром является
ядро Эйри.

Ключевые слова: цепочка пространств де Бранжа, спектральная мера, функция
Эйри.

Пространством де Бранжа H называется гильбертово пространство целых
функций, удовлетворяющее аксиомам:

1. Вычисление значения функции из пространства в произвольной точке ком-
плексной плоскости представляет собой непрерывный функционал.

2. Пространство инвариантно относительно замены нулей функции из про-
странства их комплексно сопряженными: F ∈ H , F (ω) = 0 =⇒ F (·) ·−ω·−ω ∈ H ,∥∥∥F (·) ·−ω

·−ω
∥∥∥ = ∥F∥.
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3. Отображение F 7→ F (·) является изометрической инволюцией на простран-
стве.

Фундаментальный результат Л. де Бранжа состоит в том, что подпространства
де Бранжа данного пространства де Бранжа упорядочены по вложению, то есть об-
разуют цепочку подпространств. Если пространство де Бранжа изометрически вло-
жено в L2-пространство по некоторой борелевской мере на вещественной прямой,
то можно рассматривать продолжение цепочки — класс, состоящий из пространств
де Бранжа, содержащих данное пространство и изометрически вложенных в L2-
пространство по той же мере. Такая мера является спектральной мерой некоторого
дифференциального оператора, связанного с цепочкой пространств де Бранжа.

Классическим примером цепочки пространств де Бранжа, для которой спек-
тральной мерой является безвесовая мера Лебега на вещественной прямой, служат
пространстваПэли–Винера. Они определяются по воспроизводящему синус-ядру. В
докладе будет рассказано о другой цепочке пространств де Бранжа со спектральной
мерой Лебега, полученной для пространстваH0 с воспроизводящим ядром Эйри

Ai(z)Ai′(ω)−Ai′(z)Ai(ω)

z −ω , где Ai — функция Эйри.

Такое пространство, описанное в статье [1], можно понимать как пространство
де Бранжа. Оно изометрически вложено в L2-пространство по мере Лебега и не яв-
ляется пространством Пэли–Винера. Следовательно, цепочка пространств де Бран-
жа, состоящая из пространств Пэли-Винера, и цепочка, соответствующая простран-
ствуH0, представляют собой разные цепочки со спектральной мерой Лебега. Цель
работы состоит в описании второй цепочки.

Теорема. Пусть H t = {F : F (·+ t ) ∈H0}, t ∈ R.
1. Если τ < T , то Hτ ⊂ HT .
2. ∩t∈RH t = {0}.
3. clos(∪t∈RH t ) = L2(R).

ПространстваH t полученысдвигамипространстваH0 ипотомуявляютсяпро-
странствамидеБранжа, изометрическивложеннымивL2-пространствопомереЛе-
бега. В теореме утверждается, что пространстваH t упорядоченыпо вложению.Они
образуют цепочку пространств де Бранжа, эта цепочка оказывается максимальной.
Теорема доказывается с помощью теории канонических систем.

Работа выполнена в Санкт-Петербургском международном математическом
институтеимениЛеонардаЭйлераприфинансовойподдержкеМинистерстванауки
и высшего образования РоссийскойФедерации (соглашение№075–15–2022–287 от
06.04.2022).
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ON A CHAIN OF DE BRANGES SPACES WITH REPRODUCING AIRY KERNEL

S.A. Badonova

The classical example of a chain of de Branges spaces, for which the spectral measure is the Lebesgue
measure, is given by the Paley–Wiener spaces. They are determined by the sine reproducing kernel.
The talk is devoted to a different chain of de Branges spaces with the spectral Lebesgue measure, for
which the reproducing kernel is the Airy kernel.
Keywords: chain of de Branges spaces, spectral measure, Airy function.

УДК 517.982.256, 515.124.4

О ЗАМЫКАНИИ ЭКСПОНЕНТ СО СПЕКТРОМ ИЗ ПЕРЕСЕЧЕНИЯ
ПОЛУПРОСТРАНСТВА С РЕШЁТКОЙ

Б.Б. Беднов1

1 bednov_b_b@staff.sechenov.ru; Сеченовский университет

Мы исследуем, когда замыкание в пространстве L1[0,1]n линейной оболочки комплекс-
ных экспонент со спектром из пересечения полупространства с решёткой задаёт под-
пространство существования, а в ряде случаев — чебышёвское подпространство. Ис-
следование чебышёвских подпространств заданного вида начал Кахан в 1974 году.

Ключевые слова: чебышевское подпространство, теорема Кахана.

Пусть (X ,∥ · ∥) — банахово пространство. Подпространство Y ⊂ X называется
подпространством существования, если для каждого x ∈ X найдется такой элемент
y ∈ Y , что ∥x − y∥ = infz∈Y ∥x − z∥. Любой такой элемент y называется элементом
наилучшего приближения в Y для x. Подпространство Y ⊂ X называется подпро-
странством единственности, если для каждого x ∈ X ближайший в Y единствен или
не существует. Подпространство Y ⊂ X называется чебышевским, если Y есть и под-
пространство существования, и подпространство единственности в X , то есть для
каждого x ∈ X существует и единствен элемент наилучшего приближения в Y .

Обозначим YM = span{e2πi lt}l∈M — замыкание линейной оболочки комплекс-
ных экспонент e2πi lt со спектром показателей l из некоторого множества M ⊂ Zn

в пространстве L1[0,1]n комплекснозначных функций n действительных перемен-
ных, суммируемых на [0,1]n, t ∈ [0,1]n , t = (t1, . . . , tn)..

Напомним, что пространство Харди H1 изометрически изоморфно подпро-
странству span{e2πi nt }n∈N ⊂ L1[0,1].

В 1940 году Дуб [1] доказал, что пространство Харди H1 является чебышевским
подпространствомвпространстве комплекснозначных суммируемыхна [0,1]функ-
ций L1[0,1].

В 1974 году Кахан [2] описал все чебышевские подпространства YM в L1[0,1].

ТеоремаА ([2]).ПустьM ⊂Z. Подпространство YM чебышевское в L1[0,1]тогда
и только тогда, когда M — бесконечная (хотя бы в одну сторону) арифметическая
прогрессия с нечетной разностью.
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Пусть гиперплоскостьΠ задаётся уравнением a1x1+·· ·+an xn =C , а множество
R есть множество всех λ= (λ1, . . . ,λn) ∈Zn, для которых a1λ1 +·· ·+anλn ≥C .

Для целочисленных векторов ω1, . . . ,ωn ∈ Zn множество

T = T (ω1, . . . ,ωn) = {k1ω1 +·· ·+knωn : k1, . . . ,kn ∈Z}

называется решёткой в Zn. Определителем решётки называется объём параллеле-
пипеда, натянутого на вектора ω1, . . . ,ωn .

Теорема 1. Пересечение полупространства R ⊂Zn и решетки T задаёт подпро-
странство существования в L1[0,1]n .

Теорема 2. Пересечение полупространства R ⊂Zn и решетки с нечётным опре-
делителем T задаёт чебышёвское подпространство в L1[0,1]n .
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ON THE CLOSURE OF EXPONENTS WITH THE SPECTRUM IN THE INTERSECTION OF A
HALF-SPACE WITH A LATTICE

B.B. Bednov

We study the problem when the closure (in the space L1[0,1]n) of the linear span of complex exponents
with spectrum from the intersection of a half-space with a lattice defines a proximinal subspace, some
of which are Chebyshev subspaces. The study of Chebyshev subspaces of a given form was started by
Kahane in 1974.
Keywords: Chebyshev subspace, Kahane’s theorem.
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Пусть τ – точный нормальный полуконечный след на алгебре фон НейманаM . Иссле-
дованы случаи, когда гипонормальный (или когипонормальный) τ-измеримый оператор
является нормальным.

Ключевые слова: гильбертово пространство, алгебра фон Неймана, нормальный
след, измеримый оператор, гипонормальный оператор.

Пусть алгебра фон Неймана M операторов действует в гильбертовом про-
странстве H , Mpr – решетка проекторов в M , I – единица M , P⊥ = I −P для P ∈
Mpr. Пусть τ – точный нормальный полуконечный след на M , S(M ,τ) – ∗-алгебра
τ-измеримых операторов. Обозначим через ≤ частичный порядок на эрмитовой
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части S(M ,τ)h алгебры S(M ,τ), порожденный собственным конусом S(M ,τ)+. Ес-
ли X ∈ S(M ,τ) и X = U |X | – полярное разложение оператора X , то U ∈ M и
|X | = p

X ∗X ∈ S(M ,τ)+; ReX = (X + X ∗)/2 и ImX = (X − X ∗)/(2i ) лежат в S(M ,τ)h.
Для каждого оператора Y ∈ S(M ,τ)h существует единственное разложениеЖордана
Y = Y+−Y− с Y+,Y− ∈ S(M ,τ)+ и Y+Y− = 0. Пусть L1(M ,τ) – банахово пространство
всех τ-интегрируемых операторов.

Оператор A ∈ S(M ,τ) называется гипонормальным, если A∗A ≥ A A∗; когипонор-
мальным, если A∗A ≤ A A∗; нормальным, если A∗A = A A∗. Такие операторы были
исследованы автором в [1]–[4]. Если M = B(H ), т. е. ∗-алгебра всех ограниченных
линейных операторов в H , и τ = tr – канонический след, то S(M ,τ) совпадает с
B(H ), τ-компактность есть обычная компактность (=вполне непрерывность) огра-
ниченного линейного оператора, пространствоL1(M ,τ) совпадает с ∗-идеаломопе-
раторов со следом S1(H ) вB(H ). ОператорU ∈B(H )называется изометрией, если
U∗U = I ; каждая изометрия является гипонормальным оператором.

Теорема 1. Пусть U ∈ M является изометрией.
(i) Если P ∈ Mpr сU PU∗ ≤ P и τ(P ) < +∞, тоU P = PU .
(ii) Если I −U ∈ L1(M ,τ), то дляQ :=UU∗ ∈Mpr имеем τ((I −U )Q⊥) = 0.

Теорема 2. Если A ∈ S(M ,τ) гипонормален иU ∈M являетсятакой изометрией,
что A∗ = U AU∗, то оператор A нормален.

Следствие 1. Если A ∈ S(M ,τ) когипонормален иU ∈M являетсятакой изомет-
рией, что A = U A∗U∗, то оператор A нормален.

Теорема 3. Пусть оператор X ∈ S(M ,τ) является либо гипонормальным либо
имеет вид X = λI + A с некоторым λ ∈ C и τ-компактным оператором A ∈ S(M ,τ).
Если (ReX )+ = |X | (или (ImX )+ = |X |), то X = |X | ≥ 0.

Теорема 4. Пусть U ∈ M является изометрией, оператор B ∈ S(M ,τ) τ-
компактен, и пусть A =U +B . Если A A∗ ≥ I и оператор A является гипонормальным,
то A нормален.

Следствие 2. Пусть U ∈ M является коизометрией, оператор B ∈ S(M ,τ) τ-
компактен, и пусть A =U +B . Если A∗A ≥ I и оператор A является когипонормаль-
ным, то A нормален.

Работа выполнена в рамках реализации программы развития Научно-
образовательного математического центра Приволжского федерального округа
(соглашение № 075-02-2025-1725/1).
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ON NORMALITY OF HYPONORMAL MEASURABLE OPERATORS

A.M. Bikchentaev

Let τ be a faithful normal semifinite trace on the von Neumann algebra M . We study cases where a
hyponormal (or cohyponormal) τ-measurable operator is normal.
Keywords: Hilbert space, von Neumann algebra, normal trace, measurable operator, hyponormal operator.
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ЗАДАЧА С НЕЛОКАЛЬНЫМ УСЛОВИЕМ ДЛЯ ОДНОМЕРНОГО УРАВНЕНИЯ
ЧЕТВЕРТОГО ПОРЯДКА С КРАТНЫМИ ХАРАКТЕРИСТИКАМИ

А.В. Богатов1
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В докладе рассматривается задача с нелокальныминтегральным условием первого ро-
да для уравнения четвертого порядка с кратными характеристиками. Доказана од-
нозначная разрешимость поставленной задачи. Доказательство базируется на апри-
орных оценках и принципе сжатых отображений.

Ключевые слова: нелокальная задача, интегральные условия, уравнение четвер-
того порядка, разрешимость задачи.

Задачи с нелокальными условиями для уравнений с частными производными
в настоящее время активно изучаются, что связано не только с интересом к ним
как объектам теоретического исследования, но и в связи с их приложениями [1].
Большинство работ по этой тематике направлено на изучение задач для уравнений
второго порядка. В докладе рассматривается задача с нелокальным интегральным
условием для уравнения четвертого порядка, которое можно интерпретировать как
обобщение уравнения Буссинеска-Лява. Для этого уравнения можно поставить как
начально-краевые задачи, так и задачи типа задачи Гурса. Это обстоятельство, а
также вид нелокального условия, позволили разработать новый подход к доказа-
тельству разрешимости поставленной нелокальной задачи и реализовать его.

В области QT = (0, l )× (0,T ) рассмотрим уравнение

Lu ≡ ut t − (aux)x −buxxt t + cu = f (x, t ), (1)

где a(x, t ) > 0 всюду в Q̄T , b(t ) > 0 в [0,T ], и поставимдля него задачу: найти решение
уравнения (1), удовлетворяющее начальным условиям

u(x,0) =φ(x),ut (x,0) =ψ(x), (2)

краевому условию

ux(0, t ) = 0 (3)

и нелокальному условию ∫ l

0
K (x, t )u(x, t )d x = h(t ). (4)
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Заметим, что задачу (1)—(4) можно трактовать как интегральный аналог задачи
Гурса, так как условие b(t ) ̸= 0 позволяет интерпретировать уравнение (1) как
уравнение с доминирующей смешанной производной [2]. Это наблюдение дает
возможность выбрать для обоснования разрешимости задачи удобный метод [3].

Теорема. Если a ∈ C 1(Q̄T ),c ∈ C (Q̄T ),b ∈ C [0,T ],b(t ) > 0,K ∈ C 2(QT ) ∩C 1(Q̄T ),
ϕ,ψ ∈C 1[0, l ],h ∈C 2[0,T ], f ∈C 1(QT ) и выполняются условия согласования∫ l

0
K (x,0)ϕ(x)d x = h(0),

∫ l

0
K (x,0)ψ(x)d x +

∫ l

0
Kt (x,0)ϕ(x)d x = h′(0),

то существует единственное решение задачи.
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PROBLEMWITH A NONLOCAL CONDITION FOR A ONE-DIMENSIONAL EQUATION OF THE
FOURTH ORDER WITH MULTIPLE CHARACTERISTICS

A.V. Bogatov

In this article, we study a problem with a nonlocal integral condition of the first kind for a fourth-order
equation with multiple characteristics. The solvability of the problem is proved. The proof is based on
a priori estimates and contraction mapping principle.
Keywords: nonlocal problem, integral conditions, fourth-order equation, solvability of the problem.
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ОБ УСТОЙЧИВОСТИ РЕШЕНИЙ СИСТЕМ УРАВНЕНИЙ ДРОБНОГО ПОРЯДКА
А.В. Буробин1
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Проводится исследование устойчивости решений систем уравнений дробного порядка
с производной Римана-Лиувилля. Устанавливаются условия устойчивости для линей-
ных систем с постоянными коэффициентами.

Ключевые слова: уравнения дробного порядка, производная Римана-Лиувилля,
задача Коши, устойчивость решений по Ляпунову, линейные системы с постоян-
ными коэффициентами.

В работе [1] для уравнения дробного порядка с производной Римана-Лиувилля
[2] была поставлена задача Кощи в рамках задачи типа Коши с однородным усло-
вием. Такая постановка в работе [3] была распространена на системы уравнений. В
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частности, для однородной линейной системы

D
γi
0+ fi = ai 1(x) f1 +·· ·+ai n(x) fn (mod C

(−γi )
I ([0, l ])) (1)

при γi ∈ (0,1), i = 1,n, может быть рассмотрена задача Коши с начальными усло-
виями

fi (0) = fi 0, i = 1,n. (2)

ЗдесьC
(−γi )
I ([0, l ])— обеспечивающие выполнение начальных условий одномерные

подпространства пространств C (−γi )([0, l ]).
При непрерывных на [0, l ] коэффициентах системы задача Коши (1), (2) имеет

единственное рещение с компонентами fi ∈ C (0)([0, l ]), i = 1,n. При fi 0 = 0, i = 1,n,
очевидно, задача имеет решение

fi (x) ≡ 0, i = 1,n. (3)

Положив γi = γ ∈ (0,1), i = 1,n, будем рассматривать γ-нормальную систему (1)
с постоянными коэффициентами. Считаем, что это свойство сохраняется при про-
извольном выборе положительного l , и будем исследовать решение (3) на устойчи-
вость по Ляпунову [4] при x →∞. Выбираем при этом γ−1 = p +1 с натуральным p.

Ранее для системы (1) было показано, что в случае действительных собствен-
ных значений матрицы системы условия устойчивости решения (3) совпадают с та-
кими условиями для 1-нормальной системы с производными первого порядка. При
наличии комплексных собственных значений условия меняются. Рассмотрим об-
щий случай.

Будем обозначать Uγ множество комплексных чисел z с положительной дей-
ствительной частью и |arg z| < γπ/2, а Sγ — дополнение его замыкания [Uγ].

Теорема 1.Пусть все собственные значения матрицы системы (1) принадлежат
множеству Sγ. Тогда решение (3) этой системы асимптотически устойчиво.

Характерно, что асимптотическая устойчивость решения возможна даже при
наличии собственных значений матрицы системы с положительной действитель-
ной частью, что свидетельствует о расширении области устойчивости в сравнении
с 1-нормальной системой. Область неустойчивости при этом сужается.

Теорема 2. Пусть хотя бы одно собственное значение матрицы системы (1)
принадлежит множествуUγ. Тогда решение (3) этой системы неустойчиво.

В том случае, когда собственные значения матрицы системы (1) попадают на
границу областей Sγ иUγ, требуется дополнительное исследование.

Теорема 3.Пусть все собственные значения матрицы системы (1) принадлежат
множеству [Sγ]. Если кратность каждого собственного значения, не принадлежащего
множеству Sγ, совпадает с его геометрической кратностью, то решение (3) системы
устойчиво. Если же хотя бы для одного такого собственного значения кратность
превышает его геометрическую кратность, то решение (3) системы не является
устойчивым.

Таким образом, γ-нормальная система, как и 1-нормальная, в случае постоян-
ных коэффициентов поддается полному анализу. Однако, несмотря на общее сход-
ство, в свойствах решений такие системы существенно различаются. Эти различия
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проявляются и в том, что при переходе в фазовое пространство можно обнаружить
фазовые портреты вне привычной классификации даже приn = 2, так что требуется
расширенная классификация положений равновесия.
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ON THE STABILITY OF SOLUTIONS OF SYSTEMS OF FRACTIONAL EQUATIONS

A.V. Burobin

The stability of solutions of systems of fractional equations with Riemann-Liouville derivative is
studied. Stability conditions are established for linear systems with constant coefficients.
Keywords: fractional equations, Riemann-Liouville derivative, Cauchy problem, Lyapunov stability, linear
systems with constant coefficients.
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Изучается разрешимость псевдодифференциального уравнения в плоском угле в про-
странстве Соболева–Слободецкого. С помощью специальной факторизации эллипти-
ческого символа и одного оператора преобразования выписано общее решение уравне-
ния. Дополнительное интегральное условие позволяет доказать единственность ре-
шения.

Ключевые слова: псевдодифференциальное уравнение, общее решение, оператор
преобразования, асимптотическое поведение решения.

При исследовании разрешимости уравнения

(Au)(x) = v(x), x ∈R2 \C ab
+ , (1)

где A – псевдодифференциальный оператор с символом A(ξ), с использованием
специальной факторизации эллиптического символа [1, 2]

A(ξ) = A ̸=(ξ) · A=(ξ)
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в пространстве H s(C ), где C ⊂ Rm – выпуклый острый конус, возникает специаль-
ный оператор преобразования, с помощью которого описывается конструкция ре-
шения [3]. Здесь мы рассмотрим плоский случай, когда конус не обладает симмет-
рией относительно оси координат, точнее, имеет вид

C ab
+ =

{
x2 >−ax1, x1 < 0,

x2 > bx1, x1 > 0,

C ab+ ⊂ R2, a,b > 0.
С использованием одномерного сингулярного интегрального оператора

(Su)(ξ) = v.p.
i

2π

∞∫
−∞

u(η1,ξ2)

ξ1 −η1
dη1

определяются два проектора

P = 1

2
(I +S), Q = 1

2
(I −S),

I – тождественный оператор.
В некоторых случаях приналичии волновойфакторизации символа A(ξ)можно

выписать общее решение уравнения (1)

Теорема. Пусть символ A(ξ) допускает волновую факторизацию относительно
C ab+ с индексом ȷ таким, что ȷ− s = 1 + ε, |ε| < 1/2, v(x) ≡ 0. Тогда общее решение
уравнения (1) имеет вид

ũ(ξ) = A−1
= (ξ) ((Pc̃)(ξ1 −bξ2)+ (Qc̃)(ξ1 +aξ2)) ,

где c – произвольная функция из пространства H s−ȷ+1/2(R).
Если правая часть уравнения ненулевая, то в формуле общего решения появ-

ляется слагаемое, связанное с действием оператора

(G2ṽ)(ξ1,ξ2) =

= a +b

4π2 lim
τ→0+

∫
R2

ũ(x1, x2)d x1d x2

(ξ1 −x1 +b(ξ2 −x2 + iτ))(ξ1 −x1 −a(ξ2 −x2 + iτ))

на правую часть уравнения (1).
Произвольная функция c легко может быть определена с помощью задания

интегрального условия

+∞∫
−∞

u(x1, x2)d x2 = f (x1), (2)

где f – заданная функция из пространства H s+1/2(R).
Исследуется также поведение решения краевой задачи (1),(2), когда параметры

a,b стремятся у своим предельным значениям 0 и∞.
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ON A CERTAIN OPERATOR IN THE THEORY OF BOUNDARY VALUE PROBLEMS

V.B. Vasilyev, H.F. Gebreslasie

A solvability of a pseudo-differential equation in a plane sector is studied in Sobolev–Slobodetskii
space. Using a special factorization for an elliptic symbol and a certain transmutation operator
a general solution to the equation is written. Additional integral condition admits to prove the
uniqueness of the solution.
Keywords: pseudo-differential equation, general solution, transmutation operator, asymptotic behavior of
a solution.
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Изучается обобщенная задача Валле—Пуссена на собственные значения для уравнения
второго порядка.

Ключевые слова: обобщенная задача Валле—Пуссена, собственные значения, соб-
ственные функции, неосцилляция.

Будем изучать краевую задачу для уравнения (1) с условиями вида (7) и (8) (см.
ниже), т. е. обобщённую задачу Валле—Пуссена (ОЗВП). В терминах квазидиффе-
ренциальных уравнений изучались многоточечные линейные краевые задачи и их
сопряженные в работах [1] и [2] (там же см. определения используемых здесь квази-
производных, если P — единичная матрица третьего порядка, то квазидифферен-
циальное уравнение (1) становится обыкновенным дифференциальным уравнени-
ем). Вначале рассмотрим задачу

ν∏
i=1

σ(t −ai )µiσ(t −ai )ρi 2
P x(t ) =−λp22(t ) 0

P x(t ) (t ∈ J=̇[a,b]; a,b ∈R) , (1)

0
P x(a0) = 0

P x(a2) = . . . = 0
P x(a2ξ) = 0

P x(a2ξ+1) = . . . = 0
P x(aν−1) = 0

P x(aν+1) = 0 (2)
(a = a0 < a1 < ·· · < aν < aν+1 = b, νÊ 0, ν−четное, 0 É ξÉ ν/2) ,

ρi É 1, i = 1, 3, . . . , 2ξ−1, 2ξ+2, . . . , ν, ρi = 0, i = 2, 4, . . . , 2ξ, 2ξ+1, . . . , ν−1, (3)
где k

P x(·) (k = 0, 1, 2) означает квазипроизводную порядка k, построенную по ниж-
ней треугольной матрице P = (pi k )2

i ,k=0 , ρi — дефект решения в точке ai , ρi = δ (0 É
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δÉ 2), если 2−δ
P x(·) имеет разрыв в точке ai , а все квазипроизводные меньшего по-

рядка непрерывны в этой точке, функция σ(·) совпадает с sign(·) в открытых интер-
валах (ak , ak+1) и односторонне непрерывна в точках ak . Функция x(·) имеет в точ-
ке ai ∈ J P-нуль кратности µi (1 É µi É 2), если µi

P x(ai ) ̸= 0, а все квазипроизводные
меньшего порядка обращаются в нуль в этой точке. Пусть ϕP (x, ai ) есть кратность
P-нуля функции x(·) в точке ai . Уравнение

2
P x(t ) = 0, t ∈ J , (4)

называется неосцилляционным на J , если общее число P-нулей любого нетри-
виального решения (4) на J с учетом их кратностей не превосходит единицы
(см. [1]). Рассмотрим задачи

2
P x(t ) =−λp22(t ) 0

P x(t ) (t ∈ [a, a1]) , 0
P x(a) = 0

P x(a1) = 0, (5)
2
P x(t ) =−λp22(t ) 0

P x(t ) (t ∈ [aν, b]) , 0
P x(aν) = 0

P x(b) = 0. (6)
В случае ξ= 0 задача (5) совпадает с задачей (1)–(3) при значениях t ∈ [a2ξ, a2ξ+1] =

[a, a1]. В случае ξ= ν/2 задача (6) совпадает с (1)–(3) при значениях t ∈ [a2ξ, a2ξ+1] =
[aν,b].

Теорема1. Пусть уравнение (4) неосцилляционно на J , известны собственные
значения λ двухточечной классической задачи Валле Пуссена (КЗВП) для уравнения
(1), рассматриваемой на отрезке [a2ξ, a2ξ+1] (или, что то же самое, в силу того, что
рассматривается уравнение второго порядка, а не более высокого, задачи Штурма-
Лиувилля с краевыми условиями первого рода на концах этого отрезка), и отвечающие
им собственные функции u2ξ,2ξ+1(t ,λ). Тогда λ являются собственными значениями
задачи (1)–(3). Пусть известны нетривиальные решения uk,k+1(t ,λ) уравнения (1) на
отрезках [ak , ak+1], обращающиеся в нуль на том конце отрезка, который участвует
в условиях (2), тогда

0
P u(t ,λ) =


0
P u01(t ,λ) (a0 É t É a1),
m−1∏
i=1

1−ρi
P ui−1,i (ai ,λ)

1−ρi
P ui ,i+1(ai ,λ)

0
P um−1,m(t ,λ) (am−1 É t É am ,m = 2, 3, . . . ,ν+1)

есть с точностью до постоянного множителя нулевая квазипроизводная собствен-
ной функции u(t ,λ) задачи (1)–(3), отвечающей собственному значению λ. Пусть из-
вестны собственные значения λ̂ задачи (5) и отвечающие им собственные функции
ul (t , λ̂). Тогда λ̂ является собственным значением задачи (1)–(3), и при этом 0

P u(t , λ̂) =
0
P ul (t , λ̂) (a ÉÉ t É a1), 0

P u(t , λ̂) = 0 (a1 É t É b).Пусть известны собственные значения
λ̃ задачи (6) и отвечающие им собственные функции ur (t , λ̃). Тогда λ̃ является соб-
ственным значением задачи (1)–(3), и при этом 0

P u(t , λ̃) = 0 (a É t É aν), 0
P u(t , λ̃) =

0
P ur (t , λ̃) (aν É t É b). Спектр (1)–(3) совпадает с объединением спектров КЗВП на
[a2ξ, a2ξ+1] и задач (5),(6).

Вместо краевых условий (2),(3) зададим для уравнения (1) краевые условия
(7),(8) и введем левые (lk ) и правые (rk ) индексы точек ak (k = 1, 2, . . . ,ν) (см. [1]):

ϕP (x, ai ) Êµi , гдеµi ∈ {0, 1} (i = 1, 2, . . . ,ν), µ0 =µν+1 = 1, (7)

ρi É 1(i = 1, 2, . . . ,ν),
ν+1∑
i=0

µi = 2+
ν∑

i=1
ρi . (8)
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lk = 2+
k−1∑
i=1

ρi −
k∑

i=0
µi , rk = 2+

ν∑
i=k+1

ρi −
ν+1∑
i=k

µi (k = 1, 2, . . . ,ν) (9)

(если верхний индекс меньше нижнего, то полагаем сумму равной нулю). Следуя
[1], назовем условиями ОР (однозначной разрешимости) неравенства: lk Ê 0, rk Ê 0
(k = 1, 2, . . . ,ν). В случае краевых условий вида (2),(3) для уравнения (1) левые и пра-
вые индексы точек ak (k = 1, 2, . . . ,ν) неотрицательны и условия ОР всегда выпол-
нены, а также выполняется второе из краевых условий (8). Краевые условия (2), (3)
— частный случай условий (7), (8). Краевые условия (7),( 8) позволяют одновремен-
но задавать во внутренних точках отрезка J и нуль кратности единица, и дефект,
равный единице. Пусть ak1 < ak2 < . . . < akp — все такие точки. Пусть любому соб-
ственному значению задачи (1)–(3) отвечает единственная собственная функция.

Теорема2. Пусть уравнение (4) неосцилляционно на J и выполнены условия ОР.
Тогда:
a) спектр ОЗВП (1),(7),(8) представляет собой объединение спектров (p+1)-ой ОЗВП
вида (1)–(3), рассматриваемых на отрезках [a0, ak1], [ak1 , ak2], . . . , [akp , aν+1];
b) если собственное значение λ задачи (1),(7),(8) входит в спектр только одной ОЗВП
вида (1)–(3), то ему отвечает единственная собственная функция, если же λ одно-
временно входит в спектры N (1 < N É p + 1) ОЗВП вида (1)–(3), то ему отвечает
2N −1 линейно-независимых собственных функций; любая собственная функция ОЗВП
(1), (7), (8), соответствующая λ, равна нулю на тех отрезках из J , на которых заданы
ОЗВП вида (1)–(3) и в спектры которых λ не входит, а на остальных отрезках из J , в
спектры которых λ входит, совпадает с соответствующими собственными функци-
ями ОЗВП вида (1)–(3) или равна нулю, но не равна нулю на всех таких отрезках сразу.
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ON THE SPECTRUM OF THE GENERALIZED VALLEE POUSSIN PROBLEM

M.Yu. Vatolkin

The eigenvalues of the generalized Vallee Poussin problem for a second-order equation are studied.
Keywords: generalized Vallee Poussin problem, eigenvalues, eigenfunctions, disconjugacy.
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Рассматриваются несамопересекающиеся пути на квадратной решетке—периодиче-
ском графе Z2. Решается комбинаторная задача о вычислении функции N (n) — числа
всех таких путей длины n ∈N с общей начальной вершиной. Получены верхние и ниж-
ние оценки функции N (n).

Ключевые слова: периодический граф, несамопересекающийся путь, асимптоти-
ческая формула, матрица перехода.

Рассмотрим бесконечный периодический граф Γ= 〈V ,ϕ〉 размерности 2, кото-
рый допускает такое вложение в R2, при котором множество вершин V отобража-
ется в Z2, а отношение смежности ϕ, определяется множеством пар {{x, y} ⊂Z2 : y =
x ± e j ; j ∈ {1,2}}, e1 = 〈0,1〉, e2 = 〈1,0〉.

Путь γ(x, y) длины n с начальной вершиной x и конечной вершиной y пред-
ставляется последовательностью вершин γ(x, y) = 〈x, x1, ..., xn = y〉 графа. Путь на-
зывается несамопересекающимся, если x j ̸= xk при j ̸= k. Будем, далее, рассматри-
вать класс Cn несамопересекающихся путей с общей начальной вершиной 0 = 〈0,0〉.
Обозначим число всех таких путей длины n посредствомN (n) ≡ |Cn |. В монографии
[1] поставлена задача вычисления функции N (n) для произвольных периодических
графов. Эта задача имеет непосредственное отношение к статистической физике
длинных полимерных молекул [2]. Более сильный вариант такой задачи, в котором
налагалось дополнительное ограничение на т.н. неспрямляемость пути на перио-
дическом графе, что связано с приложением для получения оценок т.н. порога пер-
коляции в дискретной теории перколяции, изучался в сообщении [3] (см. также [4]).

Очевидно, что функция N (n) подчинена неравенствам

4 ·2n−1 < N (n) < 4 ·3n−1 .

Точное определение этой функции затруднительно. Однако, с точки зрения прило-
жений, важно установить приближенное выражение для этой функции с гаранти-
рованной точностью. Ввиду указанных неравенств, очевидно, имеет место асимп-
тотическая формула ln N (n) = nO(1)+ const при n →∞, в которой ln2 < O(1) < ln3.
Таким образом, интерес представляет получение возможно более точных ограни-
чений на функцию O(1).

Для получения более точной верхней оценки оценивался более широкий класс
путей таких, каждый из которых удовлетворяет условию несамопересечения на
каждом его отрезке, состоящем из его последовательных 4-х шагов. В результате,
число N+(n) всех таких путей длины n представлялось в виде N+(n) =∑4

j=1 N+(n, j ),
где N+(n, j )—число всех путей указанного типа, у которых последний сдвиг проис-
ходил в направлении e j , где e3 =−e1 и e4 =−e2. Вычисление в этом случае сводилось
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к решению разностного уравнения большого порядка. В результате, была получена
верхняя оценка

Теорема 1. Функция N (n) удовлетворяет неравенству

1

n
ln N (n) < 1

2
ln(4+p

19) .

Точно таким же методом получена нижняя оценка, для вычисления которой
определялось число N−(n) путей длины n, которые, заведомо, не являются самопе-
ресекающимися, и составляют более узкий класс по сравнению с классом Cn . По-
строение этого класса осуществлялось следующим образом. Выбиралось одно из 4-
x направлений, которое рассматривалось преимущественным для выбора каждого
очередного сдвига при построении пути. Тогда все сдвиги строящегося пути были
либо в этом преимущественном направлении, либо в поперечных ек нему направ-
лениях. При этом не допускалось два подряд поперечных сдвига. Эти условия обес-
печивали несамопересекаемость пути. В результате, вычисление числаN−(n) также
сводилось к решению разностного уравнения большого порядка. На этом пути по-
лучено неравенство

Теорема 2. Функция N (n) удовлетворяет неравенству

1

n
ln N (n) > ln(1+p

2) .
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ENUMERATION OF NON-SELF-INTERSECTING PATHS
ON THE PERIODIC GRAPH Z2

Yu.P. Virchenko, R.E. Solonchenko

Non-self-intersecting paths on the square lattice which the periodic graph Z2 are under consideration.
It is solved the combinatoric problem connected with calculation of the function N (n) which is the
number of such paths with the length n ∈N and with the common initial vertex. Some upper and lower
estimates of the function N (n) are obtained.
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Получено описание гомеоморфизмов ϕ : Ω → Y (здесь Ω — область в римановом
пространствеM, аY—метрическое пространство), эквивалентное ограниченности
оператора композиции ϕ∗ : Lip(Y) → L1

q (Ω), ϕ∗( f ) = f ◦ϕ, 1 ≤ q ≤ ∞, для любой
липшицевой функции f ∈ Lip(Y), и другие свойства таких гомеоморфизмов. Новый
подход позволяет эффективно доказать теорему о гомеоморфизмах ϕ : Ω → Ω′
областей в произвольном римановом пространстве M, индуцирующих ограниченный
оператор композиции

ϕ∗ : L1
p (Ω′)∩Liploc(Ω′) → L1

q (Ω), 1 ≤ q ≤ p <∞.

В случае q = p = dimM получаем эквивалентные описания квазиконформных отобра-
жений на римановых многообразиях.

Полученные результаты можно применить для решения вариационных задач
нелинейной теории упругости на римановых многообразиях.

Ключевые слова: риманово пространство, класс отображений Соболева со значе-
ниями в метрическом пространстве, искажение отображения, обобщенное квази-
конформное отображение, оператор композиции, нелинейная теория упругости.

Пусть (Y,ρ) — метрическое пространство, а Ω ⊂ M — область в римановом
пространствеM,dim M ≥ 2. Отображениеϕ :Ω→Y измеримое, еслипрообразϕ−1(T )
всякого борелевского множества T ⊂ Y измерим по Лебегу.

Класс Lp (Ω;Y) (Lp,loc(Ω;Y)) 1 ≤ p ≤ ∞, состоит из измеримых отображений
ϕ : Ω → Y, для которых

∥ρ(ϕ(·), z) | Lp (Ω)∥ <∞
(таких, чтоϕ ∈ Lp (U ;Y) для каждой компактнойподобластиU ⋐Ω) для любой точки
z ∈ Y. Пространство Lip(Y) состоит из липшицевых функций u : Y→ R c конечной
полунормой

Lip(u) = sup
y1 ̸=y2

|u(y1)−u(y2)|
ρ(y1, y2)

.

Ю.Г. Решетнякпредложилподход к определениюсоболевских классовфункций
со значениями в метрических пространствах. Пусть (Y,ρ) — полное метрическое
пространство, ρ — метрика на Y, a Ω— область на римановом многообразииM.

Определение 1. Будем говорить, что отображение ϕ : Ω → Y принадлежит
классу Решетняка L1

p (Ω;Y) (L1
p,loc(Ω;Y)), 1 ≤ p ≤ ∞, если выполнены следующие

условия:

1) функция M ∋ x → [ϕ]z(x) = ρ(ϕ(x), z) принадлежит L1
p,loc(M) для любой точки

z ∈M′;
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2) существует функция g ∈ Lp (Ω) (g ∈ Lp,loc(Ω)) такая, что

|∇(u ◦ϕ)| ≤ g Lip(u) (1)

п. вс. в Ω для каждой функции u ∈ Lip(Y).

Класс W 1
p (Ω;Y) состоит из отображений, принадлежащих Lp (Ω;Y) ∩ L1

p (Ω;Y).
Отображениеϕ принадлежитW 1

p,loc(Ω;Y), еслиϕ ∈W 1
p (U ;Y) для любой компактной

подобласти U ⋐ Ω.
Если отображение ϕ : Ω→ Y принадлежит L1

q (Ω;Y), 1 ≤ q ≤∞, то оно индуци-
рует ограниченный оператор композиции

ϕ∗ : Lip(Y) → L1
q (Ω), ϕ∗u = u ◦ϕ. (2)

Действительно, поскольку |∇(u◦ϕ)| ≤ |∇0ϕ|Lip(u) п. вс. вΩ, то ∥u◦ϕ | L1
q (Ω)∥ ≤ ∥∇0ϕ |

Lq (Ω)∥ ·Lip(u). Отсюда ∥ϕ∗∥ ≤ ∥∇0ϕ | Lq (Ω)∥ ∈ Lq (Ω) (здесь ∇0ϕ— верхний градиент
(т. е. наименьшая из функций g , удовлетворяющих соотношению (1)).

Предположим, что выполнено обратное: пусть какое-либо отображениеϕ :Ω→
Y индуцирует ограниченный оператор композиции (2), 1 ≤ q < ∞. Верно ли, что
ϕ является отображением класса L1

q (Ω;Y)? Ниже мы формулируем положительный
ответ на этот вопрос в случае, когда ϕ — гомеоморфизм.

Открытому множеству V ⊂Y сопоставим неотрицательное число

Ψ(V ) = sup
{∫
Ω

|∇(u ◦ϕ)(x)|q d x
∣∣u ∈ Lip(Y), Lip(u) ≤ 1, dist(spt u,Y\V ) > 0

}
(здесь sptu = {y ∈Y | u(y) ̸= 0} — носитель функции u : Y→ R). Функция открытого
множества V 7→Ψ(V ) монотонна и конечно аддитивна.

Теорема 1 [1]. Пусть Ω — область в римановом пространстве M, (Y,ρ) —
метрическое пространство, а гомеоморфизм ϕ : Ω → Y индуцирует ограниченный
оператор композиции ϕ∗ : Lip(Y) → L1

q (Ω), ϕ∗u = u ◦ϕ, 1 ≤ q <∞. Тогда ϕ ∈ L1
q (Ω;Y).

Более того, ∫
U

|∇0ϕ|(x)q d x =Ψ(ϕ(U ))

для каждого открытого множестваU ⊂Ω. В частности, производная (Ψ◦ϕ)′ функции
U 7→ Ψ(ϕ(U )) равна

|∇0ϕ|q п. вс. вU и ∥∇0ϕ | Lq (Ω)∥ = ∥ϕ∗∥.

В доказательстве теоремы 1 существенно применяются результаты работы [2].
Пусть Ω — область в римановом пространстве M. Отображение ϕ ∈ ACL(Ω;M′)

называется отображением с конечным искажением, если Dϕ= 0 п. вс. на множестве
нулей якобиана Z = {x ∈ Ω | detDϕ(x) = 0}. Внешняя функция искажения Kp (·,ϕ),
p ∈ [1;∞), определяется по правилу

Kp (x,ϕ) =


|Dϕ(x)|

|detDϕ(x)| 1
p

, если detDϕ(x) ̸= 0,

0 иначе.
(3)
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Теорема 2 [1]. Пусть даны римановы пространстваM иM′ одинаковой размер-
ности, области Ω⊂M, Ω′ ⊂M′, и гомеоморфизм ϕ :Ω→Ω′. Оператор композиции

ϕ∗ : L1
p (Ω′)∩Liploc(Ω′) → L1

q (Ω)

ограничен при фиксированных 1 ≤ q ≤ p <∞ тогда и только тогда, когда

1) ϕ ∈W 1
q,loc(Ω;M′);

2) ϕ имеет конечное искажение;

3) внешняя функция искажения (3) принадлежит Lσ(Ω), где 1
σ = 1

q − 1
p (σ = ∞ при

q = p): Kp (·,ϕ) ∈ Lσ(Ω);

4) ∥ϕ∗∥ = ∥Kp (·,ϕ) | Lσ(Ω)∥.

Теорема 2 устанавливает эквивалентную связь отображений с конечным ис-
кажением и интегрируемой функцией искажения с ограниченными операторами
композиции однородных пространств Соболева.

Определение 2. Пусть U — открытое множество в римановом пространстве
M, и пусть ϕ : U →M′ — непостоянное отображение класса Соболева W 1

1,loc(U ,M′).
Отображение ϕ принадлежит классу I (L,U ), L ≥ 1, если J (x,ϕ) сохраняет знак наU
и L−1|ξ| ≤ |Dϕ(x)ξ| ≤ L|ξ| для всех ξ ∈ TxM и п. вс. x ∈U .

Очевидно отображение класса I (L,U ), L ≥ 1, принадлежит пространству Собо-
лева W 1

p,loc для всех p ≥ 1.
Напомним, что отображение ϕ : U →M′ локально L-липшицево, если каждая

точка x ∈ U имеет окрестность V , V ⊂ U , такую, что неравенство d(ϕ(y),ϕ(z)) ≤
Ld(y, z) справедливо для всех y, z ∈ V ; также ϕ локально L-билипшицево, если
L−1d(y, z) ≤ d(ϕ(y),ϕ(z)) ≤ Ld(y, z) для всех y, z ∈ V .

Лемма 1. Если ϕ принадлежит I (L,U ), то ϕ локально L-липшицево. Если, кроме
того,ϕ является локальным гомеоморфизмом,тоϕ локально L-билипшицево. Обрат-
но, каждое локально L-билипшицевое отображение открытого множестваU принад-
лежит I (L,U ).

Из теоремы 2 выводим следующий результат:

Теорема 3. ПустьM иM′ — римановы пространства одинаковой размерности,
Ω ⊂M и Ω′ ⊂M′ — связные области, а ϕ :Ω→Ω′ — гомеоморфизм.

1) Если операторы композиции

ϕ∗ : L1
p (Ω′)∩Liploc(Ω′) → L1

p (Ω) и ϕ−1∗ : L1
p (Ω)∩Liploc(Ω) → L1

p (Ω′) (3)

ограничены при некотором p ∈ [1,∞) \ dimM, то гомеоморфизм ϕ L-билипшицев при
L, зависящем только от норм ∥ϕ∗∥ и ∥ϕ−1∗∥ операторов композиции в (3).

2) Если оператор композиции

ϕ∗ : L1
n(Ω′)∩Liploc(Ω′) → L1

n(Ω), n = dimM,



42 СОДЕРЖАНИЕ

ограничен, то гомеоморфизм ϕ квазиконформен: ϕ ∈ W 1
n,loc(Ω) и

|Dϕ(x)|n ≤ K |detDϕ(x)| для п. вс. x ∈Ω при K = esssup
x∈Ω\Z

|Dϕ(x)|n
|detDϕ(x)| = ∥ϕ∗∥n ,

где ∥ϕ∗∥ — норма оператора композиции в (3) при p = n.

В связи c теоремой 3 возникает вопрос о дополнительных свойствах квазикон-
формных гомеоморфизмов на римановых многообразиях. Некоторые из них мы
обсудим во время доклада. Здесь мы отметим лишь следующее свойство: гомеомор-
физмϕ−1 :Ω′ →Ω, обратный к квазиконформномуϕ :Ω→Ω′, также квазиконформен
и ∥ϕ−1∗∥ ≤ ∥ϕ∥n−1.

При n−1 < q < p = n гомеоморфизмы, определенные выше, можно интепрети-
ровать как классы допустимых деформаций в задачах нелинейной теории упруго-
сти на римановых пространствах (см. [3] ([4]), где описан подход к задаче в евкли-
довом пространстве Rn (на группе Карно G)).

Работа выполнена в рамках выполнения государственного задания Министер-
ства образования инауки РФдляИнститутаматематикиСибирского отделения Рос-
сийской академии наук (проект № FWNF-2022-0006)
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QUASICONFORMAL ANALYSIS ON RIEMANNIAN MANIFOLDS AND ITS APPLICATIONS

S.K. Vodopyanov

We obtain equivalent description of homeomorphisms ϕ :Ω→Y (here Ω is a domain in a Riemannian
space M, and Y is a separable metric space), which guarantees the boundedness of the composition
operator ϕ∗ : Lip(Y) → L1

q (Ω), ϕ∗( f ) = f ◦ϕ, 1 ≤ q ≤∞, for any Lipschitz function f ∈ Lip(Y), and other
properties of such homeomorphisms. The new approach allows us to effectively prove a theorem on
homeomorphisms ϕ :Ω→Ω′ of domains in an arbitrary Riemannian space M that induce a bounded
composition operator

ϕ∗ : L1
p (Ω′)∩Liploc(Ω′) → L1

q (Ω), 1 ≤ q ≤ p <∞.

In the case q = p = dimM we obtain equivalent descriptions of quasiconformal mappings on Rieman-
nian manifolds.

We apply the obtained results to solving variational problems of nonlinear elasticity theory on
Riemannian manifolds.
Keywords: Riemannian space, class of Sobolevmappings with values in ametric space, mapping distortion,
generalized quasiconformal mapping, composition operator, nonlinear elasticity theory.
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УЛУЧШЕННЫЕ НИЖНИЕ ОЦЕНКИ КОНСТАНТЫ БРЕЗИСА-МАРКУСА ИЗ
ГИПОТЕЗЫ АВХАДИЕВА-ВИРЦА
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В статье получены улучшенные нижние оценки константы Брезиса-Маркуса из гипо-
тезы Авхадиева-Вирца. Получены одномерные неравенства с дополнительными слага-
емыми для специальных весовых функций. Используя эти одномерные неравенства, мы
устанавливаем неравенства в многомерных шарах.

Ключевые слова: неравенствоХарди, внутреннийрадиус,функциярасстояния, до-
полнительное слагаемое, точная константа.

Пусть Ω ⊂ Rn является открытым связным множеством евклидова простран-
ства Rn и ∂Ω — его граница. Через C 1

0 (Ω) обозначим семейство непрерывно диф-
ференцируемых функций g :Ω→ R с компактным носителем в Ω. Тогда естествен-
ным образом можно определить функцию расстояния до границы области δ(x) =
infy∈∂Ωdist(x, y), x ∈ Ω.

Рассмотрим константу-функционал

λ(Ω) = inf
g∈C 1

0 (Ω)

∫
Ω

|∇g (x)|2d x − 1
4

∫
Ω

|g (x)|2
δ(x)2 d x∫

Ω

|g (x)|2d x

для выпуклых n-мерных областей. Величина λ(Ω) является наилучшей из возмож-
ных констант в неравенстве, стоящих перед дополнительным слагаемым в соответ-
ствующем неравенстве типа Харди.

В статье [1] Ф.Г. Авхадиев и К.-Й. Вирц выдвинули гипотезу, которая гласит,
что среди всех n-мерных областей с заданным внутренним радиусом δ0 максимум
наилучших констант Брезиса-Маркуса λ(Ω) представляет собой λ(Bn), где Bn — n-
мерный шар радиуса δ0.

За счет линейной инвариантности относительно линейных преобразований
типа сдвига и расширения области, исследование константыλ(Ω) сводится к оценке
(см. подробнее [1]) наилучшей константы c(n) в неравенстве типа Харди с дополни-
тельным слагаемым вида∫

Bn

|∇g (x)|2d x ≥ 1

4

∫
Bn

|g (x)|2
(ρ−|x −x0|)2 d x + c(n)

ρ2

∫
Bn

|g (x)|2d x ∀g ∈C 1
0 (Bn).

Здесь n-мерный шар Bn = {x ∈ Rn : |x − x0| < ρ}, x0 ∈ Rn, ρ > 0, n ∈N.
Ф.Г. Авхадиев иК.-Й. Вирц в тойже работе [1] подтвердили свою гипотезу в двух

случаях: n = 1 и n = 3 (см. также [2]). Они показали, что c(1) = λ2
0 и c(3) = j 2

0 . Здесь
через jν мы обозначаем первый корень функции Бесселя.
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В остальных случаях натурального параметра n гипотеза остается открытой и
получены лишь двусторонние оценки (см. [1, 2, 3]. А именно,

2.443 ≤ c(2) ≤ j 2
0 − 1

4
, C AW (n) := j 2

0 + (n −1)(n −3)

4
≤ c(n) ≤ j 2

n
2 −1 −

1

4
при n ≥ 4.

Вданной статьемыулучшаемизвестныенижниеоценки c(n)иих асимптотику.
Тем самым становимся ближе к подтверждению этой гипотезы. Нами получены
следующие результаты

2.952 ≤ c(2), CGN (4) := 8 ≤ c(4), CGN (n) := (n2 −4n −6) ·βn +6

4βn(1−βn)2 ≤ c(n), при n ≥ 5,

где

βn =
p

12n2 −48n +9−9

2(n2 −4n −6)
.

Более того, CGN (n)−C AW (n) = O(n) при n →∞.
В основе доказательства основных результатов лежат следующие теоремы.

Теорема 1.Пусть f : [0,1] →R – непрерывно дифференцируемая функция, удовле-
творяющая условиям f (0) = 0, f ′2(t )(1− t ) ∈ L2(0,1). Тогда имеет место неравенство

1∫
0

f ′2(t )(1− t )d t ≥ 1

4

1∫
0

f 2(t )

t 2 (1− t )d t +2.952

1∫
0

f 2(t )(1− t )d t .

Теорема 2. Пусть натуральное число n ≥ 4 и f : [0,1] → R – непрерывно диффе-
ренцируемая функция, удовлетворяющая условиям f (0) = 0, f ′2(t )(1− t )n−1 ∈ L2(0,1).
Тогда имеет место неравенство

1∫
0

f ′2(t )(1− t )n−1d t ≥ 1

4

1∫
0

f 2(t )

t 2 (1− t )n−1d t +CGN (n)

1∫
0

f 2(t )(1− t )n−1d t .
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IMPROVED BREZIS-MARCUS CONSTANT FROM AVKHADIEV-WIRTHS CONJECTURE

I.I. Gabdulkhalikov, R.G. Nasibullin

In this paper we improve lower bounds for the Brezis-Marcus constant from the Avkhadiev-Wirths
conjecture. One-dimensional inequalities with additional terms for special weight functions are
obtained. Using them, we establish inequalities in multidimensional balls.
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В статье рассмотрен метод решения задачи определения внутренних нестационар-
ных температурных полей объекта, содержащего источники тепла, при воздействии
на его поверхность внешнеготеплового потока.Математически процесс представлен
обратной граничной задачей для параболического уравнения с условиями, характери-
зующими тепловые процессы вблизи поверхности объекта. В работе приведен числен-
ный метод решения задачи, основанный на применении неявной конечно-разностной
схемы. Точность и устойчивость предложенного метода определения температур-
ных функций исследованы в процессе вычислительного эксперимента, включающегося
определение температуры в контрольнойточке по результатам измерений на грани-
це и сравнение ее с тестовыми значениями.

Ключевые слова: теплоперенос, нестационарный процесс, обратная задача, чис-
ленный метод, конечно-разностная схема.

При эксплуатации оборудования и контроле технологических процессов тер-
мообработки актуальной остается проблема создания устойчивых методов, позво-
ляющих определять температуру во внутренних точках объекта на основе изме-
ренных температурныхфункций на поверхности и в некоторых точках наблюдения
вблизи нее. Такие задачи относят к классу обратных граничных задач [1]—[3].

Математическая модель рассматриваемой задачи имеет вид:

ut = auxx + f (t ), x ∈ (0, l ), t ≥ 0,

u(0, t ) =ϕ(t ), u(x0, t ) = g (t ), u(x,0) =C ,

где x0 — точка, расположенная вблизи границы объекта. В данной задаче требуется
найти граничное значение функции u(l , t ) = ψ(t ).

Для решения поставленной задачи введем в области [0,L]×[0,T ] сетку с равно-
отстоящими узлами (xi , y j ) : xi = i hx , i = 1, ..., N , N = L/hx , y j = j ht , j = 1, ..., M , M =
T /ht .

Конечно-разностная аппроксимация параболического уравнения строится на
основе четырехточечной разностной схемы. При фиксированном j на каждом вре-
менном слое получаем следующее уравнение:

ui , j+1 −ui , j

ht
−a

ui+1, j+1 −2ui , j+1 +ui−1, j+1

h2
x

= f j , i = 1, ..., N −1.

Согласно подходу, предложенному в [4], сеточный аналог температурнойфунк-
ции u(x, t ) в точке (xi , y j ) представим с помощью двух вспомогательных функций
в следующем виде: ui , j = yi , j +ψ j · zi , j , i = 0, ..., N . Учитывая граничные условия,
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на каждом j -ом временном слое получим две системы линейных алгебраических
уравнений для определения yi , j и zi , j .

Поскольку значение температурной функции в точке x0 = r ·hx известно, по
найденным значениям yi , j и zi , j определим дискретный аналог температурной
функции в контрольной точке по формуле ψ j = g j−yr, j

zr, j
для всех j = 1, ..., M при

условии zr, j ̸= 0, где g j = ur, j .
С целью проверки надежности предложенного способа определения темпера-

турных полей объекта из поверхностных измерений и для экспериментальных оце-
нок погрешностей метода проводился вычислительный эксперимент. В ходе экспе-
римента выполнен сравнительный анализ решений, полученных с помощью пред-
ложенного алгоритма с тестовыми значениями, сформированными на основе ими-
тационного моделирования. В ходе вычислительного эксперимента найдены экс-
периментальные оценки погрешностей полученных решений. Наблюдается умень-
шение температурных отклонений при удалении точки наблюдения от поверхно-
сти объекта и уменьшении шума в исходных данных. Результаты вычислительного
эксперимента свидетельствуют о достаточной точности предложенного подхода к
определению температуры во внутренних точках объекта, недоступных для непо-
средственного теплового контроля.
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METHOD OF NUMERICAL SOLUTION OF THE INVERSE LINEAR BOUNDARY VALUE PROBLEM
OF NON-STATIONARY HEAT TRANSFER

T.P. Gavrilova

The article discusses a method for solving the problem of determining internal non-stationary tem-
perature fields of an object containing heat sources when its surface is exposed to an external heat
flow. Mathematically, the process is represented by an inverse boundary value problem for a parabolic
equation with conditions characterizing thermal processes near the surface of the object. The paper
presents a numerical method for solving the problem based on the use of an implicit finite-difference
scheme. The accuracy and stability of the proposed method for determining temperature functions
were investigated in the course of a computational experiment, which included determining the tem-
perature at a control point based on the results of measurements at the boundary and comparing it
with test values.
Keywords: heat transfer, measurement problem, perturbed data, heat equation, Laplace transform, numer-
ical method.
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ОЦЕНКИ СНИЗУ ЖЕСТКОСТИ КРУЧЕНИЯ ВЫПУКЛОЙ ОБЛАСТИ
Л.И. Гафиятуллина1, Р.Г. Салахудинов2
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В работе приводятся оценки снизу для жесткости кручения выпуклой области через
геометрические характеристики области.

Ключевые слова: жесткость кручения, момент области относительно границы,
изопериметрическое неравенство, выпуклая область, функция расстояния до гра-
ницы области, экстремальная область.

Пусть G — односвязная область на плоскости с кусочно-гладкой границей ∂G.
Будем использовать следующие обозначения:

A(G) — площадь области G;
L(G) — длина границы области G;
ρ(G) — радиус максимального круга, содержащегося в G;
l (ρ(G)) = lim

µ→ρ(G)−
l (µ), где l (µ)—периметр кривой, которая состоит из тех точек

из G, для которых минимальное расстояние до границы G равно µ.
Рассмотрим следующую краевую задачу. Требуется найти функцию u(x,G) при

условии, что {
△u =−2, x ∈G ,

u = 0, x ∈ ∂G .

Хорошо известно, что такая функция существует и определяется единственным
образом (см. например, [1]). Функцию u(x,G) называют функцией напряжения
области G.

Рассмотрим функционал

P (G) := 2
∫
G

u(x,G)d A. (1)

Здесь d A обозначен дифференциальный элемент площади. Величина (1) называет-
ся жесткостью кручения области G [1].

Теорема 1. Пусть G — выпуклая область конечной площади на плоскости и
l (ρ(G)) ̸= 0, тогда

P (G) > 1

4
L(G)ρ(G)3 + 2

3
l (ρ(G))ρ(G)3. (2)

Теорема 2. Пусть G — выпуклая область конечной площади на плоскости и
l (ρ(G)) ̸= 0, тогда

P (G) > 1

2
A(G)ρ(G)2 + 5

12
l (ρ(G))ρ(G)3. (3)
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LOWER BOUNDS FOR THE TORSIONAL RIGIDITY OF A CONVEX DOMAIN

L.I. Gafiyatullina, R.G. Salakhudinov

The paper presents lower bounds for the torsional rigidity of a convex domain through the geometric
characteristics.
Keywords: torsional rigidity, Euclidean moments of the domain with respect to its boundary, isoperimetric
inequalities, convex domains, the function of the distance to the boundary of the domain.

УДК 517.91

О ВЛОЖЕНИИ В ПОТОК ОДНОМЕРНЫХ ОТОБРАЖЕНИЙ С НЕГРУБОЙ
НЕПОДВИЖНОЙ ТОЧКОЙ
С.В. Гонченко1, О.В. Гордеева2

1 sergey.gonchenko@mail.ru; Национальный исследовательский Нижегородский государственный
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Рассматривается задача о возможности вложения в поток гладких одномерных отоб-
ражений в окрестности негрубой неподвижной точки произвольного порядка вырож-
дения.

Ключевые слова: одномерное отображение, вложение в поток, седло-узел, слож-
ное седло.

Рассмотрим однопараметрическое семействоC r -гладких одномерных отобра-
жений

τµ : ȳ = (1+µ)y + yn+1 +P (y,µ), (1)

где µ – параметр, P (y,µ) = O(yn+2) и r ≥ n + 2. При µ = 0 это отображение имеет
негрубую неподвижную точку порядка вырождения n, при n нечетном это точка
типа седло-узел, а при n четном – типа сложное седло. Мы изучаем задачу о воз-
можности вложения отображения (1) в C r -гладкий поток такой, что его отображе-
ния сдвига на время t = 1 совпадает с (1). Соответственно, отображение сдвига на
время t = k, получаемое прямым интегрированием соответствующего дифферен-
циального уравнения, даст нам формулу для k-ой итерации отображения τµ, кото-
рую другими известными методами получить, как правило, не удается. Тем более,
что в данной работе мы рассматриваем семейство отображений, непрерывно зави-
сящих от параметра. Основной результат работы – это следующая
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Теорема. Рассмотрим параметрическое семейство C r -гладких (r ≥ 2) одномер-
ных отображений вида

ȳ = y + g (y, µ̃),

где µ̃ – параметры и функция g удовлетворяет условиям g (0, µ̃) ≡ 0 и g ′
y (y, µ̃) > 0 при

y > 0. Пусть это отображение совпадает с отображением сдвига на единицу времени
по траекториям некоторого C r -гладкого потока

ẏ = ĝ (y, µ̃).

Тогда функция ĝ (y, µ̃) определяется на интервале y ≥ 0 по функции g (y, µ̃) однозначно.

В работах [1,2] показана как эта теорема используется для построения итера-
ций отображения (1), а также последующего исследования динамики и бифуркаций
многомерных отображений с гомоклиническими траекториями к негрубым пери-
одическим движениям.

Работа выполнена при финансовой поддержке Российского научного фонда –
грант № 24-11-00339
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ON EMBEDDING INTO FLOW OF ONE-DIMENSIONAL MAPS WITH NONHYPERBOLIC FIXED
POINTS

C.V. Gonchenko, O.V. Gordeeva

We consider the problem of the possibility of embedding into a flow for smooth one-dimensional maps
in a neighborhood of a nonhyperbolic fixed point of arbitrary order of degeneracy.
Keywords: one-dimensional map, saddle-node, nonhyperbolic saddle, embedding into flow.
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Предложены новые необходимые и достаточные условия сходимости слабо-жадного
алгоритма. Дан критерий сходимости в случае квазимонотонной ослабляющей после-
довательности.

Ключевые слова: слабо-жадный алгоритм, m-членное приближение, квазимоно-
тонная последовательность.
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Работа посвящена вопросу сходимости слабо-жадного алгоритма (WGA) в дей-
ствительном гильбертовом пространстве H , который применяется для нахождения
m-членного приближения произвольного элемента f0 ∈ H по элементам нормиро-
ванного словаря D ⊂ S(H), линейная оболочка которого плотна в H (см., например,
[1]–[3]).

Пусть задана ненулевая ослабляющая последовательность (tn)∞n=1 ⊂ [0,1]. Тогда
на очередном шаге алгоритма полагаем fn = fn−1 − ( fn−1, gn)gn, n = 1,2, . . ., где gn ∈
D —произвольный элемент словаря, для которого |( fn−1, gn)| Ê tn supg∈D |( fn−1, g )|.
Тогда в качествеm-членного приближения для f0 беретсяGm( f0) =∑m

n=1( fn−1, gn)gn.
Представляет интерес выяснить сходимостьWGA: ∥ f0−Gm( f0)∥→ 0 приm →∞

для произвольных f0 и D в зависимости от поведения элементов последовательно-
сти (tn). Известны следующие результаты.

Теорема A [2]. WGA сходится тогда и только тогда, когда
liminfn→∞ an t−1

n
∑n

k=1 ak = 0 для произвольной последовательности неотрицатель-
ных чисел (an)∞n=1 ∈ l2.

В [3] полученыэквивалентныеформулировки теоремыA.Вобщей ситуацииэти
критерии сложно применять на практике. Их версия, записанная только в терминах
(tn), в настоящее время неизвестна. Поэтому важно получить как можно более
близкие достаточныеинеобходимые условия, которые смыкались бынадостаточно
широком классе последовательностей (tn).

Теорема B [2]. Если
∑∞

n=1 tn/n =∞, то WGA сходится.

Отсюда напрямую следует сходимость WGA для часто применяемого на прак-
тике случая liminfn→∞ tn > 0.

Теорема C [1]. Если
∑∞

j=0

(
2− j ∑2 j+1−1

n=2 j t 2
n

)1/2 =∞, то WGA сходится.

В [1] дан следующий критерий для монотонных последовательностей (tn).

Теорема D [1]. Если t1 Ê t2 Ê . . ., то условие
∑∞

n=1 tn/n =∞ является необходимым
и достаточным условием сходимости WGA.

Теорема D порождает следующий важный для практических приложений во-
прос: что будет, если последовательность (tn) квазимонотонная?

Последовательность (tn) называется квазимонотонной относительно некото-
рой неубывающей последовательности 0 < λ1 É λ2 É . . ., если tn/λn Ê tn+1/λn+1 ,∑n

k=1λk Ê C nλn, n = 1,2, . . .. Здесь через C обозначена положительная константа,
которая может зависеть только от несущественных параметров.

Хорошо известно следующее необходимое условие.

Теорема E [2]. Если WGA сходится, то
∑∞

n=1 t 2
n =∞.

Однако это условие не смыкается с условием из теоремы B или теоремы C даже
для монотонных последовательностей. Поэтому интересно получить необходимое
условие, которое смыкается с достаточным для квазимонотонных последователь-
ностей (tn).

Теорема 1. Если WGA сходится, то
∑∞

n=1 t 2
n/(1+∑n

k=1 tk ) =∞. Это условие необ-
ходимое, но не достаточное.
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Теорема 2. Если последовательность (tn) квазимонотонная, то условие∑∞
n=1 tn/n =∞ является необходимым и достаточным условием сходимости WGA.
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CONDITIONS FOR THE CONVERGENCE OF A WEAK GREEDY ALGORITHM

D.V. Gorbachev, A.P. Solodov

New necessary and sufficient conditions for the convergence of a weak greedy algorithm are proposed.
A convergence criterion is given in the case of a quasi-monotonic weakness sequence.
Keywords: weak greedy algorithm, m-term approximation, quasi-monotonic sequence.
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ПОРОЖДАЮЩИЕ КВАНТОВЫЕ КАНАЛЫ И ИХ ИНТЕГРАЛЬНЫЕ
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Для составных квантовых системмырассматриваем квантовые каналы, которые од-
нозначно определяют каналы подсистем. Такие каналы составных систем называют-
ся порождающими. Тензорные произведения квантовых каналов подсистем и выпуклые
комбинации этих тензорных произведений служат примерами порождающих кванто-
вых каналов. В докладе обсуждаются свойства порождающих квантовых каналов.

Ключевые слова: гильбертово тензорное произведение, порождающий квантовый
канал, частичный след.

Доклад посвящен вполне положительным сохраняющим след линейным отоб-
ражениям между пространствами операторов на гильбертовых пространствах. В
квантовой теории информации такие отображения называются квантовыми кана-
лами и являются одними из основных объектов исследования [1].

Рассмотримдве квантовые системы, которым соответствуют гильбертовыпро-
странства H и E . Тогда составной квантовой системе сопоставляется гильберто-
во тензорное произведение этих пространствH ⊗E . Обозначим черезN (H ) про-
странство ядерныхоператоров, действующихвпространствеH , а черезTr(T)– след
оператора T ∈ N (H ). Пусть

D(H ) = {T ∈N (H ) : T Ê 0,Tr(T) = 1}.
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Элементы множества D(H ) называются квантовыми состояниями.
Напомним, что линейное отображение TrE : N (H ⊗E ) −→N (H ), такое что

Tr(TrE (T)A) = Tr(T(A⊗ I))

для любого T ∈ N (H ⊗ E ) и любого линейного ограниченного оператора A, дей-
ствующего в H , называется частичным следом относительно E . Здесь I – тожде-
ственный оператор на E .

Для состояния S ∈ D(E ) квантовый канал PS независимого приготовления со-
ставной системы определяется формулой

PS : N (H ) −→N (H ⊗E ) : X 7−→ X⊗S, X ∈N (H ).

Теперь рассмотрим квантовый канал

Φ : N (H ⊗E ) −→N (H ⊗E ),

описывающий эволюцию составной квантовой системы. Далее, для произвольного
состояния S ∈D(E ) определим порожденный квантовый канал GΦ,S для подсистемы
с пространством H :

GΦ,S := TrE ◦Φ◦PS : N (H ) −→N (H ).

Еслипри этомполучается одини тотжепорожденныйквантовыйканалнезависимо
от выбора квантового состояния, т. е. для любых S1,S2 ∈D(E ) выполнено равенство

GΦ,S1 =GΦ,S2 ,

то квантовый канал Φ называется порождающим.
Таким образом, если эволюция составной квантовой системы, состоящей из

двух подсистем H и E , описывается порождающим квантовым каналом, то в
каком бы начальном состоянии ни находилась подсистема E , канал, описывающий
подсистему H , будет одним и тем же.

Порождающие и порожденные каналы были введены и исследованы в работе
[2]. В статье [3] рассматривались квантовые процессы, задаваемые порождающими
и порожденными квантовыми каналами.

В докладе рассматриваются свойства порождающих квантовых каналов. В
частности, для случая квантовой системы с конечномерным гильбертовым про-
странством H обсуждается вопрос о представлении порождающих квантовых ка-
налов в форме операторнозначных интегралов вида∫

U (H )
f dµ.

Здесь черезU (H ) обозначена компактная группа унитарных операторов, действу-
ющих в пространстве H , µ – мера Хаара на группе U (H ) и f – некоторая опера-
торнозначная функция, определенная на U (H ).

Исследование выполнено за счет гранта Российского научного Фонда и Акаде-
миинаукРеспубликиТатарстанпопроекту№24-21-20112, https://rscf.ru/project/24-
21-20112/.
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GENERATING QUANTUM CHANNELS AND THEIR INTEGRAL REPRESENTATIONS

R.N. Gumerov

For composite quantum systems, we deal with quantum channels which uniquely determine the
channels of quantum subsystems. Such channels of composite systems are said to be generating.
Tensor products of quantum channels of subsystems and convex combinations of these tensor products
are examples of generating channels. The talk is devoted to properties of generating quantum channels.
Keywords: Hilbert tensor product, generating quantum channel, partial trace.
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УНИВЕРСАЛЬНАЯ C∗-АЛГЕБРА, ПОРОЖДЕННАЯ СВОБОДНЫМ
ПРОИЗВЕДЕНИЕМ ПОЛУГРУПП РАЦИОНАЛЬНЫХ ЧИСЕЛ
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В докладе обсуждается левая приведенная полугрупповая C∗-алгебра, порожденная
свободным произведением полугрупп рациональных чисел. Приводится ее описание в
виде универсальной C∗-алгебры, порожденной множеством порождающих и соотно-
шений.

Ключевые слова: приведенная полугрупповая C∗-алгебра, свободное произведе-
ние полугрупп, универсальная C∗-алгебра.

Рассмотримконечныйнаборбесконечныхпоследовательностейпроизвольных
натуральных чисел

M1 = (m11,m21, . . .), . . . , Mn = (m1n ,m2n , . . .).

Определим полугруппу Q как свободное произведение полугрупп рациональных
чисел

Q+
Mi

=
{ l

m1i . . .mt i

∣∣∣l ∈N, t ∈N
}

, i = 1, . . . ,n.

В докладе рассматриваются левые приведенные полугрупповые C∗-алгебры
C∗
λ

(Q) для различных наборов последовательностей (M1, . . . , Mn).
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Такие приведенные полугрупповые C∗-алгебры C∗
λ

(Q) изучались в работе [1].
Было показано, что C∗

λ
(Q) является индуктивным пределом последовательности

алгебр Теплица-Кунца. Алгебра Теплица-Кунца – это универсальная C∗-алгебра,
порожденная конечным набором изометрий с взаимно ортогональными образами.

В докладе будет дано описание полугрупповой C∗-алгебры C∗
λ

(Q) как универ-
сальной C∗-алгебры C∗(X ,R), порожденной множеством образующих X , удовле-
творяющих соотношениямR. Мотивацией к такому описаниюпослужило представ-
ление ее в виде индуктивного предела последовательности алгебр Теплица-Кунца.

Доклад основан на результатах статьи [2].

Исследование выполнено за счет гранта Российского научного Фонда и Акаде-
миинаукРеспубликиТатарстанпопроекту№24-21-20112, https://rscf.ru/project/24-
21-20112/.
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UNIVERSAL C∗-ALGEBRA GENERATED BY THE FREE PRODUCT OF SEMIGROUPS OF
RATIONAL NUMBERS

R.N. Gumerov, A.S. Kuklin, E.V. Lipacheva

The report is devoted to the study of the left reduced semigroup C∗-algebra generated by the free
product of semigroups of rational numbers. It is described as a universal C∗-algebra generated by
a set of generators and relations.
Keywords: reduced semigroup C∗-algebra, free product of semigroups, universal C∗-algebra.
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ОПЕРАТОР БЛОЧНОГО ПРОЕКТИРОВАНИЯ НА АЛГЕБРЕ ИЗМЕРИМЫХ
ОПЕРАТОРОВ
Т.М.Ф. Дарвиш1
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Пусть τ − точный нормальный полуконечный след на алгебре фон Неймана M . Ис-
следован оператор блочного проектирования P̃n (n ≥ 2) в *-алгебре S(M ,τ) всех τ-
измеримых операторов. Показано, что f (P̃n(A)) ≥ P̃n( f (A)) для операторно моно-
тоннойфункции. Для операторно выпуклой функции имеем f (P̃n(A)) ≤ P̃n( f (A)). Изу-
чены условия, при которых P̃n(A) принадлежит классам S0(M ,τ) τ − компактных
операторов, F (M ,τ) элементарных операторов, Lp (M ,τ) τ − интегрируемых с p −
степени операторов или самой алгебре M . Если P̃n(B) является (левым или правым)
обратным для A, то P̃n(B) также является обратным для P̃n(A).
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Ключевые слова: гильбертово пространство, алгебра фон Неймана, след, измери-
мый онератор, оператор блочного проектирования.

Мы используем обозначения и разультаты из [1]-[8].
ПустьM – алгебра фонНеймана с точнымнормальным следом τ, S(M ,τ)—со-

ответствующая ∗-алгебра τ-измеримых операторов. Для проекторов P1,P2, ...,Pn ∈
M оператор блочного проектирования P̃n : S(M ,τ) → S(M ,τ) определяется как

P̃n(X ) =
n∑

k=1
Pk X Pk .

Обозначим через F (R+) множество всех непрерывных функций f : [0,+∞) → R

с f (0) = 0. Получены следующие результаты:
1. Если f ∈ F (R+) операторно монотонна, то f (P̃n(A)) ≥ P̃n( f (A)). Если f

операторно выпукла, то f (P̃n(A)) ≤ P̃n( f (A)).
2. Для возрастающей выпуклой f выполняется τ( f (P̃n(A))) ≤ τ( f (A)). Для во-

гнутой f имеем обратное неравенство.
3. Если A∗P̃n(A) ∈ Lp (M ,τ), то P̃n(A) ∈ L2p (M ,τ). Аналогичные результаты

верны и для S0(M ,τ), F (M ,τ) и M .
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THE BLOCK PROJECTION OPERATOR ON THE ALGEBRA OF MEASURABLE OPERATORS

T.M.F. Darwish

Let τ be a faithful normal semifinite trace on a von Neumann algebra M . We investigate the block
projection operator Pn (where n ≥ 2) in the *-algebra S(M ,τ) of all τ-measurable operators. We
prove that f (Pn(A)) ≥Pn( f (A)) for any operator monotone function, and f (Pn(A)) ≤Pn( f (A)) for any
operator convex function. We also examine the conditions under which Pn(A) belongs to the following
classes: S0(M ,τ), F (M ,τ), LP (M ,τ) or the algebra M itself. Furthermore, if Pn(B) is a (left or right)
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inverse of operator A, then Pn(B) is also an inverse of Pn(A).
Keywords: Hilbert space, von Neumann algebra, trace, measurable operator, block projection operator.
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СУЩЕСТВОВАНИЕ ДВУСТРОННЕГО ЭФФЕКТА ЕФИМОВА ДЛЯ ОПЕРАТОРНОЙ
МАТРИЦЫ ВТОРОГО ПОРЯДКА

Э.Б. Дилмуродов1
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В настоящей работе рассматривается семейство 2 × 2 - операторных матриц Aµ

(µ > 0 — параметр взаимодействия), связанное гамильтонианом системы с не более
чем тремя частицами на трехмерной решетке Z3. Найдено критическое значение µ0
параметра взаимодействия µ, такое что операторная матрица Aµ0 имеет беско-
нечное число собственных значений. Они накапливаются к нижней и верхней граням
существенного спектра, соответственно.

Ключевые слова: операторная матрица, существенный спектр, дискретный
спектр, эффект Ефимова.

Матрицы, элементы которых являются линейными операторами в банаховых
или гильбертовых пространствах, называются операторными матрицами [1]. Один
из основных классов таких матриц представляют собой гамильтонианы системы
с несохраняющимся ограниченным числом частиц на непрерывном пространстве
или на решетке. Отметим, что такие системы обычно возникают в задачах физики
твердого тела, квантовой теории поля, статистической физики, магнитогидроди-
намики и квантовой механики. В спектральном анализе таких операторов важным
вопросом является изучение бесконечности числа собственных значений, лежащих
ниже левого края и правее верхнего края существенного спектра (такой эффект от-
носительно левого края носит название эффект Ефимова, см. например [2]). Данная
работа посвящена исследованию ранее не изученного так называемого двусторон-
ного эффекта Ефимова для операторных матриц.

Через T3 обозначим куб (−π;π]3 — с соответствующим отождествлением про-
тивоположных граней. Пусть L2(T3) — гильбертово пространство квадратично-
интегрируемых (комплекснозначных) функций, определенных на T3, и L2

sym((T3)2)
— гильбертово пространство квадратично-интегрируемых (комплекснозначных)
функций, определенных на (T3)2. Обозначим через H прямую сумму пространств
H1 := L2(T3) и H2 := L2

sym((T3)2), т.е. H := H1 ⊕H2. В гильбертовом пространстве
H рассматривается следующее семейство 2×2-операторных матриц

Aµ :=
(

A11 µA12
µA∗

12 A22

)
,

где матричные элементы определяются по формулам

(A11 f1)(k) = w1(k) f1(k), (A12 f2)(k) =
∫
T3

f2(k, s)d s,

(A22 f2)(k, p) = w2(k, p) f2(k, p), fi ∈H i , i = 1,2.



Э.Б. Дилмуродов 57

Здесь µ > 0 — параметр взаимодействия, функции w1(·) и w2(·, ·) определены по
формулам

w1(k) := ε(k)+γ, w2(k, p) := ε(k)+ε(
1

2
(k+p))+ε(p), ε(k) :=

3∑
i=1

(1−cos ki ), k = (k1,k2,k3) ∈T3.

γ ∈ R. При этом A∗
12 : H1 → H2 — сопряженный оператор к A12.

В этих предположениях операторная матрица Aµ является ограниченным и
самосопряженным в H оператором.

Обозначим через N(a,b)(Aµ) число собственных значений оператораAµ, с уче-
том кратности, лежащих в (a,b) ⊂ R \σess(Aµ), и положим

µ0 :=p
12

(∫
T3

d t

w1(0, t )

)−1/2

.

Пусть S2 единичная сфера в R3 и

Sr : L2((0,r ),σ0) → L2((0,r ),σ0), r > 0, σ0 = L2(S2)

интегральный оператор с ядром

S(t ; y) = 25

8π2
p

6

1

5ch(y)+ t
, y = x −x ′, x, x ′ ∈ (0,r ), t = (ξ,η), ξ,η ∈S2.

Для λ > 0 определим

U (λ) := 1

2
lim

r→∞r−1n(λ,Sr ).

Теорема. Имеют место соотношения

N(−∞;0)(Aµ0) =∞, N(18;+∞)(Aµ0) =∞

lim
z↗0

N(−∞, z)(Aµ0)

| ln |z|| = lim
z↘18

N(z,∞)(Aµ0)

| ln |z −18|| =U (1).

Этот результат означает, что операторнаяматрицаAµ0 имеет бесконечное чис-
ло собственных значений, которые накапливаются к нижней и верхней граням су-
щественного спектра соответственно, т.е. существует двусторонный эффект Ефи-
мова для Aµ0.
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THE EXISTENCE OF A TWO-SIDED EFIMOV EFFECT FOR A SECOND-ORDER OPERATOR
MATRIX

E.B. Dilmurodov

In the present work, a family of 2×2 operator matricesAµ is considered (µ> 0 is a coupling constant),
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associated with the Hamiltonian of a system with at most three particles on the three-dimensional
lattice Z3. A critical value µ0 of the coupling constant µ is found such that the operator matrix Aµ0

has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds
of the essential spectrum, respectively.
Keywords: operator matrix, essential spectrum, discrete spectrum, the Efimov effect.
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КВАЗИИНВАРИАНТЫ РИМАНА ПРИ ИССЛЕДОВАНИИ КРИТИЧЕСКИХ
СОСТОЯНИЙ НЕОДНОРОДНЫХ СОЕДИНЕНИЙ

В.Л. Дильман1, А.Е. Кащеева2
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Исследуются свойства системы квазилинейных гиперболических уравнений уравнений
пластического равновесия с переменным параметром пластичности. Записаны урав-
нения для нахождения квазиинвариантов Римана на характеристиках и получены при-
ближенные (с контролируемой ошибкой) явные выражения для них в частном случае.
На этой основе получено обобщение первой теоремы Генки.

Ключевые слова: система квазилинейных гиперболических уравнений, характе-
ристики, инварианты Римана, пластический слой, неоднородное соединение, на-
пряженное состояние, теорема Генки.

Одиниз подходов при исследованииматематическихмоделей критических со-
стояний неоднородных пластических слоев и прослоек основан на применении ин-
вариантов Римана вдоль характеристик [1, c. 119]. В случае неоднородностиматери-
ала, хотя инварианты вдоль характеристик отсутствуют, некоторые величины ("ква-
зиинварианты") изменяются вдоль характеристик приближенно известным обра-
зом. Доклад посвящен их нахождению, когда параметр пластичности (функция
неоднородности) слоя аддитивен, то есть равен сумме двух функций, каждая от од-
ной переменной. Случай зависимости от одной переменной был рассмотрен в [2,
c. 119; 3]. Под неоднородным пластическим слоем имеется в виду прямоугольник
[−1;1]×[−χ;χ

]
, расположенный вполосе [−1;1]×[−∞;∞]. Полоса находится под рас-

тягивающей или сжимающей нагрузкой в направлении её продольной оси (осиO y).
Система уравнений для напряжений в полосе имеет вид:

∂σx

∂x
+ ∂τx y

∂y
= 0;

∂σy

∂y
+ ∂τx y

∂x
= 0;

(
σx −σy

)2 +4τ2
x y = 4Z 2 (

x, y
)

. (1)

Здесь σx , σy и τx y – напряжения, Z
(
x, y

)
– положительная безразмерная функ-

ция, характеризующая прочность материала полосы (функция неоднородности
слоя) в каждой ее точке, Z (0,0) = 1. Система (1) является квазилинейной системой
уравнений в частных производных гиперболического типа. Пусть ν1;2 =

p
Z 2 −τ2 ±
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Z arcsin(τ/Z ) . Исключив σx , после преобразований [2, c. 119–122; 3] получаем си-
стему:

d (σx +νi )

d x
= ∂νi

∂Z

∂Z

∂x
+ ∂νi

∂Z

∂Z

∂y

d y

d x
− ∂ f

∂Z

∂Z

∂y

d y

d x
, i = 1; 2. (2)

Система (2) называется системой в характеристической форме. Если Z = const ,
то правая часть (2) равна нулю, и вдоль соответствующей характеристики σx +
νi = const . В этом случае выражение σx + νi называется инвариантом Римана
на характеристике. Обозначим: t = τ/Z . Рассмотрим в частном случае Z (x, y) =
X (x)+ Y (y). Используя разложения ∂ν1;2/∂Z = 1+ϕ(t ) и ∂(ν1;2 − f )/∂Z = −1−ϕ(t )
в степенные ряды по t , получим:

σx +νi + const =−Y
(
y
)+X (x)+∆x +∆y , (3)

∆x =
x∫

x0

ϕ(t )X ′(x)d x, ∆y =
y∫

y0

ψ(t )Y ′(y)d y .

Предположим, что во всех точках слоя |τ| ≤α, и чтоωx иωy – вариациифункций X и
Y . Тогда можно показать, что∆x ≤ (α2ωx)/2(1−α2), и аналогично для y . Постоянная
α обычно в реальных сварных соединениях в критических состояниях не больше,
чем 0,2–0,3. То же можно сказать о ωx и ωy , поэтому ∆x , ∆y малы по сравнению с
единицей, и этими слагаемыми можно пренебречь в (3), то есть

σx +νi −X (x)+Y
(
y
)≈ const . (4)

Из равентсва (4) следует обобщение теоремы Генки.

Теорема. Пусть K ,L, M , N –вершины треугольника из характеристик, γ – угол
наклона 1-характеристики, θ = γ−π/4. Тогда при Z (x, y) = X (x)+Y (y)

Z (K )θ(K )+Z (M)θ(M) ≈ Z (L)θ(L)+Z (N )θ(N ).
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RIEMANN QUASI-INVARIANTS IN THE STUDY OF CRITICAL STATES OF HETEROGENEOUS
JOINTS

V.L. Dilman, A.E. Kascheeva

The properties of a system of quasi-linear hyperbolic equations of plastic equilibrium with a variable
plasticity parameter are investigated. Equations for finding Riemann quasi-invariants on character-
istics are written down and approximate (with controlled error) explicit expressions for them in the
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special case are obtained. On this basis, an approximate generalization of Genka’s first theorem is
obtained.
Keywords: system of quasi-linear hyperbolic equations, characteristics, Riemann invariants, plastic layer,
inhomogeneous joint, stress state, Genki’s theorem.

УДК 517.54

ОГРАНИЧЕННЫЕ ГОЛОМОРФНЫЕ ФУНКЦИИ В КРУГОВОМ КОЛЬЦЕ
В.Н. Дубинин1

1 dubinin@iam.dvo.ru; Институт прикладной математики Дальневосточного отделения Российской
академии наук, г. Владивосток

С привлечением емкостей конденсаторов и симметризации устанавливаются новые
граничные теоремы искажения для голоморфных и ограниченных в круговом кольце
функций, сохраняющих одну из его граничных компонент.

Ключевые слова: голоморфные функции, угловая производная, теоремы искаже-
ния, производная Шварца, емкости конденсаторов, симметризация.

Хорошо известна эффективность методов теории потенциала в получении
свойств голоморфных функций. Значительное место при этом занимают подходы,
связанные с симметризацией вещественнозначных функций и конденсаторов [1].
В развитие этих идей в докладе приводятся доказательства современных версий
классических теорем покрытия и искажения для функций, голоморфных в круго-
вом кольце. Выбор данного класса обусловлен его малой изученностью по сравне-
нию с классами голоморфныхфункций, заданных в круге либо в полуплоскости. Это
обстоятельство объясняется, по-видимому, естественной сложностью структурных
формул для функций в многосвязных областях. В недавней заметке [2] рассматри-
валось применение емкостного подхода и симметризации к получению теорем ис-
кажения в классе однолистных в кольце функций. К сожалению, значительная часть
используемых в [2] идей в случае многолистных функций приводит к неточным ре-
зультатам. Для получения содержательных оценок естественно потребовать допол-
нительные ограничения на образ кольца, например, геометрические ограничения
[3].

Мы устанавливаем новые граничные теоремы искажения для голоморфных
и ограниченных в круговом кольце функций, сохраняющих одну из его гранич-
ных компонент. В частности, доказываем неравенства, включающие производную
Шварца в граничных точках кольца. В качестве следствий рассматриваются диффе-
ренциальные неравенства для однолистных и слабо однолистных в круге функций.
Приводятся нерешенные задачи.
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BOUNDED HOLOMORPHIC FUNCTIONS IN A CIRCULAR ANNULUS

V.N. Dubinin

Using the condenser capacities and symmetrization, new boundary distortion theorems are established
for holomorphic and bounded functions in a circular annulus that preserve one of its boundary com-
ponents.
Keywords: holomorphic function, angular derivative, distortion theorems, Schwarzian derivative, con-
denser capacity, symmetrization.
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О ЧИСЛЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ СЕМЕЙСТВА МОДЕЛЕЙ ФРИДРИХСА С
ДВУМЕРНЫМ ВОЗМУЩЕНИЕМ

Г.С.Жабборова1
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В данной работе рассматривается семейство моделей Фридрихса Hµ(k), µ= (µ1,µ2),
µ1,µ2 > 0, k ∈ T3 с двумерным возмущением (здесь T3 — трехмерный тор). Изучены
число и местоположение собственных значений модели Фридрихса Hµ(k).

Ключевые слова: модель Фридрихса, оператор возмущения, собственное значе-
ние.

Вопросы, связанные с моделями Фридриха и их собственными значениями,
возникают в квантовоймеханике, статистическойфизике и квантовой теорииполя.
Пусть T3 — трехмерный тор и L2(T3) — гильбертово пространство квадратично-
интегрируемых (комплекснозначных) функций, определенных на T3. Рассмотрим
семейство моделей Фридрихса Hµ(k), µ = (µ1,µ2), µ1,µ2 > 0, k ∈ T3, действующее в
L2(T3) как

Hµ(k) := H0(k)−µ1V1 −µ2V2,

где операторы H0(k), k ∈T3 и Vα, α= 1,2, определяются по правилам:

(H0(k) f )(p) = (ε(p)+ε(k −p)) f (p), ε(p) :=
3∑

j=1
(1−cos(3p j )), p = (p1, p2, p3) ∈T3;

(Vα f )(p) =ϕα(p)
∫
T3
ϕα(t ) f (t )d t , α= 1,2.

Здесь функции ϕα(·), α= 1,2 — вещественнозначные непрерывные функции на T3.
Следует отметить, что семейство моделей Фридрихса Hµ(k) является линей-

ным, ограниченнымисамосопряженнымоператоромв гильбертовомпространстве
L2(T3).



62 СОДЕРЖАНИЕ

Положим

m(k) := 2
3∑

i=1

(
1−

∣∣∣∣cos
3ki

2

∣∣∣∣) , M(k) := 2
3∑

i=1

(
1+

∣∣∣∣cos
3ki

2

∣∣∣∣) .

Можно показать, что существенный спектр семейства моделей Фридрихса
Hµ(k) не зависит от параметра µ, и имеет место равенство

σess(Hµ(k)) = [m(k); M(k)].

Сформулируем первый основной результат о числе и местоположении соб-
ственных значений оператора Hµ(k).

Теорема 1. Для любых µ и k оператор Hµ(k) имеет не более двух собственных
значений (с учетом кратности), лежащих левее точки m(k), и не имеет собственных
значений, лежащих правее точки M(k).

Для исследования существования собственных значений модели Фридрихса
Hµ(k) вводятся два вспомогательных семейства моделей Фридрихса H (α)

µα (k), α =
1,2:

H (α)
µα

(k) : L2(T3) → L2(T3), H (α)
µα

(k) := H0(k)−µαVα, α= 1,2.

Очевидно, что для α= 1,2 оператор H (α)
µα (k) также является линейным, ограничен-

ным и самосопряженным оператором в гильбертовом пространстве L2(T3), имеет
одномерное возмущение, причем для существенного спектра этого оператора име-
ет место равенство σess(H (α)

µα (k)) = [m(k); M(k)] (здесь тоже применяется теорема
Вейля). Можно показать [1], что оператор H (α)

µα (k) имеет не более одного собствен-
ного значения, лежащего левее точкиm(k) и не имеет собственных значений, лежа-
щих правее точки M(k). Оператор H (α)

µα (k) имеет более простой вид, чем оператор
Hµ(k), и условия существования его собственных значений подробно анализирова-
лись во многих статьях.

Теперь приведем второй результат работы.
Теорема 2. Если при некотором α ∈ {1,2} и k ∈ T3 оператор H (α)

µα (k) имеет
собственное значение e(α)

µα (k) < m(k), то для любого µβ > 0, β ̸= α, оператор Hµ(k)

имеет единственное собственное значение, лежащее левее точки e(α)
µα (k).

Отметим, что подобная связь о существовании собственных значений у опера-
торовHµ(k)иH (α)

µα (k) в предыдущих работах не отмечалась. Это соотношение важно
для оценки нижней границы существенного спектра модельных операторов, соот-
ветствующих системе трех квантовых частиц на трехмерной решетке [1].
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ON THE NUMBER OF EIGENVALUES OF A FAMILY OF FRIEDRICHS MODELS WITH RANK TWO
PERTURBATION

G.S. Jabborova

In this work, we consider a family of Friedrichs models Hµ(k), µ= (µ1,µ2), µ1,µ2 > 0, k ∈T3 with rank
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two perturbation (here T3 is a three-dimensional torus). The number and location of the eigenvalues
of Friedrichs model Hµ(k) is studied.
Keywords: Friedrichs model, perturbation operator, eigenvalue.

УДК 517.984

ПОСТРОЕНИЕ ОПРЕДЕЛИТЕЛЯ ФРЕДГОЛЬМА ДЛЯ СЕМЕЙСТВА
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1 d.x.jumayeva@buxdu.uz; Бухарский государственный университет, Бухара, Узбекистан

В работе рассматривается семейство обобщенных моделей Фридрихса с семимерным
возмущением, зависящих от двух параметров. Построен определитель Фредгольма,
нули которого являются собственными значениями рассматриваемого оператора.

Ключевые слова: обобщенная модель Фридрихса, оператор возмущения, опреде-
литель Фредгольма, собственное значение.

ПустьT2 := (−π;π]2 —двумерный тор,H0 :=C – одномерное комплексное про-
странство, H1 := L2(T2) – гильбертово пространство квадратично-интегрируемых
функций, определенных на T2, и H := H0 ⊕H1.

В гильбертовом постранстве H рассмотрим семейству обобщенных моделей
Фридрихса

Hµ,λ(k) :=
(

H00(k) µH01

µH∗
01 H 0

11(k)−Vλ

)
с матричными элементами

H00(k) f0 = a(k) f0, H01 f1 =
∫
T2

v(t ) f1(t )d t ,

(H 0
11(k) f1)(p) = Ek (p) f1(p), (Vλ f1)(p) =

∫
T2

vλ(p − t ) f1(t )d t ,

Ek (p) := ε1(p)+ε2(k −p), vλ(p) :=λ0 +λ1 cos p1 +λ2 cos p2, p = (p1, p2) ∈T2.

Здесь µ > 0, λ = (λ0,λ1,λ2), λ0,λ1,λ2 > 0; а функции a(·), v(·) и εα(·), α = 1,2 –
вещественные непрерывные функции на T2.

Операторную матрицу второго порядка Hµ,λ(k) обычно называют семейством
обобщенных моделей Фридрихса. При условиях, наложенных на элементы этой
матрицы, Hµ,λ(k) является линейным, ограниченным и самосопряженным опера-
тором в пространстве H .

Очевидно, что оператор возмущения H0,0(k) является семимерным и

σess(H0,0(k)) = [m(k); M(k)], σpoint(H0,0(k)) = {a(k)};

m(k) := min
p∈T2

Ek (p), M(k) := max
p∈T2

Ek (p).

Если a(k) ̸∈ [m(k); M(k)], тоσdisc(H0,0(k)) = {a(k)}.Поэтому в силу известной теоремы
Г. Вейля о сохранении существенного спектра при возмущениях конечного ранга
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имеемσess(Hµ,λ(k)) = [m(k); M(k)].Определим регулярную в областиC\[m(k); M(k)]
функцию

∆µ,λ(k; z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d (0)
µ (k; z) µλ0c1(k; z) µλ1c2(k; z) µλ2c3(k; z) µλ2c4(k; z) µλ2c5(k; z)

µc1(k; z) d (1)
λ0

(k; z) λ1c6(k; z) λ1c7(k; z) λ2c8(k; z) λ2c9(k; z)

µc2(k; z) λ0c6(k; z) d (2)
λ1

(k; z) λ1c10(k; z) λ2c11(k; z) λ2c12(k; z)

µc3(k; z) λ0c7(k; z) λ1c10(k; z) d (3)
λ1

(k; z) λ2c13(k; z) λ2c14(k; z)

µc4(k; z) λ0c8(k; z) λ1c11(k; z) λ1c13(k; z) d (4)
λ2

(k; z) λ2c15(k; z)

µc5(k; z) λ0c9(k; z) λ1c12(k; z) λ1c14(k; z) λ2c15(k; z) d (5)
λ2

(k; z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
;

d (0)
µ (k; z) := a(k)−z−µ2

∫
T2

v2(t )d t

Ek (t )− z
, c1(k; z) :=

∫
T2

v(t )d t

Ek (t )− z
, c2(k; z) :=

∫
T2

v(t )cos t1d t

Ek (t )− z
;

c3(k; z) :=
∫
T2

v(t )sin t1d t

Ek (t )− z
, c4(k; z) :=

∫
T2

v(t )cos t2d t

Ek (t )− z
, c5(k; z) :=

∫
T2

v(t )sin t2d t

Ek (t )− z
;

d (1)
λ0

(k; z) := 1−λ0

∫
T2

d t

Ek (t )− z
, c6(k; z) :=

∫
T2

cos t1d t

z −Ek (t )
, c7(k; z) :=

∫
T2

sin t1d t

z −Ek (t )
;

c8(k; z) :=
∫
T2

cos t2d t

z −Ek (t )
, c9(k; z) :=

∫
T2

sin t2d t

z −Ek (t )
, c10(k; z) :=

∫
T2

cos t1 sin t1d t

z −Ek (t )
;

d (2)
λ1

(k; z) := 1−λ1

∫
T2

cos2 t1d t

Ek (t )− z
, c11(k; z) :=

∫
T2

cos t1 cos t2d t

z −Ek (t )
, c12(k; z) :=

∫
T2

cos t1 sin t2d t

z −Ek (t )
;

d (3)
λ1

(k; z) := 1−λ1

∫
T2

sin2 t1d t

Ek (t )− z
, c13(k; z) :=

∫
T2

cos t2 sin t1d t

z −Ek (t )
, c14(k; z) :=

∫
T2

sin t1 sin t2d t

z −Ek (t )
;

d (4)
λ2

(k; z) := 1−λ2

∫
T2

cos2 t2d t

Ek (t )− z
, d (5)

λ2
(k; z) := 1−λ2

∫
T2

sin2 t2d t

Ek (t )− z
, c15(k; z) :=

∫
T2

sin t2 cos t2d t

z −Ek (t )
.

Основным результатом работы является следующая теорема.
Теорема.Число z ∈C\[m(k); M(k)] является собственным значением обобщенной

модели Фридрихса Hµ,λ тогда и только тогда, когда ∆µ,λ(k; z) = 0, т.е.

σdisc(Hµ,λ) = {z ∈C\ [m(k); M(k)] : ∆µ,λ(k; z) = 0}.

CONSTRUCTION OF THE FREDHOLM DETERMINANT FOR THE FAMILY OF GENERALIZED
FRIEDRICHS MODELS WITH RANK SEVEN PERTURBATION

D.Kh. Jumaeva

In this work we consider the family of generalized Friedrichs models with rank seven perturbation
depending on the two parameter. The Fredholm determinant, whose zeros are eigenvalues of the
considered operator is constructed.
Keywords: generalized Friedrichs model, perturbation operator, Fredholm determinant, eigenvalue.
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ОПРЕДЕЛИТЕЛЬ ФРЕДГОЛЬМА ДЛЯ ОПЕРАТОРНОЙ МАТРИЦЫ ТРЕТЬЕГО
ПОРЯДКА СО СПЕКТРАЛЬНЫМ ПАРАМЕТРОМ

Ф.М. Журакулова1

1 juraqulova.farangis@mail.ru, f.m.juraqulova@buxdu.uz; Бухарский государственный университет

В данной работе рассматривается матрица Aµ третьего порядка со спектральным
параметромµ> 0, которая соответствует системе частиц, число которых не сохра-
няется и не превосходиттрёх. Построен определитель Фредгольма, ассоциированный
с операторной матрицейAµ.

Ключевые слова: пространства Фока, операторная матрица, спектральный пара-
метр, обобщенная модель Фридрихса, определитель Фредгольма.

Через T := (−π;π] обозначим одномерный куб с соответствующим отождеств-
лением противоположных граней. Пусть H0 := C − одномерное комплексное про-
странство и H1 := L2(T) − гильбертово пространство квадратично-интегрируемых
(комплекснозначных) функций, определенных на T.

Рассмотрим семейство обобщенных моделей Фридрихса hµ(k), µ > 0, k ∈ T,
действующих в гильбертовом пространствеH0⊕H1 как 2×2 операторная матрица

hµ(k) :=
(

h00
µp

2
h01

µp
2

h∗
01 h11(k)

)
, (1)

где матричные элементы определяются по формулам

h00 f0 = f0, h01 f1 =
∫
T

f1(t )d t , (h11(k) f1)(y) = w(k, y) f1(y). (2)

Здесь fi ∈ H i , i = 0,1; а функция w(·, ·) имеет вид
w(k, y) := 3−cosk −cos y −cos(k + y).

Семейство обобщенных моделей Фридрихса hµ(k), определенное по формуле
(1) с матричными элементами (2), является линейным, ограниченными самосопря-
женным оператором в гильбертовом пространстве H0 ⊕H1.

Для удобства обозначим через σ(·), σess(·) и σdisc(·), соответственно, спектр, су-
щественный спектр и дискретный спектр ограниченного самосопряженного опе-
ратора.

Используя теоремы Вейля [1] о сохранении существенного спектра при конеч-
номерных возмущениях, для существенного спектра операторной матрицы hµ(k)
имеем равенство σess(hµ(k)) = [m(k); M(k)], где числа m(k) и M(k) определяются
следующим образом:

m(k) := 3−cosk −
p

2+2cosk, M(k) := 3−cosk +
p

2+2cosk.

Для каждого µ > 0 и k ∈ T определим регулярную функцию

∆µ(k ; z) :=
{

1− z − Iµ(k ; z), z < m(k)
1− z + Iµ(k ; z), z > M(k)

; Iµ(k ; z) := πµ2√
(3−cosk − z)2 −4cos2 k

2

,
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в областиC\[m(k); M(k)]. Функция∆µ(k ; ·) обычноназывается определителемФред-
гольма, ассоциированным с оператором hµ(k). Пусть H2 := Ls

2(T2) − гильберто-
во пространство (комплекснозначных) квадратично-интегрируемых симметрич-
ных функций двух переменных, определенных на T2 иH :=H0 ⊕H1 ⊕H2. В ком-
плексном гильбертовом пространствеH рассмотрим операторную матрицу

Aµ :=
 A00 µA01 0
µA ∗

01 A11 µA12
0 µA ∗

12 A22

 , µ> 0,

где матричные элементы Ai j : H j → H i , i ≤ j , i , j = 0,1,2 определяются по фор-
мулам

A00 f0 = a f0, A01 f1 =
∫
T

v(t ) f1(t )d t , (A11 f1)(x) = f1(x),

(A12 f2)(x) =
∫
T

f2(x, t )d t , (A22 f2)(x, y) = w(x, y) f2(x, y) fi ∈H i , i = 0,1,2.

Здесь a ∈ R и v(·) − вещественнозначная непрерывная функция на T.
Можно легко проверить, что операторная матрица Aµ является линейным,

ограниченным и самосопряженным оператором в гильбертовом пространствеH .
Вводим следующие обозначения:

Σµ = [0;
9

2
]∪ ⋃

k∈T
σdisc(hµ(k)).

Пусть I− единичный оператор в H1, Kµ− интегральный оператор в H1, по-
рожденный ядром

Kµ(x, y ; z) := µ2

2∆µ(x, z)(w(x, y)− z)
, z ∈C\Σµ,

∆µ(z) и Dµ(x, y ; z)− соответственно определитель и минор Фредгольма оператора
I − Kµ.

При µ> 0 в области C \Σµ определим регулярную функцию вида

Ωµ(z) :=
(

a − z −
∫
T

v2(t )d t

∆µ(t ; z)

)
∆µ(z)+µ2

∫
T

∫
T

v(x)v(t )Dµ(x, t ; z)

∆µ(t ; z)
d xd t .

Теорема 1. Число z ∈ C \σess(Aµ) является собственным значением оператора
Aµ тогда и только тогда, когда Ωµ(z) = 0.
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THE FREDHOLM DETERMINANT FOR A THIRD-ORDER OPERATOR MATRIX WITH A
SPECTRAL PARAMETER

F.M. Jurakulova

In this work, an operator matrix Aµ of order three with spectral parameter µ, corresponding to the
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system of particles whose number is non-conserved and does not exceed three is considered. The
Fredholm determinant associated with the operator matrix Aµ is constructed.
Keywords: Fock space, operator matrix, spectral parameter, generalized Friedrichs model, Fredholm
determinant.
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СРАВНЕНИЕ ТОЧНОСТИ ЭМПИРИЧЕСКИХ АНАЛОГОВ КРИВОЙ
БАЙЕСОВСКОЙ РЕГРЕССИИ

Э. Заарур1

1 zrwrz05@gmail.com; Казанский (Приволжский) федеральный университет, институт математики и
механики

Изучается возможность построения байесовской оценки для регрессионной кривой
двумя различными методами: первый — метод ядерного оценивания априорной плот-
ности в задаче деконволюции, второй — метод ядерного оценивания безусловной
плотности распределения. Рассмотрена ситуация, когда наблюдаемая случайная ве-
личина представляет собой сумму неизвестного параметра и центрированной нор-
мальной ошибки с известной дисперсией. Построены состоятельные эмпирические
оценки для кривой регрессии. Сравнение эмпирических аналогов регрессионной функции
показало, что первая оценка превосходит вторую: средняя квадратическая ошибка со-
ставила 0,008 для первой оценки против 0,01 для второй.

Ключевые слова: эмпирический байесовский подход, проблема деконволюции,
кривая байесовской регрессии.

В эксперименте наблюдается случайная величина X , имеющая нормальное
(θ,σ2) распределение с известной дисперсией σ2 и неизвестным математическим
ожиданием θ. Тогда кривая регрессии θ относительно X имеет вид:

e(x) = E[ϑ | X = x] = σ2 f ′(x)

f (x)
+x, (1)

где f (x)—безусловная плотность распределения X равна f (x) =∫ ∞
−∞ϕ

(
(x −θ)/σ

)
g (θ)dθ/σ, ϕ—плотность стандартного нормального закона.

Пусть в эксперименте наблюдается выборка Ξn = {X1, . . . , Xn} независимых
случайных величин. На основе этих наблюдаемых значений требуется построить
оценку для e(x).

Подходящая для наших целей ядерная оценка g описана в статье [1]. Из пред-
ставления (1) видно, что плотность безусловного распределения X выражается как
свёртка плотностей, то есть f = g * ϕ. Оценка g по набору независимых наблюдений
Ξk , имеющих общую плотность f, строится следующим образом.

Пусть ψg (t ) характеристическая функция случайной величины ϑ (преобразо-
вание Фурье функции плотности g ),ψϕ(t ) = exp(−t 2/2)—характеристическая функ-
ция ϕ.Оценка ĝk для функции плотности g имеет следующий вид:
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Рис. 1. Оценка кривой регрессии

ĝk (θ;Ξk ) = 1

kπ

k∑
1

1
λ∫

0

1

ψϕ(t )
cos{t (x j −θ)}d t .

Заметим, что функция ψϕ(t ) удовлетворяет условиям, выдвинутым в [1]. Из 1,
Заменив g на её оценку ĝk (θ;Ξk ), можем построить первый эмпирический аналог
для e(x).

Для второго аналога, заменив f , f ′ на их оценки f̂ , f̂ ′, можно построить эмпи-
рический аналог для e(x) (см. [2]).

ê(x;Ξn) = σ2 f̂ ′(x)

f̂ (x)
+x.

Используем классические оценки полтности и её первой производной с гаус-
совским ядром

f̂ (x;Ξn) = 1

nλn

n∑
i=1

ϕ
(x −Xi

λn

)
Сравнительный анализ проводился в рамках экспоненциальной модели наблюде-
ний с параметром интенсивности 1. На рисунке приведены графики следующих
графиков. Сплошная линия — кривая байесовской регрессии, точечная и пунктир-
ная линии— первый и второй эмпирические аналогии соответственно. Для оценки
указанных эмпирических аналогов была использована выборка объёмом 700 на-
блюдений. Мы сравнили точность двух эмпирических аналогов для функции ре-
грессии e(x) на интервале I = (−1,4), где безусловная вероятность P {X ∈ I } > 0,9.
В обоих случаях она была выбрана равной 0,42.
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COMPARISON OF THE ACCURACY OF EMPIRICAL ANALOGUES OF THE BAYESIAN
REGRESSION CURVE

E. Zaarour

The possibility of constructing a Bayesian estimator for the regression curve is investigated using two
distinct methods: the first method employs kernel estimation of the prior density in a deconvolution
problem while the second method applies kernel estimation of the unconditional distribution density.
The situation is considered when the observed random variable is the sum of an unknown parameter.
Consistent empirical estimators were constructed for the regression curve. Empirical analogs of the
regression function were compared, showing superior performance of the first estimator (MSE = 0.008)
relative to the second (MSE = 0.01).
Keywords: empirical Bayes approach, deconvolution problem, Bayesian regression curve.
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ОБ ОДНОЙ НАЧАЛЬНОЙ ЗАДАЧЕ ДЛЯ ДВУМЕРНОГО ГИПЕРБОЛИЧЕСКОГО
ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНОГО УРАВНЕНИЯ

Н.В. Зайцева1
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вычислительной математики и кибернетики

С помощью интегральных преобразований построено в явном виде единственное ре-
шение начальной задачи в полуплоскости для гиперболического дифференциально-
разностного уравнения со сдвигом в свободном члене по пространственной перемен-
ной, изменяющейся на всей вещественной оси.

Ключевые слова: задача Коши, гиперболическое уравнение, дифференциально-
разностное уравнение, оператор сдвига, преобразование Фурье.

Обозначим через D = {(x, t ) : x ∈ R, t > 0} и D = {(x, t ) : x ∈ R, t Ê 0} области
координатной плоскости Oxt .

Исследован вопрос разрешимости следующей начальной задачи: требуется
найти функцию u(x, t ) ∈C 2(D)∩C 1(D), удовлетворяющую уравнению

ut t (x, t )−a2uxx(x, t )+b u(x −h, t ) = 0, (x, t ) ∈ D, (1)

где a > 0, b, h ̸= 0 — заданные действительные числа, и начальным условиям

u(x,0) =ϕ(x), ut (x,0) =ψ(x), x ∈R, (2)

начальные функции ϕ(x) ∈ C 2(R) и ψ(x) ∈ C 1(R) финитны.
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Потребуем выполнения условия положительности вещественной части симво-
ла дифференциально-разностного оператора в уравнении (1) (условия эллиптично-
сти этого оператора согласно теории [1] дифференциально-разностных уравнений
с частными производными), а именно, пусть выполняется неравенство

a2ξ2 +b cos(hξ) > 0 для любого ξ ∈R. (3)

Доказаны следующие утверждения.

Лемма. Условие (3) выполняется для всех значений ξ ∈ R, если коэффициенты a,
b и сдвиг h уравнения (1) удовлетворяют неравенствам 0 < b É 2a2/h2.

Теорема. При выполнении условия (3) функция

u(x, t ) = ∂

∂t

+∞∫
−∞

E (x −τ, t )ϕ(τ)dτ+
+∞∫

−∞
E (x −τ, t )ψ(τ)dτ (4)

является единственным решением задачи (1), (2).
В определении функции (4) введены обозначения:

E (x, t ) = 1

2π

+∞∫
0

[
sin(t G2(ξ)+ϕ(ξ)+xξ)

ρ(ξ)
e t G1(ξ) + sin(t G2(ξ)−ϕ(ξ)−xξ)

ρ(ξ)
e−t G1(ξ)

]
dξ,

G1(ξ) = ρ(ξ)sinϕ(ξ), G2(ξ) = ρ(ξ)cosϕ(ξ),

ρ(ξ) =
[(

a2ξ2 +b cos(hξ)
)2 +b2 sin2 (hξ)

]1/4
,

ϕ(ξ) = 1

2
arctg

b sin(hξ)

a2ξ2 +b cos(hξ)
.

С подробными результатами можно ознакомиться в работе [2].
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ON AN INITIAL VALUE PROBLEM FOR A TWO-DIMENSIONAL HYPERBOLIC
DIFFERENTIAL-DIFFERENCE EQUATION

N.V. Zaitseva

With the use of integral transformations, a unique solution to the initial value problem in a half-plane
for a hyperbolic differential-difference equation with a translation in the free term along a spatial
variable changing over the entire real axis is constructed in an explicit form.
Keywords: Cauchy problem, hyperbolic equation, differential-difference equation, translation operator,
Fourier transform.
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КРАЕВАЯ ЗАДАЧА С АНТИПЕРИОДИЧЕСКИМИ ГРАНИЧНЫМИ УСЛОВИЯМИ И
НЕГЛАДКИМИ РЕШЕНИЯМИ
А.А. Зверев1, С.А. Шабров2
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В работе изучается краевая задача с негладкими решениями и антипериодическими
граничными условиями. Следуя концепции поточечного подхода, предложенного Ю.В.
Покорным, получена формула представления решения исследуемой краевой задачи в
явном виде, а также доказана единственность решения.

Ключевые слова: краевая задача, антипериодические условия, негладкие реше-
ния, интеграл Стилтьеса, абсолютно непрерывная фукция, функция ограниченной
вариации.

Применяя концепцию поточечного подхода, предложенного Ю.В. Покорным
(см., например, [1]-[4]), проведено исследование краевой задачи с негладкими ре-
шениями и антипериодическими краевыми условиями. Изучаемая задача имеет
вид 

−(pu′)(x)+
x∫

0
udQ = F (x)−F (0)− (pu′)(0)

u(0) =−u(l ),
u′(0) =−u′(l ).

(1)

Предполагается, что функции p(x), F (x) имеют ограниченную вариацию на
[0, l ], причем inf

[0,l ]
p(x) > 0, p(0) = p(l ); функцияQ(x) строго возрастает на [0, l ]; функ-

ции p(x),Q(x), F (x) являются непрерывными в точках x = 0 и x = l ; интеграл пони-
мается по Стилтьесу. Решение задачи (1) мыищемв классе абсолютно непрерывных
на [0, l ] функций, производные которых имеют ограниченную вариацию на [0, l ].

Теорема. Пусть ϕ1(x), ϕ2(x) — решения однородного уравнения

−(
pu′) (x)+ (

pu′) (0)+
∫ x

0
u dQ = 0, (2)

удовлетворяющие условиям

ϕ1(0) = 1,ϕ′
1(0) = 1;

ϕ2(0) = 1,ϕ′
2(0) =−1.

Обозначим
A1 =ϕ′

1(l )+ϕ1(l ), B1 =ϕ′
2(l )+ϕ2(l ),

A2 =ϕ′
1(l )−ϕ1(l ), B2 =ϕ′

2(l )−ϕ2(l ),

c = 1

2p(0)(4+ A1 −B2)
.



72 СОДЕРЖАНИЕ

Тогда решение задачи (1) единственно и имеет вид

u(x) = cϕ1(x)

x∫
0

(−B1ϕ1(s)+B2ϕ2(s)−2ϕ2(s)
)

dF (s)+

+ cϕ2(x)

x∫
0

(
A1ϕ1(s)− A2ϕ2(s)+2ϕ1(s)

)
dF (s)+

+ cϕ1(x)

l∫
x

(
2ϕ2(s)+ A1ϕ2(s)−B1ϕ1(s)

)
dF (s)+

+ cϕ2(x)

l∫
x

(−2ϕ1(s)− A2ϕ2(s)+B2ϕ1(s)
)

dF (s). (3)
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BOUNDARY VALUE PROBLEMWITH ANTI-PERIODIC BOUNDARY CONDITIONS AND
NONSMOOTH SOLUTIONS

A.A. Zverev, S.A. Shabrov

A boundary value problem with non-smooth solutions and anti-periodic boundary conditions is stud-
ied. Following the pointwise approach concept introduced by Yu.V. Pokorny, an explicit representation
formula for the solution of the studied boundary value problem is obtained, and the uniqueness of the
solution is proved.
Keywords: boundary value problem, antiperiodic conditions, non-smooth solutions, Stieltjes integral, ab-
solutely continuous function, function of bounded variation.
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СПЛАЙН-ИНТЕРПОЛЯЦИОННОЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ СТЕФАНА
П.Н. Иваньшин1

1 pivanshi@yandex.ru; КНИТУ-КАИ

Построено сплайн-интерполяционное решение двумерной задачи Стефана. Она сво-
дится к решению некоторых краевых задач для аналитических функций и интеграль-
ных уравнений. Приведенытакже оценки погрешности приближенного решения и неко-
торые примеры.

Ключевые слова: сплайн, аналитическая функция, приближенное решение, зада-
ча Коши.

Задача Стефана для температурного поля T (t , x, y) формулируется следующим
образом: Рассмотрим среду, занимающую область Ω, состоящую из двух фаз в
соответствующих подобластях Ω: фазы 1 в подобласти D1(t ) и фазы 2 в D2(t ).
Эти подобласти имеют общую динамическую границу Γ′(t ). Пусть две фазы имеют
температуропроводностиα1 иα2. Тогда ∂T

∂t =∇·(α1∇T ) в областиD1 и ∂T
∂t =∇·(α2∇T )

в области D2.
Предположим, что мы знаем границу Γ′(0)между зонамиD1(0) иD2(0). Учиты-

вая начальное значение T (0, x, y) вΩ и граничные данные T (t , x, y)|(x,y)∈∂Ω=Γ∪Γ′′, мо-
жем восстановить как функцию T (t , x, y), t > 0, (x, y) ∈Ω, так и границу Γ′(t ) между
двумя подобластямиD1 иD2 в любой момент времени t > 0. Условие Стефана опре-
деляет эволюцию кривой Γ′(t ), задавая уравнение, регулирующее скорость V сво-
бодной границы в нормальном направлении ν, а именно V =α1∂νT1 −α2∂νT2. Под
граничными значениями T1 мы подразумеваем предел градиента при (x, y) → Γ′(t )
в области D1(t ), а под граничными значениями T2 — предел градиента при (x, y) →
Γ′(t ) в области D2(t ).

Для решения задачи Стефана мы применяем интеграл Коши. Сначала мы мо-
дифицируем исходную задачу, чтобы свести ее к решению двух краевых задач. Пер-
вая из задач, которая здесь возникает, — это задача Коши для уравнения Лапласа.
Таким образом, мы снова видим связь задачи Стефана с некорректными переопре-
деленными задачами [1]. Это важнейшая часть нашей конструкции. Мы показыва-
ем разрешимость этой задачи и приводим некоторые примеры решения. Мы ре-
шаем эту задачу, применяя методы, аналогичные нашим конструкциям [2, 3]. Вто-
рая задача— это обычная задачаШварца о восстановлениимнимой частифункции,
аналитической в односвязной области, по действительной части этой функции на
границе.
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SPLINE-INTERPOLATION SOLUTION OF A PLANE STEFAN PROBLEM

P.N. Ivanshin

We construct a spline-interpolation solution of the 2D Stefan problem. We reduce it to the set of
boundary value problems for analytic functions and integral equations. We also give estimates of the
approximate solution error and some examples of the solution.
Keywords: spline, analytic function, approximate solution, Cauchy problem.
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О МНОЖЕСТВЕ ВЕКТОРОВ МОДУЛЕЙ ИЗМЕРЕНИЙ СИГНАЛА ПОЛНЫМИ
СИСТЕМАМИ
И.М. Избяков1

1 izbyakov.im@ssau.ru; Самарский национальный исследовательский университет

В статье анализируется множество векторов модулей измерений, по которым воз-
можно восстановление неизвестного вектор-сигнала с использованием заданной пол-
ной системой векторов, а также описывается фактор-пространство восстанавли-
ваемых сигналов в комплексном конечномерном пространстве.

Ключевые слова: полная система, фрейм, альтернативная полнота, восстановле-
ние сигнала по модулям измерений.

Пусть дано конечномерное пространство с операцией скалярного произведе-
ния HD , где D – размерность пространства и N ∈N, причем N ≥ D. Полная система
Φ = {ϕk }N

k=1 в H
D восстанавливает исходный вектор-сигнал x ∈ HD по модулям из-

мерений (ВМИ), если для любого другого сигнала y ∈ HD из |〈x,ϕk〉| = |〈y,ϕk〉| для
всех k = 1, . . . , N , следует, что x = c y , где |c| = 1.

В конечномерных пространствах понятие полной системы векторов совпадает
с понятием фрейма [1]. Хорошо известно, что с точностью до изоморфизма HD

равно RD или CD .
Для произвольного вектора x ∈HD определим вектор модулей измерений:

m(Φ, x) = (|〈x,ϕ1〉|, |〈x,ϕ2〉|, . . . , |〈x,ϕN 〉|) ∈RN
≥0.

Множество всех возможных векторов m(Φ, x) образует множество векторов
модулей измерений фрейма M (Φ) ⊂ RN

≥0. При этом оказывается, что не каждый
вектор из RN

≥0 принадлежит M (Φ), а само множество представляет собой конус в
пространстве H D , поскольку если m ∈ M (Φ), то am ∈ M (Φ) ∀a ≥ 0.

В конечномерном пространстве набор векторов {ϕk }N
k=1 в H

D обладает свой-
ством альтернативной полноты (АП), если для каждого подмножества T ⊆ {1, . . . , N }
по крайней мере одно из множеств {ϕk }k∈T или {ϕk }k∈T C полно в HD . В RD свойства
АП и ВМИ эквивалентны. В CD свойство АП является необходимым, но недостаточ-
ным для ВМИ [2].
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В статье [2] построен пример фрейма в C2, состоящего из трех векторов с
вещественными координатами, который обладает свойством АП, но не обладает
свойством ВМИ. При этом в этой же работе доказано, что в C2 количество векторов,
минимально необходимое для восстановления сигнала, равно 4.

Рассмотрим пример фрейма, состоящего из четырех векторов в C2, который
содержит векторы с комплексными координатами, и два вектора x1, x2 ∈C2.

ϕ1 =
(
1
0

)
, ϕ2 =

(
0
1

)
, ϕ3 =

(
1+ i

i

)
, ϕ4 =

(
1

1+ i

)
, x1 =

(
1
i

)
, x2 =

(
1
1

)
.

Легко убедиться, что этот фрейм обладает свойством альтернативной полноты
и m(Φ, x1) = m(Φ, x2) = (1;1;

p
5;
p

5), однако векторы x1 и x2 принадлежат разным
классам эквивалентности фактор-пространства CD /T.

В формулировке следующего предложения комплексные координаты векторов
рассматриваются как вектора на комплексной плоскости C.

Предложение. В фактор-пространстве CD /T вектора x = (x1, ..., xD )T ∈ CD и
y = (y1, ..., yD )T ∈CD отождествляютсятогда итолькотогда, когда ∥x∥ = ∥y∥ и равны
между собой соответствующие углы между координатами векторов x и y , то есть�xi , x j = �yi , y j для всех пар i , j ∈ {1, . . . ,D}× {1, . . . ,D}

Работа выполнена в рамках реализации программы развития Научно-
образовательного математического центра Приволжского федерального округа,
соглашение № 075-02-2025-1791.
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ON THE SET OF VECTORS OF SIGNAL MEASUREMENT MODULES
BY COMPLETE SYSTEMS

I.M. Izbiakov

This paper describes the set of vectors of measurement modules, by which it is possible to recover an
unknown vector signal using a given complete system of vectors; describes the factor space of signals to
be restored in a complex finite-dimensional space, and also emphasizes the differences between finite-
dimensional and infinite-dimensional cases.
Keywords: full system, frame, complement property, signal recovery by measurement modules.
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УСЛОВИЯ СУЩЕСТВОВАНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ ОПЕРАТОРНОЙ
МАТРИЦЫ ВТОРОГО ПОРЯДКА

Д.Э. Исмоилова1

1 d.e.ismoilova@buxdu.uz; Бухарский государственный университет

В настоящей работе рассматривается операторная матрица второго порядка, свя-
занная с системой частиц на решётке, число которых не сохраняется и не превышает
двух. Найдены условия, при которых эта операторная матрица имеет одно, два или
три собственных значений.

Ключевые слова: операторная матрица, существенный спектр, собственное зна-
чение, гильбертово пространство.

В спектральной теории линейных операторов часто возникают вопросы, свя-
занные с числом собственных значений операторных матриц и определением их
местоположения [1,2]. Данная работа посвящена решению одной из таких проблем.

Сначала введём некоторые обозначения, используемые в данной работе. Через
Td := (−π;π]d обозначим d-мерный куб, в котором противоположные грани отож-
дествляются. ПустьH0 :=C—одномерное комплексное пространство,H1 := L2(Td)
— гильбертово пространство квадратично-интегрируемых (комплекснозначных)
функций, определённых на Td. Прямую сумму этих пространств, то есть простран-
ствоH :=H0 ⊕H1 называют обрезанным двухчастичным подпространством про-
странства Фока.

Рассмотрим следующую операторную матрицу в гильбертовом пространстве
C2 ⊗H :

A :=
(

A00 A01
A∗

01 A11

)
.

Элементы данной операторной матрицы определяются следующим образом:

A00 f (s)
0 = sε f (s)

0 , A01 f (s)
1 =α

∫
Td

v(t ) f (−s)
1 (t )d t ,

(A11 f (s)
1 )(k1) = (sε+w(k1)) f (s)

1 (k1), { f = ( f (s)
0 , f (s)

1 ),s =±} ∈C2 ⊗H .

Здесь ε—фиксированное вещественное положительное число,w(·) и v(·)—ве-
щественнозначные непрерывные функции на Td, а α > 0 — "параметр взаимодей-
ствия".

Можно легко проверить, что существенный спектр операторной матрицы A

определяется следующим образом:

σess (A ) = [−ε+m;−ε+M ]∪ [ε+m;ε+M ].

Здесь для чисел m и M выполняются равенства: m := min
k1∈Td

w(k1), M :=
max
k1∈Td

w(k1).
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Для определённости рассматривается случай, когда интеграл∫
Td

v2(t )d t

M −w(t )

сходится.
Введём следующие обозначения:

α1 :=
p

2ε+M

(∫
Td

v2(t )d t

M −w(t )

)−1/2

, если M >−2ε,

α2 :=
p

M

(∫
Td

v2(t )d t

2ε+M −w(t )

)−1/2

, если M > 0,

αmin := min{α1;α2}, αmax := max{α1;α2}, если M > 0.

Теорема. а) Если выполняется неравенство −2ε < M ≤ 0 и α < αmin, то опера-
торная матрица A не имеет собственных значений правее точки ε+M .

б) Если выполняется неравенство −2ε< M ≤ 0 и α<α1 или M > 0 и выполняется
неравенство αmin < α < αmax, то операторная матрица A имеет единственное
собственное значение правее точки ε+ M .

с) Пусть выполнено одно из следующих условий:
с1) M < −2ε и α > 0 любое число;
с2) −2ε < M ≤ 0 и α > α1;
c3) M > 0 и α > αmax.
Тогда операторная матрица A имеет два собственных значения, лежащих пра-

вее точки ε+ M .
Сформулированная теорема важна при изучении существенного спектра опе-

раторной матрицы третьего порядка.
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CONDITIONS FOR THE EXISTENCE OF THE EIGENVALUES OF A SECOND-ORDER OPERATOR
MATRIX

D.E. Ismoilova

In the present work, a second-order operator matrix associated with a system of particles on the lattice
whose number is not conserved and does not exceed two is considered. The conditions for this matrix
to have one, two, or three eigenvalues have been found.
Keywords: operator matrix, essential spectrum, eigenvalue, Hilbert space.
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АППРОКСИМАЦИЯ ЦЕЛЫХ ФУНКЦИЙ И ОБОБЩЕННЫЙ ПОРЯДОК
ОТНОСИТЕЛЬНО МОДЕЛЬНОЙ ФУНКЦИИ РОСТА

М.В. Кабанко1
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Вработе обсуждается описание обобщенного нижнего порядка целойфункции, постро-
енного на основе модельнойфункции втерминах коэффициентов ряда Тейлора и втер-
минах последовательностинаилучшейполиномиальной аппроксимации целойфункции
в некоторых банаховых пространствах.

Ключевые слова: целая функция, коэффициенты Тейлора, модельная функция,
наилучшая полиномиальная аппроксимация.

Пусть M — модельная функция роста, V — уточненная функция роста относи-
тельно M , ρM (r ) — уточнённый порядок относительно M , ϱ = lim

r→+∞ρM (r ) (см. [1]).
Обозначим черезM (r, f ) = max

|z|=r
| f (z)|максимум модуля целой функции f на окруж-

ности |z| = r . В работе [2] были существенно обобщены формулы Адамара связыва-
ющие характеристики роста целой функции с коэффициентами Тейлора.

Рассмотрим пространства Bp,q,λ функций, аналитических в единичном круге
D с нормой, определяемой равенством

∥ f ∥p,q,λ =
{ 1∫

0

(1− r )
λ
(

1
p − 1

q

)
−1

Mλ
q ( f ,r )dr

}1/λ

, λ> 0, 0 < p < q ≤∞,

где

Mq ( f ,r ) =
 2π∫

0

| f (r eiθ)|q dθ

1/q

Далее, через En( f ,Ln) обозначим наилучшее приближение функции f элемен-
тами линейного подпространства Ln алгебраических полиномов комплексной пе-
ременной степени не выше n − 1, а через L множество таких функций h, кото-
рые удовлетворяют условию: lim

x→+∞
h((1+ϕ(x))x)

h(x) = 1 для любой функции ϕ такой, что
lim

x→+∞ϕ(x) = 0. Можно показать, что порядок и нижний порядок целой функции от-
носительно модельной функции могут быть найдены в виде:

ρM = lim
n→∞

lnn

ln M( 1
npcn

)
, λM = lim

n→∞
lnn

ln M( 1
npcn

)
.

Теорема. Пусть функция f (z) является целой, а функция M(t ) – модельная
функция и выполняются следующим условия:

1. функция ln M(e t ) принадлежит классу L;
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2. функция M−1(t ), обратная по отношению к модельной, является правильно ме-
няющейся;

3. последовательность {
En( f ,Bp,2,λ)

En+1( f ,Bp,2,λ) }∞n=1 – неубывающая.

Тогда функция f (z) принадлежит пространству Bp,2,λ в том и только том случае,
если нижний обобщенный порядок относительно модельной функции равен

λM = lim
n→∞

lnn

ln M((En( f ,Bp,2,λ))−
1
n )

.
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APPROXIMATION OF ENTIRE FUNCTIONS AND GENERALIZED ORDER RELATIVE TO THE
MODEL FUNCTION

M.V. Kabanko

We investigated characterizations of generalized lower order of entire functions relative to the model
function in terms of the sequence of best polynomial approximations of function in someBanach spaces.
Keywords: entire function, Taylor coefficients, model function, best polynomial approximation.
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Исследуются кратные нуль-ряды по системе Уолша, а также арифметическая струк-
тура M- иU-множеств нулевой меры.

Ключевые слова: кратные ряды Уолша, нуль-ряды,U-множества, M-множества.

Нуль-рядом по некоторой системе функций {φn(x)} называется ряд
∑

cnφn(x),
который почти всюду сходится к нулю, хотя не все его коэффициенты равны нулю.
Знаменитый пример тригонометрического нуль-ряда был построен Д.Е. Меньшо-
вым [1]. Первый пример нуль-ряда по системе Уолша был построен В.А. Скворцо-
вым [2]. Работы [3] и [4] посвящены вопросу о том, насколько быстро могут стре-
миться к нулюкоэффициентынуль-рядов. В частности, Г.Г. Геворкян [4] показал, что
для всякой стремящейся к нулю последовательности не из l2 найдется нуль-ряд по
системеУолша, коэффициентыкоторогомажорируются этойпоследовательностью.
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Приведенные выше работы дают ответ на вопрос о существовании нуль-рядов
не только для одномерных, но и для кратных рядов при различных видах сходи-
мости [5]. Например, если

∑
n

anφn(x1) и
∑
m

bmφm(x2) — одномерные нуль-ряды, F1 и

F2 множества нулевой меры, на которых они не сходятся к нулю (такие множества
называют M-множествами), то двойной ряд

∑
n,m

anbmφn(x1)φm(x2) является нуль-

рядом по системе {φn(x1)φm(x2)} при сходимости по прямоугольникам или кубам,
а множество F = (F1 × [0,1])∪ ([0,1]×F2) является M-множеством. Н.Н. Холщевни-
кова [5] отмечает, что построенные таким образом M-множества меры нуль всегда
будут иметь проекциюхотя бына одну из координатных осеймеры 1. Также в [5] по-
ставлен вопрос о построении M-множества, содержащегося, например, в квадрате
0 ≤ x1 ≤ 1/2,0 ≤ x2 ≤ 1/2. Ответ положительный (замечание 1).

Отметим также, что у множества F несчетное количество сечений вдоль каж-
дой из координатных осей, имеющих полную одномерную меру Лебега. Возникает
вопрос: можно ли построить M-множества такое, что любое его сечение плоско-
стью, параллельной координатной, имеет меру нуль, и при этом дополнение этого
множества не является декартовым произведением одномерных множеств. Теоре-
ма 1 дает положительный ответ.

Конструкция. Пусть последовательность {ms} такая, что ms+1 ≥ 2 · (2ms +1),
F =∩∞

s=1Fs , где Fs —объединение "графиков",точнее линий уровня 1,d-мерныхфункций
Уолша Wn, 2ms · 1 ≤ n ≤ 2ms+1 · 1 − 1, сжатых до определенного куба ранга ms : кубу
∆

(ms )
i =

[
i1−1
2ms , i1

2ms

)
×. . .×

[
id−1
2ms , id

2ms

)
соответствуетфункция Уолша с номером 2ms ·1+i.

Теорема 1. Множество F из конструкции выше — M-множество для d-мерной
системы Уолша при сходимости по прямоугольникам.

Замечание 1. Если "сжать" множество F до куба 0 ≤ x ≤ 1
2 ·1, то тоже получится

M-множество.

Теорема 2.Существует нуль-ряд
∑
n

bnWn, который "реализует"M-множество F

такой, что его коэффициенты сосредоточены около главной диагонали: |bn| = 2s

2dms+1

при 22ms ·1 ≤ n ≤ 22ms+1 ·1−1 и равны нулю иначе.
Если an = o (bn) и ряд

∑
n

anWn сходится по кубам к нулю вне F , то все an = 0.

Следующая теорема обобщает результаты, полученные в [6].

Теорема 3. Пусть Fs— объединение "графиков" одной и той же d-мерной функ-
ции Уолша с номером таким, что 2ms · 1 ≤ n ≤ 2ms+1 · 1 − 1, сжатых до квадратов
ранга ms . Тогда множество F = ∩∞

s=1Fs является U-множеством при сходимости по
прямоугольникам, а в некоторых случаях даже по кубам (например, если n = n · 1,
2ms ≤ n ≤ 2ms+1 − 1).

Первый автор является стипендиатом Фонда развития теоретической физики
и математики «БАЗИС».
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Развиваются идеи, связанные с теоремой С.Р. Насырова 1986 г. о единственности
корня уравнения Гахова при условии положительности якобиана отображения Гахова.
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В 1986 г. на одной дискуссии (см. [1]) С.Р. Насыров сформулировал и доказал
важное утверждение, которое осталось неопубликованным. Приведем его в рамках
постановки, связанной с классами Гахова (см., напр., [2]).

Пусть H – класс функций f , голоморфных в круге E = {ζ ∈ C : |ζ| < 1}, H0 –
класс функций f ∈ H , локально однолистных в E с нормировками f (0) = f ′(0) −
1 = 0. Для функции f ∈ H0 корректно определено отображение Гахова Φ(ζ, ζ̄) =
2(lnR f (ζ))ζ, где R f (ζ) = (1 − |ζ|2)| f ′(ζ)| – конформный радиус. Регулярный класс
Гахова G1 состоит в точности из тех функций f ∈ H0, для которых отображение
Гахова имеет единственный нуль в E , являющийся максимумом R f (ζ). Для любого
подкласса X ⊂ H обозначаем X̃ = X ∩ { f ∈ H : f ′′(0) = 0}. Отношение F = f ′′/ f ′ есть
предшварциан функции f .

Теорема С.Р. Насырова. Если для непостоянной функции f ∈ H выполняется
условие limζ→∂E Φ(ζ, ζ̄) =∞ и одна из строгих оценок

1) |F ′(ζ)−2ζ̄2/(1− |ζ|2)2| < 2/(1− |ζ|2)2, ζ ∈ E ,
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2) |F ′(ζ)| < 2/(1− |ζ|2), ζ ∈ E ,

то отображение Гахова инъективно и имеет единственный нуль в E , причем норми-
рованная функция [ f − f (0)]/ f ′(0) ∈ G1.

Нестрогие версии условий единственности 1) и 2) установлены, соответствен-
но, в работах [3] и [1]. Исследования, связанные с 2), развивались в [1], [2]. Некото-
рые классы функций, связанные с теоремой С. Р. Насырова, исследуются в рамках
настоящего доклада. Отметим некоторые моменты.

10. Рассмотрим три пары условий вида (а) |F ′−a| ≤ b, (б) |F ′−b| ≤ a (ζ ∈ E ). При
a = 2|ζ|2/(1−|ζ|2), b = 2/(1−|ζ|2) оба условия (а) и (б) обеспечивает принадлежность
f ∈ G̃1, но условию (б) удовлетворяет только одна функция. При a = 2, b = 2/(1−|ζ|2)
неравенство (а) не является условием единственности (нулевой) критической точки
R f (ζ), условие (б) бессодержательно, как и условие (б) для a = 2, b = 2|ζ|2/(1− |ζ|2).
А вот оценка (а) в последнем случае есть содержательное условие единственности,
включенное в следующую теорему при α = γ = 2:

Теорема 1. Функция f ∈ H , удовлетворяющая при 0 ≤ α ≤ 2, 0 ≤ γ ≤ 6 условию
|F ′(ζ) −α| ≤ γ|ζ|2/(1 − |ζ|2), ζ ∈ E , имеет единственную (при γ ≤ 2 не обязательно
нулевую!) критическую точку конформного радиуса R f (ζ) в круге E .

20. Если поставить вопрос о геометризации неравенства из теоремы 1, т.е.
построении условий подчиненности, достаточных для его выполнения (см. [4]), то
пример такого условия дает следующая

Теорема 2. Пусть предшварциан F (ζ) = αζ+ a3ζ
3 + . . . функции f ∈ H̃0 удовле-

творяет условию |F ′(ζ)−α| ≤ 3β, ζ ∈ E . Максимальная область в R2+, принадлежность
которой параметра (β,α) обеспечивает включение f ∈ G̃1, представляет собой объ-
единение квадрата [0,2]× [0,2] и криволинейной трапеции над отрезком 2 ≤ β ≤ 8 с
выброшенным графиком определяющей ее функции α = 2

√
2β−β.

30. В свете отмеченной проблемы распознавания бессодержательных нера-
венств (см. п. 10) важной характеристикой подкласса X ⊂ H0 является его наполнен-
ность, под которой мы понимаем наличие в X бесконечного семейства различных
функций (с указанной проблемой связан и эффект жесткости из [3]). Для каждого
рассматриваемого класса мы будем указывать такое семейство или доказывать его
отсутствие. При этом нормировки, определяющие H0, отсеивают тривиальные се-
мейства вида a +b f (ζ), a,b ∈ C, каждое из которых фактически представляет одну
функцию f ∈ X .
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ON S.R. NASYROV’S THEOREM
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We develop ideas going back to S.R. Nasyrov’s theorem (1986) about the uniqueness of root of the
Gakhov equation when the Jacobian of the Gakhov mapping is positive.
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Мы исследуем метрические свойства обобщений отображений-графиков на двухсту-
пенчатых группах Карно, а также выводим некоторые тонкие свойства липшицевых
графиков, построенных на таких группах.

Ключевые слова: отображение-график, липшицевоотображение, двухступенчатая
группа Карно, формула площади

Докладпосвященисследованиюсвойств обобщенийотображений-графиковна
двухступенчатых группах Карно, а также, некоторым тонким свойствам липшице-
вых графиков, построенных на таких группах. Связная односвязная стратифициро-
ванная группа Ли G называется группой Карно, если ее алгебра Ли V представима в
виде V = V1 ⊕V2, [V1,V1] = V2, [V1,V2] = {0}. Если базисное поле Xl принадлежит Vk ,
то его степень deg Xl равна k, l = 1, . . . , N , k = 1,2. Здесь и далее N — топологическая
размерность группы G. Субриманово расстояние на G задается, как

d2(v, w) = max
{( ∑

j :deg X j=1
w2

j

) 1
2

,
( ∑

j :deg X j=2
w2

j

) 1
4
}

,

где w = exp
( N∑

i=1
wi Xi

)
(v), v, w ∈ G. Очевидно, что оно не является билипшицево эк-

вивалентным расстоянию, определяемому римановым тензором. Следовательно,
отображения, являющиеся липшицевыми относительно d2, в общем случае гёль-
деровы отноистельно римановых метрик.

Мы предполагаем, что G̃, Ĝ и G — двухступенчатые группы Карно, для кото-
рых выполняются следующие условия. Группы G̃ и Ĝ с базисными полями {X̃ j }Ñ

j=1

и {X̂ j }N̂
j=1 соответственно являются подмножествами группы G топологической раз-

мерности N = Ñ + N̂ . Кроме того, поля {Xi }N
i=1 на G таковы, что, во-первых, dimVk =

dimṼk +dimV̂k , k = 1,2, и, во-вторых,

X1|G̃ = X̃1, . . . , XdimV1 |G̃ = X̃dimṼ1
, XdimV1+1|G̃ = X̃dimṼ1+1, . . . , XdimV1+dimṼ2

|G̃ = X̃Ñ
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и

XdimṼ1+1|Ĝ = X̂1, . . . , XdimV1 |G̃ = X̃dimV̂1
, XdimV1+dimṼ2+1|Ĝ = X̂dimV̂1+1, . . . , XN |Ĝ = X̂N̂ .

Предположим также, что G̃ и Ĝ пересекаются по своим единицам в единице 0
группы G (это всегда можно сделать посредством сдвигов).

Пусть еще G — некоторая двухступенчатая группа Карно топологический раз-
мерностиN с алгеброй Ли V = V1⊕V2. Будем считать, что dimV1 ≤ dimV1 и dimV2 ≤
dimV2.

Для отображений ϕ : G → G̃ и ψ : G → Ĝ, липшицевых относительно субрима-
новых (т. е., построенных по аналогии с d2) расстояний, где

ϕ(x) = exp
( Ñ∑

i=1
ϕi (x)X̃i

)
(0) и ψ(x) = exp

( N̂∑
j=1

ψ j (x)X̂i

)
(0),

композиция ψϕ отображений ϕ и ψ строится следующим образом:

ψϕ(x) = exp
( dimV1∑

k=dimṼ1+1

ψk−dimṼ1
(x)Xk +

N∑
k=dimV1+dimṼ2+1

ψk−Ñ (x)Xk

)
(ϕ(x)).

В частном случае, когда ϕ — тождественное отображение, мы получаем
отображение-график ψΓ.

Известно (см. работы P. Pansu и С.К. Водопьянова), что отображения, являющи-
еся липшицевыми относительно субримановых расстояний, являются субриманово
дифференцируемыми почти всюду, то есть, локально аппроксимируются горизон-
тальным гомоморфизмом с точностью до величины o(·) относительно субримано-
вых расстояний. При некоторых дополнительных ограничениях отображения суб-
риманово дифференцируемы всюду, а субриманов дифференциал непрерывен.

Однако, ни отображения-графики, ни композиции ψϕ в общем случае не яв-
ляются липшицевыми ни в классическом, ни в субримановом смысле. Тем не ме-
нее, как установлено в работах автора, отображения-графики можно приблизить
некоторым полиномом с точностью до величины o(·) относительно субримановых
расстояний. Такой полином называется полиномиальным субримановым дифферен-
циалом. В ходе доклада мы опишем аналог полиномиального субриманова диффе-
ренциала для композиций, а также, установим условия биективности композиций
для описанных выше условий задачи. Отметим, что для отображений-графиков во-
просы о его биективности решаются относительно легко, тогда как для композиций
вида ψϕ этот вопрос является специфическим.

Основной результат доклада — формула площади, где якобиан найден в явном
виде в терминах субримановых дифференциалов ϕ и ψ:∫

D

2∏
k=1

√
det

(
D̂kϕ

∗(x)D̂kϕ(x)+ D̂kψ
∗(x)D̂kψ(x)

)
dH ν(x) =H ν

ψϕ

(
ψϕ(D)

)
.

Заметим, что такой способ задания отображения обобщает отображения-графики.
Он включает «графики», где элементу прообраза сопоставляется не этот элемент
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в паре с образом при отображении, а некоторое его искажение, включая случай
проекции, и образ при отображении.

Дополнительно, в качестве иллюстрации к исследованию композиций и гра-
фиков, будут приведены примеры, когда график нелипшицевых отображений яв-
ляется липшицевым, а также, сформулирован критерий липшицевости графика на
двухступенчатых группах Карно в терминах задающего этот график отображения.
А именно, график ϕΓ : G→ Ĝ, построенный как

G ∋ w 7→ exp
( dimV̂1∑

j=dimV1+1
ϕ j−dimV1(w)X̂ j +

N̂∑
j=dimV̂1+dimV2+1

ϕ j−N (w)X̂ j

)
(w),

где ϕ(w) = exp
( Ñ∑

j=1
ϕ j (w)X̃ j

)
(0), является липшицевым относительно d2 и d̂2 тогда и

только тогда, когда выполнены следующие условия.

1. Координатные функцииϕ j липшицевы во внутреннем смысле, если j ≤ dimṼ1.

2. Если k = dimV̂1 +1, . . . ,dimV̂1 +dimV2, то верно∑
µ:µ∈[dimV1+1,dimV̂1]

F k
µ,βϕµ−dimV1(u) = 0

для всех β= 1, . . . ,dimV1 и u ∈G.

3. Для k > dimV̂1 +dimV2 и точек u, wH ∈ G таких, что wH = exp
(dimV1∑
β=1

wβXβ

)
(u),

функция wH 7→ ϕk−N
u (wH ) дифференцируема (в классическом смысле) в u, ее

дифференциал равен

dimV1∑
β=1

( ∑
µ:µ∈[dimV1+1,dimV̂1]

2F k
µ,βϕµ−dimV1(u)

)
wβ, (11)

а величина o(1) из определения дифференцируемости не превосходит Q ·√
dimV1∑
β=1

(wβ)2, где константа 0 <Q <∞ не зависит от u.

Если же wT = exp
( N∑
λ=dimV1+1

wλXλ

)
(u), то

|ϕk−N
u (wT )| ≤C ·

√√√√ N∑
λ=dimV1+1

(wλ)2, C <∞. (12)

Приведем пример, когда график нелипшицева во внутреннем смысле (то есть,
относительно расстояний, построенных, как d2 или эквивалентных d2) отображе-
ния является липшицевым. Пусть G, G̃⊂ Ĝ таковы, что для системы

dimV̂1∑
µ=dimV1+1

F k
µ,βtµ−dimV1 = 0, k = dimV̂1 +1, . . . ,dimV̂1 +dimV2, β= 1, . . . ,dimV1,
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существует ненулевое решение (t1, . . . , tdimṼ1
) . Для µ= 1, . . . ,dimṼ1 положим ϕµ ≡ tµ.

Если же µ= dimṼ1 +1, . . . , Ñ , то для w = exp
( N∑

i=1
wi Xi

)
(0) определим

ϕµ(w) =
dimV1∑
β=1

( ∑
λ:λ∈[1,dimṼ1]

2F
µ+N
λ+dimV1,βϕλ

)
wβ.

Здесь и в описании критерия липшицевости графика {F
j
µ,β} — структурные

константы группы Карно.

GRAPHS AND COMPOSITIONS OF MAPPINGS ON TWO-STEP CARNOT GROUPS

M.B. Karmanova

We study metric properties of generalizations of graph-mappings on two-step Carnot groups, and
derive some fine properties of Lipschitz graphs constructed on these groups.
Keywords: graph-mapping, Lipschitz mapping, two-step Carnot group, area formula.

UDC 514.822

SATURATED-UNSATURATED SEEPAGE FROM KORNEV’S SUBSURFACE ELEMENT:
COMPARISON OF ANALYTIC AND NUMERICAL SOLUTIONS

A.R. Kacimov1, Yu.V. Obnosov2, A.B. Umarova3, N.B. Sadovnikova4, A. Al-Shukeili5,
A.V. Smagin6

1 anvar@squ.edu.om; Sultan Qaboos University
2 yobnosov@kpfu.ru; Kazan Federal University
3 a.b.umarova@gmail.com; Lomonosov Moscow State University
4 nsadovnik@rambler.ru; Lomonosov Moscow State University; Institute of Forest Science, Russian
Academy of Sciences
5 a.alshukaili@squ.edu.om; Sultan Qaboos University
6 avsmag1965@gmail.com; Lomonosov Moscow State University; Lomonosov Moscow State University;
Institute of Forest Science, Russian Academy of Sciences

Subsurface emitters (SEs) are modeled as line sources with descending Darcian seepage im-
peded by either a natural impervious horizont or by designed and constructed barrier, which
makes a wedge beneath SE. An analytical model assumes a tension-saturated steady-state
2D flow (Laplace’s governing PDE) near an emitter, with a capping phreatic line, along which
the stream function linearly depends on the horizontal coordinate that allows to use the
Polubarinova-Kochina technique, videlicet a conformal mapping of a circular trigon in the
hodograph domain on a reference half-plane. In the finite element model (HYDRUD2D, the
Richards-Richardson PDE), a transient initial value problem (giving an asymptotic steady-
state limit is solved in a fixed domain (an isosceles curvilinear tetragon or trapeziumIsobars,
isohumes, streamlines,isotachs and the Christiansen uniformity coefficient are computed.

Keywords: conformal mapping of circular polygons, Riemann-Hilbert’s problem, HY-
DRUS2D modeling, seepage flow topology, field experiments.

For saturated flows (Strack, 1989), the Darcian velocity,
−→
V (x, y) obeys the relation−→

V (x, y) =−k∇h. The hydraulic (piezometric) head h(x, y) = p(x, y)+ y in homogeneous
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incompressible soils, k is a constant saturated hydraulic conductivity and involves the
pressure head, p(x, y), is positive everywhere. For incompressible pore water in Welsh’s
seepage domain, Gz (see Fig.1a), a free boundary, B MC , caps Gz . In the Vedernikov-
Bouwer model for steady-state seepage h(x, y) is a harmonic function. A complex
potential w = ϕ+ iψ is introduced, where ϕ = −kh is the velocity potential, and ψ is
a stream function.

Fig. 1. Vertical cross-section of the physical flow domain (a), complex potential domain (b).

A complex Darcian velocity (an antiholomorphic function) is V = u + iv , where
u(x, y) and v(x, y) are the horizontal and vertical components of

−→
V (x, y, t ). The complex

potential domain Gw is shown in Fig.1b (point M is fiducial). The shape of B MC in Gw
is not known. The hodograph domain, corresponding toGz andGw , is a circular triangle
GV = {V : πµ < argV <: π(1−µ), |2V + i(k − ε)| > (k + ε)}. The boundary-value problem
(BVP) in Gz is formulated as:

OB :ψ=Q/2, y = tanπµx;OC :ψ=−Q/2, y =− tanπµx;B MC :ϕ+k y =−pc ,ψ= εx.
(1)

where ε and k are constants such that 0 < ε < ∞, 0 < k < ∞, ε is the intensity of
evapotranspiration from B MC , and pc is a the height of capillary rise in a vertical soil
column.

To solve BVP (1) the upper half of a reference (auxiliary) ζ-
plane Gζ is conformally mapped onto the circular triangle GΩ ={
Ω :πµ< argΩ<π(1−µ), ), |2kεΩ+ i(k −ε)| < (k +ε)

}
in the plane Ω = ∂z/∂w . Here

GΩ is a circular triangle onto which the function 1/V maps a triangle symmetrical
with GV relative to the real axis. An analytical function mapping the upper half of the
reference plane onto the triangle GΩ is

Ω(ζ) = eiπµRζ1−2µ f (ζ;1−µ)/ f (ζ;µ), (2)

where f (ζ;µ),= F((µ− ν)/2 − 1/4,(µ− ν)/2 + 1/4;1/2 + µ;ζ2) (F is the hypergeometric

function), and parameters ν, R are determined as πν= arccos

√
1−

(
k−ε
k+ε

)2 (
cosπµ

)2,

R = k −ε
22−2µkε

sinπµ+
√(

k +ε
k −ε

)2

− (
cosπµ

)2

 Γ(3/2−µ+ν)Γ(1/2+µ)

Γ(1/2−µ)Γ(1/2+µ+ν)
.
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We introduce the following functions:

W (ζ) = dw/dζ, Z (ζ= dz/dζ, (3)

such that Z (ζ) = Ω(ζ)W (ζ). Next, we show that the BVP (1) is reduced to the following
simpler one:

ImW (ξ) = 0, −1 < ξ< 1; Im[(kΩ(ξ)+ i)W (ξ)] = 0, ξ<−1,ξ> 1. (4)

The Riemann BVP (4) has an unique (up to real multiplier d) solution. This solutionW (ζ)
and the corresponding function Z (ζ) could be written down in the following form:

W (ζ)=dζ−1(1−ζ2)−3/4+µ/2−ν/2 f (ζ,µ), Z (ζ)=deiπµRζ−2µ(1−ζ2)−3/4+µ/2−ν/2 f (ζ,1−µ).
(5)

In accordance with (3), (5)

w(ζ)=d
∫ ζ

−∞
(1−τ2)−3/4+µ/2−ν/2 f (τ;µ)

dτ

τ
,

z(ζ)=deiπµR
∫ ζ

0
τ−2µ(1−τ2)−3/4+µ/2−ν/2 f (τ;1−µ)dτ.

A real constant d is found from the condition Imw(−1) = Q/2, which gives d = Q/π.
Eventually, the free boundary and flow net are plotted.

In the unsaturated-saturated flowmodel for transient seepage, p and the volumetric
moisture content θ are interrelated via the Van Genuchten relationship, k(p) is another
characteristic function of the soil, such that a nonlinear parabolic Richards-Richardson
equation holds in a fixed flow domain. Initial boundary value problems are solved by
the finite element method with the help of HYDRUS2D package (Radcliffe and Simunek,
2018). Three seepage problems are modeled. First, for comparisons with the analytical
solution, a curvilinear tetragon is considered as a flow tube, with a circular arc serving
as a “feeding” positive-pressure isobar and horizontal segment of the soil surface as an
evaporating isobar such that a 2-D ascending flow crosses an aposteriori determined
phreatic line and makes a vadose zone above it. Second, we model infiltration in a
lysimeter of Moscow State University station (Umarova et al., 2021). The flow domain
is a trapezium with a tilted bottom and a blanket drain on its part. A “perched” phreatic
line emerges above such drain with a vadose zone making a mini-bubble (Fig.2). Third,
we model infiltration in a two-component composite, which consists of a bulk sandy soil
and a cylindrical lens of peat (Smagin, 2005) or fine-textured loam such that an essentially
axisymmetric seepage is transformed from a purely unsaturated to saturated-unsaturated
one, involving nontrivial phreatic surfacessimilar to one in Fig.2. For all three cases we
reconstruct the vector fields of Darcian velocity, and scalar field of isobars, isotachs and
isohumes.

This work was funded by Russian Scientific Foundation, interdisciplinary project no.
23-64-10002 and Sultan Qaboos University, grant IG/AGR/SWAE/24/2.
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Fig. 2. Results of HYDRUS2D computations (steady-state limit). Volumetric moisture content
and streamlines (left and right panels, correspondingly).
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НАСЫЩЕННАЯ И НЕНАСЫЩЕННАЯ ФИЛЬТРАЦИЯ ИЗ ОРОСИТЕЛЯ-ДРЕНЫ КОРНЕВА:
СРАВНЕНИЕ АНАЛИТИЧЕСКИХ И ЧИСЛЕННЫХ РЕШЕНИЙ

А.Р. Касимов, Ю.В. Обносов, А.Б. Умарова, Н.Б. Садовникова, А. Аль-Шукейли, А.В. Смагин

Подземные оросителимоделируются линейными источниками, с фильтрацией, которая блои-
круется либо естественнымнепроницаемым горизонтомлибо искуственнымбарьером, кото-
рый образуют клин под оросителем. Аналитическая модель предполагает насыщенный ста-
ционарный двумерный поток (описываемый уравнением Лапласа) в облестаи со свободной гра-
ницей, вдоль которой функция потока линейно зависит от горизонтальной координаты, что
позволяет применить технику Полубариновой-Кочиной, использующую конформное отобра-
жение кругового треугольника в области годографа на вспомогательную полуплоскость. Ме-
тодом конечных элементов (пакет HYDRUD2D, уравнение Ричардса-Ричардсона) нестацио-
нарная начальная задача (дающая асимптотический предел стационарного состояния) реша-
ется в фиксированной области (равнобедренный криволинейный четырехугольник или трапе-
ция). Вычисляются изобары, изохьюмы, линии тока, изотахи и коэффициент однородности
Кристиансена.
Ключевые слова: конформное отображение круговых многоугольников, задача Римана-Гильберта,
моделирование на HYDRUS2D, топология фильтрационного течения, полевые эксперименты.
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НЕРАВЕНСТВО ЙЕНСЕНА КАК КРИТЕРИЙ ВЫПУКЛОСТИ ФУНКЦИИ
В.А. Клячин1

1 klyachin.va@volsu.ru; Волгоградский государственный университет

В настоящей статье показано, что если неравенствоЙенсена выполняется для непре-
рывной функции f на любом симплексе, то функция f является выпуклой вниз. В ста-
тье вводится понятие дефекта выпуклости непрерывной функции, так, что он яв-
ляется отрицательным для выпуклых функций. Используя линейные свойства дефек-
та выпуклости, мы доказываем интегральный признак δ-выпуклости непрерывной
функции. Он утверждает, что если дефект выпуклости не превосходит квадратич-
ной функции от диаметра симплекса, то функция δ-выпукла. Из этого признака полу-
чается интегральное условие дважды почти всюду дифференцируемости непрерывной
функции.

Ключевые слова: выпуклые функции, неравенство Йенсена, геометрический
центр, весовой центр масс, δ-выпуклые функции.

Пусть в Rn ,n ≥ 1 определена локально суммируемая функция w(x) ≥ 0, причем
множество {x : w(x) = 0} нигде не плотно. Для измеримого множества A ⊂ Rn

определим величину

|A|w =
∫
A

w(x)d x.

Функцию w можно рассматривать как плотность распределения массы. Соответ-
ственно можно определить весовой центр масс множества A

x A
w = 1

|A|w

∫
A

xw(x)d x.

В случае w(x) ≡ const точка x A
w представляет собой обычный геометрический центр

множества A.
Классическое интегральное неравенство Йенсена утверждает, что для выпук-

лой вниз функции f : D ⊂ Rn → R выполнено

f (x A
w ) = f

 1

|A|w

∫
A

xw(x)d x

≤ 1

|A|w

∫
A

f (x)w(x)d x. (1)

Будемпредполагать, что для всякогоn-мерного симплекса S ⊂ D задана непре-
рывная функция wS(x) ≥ 0, x ∈ S, непрерывно зависящая от вершин симплекса S.

Теорема 1.Непрерывная функция f (x), заданная в областиD ⊂Rn ,n ≥ 1 выпукла
вниз тогда и только тогда, когда для любого n-мерного симплекса S ⊂ D выполнено

f
(
xS

wS

)≤ 1

|S|wS

∫
S

f (t )wS(t )d t . (2)
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Величину

d f (S) = f (xwS
S )− 1

|S|wS

∫
S

f (x)wS(x)d x

назовем дефектом выпуклости непрерывной функции f . Из теоремы 1 следует,
что непрерывная функция f (x) будет выпуклой тогда и только тогда, когда ее
дефект выпуклости d f (S) ≤ 0 на любом симплексе S ⊂ D. Пусть B – произвольная
симметричная, положительно определенная матрица.

Следствие 1.Пусть непрерывная функция f : D ⊂ Rn → R для любого симплекса
S ⊂ D удовлетворяет неравенству

f (xwS
S ) ≤ 1

|S|wS

∫
S

f (x)wS(x)d x + 1

|S|wS

∫
S

〈B(x −xwS
S ), x −xwS

S 〉wS(x)d x.

Тогда функция f (x)+〈B x, x〉 выпукла вниз.
Напомним, что функция называется δ-выпуклой, если она представима раз-

ностью двух выпуклых функций.

Теорема 2.Предположим, что найдется постоянная λ≥ 0, такая, что для всяко-
го симплекса S ⊂ D выполнено неравенство

f (xwS
S ) ≤ 1

|S|wS

∫
S

f (x)wS(x)d x +λ ·diam2(S).

Тогда функция f является δ-выпуклой.
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JENSEN’S INEQUALITY AS A CRITERION FOR THE CONVEXITY OF A CONTINUOUS
FUNCTION

V.A. Klyachin

In this paper we show that if Jensen’s inequality holds for a continuous function f for any simplex, then
f is convex downwards. We introduce the concept of the convexity defect of a continuous function, so
that it is negative for convex functions. Using the linear properties of the convexity defect, we prove an
integral criterion for δ-convexity of a continuous function. It states that if the convexity defect does not
exceed a quadratic function of the diameter of the simplex, then the function is δ-convex. From this
criterion we obtain an integral condition for twice almost everywhere differentiability of a continuous
function.
Keywords: convex functions, Jensen inequality, geometric center, weight center of mass, δ-convex func-
tions.
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СЕМЕЙСТВО ОТОБРАЖЕНИЙ ПОЛУПЛОСКОСТИ НА КРУГОВОЙ
ЧЕТЫРЕХУГОЛЬНИК
И.А. Колесников1

1 ia.kolesnikov@mail.ru; Томский государственный университет, механико-математический факуль-
тет

В работе рассматривается семейство четырехугольников ∆(t ), t ∈ [0,T ], одна сторо-
на которых является дугой окружности, остальныетри—отрезками прямых. Сторо-
на четырехугольника ∆(t ), являющаяся дугой окружности, подвижна: вершины, лежа-
щие в основании этой стороны перемещаются по линейному относительно парамет-
ра t закону, при этом углы четырехугольника ∆(t ) остаются неизменными. Получены
условия на дифференциальное уравнение для семейства отображений f : H× [0,T ] →
∆(t ), f = f (z, t ), где H— верхняя полуплоксость, отображение f при фиксированном t
переводит конформно H на четырехгольник ∆(t ).

Ключевые слова: конформное отображение, круговой многоугольник, уравнение
Шварца.

Пусть ∆(t ) — семейство круговых четырехугольников с вершинами в точ-

ках A1 = 0, A2(t ) = sinβπ

sin(α+β)π
− t , A3(t ) = sinβπ

sin(α+β)π
− t

cosγπ

cosγπ+ sin(α+β)π
+

i t
sin(α+β)π

sin(α+β)π+cosγπ
ei (α+β+γ)π, A4 = eαπ, t ∈ [0,T ]. Стороны A1 A2(t ), A3(t )A4, A4 A1,

лежат на прямых, сторона A2(t )A3(t ) лежит на окружности с центром в точке
sinβπ

sin(α+β)π
− t

cosγπ

cosγπ+ sin(α+β)π
радиуса t

sin(α+β)π

sin(α+β)π+cosγπ
. Углы при вершинах

A1, A2, A3(t ), A4(t ) равны απ,βπ,
π

2
,γπ соответственно, α+β < 1.

Теорема. Пусть семейство отображений w : H× [0,T ] → ∆(t ), w = w(z, t ), при
фиксированном t конформно переводит верхнюю полуплоскость H на ∆(t ). Тогда се-
мейство f удовлетворяет дифференциальному уравнению, являющемуся уравнением
следующих типов:

• F1

(
z, t ,

w ′

w
,

ẇ

w
,

w ′′

w
,

ẇ ′

w
,

ẅ

w
,

w ′′′

w
,

ẇ ′′

w
,

ẅ ′

w
,
...
w

w
, . . .

)
= 0,

• F2
(
z, t , w ′, ẇ , w ′′, ẇ ′, ẅ , w ′′′, ẇ ′′, ẅ ′, ...w , . . .

)= 0,

• F3

(
z, t , w ′, ẇ − w

t
, w ′′, ẇ ′, ẅ , w ′′′, ẇ ′′, ẅ ′, ...w , . . .

)
= 0,

где точка над функцией обозначает производную по t , штрих обозначает производную
по z; F1,F2,F3 — дифференцируемые функции своих аргументов.

Семейство отображений полуплоскости на многоугольник с границей, состоя-
щей из отрезков прямых рассмотрено в [1], [2].

Работа выполнена при поддержкеМинистерства науки и высшего образования
РФ (соглашение № 075-02-2025-1728/2)
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FAMILY OF MAPPINGS OF THE HALF-PLANE ONTO A CIRCULAR QUADRILATERAL

I.A. Kolesnikov

In this paper, we consider a family of quadrangles ∆(t ), t ∈ [0,T ], one side of which is an arc of a circle,
the other three are line segments. The side of the quadrilateral ∆(t ), which is an arc of a circle, is
movable: the vertices lying at the base of this side move according to a law linear with respect to the
parameter t , while the angles of the quadrilateral∆(t ) remain unchanged. We obtain conditions on the
differential equation for the family of mappings f :H× [0,T ] → ∆(t ), f = f (z, t ), where H is the upper
half-plane, the mapping f for a fixed t maps conformally H onto the quadrilateral ∆(t ).
Keywords: conformal mapping, circular polygon, the Schwarz equation.

УДК 517.5

ОЦЕНКИ ПРОИЗВОДНОЙ МНОГОЧЛЕНОВ С НУЛЯМИ НА ПРЕДПИСАННЫХ
МНОЖЕСТВАХ И НЕКОТОРЫЕ ЗАДАЧИ АППРОКСИМАЦИИ

М.А. Комаров1

1 kami9@yandex.ru; Владимирский государственный университет

Для класса полиномов степени n, нули которых лежат на заданном выпуклом компак-
те K , устанавливается точный порядок обратного фактора Маркова Mn(K ) в тер-
минах n, диаметра и ширины K . Обсуждаются варианты задачи С.Р. Насырова о при-
ближениях наипростейшими дробями с полюсами на окружности.

Ключевые слова: неравенство Маркова, неравенство Турана, наипростейшая
дробь.

В первой части доклада обсуждается точный порядок так называемого обрат-
ного фактора Маркова (Маркова–Бернштейна)

Mn(K ) := inf
P∈Πn(K )

∥P ′∥K

∥P∥K
, n ≥ 1 (∥ ·∥K := ∥·∥C (K )),

для выпуклых компактов K ⊂C, гдеΠn(K )— класс комплексных полиномов точной
степени n, все нули которых лежат на K . Тематика берет свое начало в 1939 г., когда
П. Туран для круга D = {z : |z| ≤ 1} и отрезка I = [−1,1] установил равенство

Mn(D) = n/2 (1)

и слабую эквивалентность Mn(I ) ≍p
n, а конкретнее — двустороннюю оценку

p
n

/
6 < Mn(I ) <

p
n/e +εn (εn = o(1)). (2)
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В том же году Я. Эрёд обобщил (1) на некоторые подклассы выпуклых компактов.
Наибольшие продвижения в этом направлении получены сравнительно недав-

но. Во-первых, Н. Левенберг и Е.А. Полецкий (2002) построили оценку

Mn(K ) ≥
p

n

20d
, n ≥ 1 (d = d(K ) — диаметр K ), (3)

верную для любого выпуклого компакта. Согласно (2), порядок точен и достигается
на отрезках — выпуклых компактах нулевой ширины (минимальной шириной w =
w(K ) множества K называют ширину самой узкой полосы, содержащей K ).

Второй фундаментальный результат получил С.Д. Ревес (2006), который дока-
зал, что если ширина w = w(K ) > 0, то оценку (3) можно значительно улучшить по
порядку:

Mn(K ) ≥ 3 ·10−4 wn

d 2 , n ≥ 1. (4)

Ревес также установил обратное неравенство

Mn(K ) ≤ 600
wn

d 2 , n > 2
( d

16w

)2
log

d

16w
. (5)

Таким образом, оценки (4), (5) доставляют точную зависимость величины Mn(K )
как от степени полиномов n, так и от геометрических характеристик w , d выпук-
лого множества K при всех достаточно больших n: Mn(K ) ≍ wn/d 2. В общем случае,
однако, формула может не работать (если фиксировать n и d и устремить w к 0,
то wn/d 2 → 0, тогда как K превращается в отрезок длины d и Mn(K ) → Mn(∆) >p

n/(3d)).
Мы устанавливаем точнуюформуMn(K )припроизвольном соотношениимеж-

дуn, w,d , которая допускает, в частности, корректныйпереход к пределу приw → 0.

Теорема. Для любого выпуклого компакта K и n ≥ 1 имеем

3 ·10−4 max
{wn

d 2 ;

p
n

d

}
≤ Mn(K ) ≤ 28 max

{wn

d 2 ;

p
n

d

}
. (6)

Ясно, что нижняя оценка (6) прямо следует из (3), (4). Верхняя позволяет
установить, в частности, что логарифм в (5) не по существу. А именно, при любом
n > d 2/w2 получаем оценку Mn(K ) ≤ 28 wn/d 2, причем с лучшей константой, чем
в (5).

Оценки снизупроизводных алгебраическихполиномов, нуликоторыхлежатна
заданном множестве, естественным образом связаны с задачами аппроксимации
посредством наипростейших рациональных дробей

gn(z) =
n∑

k=1

1

z − zk
, zk ∈C; n = 1,2, . . . ,

полюсы которых принадлежат заданному подмножеству комплексной плоскости;
тематике таких аппроксимаций посвящены работы Я. Кореваара, Ч. Чуи, В.И. Дан-
ченко, П.А. Бородина и других авторов. Во второй части доклада обсуждаются вари-
антыизвестной задачиС.Р. Насырова о плотности в L2[−1,1]наипростейшихдробей
gn, все полюсы z1, . . . , zn которых лежат на окружности |z| = 1.
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ESTIMATES FOR THE DERIVATIVE OF POLYNOMIALS WITH ZEROS ON PRE-ASSIGNED SETS
AND SOME APPROXIMATION PROBLEMS

For the class of polynomials of degree n, whose zeros lie in a given convex compact set K , the precise
order of the inverse Markov factor Mn(K ) is established in terms of n, the diameter and the width of K .
Variants of S.R. Nasyrov’s problem concerning approximations by simple partial fractions with poles
on a circle are discussed.
Keywords: Markov inequality, Turán inequality, simple partial fraction.
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ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ НАВЬЕ — СТОКСА С НАПЕРЕД ЗАДАННЫМИ
СВОЙСТВАМИ ГЛАДКОСТИ

А.В. Коптев1

1 alex.koptev@mail.ru ; Государственныйуниверситетморскогоиречногофлотаимени адмиралаС.О.
Макарова, Санкт-Петербург

В статье предлагается построение точного решения 3D уравнений Навье – Стокса,
удовлетворяющего граничным условиям двух видов. Cвойства гладкости построенно-
го решения могут существенно изменяться в зависимости от выбора функций возни-
кающих при интегрировании.

Ключевые слова: уравнения Навье – Стокса, точное решение, граничные условия,
гладкость.

Уравнения Навье — Стокса представляют известный вид нелинейных уравне-
ний в частных производных. Для случая движения несжимаемой среды при нали-
чии потенциала внешних сил Φ эти уравнения в безразмерных переменных имеют
вид

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
=−∂(p +Φ)

∂x
+ 1

Re

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
, (1)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
=−∂(p +Φ)

∂y
+ 1

Re

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
, (2)

∂w

∂t
+u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
=−∂(p +Φ)

∂z
+ 1

Re

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
, (3)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (4)

Свойства гладкости решений уравнений (1-4) изученыне до конца [1-2]. В част-
ности, возможна ситуация, когда при заданных граничных и начальных условиях
решение может обладать различными свойствами гладкости в зависимости от до-
полнительных факторов.

Будемрассматриватьпотенциальноедвижениенесжимаемой средывбольшом
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резервуаре, когда влиянием ограничивающих поверхностей можно пренебречь и
потребуем выполнимости условий

u(x0, y0, z0, t ) = v(x0, y0, z0, t ) = w(x0, y0, z0, t ) = 0, (5)

u → u0, v → v0, w → w0, (6)

когда x = cx
ε +o( 1

ε ), y = cy

ε +o( 1
ε ), z = cz

ε +o( 1
ε ) при ε→ 0.

Условия (5) соответствуют тому, что каждая из компонент вектора скорости в
заданной точке M0(x0, y0, z0) в любой момент времени обращается в нуль. Условия
(6) требуют для каждой из компонент вектора скорости асимптотического прибли-
жения на бесконечности к наперед заданным значениям u0, v0, w0. Величины cx ,
cy , cz , u0, v0, w0 заданы.

Решения уравнений (1-4) при условиях (5-6) определяется выражениями [3-4]

u =−A1(t )sh( Reθ1
2 )−B1(t )sin( Reλ1

2 )

2(cos2( Reλ1
4 )+ sh2( Reθ1

4 ))
+ B3(t )sh( Reθ3

2 )+ A3(t )sin( Reλ3
2 )

2(cos2( Reλ3
4 )+ sh2( Reθ3

4 ))
,

v =−A2(t )sh( Reθ2
2 )−B2(t )sin( Reλ2

2 )

2(cos2( Reλ2
4 )+ sh2( Reθ2

4 ))
+ B1(t )sh( Reθ1

2 )+ A1(t )sin( Reλ1
2 )

2(cos2( Reλ1
4 )+ sh2( Reθ1

4 ))
,

w =−A3(t )sh( Reθ3
2 )−B3(t )sin( Reθ3

2 )

2(cos2( Reλ3
4 )+ sh2( Reθ3

4 ))
+ B2(t )sh( Reθ2

2 )+ A2(t )sin( Reλ2
2 )

2(cos2( Reλ2
4 )+ sh2( Reθ2

4 ))
,

p −p0 =−Φ− u2 + v2 +w2

2
− ∂ϕ

∂t
,

ϕ=ϕ1 +ϕ2 +ϕ3, ϕk = 2

Re
ln(cos2 Reλk

4
+ sh2 Reθk

4
), k = 1,2,3,

θ1 = A1(t )(x −x0)−B1(t )(y − y0), λ1 = B1(t )(x −x0)+ A1(t )(y − y0).

θ2 = A2(t )(y − y0)−B2(t )(z − z0), λ2 = B2(t )(y − y0)+ A2(t )(z − z0),

θ3 = A3(t )(z − z0)−B3(t )(x −x0), λ3 = B3(t )(z − z0)+ A3(t )(x −x0).

Две функции A1(t ) и B1(t ) могут быть выбраны произвольно, тогда как осталь-
ные четыре однозначно выражаются через них. Условия (5) удовлетворены. Однако,
условия (6) удовлетворенытолько в случае, когда точка (A1(t ),B1(t ))находится внут-
ри определенной области. Если траектория точки (A1(t ),B1(t )) в некоторый момент
времени t = t∗ пересекает границы этой области, то производные по времени ос-
новных неизвестных претерпевают разрыв. Таким образом, дополнительным фак-
тором, влияющим на гладкость решения уравнений (1-4) при условиях (5-6), явля-
ется выбор функций времени A1(t ),B1(t ).
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EXACT SOLUTION TO THE NAVIER – STOKES EQUATIONS WITH PRE-SPECIFIED
SMOOTHNESS PROPERTIES

A.V. Koptev

We propose to construct an exact solution of the 3D Navier-Stokes equations that satisfy two types
of boundary conditions. The smoothness properties of the constructed solution vary depending on
functions arising during integration.
Keywords: Navier – Stokes equations, exact solution, boundary conditions, smoothness.
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SOME PROPERTIES OF THE ORLICZ COHOMOLOGY OF GROUPS
Ya.A. Kopylov1

1 yakop@math.nsu.ru; Sobolev Institute of Mathematics

We consider some problems concerned with the first Orlicz cohomology of locally compact
and, in particular, dscrete groups. We obtain some conditions for the triviality of the first
ℓΦ-cohomology H 1(G ,ℓΦ(G)) = 0 and the reduced ℓΦ-cohomology H

1
(G ,ℓΦ(G)) of a (not

necessarily countable) discrete groupG, whereΦ is an N-function, and for the coincidence of
these spaces.

Keywords: discrete group, locally compact group, Orlicz cohomology.

Theorem 1. Let G be an infinite group and let Φ be an N-function of class ∆2(0).
If G is non-amenable then H 1(G ,ℓΦ(G)) is Hausdorff. If G is countable and
H 1(G ,ℓΦ(G)) is Hausdorff then G is non-amenable.

Theorem2. Suppose thatΦ is anN-functionof class∆2(0). LetN ≤ H ≤G be a chain
of discrete groups such thatN is an infinite normal subgroup inG andH is non-amenable
and countable. If H 1(H ,ℓΦ(H)) = 0 then H 1(G ,ℓΦ(G)) = 0.

Denote by ℵ1 the first uncountable cardinal.
Theorem 3. Let G be an uncountable group with infinite center or a periodic group

with |G| > ℵ1 and let Φ be an N-function. Then H 1(G ,ℓΦ(G)) = 0.
Theorem 4. Let G be a countable locally finite group and let Φ be an N-function.

Then the mapping Å : H 1(G ,C[G]) → H 1(G ,ℓΦ(G)) induced by the embedding C[G] ,→
ℓΦ(G) is not injective.

Theorem 5. Let G be an infinite locally finite group and let Φ be an N-function.
Then H

1
(G ,ℓΦ(G)) = 0.

We also discuss the existence of nontrivial translation-invariant linear functionals
in an Orlicz space on a locally compact group.
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НЕКОТОРЫЕ СВОЙСТВА ГРУППОВЫХ КОГОМОЛОГИЙ ОРЛИЧА

Я.А. Копылов

Рассматриваются некоторые вопросы, связанные с одномерными когомологиями Орлича ло-
кально компактных и, в частности, дискретных групп. Получены условия тривиальности од-
номерных ℓΦ-когомологий H 1(G ,ℓΦ(G)) = 0 и редуцированных ℓΦ-когомологий H

1
(G ,ℓΦ(G)) (не

обязательно счетной) дискретной группы G, где Φ — N-функция и условия совпадения этих
пространств.
Ключевые слова: дискретная группа, локально компактная группа, когомологии Орлича.
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АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНЫХ
УРАВНЕНИЙ В ОКРЕСТНОСТИ ИРРЕГУЛЯРНЫХ ОСОБЕННОСТЕЙ. УРАВНЕНИЕ

ШРЕДИНГЕРА
М.В. Коровина1

1 betelgeuser@yandex.ru; Московский государственный университет им. М.В. Ломоносова

Работа посвящена проблеме Пуанкаре в аналитической теории дфференциальных
уравнений. В ней построен общий вид асимптотик решений для обыкновенных диффе-
ренциальных уравнений с мероморфными коэффициентами в окрестности их особых
точек как регулярных, так и иррегулярных.

Ключевые слова: асимптотика, асимптотический ряд, регулярная особая точка,
иррегулярная особая точка.

Одной из фундаментальных задач аналитической теории обыкновенных диф-
ференциальных уравнений смероморфнымикоэффициентами является задача по-
сторения асимптотик их решений в окрестности иррегулярных особых точек. Эта
задача была сформулирована Пуанкаре в работах [1], [2].

В работах Пуанкаре было доказано, что полученные расходящиеся ряды явля-
ются асимптотическими рядами решений дифференциальных уравнений с голо-
морфными (мероморфными) коэффициентами в окрестности иррегулярных осо-
бенностей. Задача о построении асимптотик решений для дифференциальных
уравнений с голоморфными коэффициентами в окрестности бесконечности, кото-
рая была сформулирваннаПуанкареи которая является часнымслучаемобщейпро-
блемы Пуанкаре, была решена в работах [3], [4]. Однако общая проблема, которая
заключается в построении асимптотик решений дифференциальных уравнений в
окрестности произвольной иррегулярной особой точки до сих пор в общем случае
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не решена. Решению этой задачи и посвящена данная работа. А именно, рассмот-
рим уравнение

an (x)

(
d

d x

)n

u (x)+an−1 (x)

(
d

d x

)n−1

u (x)+...+ai (x)

(
d

d x

)i

u (x)+...+a0 (x)u (x) = 0, (1)

где ai (x) , i = 0, ...,n — мероморфные функции. Задача заключается в построении
асимптотик решений уравнения (1) в окрестности особых точек (как регулярных,
так и иррегулярных).

Без ограничения общности будем считать, что особой точкой уравнения (1)
является r = 0. В работе [5] показано, что уравнение (1)может бытьприведено к виду

H

(
r,−r k+1 d

dr

)
u = 0, (2)

где

H

(
r,−r k+1 d

dr

)
=

(
−r k+1 d

dr

)n

+
n−1∑
i=0

ãi (r )

(
−r k+1 d

dr

)i

.

Здесь k =−1,0,1,2...., а через ãi (r ) обозначены соответствующие голоморфные
функции. B работе [5] найдено минимальное целое неотрицательное значение k, то
есть минимальный порядок вырождения и коэффициенты этого уравнения. Если
k ∈ N , то особая точка является иррегулярной, в этом случае запишем оператор (2)
в виде

H

(
r,−r k+1 d

dr

)
= kn

((
−1

k
r k+1 d

dr

)n

+
n−1∑
i=0

ãi (r )
1

kn−i

(
−1

k
r k+1 d

dr

)i
)

.

Основным символом дифференциального оператора H
(
r,−r k+1 d

dr

)
называет-

ся функция H0
(
p

) = pn +∑n−1
i=0

ãi (0)
kn−i p i .

Для построения асимптотик решений дифференциальных уравнений с меро-
морфными коэффициентами в окрестности их иррегулярных особых точек приме-
няются методы ресургентного анализа, основой которых является преобразование
Лапласа—Бореля, в том числе метод поворного квантования. Суть метода состоит
в том, что можно представить асимптотику решения в виде суммы асимптотиче-
ских членов, каждый из которых соответствует одному из корней основного симво-
ла. Чтобы найти вид асимптотического члена, соответствующего корню основного
символа pi , необходимопередвинуть этот корень внуль с помощьютакназываемой
экспоненциальной подстановки e

pi
r ui (r ) и потом построить асимптотику, соответ-

ствующую нулевому корню основного символа. Тот же метод применяется для всех
асимптотических членов соответствующих всем корням основного смвола.

Возникает вопрос о том, какой вид имеет асимптотический член соответству-
ющий кратному корню. На этот вопрос отвечает

Теорема. Любая асимптотика решений уравнения (1) со степенью вырождения
k +1 в пространстве функций k-экспоненциального роста представима в виде суммы
линейных комбинаций асимптотических членов вида

ui (r ) = exp

(
Pi

(
r
− 1

li

))
rσ j

∞∑
i=0

a
j
i r i ,
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где li ,σi — некоторые комплексные числа Pi (x) — полином, степень которого не
превышает (m−1)li ,

∑∞
k=0 ai

k xi —асимптотический ряд, и членов, соответствующих
конормальным асимптотикам вида

e
pi
r k

m∑
j=1

rσ j ln j r
∞∑

i=0
a

j
i r i .

Здесь через pi обозначен соответствующий корень основного символа.

Полученный результат приложим к исследованиюрешений любых обыкновен-
ных дифференциальных уравнений с регулярными или иррегулярными особыми
точками. (Заметим, что бесконечность, вообще говоря, является иррегулярной осо-
бенностью), а также к широкому классу уравнений в частных производных, приме-
ром которых является уравнениеШредингера с мероморфнымпотенциалом. Также
примеры применения теории к различным задачам математической физики при-
ведены в работе [6].
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ASYMPTOTIC DECOMPOSITIONS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS IN THE
NEIGHBORHOOD OF IRREGULAR SINGULARITIES. THE SCHRODINGER EQUATION

M.V. Korovina

The paper is devoted to the Poincare problem in the analytic theory of differential equations. It provides
a general view of the asymptotics of solutions for ordinary differential equations with meromorphic
coefficients in the neighborhood of their singular points, both regular and irregular.
Keywords: asymptotics, asymptotic series, regular singular point, irregular singular point.
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УДК 517.518

ТЕОРЕМЫ ТИПА ЛИУВИЛЛЯ ДЛЯ ПЕРИОДИЧЕСКИХ В СРЕДНЕМ ФУНКЦИЙ
ОТНОСИТЕЛЬНО СВЕРТКИ БЕССЕЛЯ И ИХ ПРИМЕНЕНИЕ

Г.В. Краснощеких1, Вит.В. Волчков2

1 wolverimred@mail.ru; ФГБОУ ВО «Донецкий государственный университет»
2 volna936@gmail.com; ФГБОУ ВО «Донецкий государственный университет»

В работе изучается поведение на бесконечности решений уравнений свёртки, связан-
ных с оператором обобщенного сдвига Бесселя. Рассматривается случай, когда свер-
тывателем уравнения является индикатор отрезка [−r,r ] или четная частьмерыДи-
рака с носителем вточке r . На основе недавних результатов авторов найденыточные
характеристики допустимой скорости убывания ненулевых решений указанных урав-
нений в терминах поведения их интегральных средних. В качестве следствий установ-
лены аналоги известных теорем об инъективности оператора сферического среднего
на Rn, принадлежащих Ф. Йону, Д. Смиту, В.В. Волчкову и С. Тангавелу. Кроме того, в
некоторых случаях получено усиление теоремы Б. Сельми и М.М. Несиби о спектраль-
ном анализе на гипергруппе Бесселя-Кингмана, а также доказана новая теорема един-
ственности для решений обобщённого уравнения Эйлера-Пуассона-Дарбу.

Ключевые слова: обобщенный сдвиг, преобразованиеФурье-Бесселя, сферические
средние.

Изучаются асимптотические свойства решений уравнений свёртки, связанных
с оператором обобщенного сдвига Бесселя. Рассматривается случай, когда сверты-
вателем уравнения является индикатор отрезка [−r,r ] или четная часть меры Ди-
рака с носителем в точке r . С помощью недавних результатов из [1] найдены точ-
ные характеристики допустимой скорости убывания ненулевых решений указан-
ных уравнений в терминах поведения их интегральных средних. В качестве след-
ствий установлены аналоги известных теорем об инъективности оператора сфери-
ческого среднего наRn, принадлежащихФ. Йону, Д. Смиту, В.В. Волчкову и С. Танга-
велу (см. [2, часть 2, гл. 1]). Кроме того, в некоторых случаях получено усиление тео-
ремы Б. Сельми и М.М. Несиби [3] о спектральном анализе на гипергруппе Бесселя-
Кингмана, а также доказана новая теорема единственности для решений обобщён-
ного уравнения Эйлера-Пуассона-Дарбу.

Сформулируем один из установленных результатов. Пусть α ∈ (−1/2,+∞), p ∈
[1,+∞), L

p
♮,α и L

p,loc
♮,α — классы чётных комплекснозначных функций на R, соот-

ветственно суммируемых с p-й степенью и p-локально суммируемых по мере

|x|2α+1d x. Для r > 0 определим класс Vr,α равенством Vr,α = {
f ∈ L1,loc

♮,α : f
α
⋆χr = 0

}
,

где f
α
⋆χr — свертка Бесселя порядка α функции f и индикатора χr отрезка [−r,r ]

(см. [?]).

Теорема. Если p ∈ [1,+∞), то Vr,α∩L
p
♮,α = {0} ⇔ 1 ≤ p ≤ 4(α+1)

2α+1 .

Аналогичный результат справедлив и для класса Ur,α = {
f ∈ L1,loc

♮,α : f
α
⋆δr = 0

}
,

где δr — четная часть меры Дирака с носителем в точке r .
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LIOUVILLE TYPE THEOREMS FOR MEAN-PERIODIC FUNCTIONS WITH RESPECT TO BESSEL
CONVOLUTION AND THEIR APPLICATIONS

G.V. Krasnoschekikh, Vit.V. Volchkov

This paper studies the infinite behavior of solutions to convolution equations associated with the
generalised Bessel shift operator. The case is considered when the convolver of the equation is an
indicator of the segment [−r,r ] or an even part of the Dirac measure with a support at the point r .
Based on the recent results of the authors, the exact characteristics of the permissible rate of decrease
of nonzero solutions of these equations in terms of the behavior of their integralmeans have been found.
As a consequence, analogs of the well-known theorems on the injectivity of the spherical mean operator
on Rn, belonging to F. John, D. Smith, V.V. Volchkov and S. Tangavel, are established. In addition,
in some cases, an enhancement of the theorem of B. Selmi and M.M. Nesibi on spectral analysis on
the Bessel-Kingmann hypergroup was obtained, and a new uniqueness theorem for solutions of the
generalised Euler-Poisson-Darboux equation was proved.
Keywords: generalised shift, Fourier-Bessel transform, spherical means.
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СТРУКТУРА РЕШЕНИЯ ИНТЕРПОЛЯЦИОННОЙ ЗАДАЧИ НЕВАНЛИННЫ–ПИКА
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Получено описание решений интерполяционной задачиНеванлинны–Пика c конечными
наборами различных внутренних и граничных интерполяционных точек.

Ключевые слова: голоморфное отображение, угловая производная, интерполяци-
онная задача Неванлинны–Пика, матрица Пика, произведение Бляшке.

Пусть D = {z ∈ C : |z| < 1} — единичный круг в комплексной плоскости C. Рас-
сматривается следующая интерполяционная задача Неванлинны–Пика (см., напри-
мер, монографию [1] и приведенную там библиографию): для заданных последо-
вательностей различных точек {zk }m

k=1 ⊂ D, {zk }n
k=m+1 ⊂ ∂D, последовательности

комплексных чисел {wk }n
k=1 и последовательности положительных чисел {αk }n

k=m+1
найти необходимые и достаточные условия, при которых существует голоморфная
функция f : D→ D такая, что
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1) f (zk ) = wk при k = 1, . . . ,m,
2) f (zk ) = wk , | f ′(zk )| = αk при k = m +1, . . . ,n.
Критерием разрешимости этой задачи в нетривиальном случае является поло-

жительная определенность матрицы Θ = ∥θk, j∥n
k, j=1, где

θk, j =



1−wk w j

1− zk z j
, если k ̸= j , zk ∈D

1−|wk |2
1−|zk |2

, если k = j , zk ∈D
αk , если k = j , zk ∈ ∂D.

Следующий вопрос состоит в нахождении семейства решений интерполяцион-
ной задачи и выделении тех решений, которые обладают определенными экстре-
мальными свойствами. Известно решение этой задачи в виде рекуррентных соот-
ношений. Возникающие технические трудностимотивируют к получениюрешений
в явном виде.

Свойства решений интерполяционной задачи Неванлинны–Пика описывает

Теорема 1. Пусть матрица Θ положительно определена и f —одно из решений
интерполяционной задачи Неванлинны–Пика. Тогда для любого z ∈ D(

1−w1 f (z)

1− z1z
, . . . ,

1−wn f (z)

1− zn z

)
Θ−1

(
1−w1 f (z)

1− z1z
, . . . ,

1−wn f (z)

1− zn z

)∗
É 1−| f (z)|2

1−|z|2 . (1)

Отметим, что при n = 1 в случае z1 ∈D оценка (1) соответствует неравенству∣∣∣∣∣1− f (z1) f (z)

1− z1z

∣∣∣∣∣
2

É 1−| f (z1)|2
1−|z1|2

1−| f (z)|2
1−|z|2 ,

которое эквивалентно классической леммеШварца–Пика. Еслиже z1 ∈ ∂D, то имеем
неравенство ∣∣∣∣∣1− f (z1) f (z)

1− z1z

∣∣∣∣∣
2

Éα1
1−| f (z)|2

1−|z|2 ,

эквивалентное классической теореме Жюлиа–Каратеодори.
Следующий результат дает описание всех решений интерполяционной задачи

Неванлинны–Пика.

Теорема 2. Пусть матрица Θ положительно определена и f —одно из решений
интерполяционной задачи Неванлинны–Пика. Тогда для всех z ∈ D∣∣∣∣∣∣∣∣∣

f (z)− (w1, . . . , wn)Θ−1
(

1−w1 f (z)
1−z1z , . . . , 1−wn f (z)

1−zn z

)∗
n∏

k=1
zk

(
1− z

(
1
z1

, . . . , 1
zn

)
Θ−1

(
1−w1 f (z)

1−z1z , . . . , 1−wn f (z)
1−zn z

)∗)
∣∣∣∣∣∣∣∣∣É 1. (2)

Следствие. Пусть матрица Θ положительно определена. Тогда любое решение f
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интерполяционной задачи Неванлинны–Пика имеет вид

f (z) =
h(z)

n∏
k=1

zk +
(

w1 − zh(z)
∏

j ̸=1
z j , . . . , wn − zh(z)

∏
j ̸=n

z j

)
Θ−1

(
1

1−z1z , . . . , 1
1−zn z

)∗
1+

(
w1 − zh(z)

∏
j ̸=1

z j , . . . , wn − zh(z)
∏

j ̸=n
z j

)
Θ−1

(
w1

1−z1z , . . . , wn
1−zn z

)∗ ,

где h —произвольная голоморфная в D функция, удовлетворяющая неравенству
|h(z)| É 1 для любого z ∈ D.

Равенство в оценках (1) и (2) достигается на произведениях Бляшке

f (z) =
eiϕ

n∏
k=1

zk +
(

w1 − zeiϕ ∏
j ̸=1

z j , . . . , wn − zeiϕ ∏
j ̸=n

z j

)
Θ−1

(
1

1−z1z , . . . , 1
1−zn z

)∗
1+

(
w1 − zeiϕ ∏

j ̸=1
z j , . . . , wn − zeiϕ ∏

j ̸=n
z j

)
Θ−1

(
w1

1−z1z , . . . , wn
1−zn z

)∗ .
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STRUCTURE OF THE SOLUTION OF THE NEVANLINNA-PICK INTERPOLATION PROBLEM

O.S. Kudryavtseva, A.P. Solodov

A description of solutions of the Nevanlinna–Pick interpolation problem with finite sets of different
interior and boundary interpolation points is obtained.
Keywords: holomorphic map, angular derivative, Nevanlinna–Pick interpolation problem, Pick matrix,
Blaschke product.

УДК 517.98

ЛОКАЛЬНЫЕ ГРУППЫ И ОПЕРАТОРНЫЕ АЛГЕБРЫ
А.Ю. Кузнецова1
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Для локальных групп определяются ∗-представление и строгое ∗-представление, по-
казывается связь между ∗-представленим локальной группы и частичным представ-
лением группы.

Ключевые слова: локальная группа, локальная ассциативность, инверсная полу-
группа, ∗-представление, частичное представление группы.

Под локальной группой в статье понимается дискретное множество G с задан-
ными операциями умноженияm : G 2 −→G , G 2 ⊊G ×G и взятия обратного i : G −→
G , удовлетворяющими аксиомам группы, и если (a,b), (b,c) ∈ G 2 и (m(a,b),c) ∈ G 2
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(либо (a,m(b,c) ∈ G 2), то (a,m(b,c)) ∈ G 2 (либо (m(a,b),c) ∈ G 2) и m(a,m(b,c)) =
m(m(a,b),c). Операция умножения обладает в общем случае только локальной ас-
социативностью. Назовем G0 ⊂G локальной подгруппой локальной группы G , если
из условия a,b ∈G0 и (a,b) ∈G 2 следует (a,b) ∈G 2

0 и m0(a,b) = m(a,b) = ab ∈G0.
Далее для удобства символыm и i будем опускать, заменяяm(a,b) на ab и i (a)

на a−1.
Отображение ϕ : G1 −→ G2 называется гомоморфизмом локальных групп, ес-

ли ϕ(e1) = e2, i2 ◦ ϕ = ϕ ◦ i1, ϕ(L (a1, a2, . . . an)) = L (ϕ(a1),ϕ(a2), . . .ϕ(an)), где
L (a1, a2, . . . an)некоторыйфиксированныйпорядок расстановки скобок, иϕ(G1) ло-
кальная подгруппа в G2.

Если последнее условие не выполнятся, то тогдаϕ : G1 −→G2 называется квази-
гомоморфизмом. Из определения локальной группы следует, что она является со-
кратимой слева и справа, поэтому можно определить ее ∗-представление в уни-
тальнуюC∗-алгебру. Поскольку на локальной группе не для всех элементов опреде-
лено умножение, то образом элемента локальной группы естественно определить
частичную изометрию.

Определение 1. Отображение π : G −→ A называется ∗-представлением ло-
кальной группы, если

1) π(e) = I ,

2) π(a−1) = (π(a))∗,

3) π(a)π(b)π(b−1) =π(ab)π(b−1), если (a,b) ∈G 2,

4) π(a−1)π(a)π(b) =π(a−1)π(ab), если (a,b) ∈G 2,

5) {π(a)}a∈G порождают инверсную полугруппу.

Если в определении условия 3) и 4) заменить на условия

3’) π(a)π(b)π(b−1) =
{
π(ab)π(b−1) если (a,b) ∈G 2;

0, если (a,b) ∉G 2.

4’) π(a−1)π(a)π(b) =
{
π(a−1)π(ab) если (a,b) ∈G 2;

0, если (a,b) ∉G 2,

то условие 5) будет следовать автоматически. Такое∗-представление назовем стро-
гим. Через C∗

π(G ) назовем C∗-алгебру, порожденную частичными изометриями
{π(a)}a∈G .

Определение 2. Пусть π : G −→A и π′ : G ′ −→A точные ∗-представления. Пару
(G ′,π′) назовем расширением пары (G ,π), если существует инъективный квазигомо-
морфизм τ : G −→ G ′, такой, что следующая диаграмма коммутативна

G
τ−−−−→ G ′

π

y yπ′
C∗
π(G ) C∗

π′(G
′).



106 СОДЕРЖАНИЕ

Теорема 1. Для любой локальной группы G и ∗-представления π существует
расширение (G ′,π′), где π′ — строгое ∗-представление.

Теорема 2. Если τ — частичное представление группы G, то {a ∈ G : τ(a) ̸= 0}
можно наделить структурой локальной группы.

Если G — локальная группа и π : G −→ A — строгое ∗-представление, то
существует группа G и частичное представление τ : G −→A, что C∗

π(G ) =C∗
τ (G).

Для локальных групп можно определить стандартныеC∗-алгебраические кон-
струкции: регулярное представление, редуцированная и полная C∗-алгебра, рас-
слоение Фэлла, см. подробнее [1]-[3], в [3] также разобраны примеры.
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LOCAL GROUPS AND OPERATOR ALGEBRAS

A.Yu. Kuznetsova

For local groups, a ∗-representation and a strict ∗-representation are defined, and the relationship
between the ∗-representation of a local group and the partial representation of the group is shown.
Keywords: local group, local associativity, inverse semigroup, ∗-representation, partial representation of
a group.
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ОЦЕНКА ГИПЕРБОЛИЧЕСКОЙ МЕТРИКИ ЧЕРЕЗ МЕТРИКУ ТРЕУГОЛЬНОГО
ОТНОШЕНИЯ В КВАДРАТЕ
А.Р. Кушаева1, С.Р. Насыров2
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ПустьK —квадратна плоскости иρK (x, y)—гиперболическое расстояниемеждуточ-
ками x, y ∈ K . Обозначим через sK (x, y) метрику треугольного отношения (triangular
ratiometric) вK . Напомним, что при x ̸= y расстояние sK (x, y) равно отношению евкли-
дова расстояния |x−y |междуточками x, y ∈ K к величине supz∈∂K (|x−z|+|z−y |). Нами
получена точная оценка для отношения величины thρK (x, y)/2 к величине sK (x, y).

Ключевые слова: гиперболическая метрика, метрика треугольного отношения,
квадрат.
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В геометрической теориифункций большуюроль играет гиперболическаямет-
рика. Одним из важнейших ее свойств является конформная инвариантность. В то
же время, вычисление этой метрики в фиксированной областиD является зачастую
непростой задачей. В связи с этим важной является задача о нахождении другой
метрики в области D, в каком-то смысле эквивалентной гиперболической, которая
бы просто вычислялась в евклидовых терминах. Известно достаточно много при-
меров таких метрик (см., напр., монографии [1, 2]). Одной из таких метрик являет-
ся метрика sD треугольного отношения. Она определяется в области D следующим
образом: если x ̸= y , то

sD (x, y) = |x − y |
supz∈∂D (|x − z|+ |z − y |) ,

а если x = y , то sD (x, y) = 0.
В статье [3] начато изучение задачи о нахождении наилучших констант в

неравенстве
C1 sD (x, y) ≤ th(ρD (x, y)/2) ≤C2 sD (x, y), x, y ∈ D, (1)

для некоторых выпуклых многоугольных областей на плоскости. Нетрудно пока-
зать, что наибольшая константа C1 в этом неравенстве равна 1. Равенство достига-
ется в пределе, когда, к примеру, одна из точек x, y стремится к границе области.
Задача об определении наименьшей константыC2 является более сложной. В [3] ис-
следовалась более простая задача: оценить величину

lim
y→x

th(ρD (x, y)/2)

sD (x, y)
= 2dD (x)

rD (x)
, (2)

где dD (x)—расстояние от точки x до границы ∂D областиD, а rD (x)—конформный
радиус области D в точке x.

В [3] были установлены точные оценки сверху величины (2) для многих
часто встречающихся на практике выпуклых многоугольных областей D, на-
пример, для прямоугольников, равнобедренных треугольников, правильных n-
многоугольников. Также были описаны множества, на которых может достигаться
максимум величины (2).

В частности, было показано что в случае квадрата K = [−1,1]× [−1,1] макси-
мальное значение величины (2) достигается в центре квадрата и равно величине
K (

p
2/2) = 1.854074677. . ., гдеK ( · ) – полный эллиптический интеграл первого ро-

да.
В данной работе мы получаем оценку величины th ρK (x,y)

2 через метрику тре-
угольного отношения sK (x, y) и устанавливаем следующий результат.

Теорема. Для произвольных точек x и y в квадрата K имеет место точная
оценка

sK (x, y) ≤ th
ρK (x, y)

2
≤K (

p
2/2)sK (x, y) .

Работа выполнена в рамках реализации программы развития Научно-
образовательного математического центра Приволжского федерального округа
(соглашение № 075-02-2025-1725/1).
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ESTIMATION OF THE HYPERBOLIC METRIC THROUGH THE TRIANGULAR RATIO METRIC IN
A SQUARE

A.R. Kushaeva, S.R. Nasyrov

Let K be a square in the plane and ρK (x, y) be the hyperbolic metric between x, y ∈ K . Denote by sK (x, y)

the triangular ratio metric K ; for x ̸= y the value of sK (x, y) is equal to the ratio of the Eulidean distance
|x− y | between x, y ∈ K to the value supz∈∂K (|x−z|+|z− y |). We establish a sharp estimate of the ratio
of thρK (x, y)/2 to sK (x, y).
Keywords: hyperbolic metric, triangular ratio metric, square.
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ВКЛЮЧЕНИЕ ДЛЯ СПЕКТРА БЛОЧНЫХ ЭЛЕМЕНТОВ ОПЕРАТОРНОЙ
МАТРИЦЫ ЧЕТВЕРТОГО ПОРЯДКА

Х.М.Латипов1

1 h.m.latipov@buxdu.uz; Бухарский государственный университет, Бухара, Узбекистан

В данной работе рассматривается операторнаяматрица четвертого порядка. Этот
оператор соответствует гамильтониану системы с несохраняющимся числом ча-
стиц на решетке, не превосходящем четырёх. Выделены блочные элементы и уста-
новлены включение для спектра этих блочных элементов.

Ключевые слова: операторная матрица, система частиц, блочные элементы,
спектр.

Пустьd ∈NиTd := (−π;π]d—d-мерныйкуб с соответствующимотождествлени-
ем противоположных граней. Пусть L2((Td)m), m = 1,2,3 – гильбертово простран-
ство квадратично-интегрируемых (комплекснозначных) функций, определенных
на (Td)m и

H :=C2 ⊗ {C⊕L2(Td)⊕L2((Td)2)⊕L2((Td)3)}.

Обычно пространство C⊕L2(Td)⊕L2((Td)2)⊕L2((Td)3) называется четырехча-
стичным обрезанным попространством фоковского пространства.

В гильбертовом пространствеH рассмотрим операторную матрицу вида

A :=


A00 A01 0 0
A ∗

01 A11 A12 0
0 A ∗

12 A22 A23
0 0 A ∗

23 A33


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с матричными элементами

A00 f (s)
0 = sε f (s)

0 , A01 f (s)
1 =α

∫
Td

v(t ) f (−s)
1 (t )d t ,

(A11 f (s)
1 )(k1) = (sε+w(k1)) f (s)

1 (k1), (A12 f (s)
2 )(k1) =α

∫
Td

v(t ) f (−s)
2 (k1, t )d t ,

(A22 f (s)
2 )(k1,k2) = (sε+w(k1)+w(k2)) f (s)

2 (k1,k2),

(A23 f (s)
3 )(k1,k2) =α

∫
Td

v(t ) f (−s)
3 (k1,k2, t )d t ,

(A33 f (s)
3 )(k1,k2,k3) = (sε+w(k1)+w(k2)+w(k3)) f (s)

3 (k1,k2,k3).

Здесь { f (s)
0 , f (s)

1 , f (s)
2 , f (s)

2 , s =±} ∈H ; A ∗
i j сопряженный оператор кAi j , i < j , функции

v(·), w(·) явлются вещественнозначными и непрерывными на Td, α> 0 – "параметр
взаимодействия". В этих предположениях операторная матрица A является огра-
ниченной и самосопряженной в гильбертовом пространстве H .

Операторная матрица A связана с оператором энергии системы частиц на
решетке, число которых не сохраняется и не превышает четырех.

Для формулировки основного результата работы введем гильбертово про-
странству

H (n,m) :=
m⊕
α=n

L2((Td)α), 1 ≤ n < m ≤ 3

и следующие блочные элементы матрицы с оператором A :

A1 :C2 ⊗L2((Td)3) →C2 ⊗L2((Td)3), A1 :=A33;

A2 :C2 ⊗H (2,3) →C2 ⊗H (2,3), A2 :=
(

A22 A23
A ∗

23 A33

)
;

A3 :C2 ⊗H (1,3) →C2 ⊗H (1,3), A3 :=
 A11 A12 0

A ∗
12 A22 A23

0 A ∗
23 A33

 .

Стоит отметить, что блочные элементы (операторные матрицы) A1, A2, A3
являются линейными, ограниченными и самосопряженными операторными мат-
рицами в своих областях определения, имеют более простой вид по сравнению с
операторной матрицей A и имеют чистый существенный спектр [1], т.е. σ(Aα) =
σess(Aα), α = 1,2,3.

Теорема 1. Для спектра блочных элементов A1, A2 и A3 имеют места соот-
ношение

σ(A1) ⊂σ(A2) ⊂σ(A3) ⊂σ(A ).

В работе [1] показано, что σess(A ) = σ(A3). Выделены двухчастичная, трехча-
стичная и четырехчастичная ветви существенного спектра оператораA . Устанале-
но, что существенный спектр операторной матрицыA состоит из объединения от-
резков, число которыхне больше14.ПостроенопределительФредгольма, такой, что
егомножествонулейидискретной спектр операторнойматрицыA совпадают, кро-
ме того даказано, что число простых собственных значений, операторной матрицы
A , лежащих вне существенного спектра не превосходит 16. В этом исследовании
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использовались методы, разработанные в работе [2] для модели спин-бозона с не
более двумя фотонами на решетке.
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INCLUSION FOR THE SPECTRUM OF THE BLOCK ELEMENTS OF FOURTH-ORDER OPERATOR
MATRIX

H.M. Latipov

In this work, we consider a fourth-order operatormatrix. This operator corresponds to theHamiltonian
of a systemwith a non-conserved number and nomore than four particles on the lattice. Block elements
are identified and inclusions for the spectrum of these block elements are established.
Keywords: operator matrix, system of particles, block elements, spectrum.

УДК 517.9
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В статье рассматривается применение альтернативных обобщённых операторов,
имеющих тривиальную структуру, для факторизации обыкновенных дифференциаль-
ных уравнений.

Ключевые слова: групповой анализ, альтернативный обобщённый оператор, фак-
торизация дифференциальных уравнений.

Альтернативные обобщённые операторы, обобщающие классические сим-
метрии, представляют собой достаточно перспективное направление группового
анализа[1-4]. Основной недостаток этого типа операторов – достаточно сложные
и громоздкие вычисления. Поэтому необходимо вводить различного рода анзацы
на структуру дифференциальных уравнений и допускаемых ими альтернативных
обобщённых операторов. Одним из таких допущений может быть рассмотрение
операторов тривиальной структуры, т.е. операторов одна или несколько коорди-
нат которых равны нулю. Исследуем особенность решения этой задачи на примере
обыкновенных дифференциальных уравнений 3-го порядка

y ′′′ = F (x, y, y ′, y ′′). (1)

Альтернативные обобщённые операторы — это класс операторов вида

X = ξ∂x +η∂y +ζ1∂y ′ +ζ2∂y ′′ +ζ3∂y ′′′ , (2)



Л.В. Линчук 111

где ξ = ξ(x, y, y ′), η = η(x, y, y ′), ζ1 = ζ1(x, y, y ′) и

ζk = Dx(ζk−1)− y (k)Dxξ+ (ζk−1 − y (k)ξ)(ζ1 −Dxη+ y ′Dxξ)

η− y ′ξ
, k = 2,3. (3)

Пусть одна из трёх координат оператора (2) равна нулю. Это допущение влечёт
упрощение для одной из двух оставшихся координат. Известно, что если оператор
(2) допускается уравнением (1), то оператор µX , где µ = µ(x, y, y ′) – произвольный
множитель, также допускается этим уравнением [2]. Поэтому одну из ненулевых ко-
ординат можно считать равной единице. Таким образом, существенной координа-
той оказывается только одна, которая и будет входить в определяющее уравнение
для поиска допускаемого оператора.

Пусть, например, ζ1(x, y, y ′) = 0. Тогда положим ξ(x, y, y ′) = 1. Следовательно,
формулы (3) принимают вид

ζ2 = y ′′Dxη

η− y ′ξ
, ζ3 = Dx(ζ2)+ (ζ2 − y ′′′)Dxη

η− y ′ξ
.

Упрощение решения прямой задачи группового анализа в этом случае можно
рассмотреть на некоторых примерах. Если рассмотреть подкласс обыкновенных
дифференциальных уравнений 3-го порядка

y ′′′ = F (x, y, y ′)y ′′,

то определяющим уравнением в этом случае будет

−Fx −ηFy +
(
Dxη−F (η− y ′ξ)

)
Dxη

(η− y ′ξ)2 + Dx

(
Dxη

η− y ′ξ

)∣∣∣∣
y ′′′=F y ′′

= 0.

Решение этой системы распадается на несколько случаев. В одном из них, напри-
мер, получается уравнение и допускаемый оператор

y ′′′ = 3 f y ′+2( f ′+ f 2)y + f g + g ′

y ′+2 f y + g
y ′′, X = ∂x + y ′−2 f y − g

2
∂y +0 ·∂y ′ , (4)

где f = f (x), g = g (x) – произвольные функции. Инварианты полученного операто-
ра позволяют факторизовать уравнение (4):

t = y ′, u =
∫

(y ′− g )e
∫

f d xd x −2ye
∫

f d x , u′′ = 0,

и даже найти его общее решение

y =
(∫

e
∫

f d xd x −C1

)2
(∫ ∫

g e
∫

f d xd x +C2(∫
e

∫
f d xd x −C1

)3 d x +C3

)
.

Заметим, что, например, в пакете символьных вычислений Maple для класса (4)
решение не находится (результат, причём в достаточно громоздком виде, можно
получить лишь только при некоторых конкретных функциях f (x) и g (x)).

Былиисследованыидругие подклассы уравнений вида (1). Полученные резуль-
таты показывают, что даже простые допущения тривиальности координат операто-
ра дают возможность сконструировать достаточноширокие классыфакторизуемых
уравнений.
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This paper describes the application of alternative generalized operators of trivial structure for
factorization of ordinary differential equations.
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INTEGRO-DIFFERENTIAL EQUATIONS OF OSCILLATIONS OF MECHANICAL
SYSTEMS WITH MOVING BOUNDARIES

V.L. Litvinov1, K.V. Litvinova2

1 vladlitvinov@rambler.ru; Moscow State University, Moscow
2 ; Samara State Technical University, Samara

In existing studies, problems of oscillations of systems with moving boundaries were consid-
ered mainly in a linear formulation, without taking into account the energy exchange through
the moving boundary and the interaction between different types of oscillations. In this paper,
a new nonlinear mathematical model of transverse oscillations of an unlimited rope with a
moving boundary is developed, taking into account geometric nonlinearity, in the form of an
integro-differential equation. The resulting model allows one to describe high-intensity oscil-
latory processes in these systems.

Keywords: nonlinear dynamics, oscillations of flexible threads, moving boundary condi-
tions, integro-differential equations.

An analysis of the literature data [1-4, 7-12] shows that most studies of oscillations
of systems with moving boundaries used linear models that do not take into account
either the processes of energy exchange at the boundary or the relationship between
the longitudinal and transverse components of the oscillations. Only a few studies [5,6]
attempted to take into account the dissipative effects associatedwith the resistance of the
medium. However, real technical systems demonstrate amuchmore complex behavior; in
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particular, with an increase in the amplitude of oscillations, nonlinear geometric effects
become of decisive importance.

The current level of development of computationalmethods opens up new prospects
for constructing adequate mathematical models of conjugate oscillations of systems with
moving boundaries, allowing one to take into account a set of factors determining the
oscillation process.

This paper proposes an improved nonlinear model of conjugate longitudinal-
transverse oscillations of a rope with a moving boundary, integrating the effects of ge-
ometric nonlinearity, viscoelastic properties of the material and the processes of energy
transfer through the interface, written in the form of integro-differential equations. New
boundary conditions are derived that describe the interaction of system sections on dif-
ferent sides of the moving boundary. The developed model is subjected to a linearization
procedure. It is important to note that the correspondence principle is fulfilled: in the
limiting case of small oscillations, the system of equations is reduced to classical linear
models, which serves as a check for the correctness of the results obtained. The proposed
mathematical model significantly expands the possibilities of studying high-amplitude
oscillatory modes in systems with moving boundaries.
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ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ СИСТЕМ С
ПОДВИЖНЫМИ ГРАНИЦАМИ

В. Л. Литвинов, К. В. Литвинова

В существующих исследованиях задачи колебаний систем с подвижными границами рассмат-
ривались преимущественно в линейной постановке, без учёта обмена энергией через по-
движную границу и взаимодействия различных типов колебаний. В данной работе разрабо-
тана новая нелинейная математическая модель поперечных колебаний неограниченного ка-
ната с подвижной границей, учитывающая геометрическую нелинейность, в виде интегро-
дифференциального уравнения. Полученная модель позволяет описывать высокоинтенсивные
колебательные процессы в таких системах.
Ключевые слова: нелинейная динамика, колебания гибких нитей, подвижные граничные условия,
интегро-дифференциальные уравнения.

УДК 517.926.7

О РЕАЛИЗАЦИИ СУЩЕСТВЕННЫХ СПЕКТРОВ ПОКАЗАТЕЛЕЙ
КОЛЕБЛЕМОСТИ НУЛЕЙ ДВУМЕРНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ
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Установлено существование линейных однородных двумерных дифференциальных си-
стем с не более чем счетными существенными спектрами показателей колеблемости
нулей.

Ключевые слова: линейная система, колеблемость, показатель Ляпунова, показа-
тели колеблемости.

Для заданного n ∈N обозначим черезM n множество линейных систем

ẋ = A(t )x, x ∈Rn , t ∈R+ ≡ [0, +∞),

с непрерывными ограниченными оператор-функциями A : R+ → EndRn (каждую
из которых будем отождествлять с соответствующей системой). Множество всех
ненулевых решений системы A ∈M n обозначим через S∗(A) и положим

S n
M = ⋃

A∈M n
S∗(A).

Определение 1 [1]. Верхние (нижние) сильный и слабый показатели колеблемо-
сти нулей функции x ∈ S n

M
зададим формулами

ν̂0
•(x) ≡ inf

m∈Rn
lim

t→+∞
π

t
ν0(x,m, t )

(
ν̌0
•(x) ≡ inf

m∈Rn
lim

t→+∞
π

t
ν0(x,m, t )

)
,

ν̂0
◦(x) ≡ lim

t→+∞ inf
m∈Rn

π

t
ν0(x,m, t )

(
ν̌0
◦(x) ≡ lim

t→+∞
inf

m∈Rn

π

t
ν0(x,m, t )

)
,
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где ν0(x,m, t ) — число нулей скалярного произведения 〈x(·),m〉 на промежутке (0, t ].

Определение 2 [2,3]. Множество всех значений показателя Å : S∗(A) → R+ на-
зовём спектром этого показателя системы A ∈ M n , причем значение a ∈ Å(S∗(A))
назовем существенным, если подмножество {x(0) | x ∈S∗(A), Å(x) = a} ⊂Rn имеет по-
ложительную меру и заполняет некоторое непустое открытое множество, возмож-
но, с точностью до множества первой категории Бэра. Через essÅ(S∗(A)) обозначим
множество всех существенных значений показателя Å для системы A и назовем его
существенным спектром системы A.

В работе [4] для любого конечного множества неотрицательных чисел, содер-
жащего нуль, установлено существование двумерной системы, у которой все зна-
чения спектров показателей блуждаемости являются существеннымии совпадают с
этиммножеством. Если все эти числа соизмеримы, то системуможно выбрать пери-
одический. Кроме того, для любого замкнутого ограниченного счетного множества
неотрицательных рациональных чисел с единственной нулевой предельной точкой,
существует двумерная линейная ограниченная система, у которой спектры пока-
зателей блуждаемости совпадают с этим множеством, причем все значения суще-
ственны [4]. Оказалось, что эти свойства переносятся и на показатели колеблемости
нулей.

Теорема 1. Для любого конечного множества S неотрицательных чисел, содер-
жащего нуль, существуеттакая система A ∈M 2 (периодическая, если элементымно-
жества S соизмеримы), что справедливы равенства

ν̂0
•(x) = ν̌0

•(x) = ν̂0
◦(x) = ν̌0

◦(x), x ∈S∗(A),

Å(S∗(A)) = essÅ(S∗(A)) = S, Å= ν̂0
•, ν̌0

•, ν̂0
◦, ν̌0

◦.

Теорема 2. Для любой последовательности (qk )k∈N положительных рациональ-
ных чисел, сходящейся к нулю, существует такая двумерная система A ∈ M 2, что
справедливы равенства

ν̂0
•(x) = ν̌0

•(x) = ν̂0
◦(x) = ν̌0

◦(x), x ∈S∗(A),

Å(S∗(A)) = essÅ(S∗(A)) = {qk | k ∈N}⊔ {0}, Å= ν̂0
•, ν̌0

•, ν̂0
◦, ν̌0

◦.

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект
№ 075-03-2024-074/5).
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ON THE REALIZATION OF ESSENTIAL SPECTRA OF OSCILLATION EXPONENTS OF ZEROS OF
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

N.A. Loboda, A.Kh. Stash

The existence of linear homogeneous two-dimensional differential systems with no more than count-
able essential spectra of the oscillation exponents of zeros is established.
Keywords: linear system, oscillation, Lyapunov exponent, oscillation exponents.
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РАЗЛОЖЕНИЕ НА АТОМЫ ФУНКЦИЙ ИЗ КЛАССОВ ТИПА ХАРДИ-ЛОРЕНЦА
М.М. Логиновская1

1 loginovskayamm@bsu.by; Белорусский государственный университет

Для функций из некоторых классов, являющихся расширениями пространств Харди,
строится атомическое разложение.

Ключевые слова: пространства однородного типа, атомическое разложение, мак-
симальная функция, классы типа Харди-Лоренца.

Пусть тройка (X ,d ,µ) — пространство однородного типа, где X — непустое
множество с квазиметрикой d (неравенство треугольника заменено условием

∃Kd ≥ 1 ∀x, y, z ∈ X d(x, z) ≤ Kd (d(x, y)+d(y, z))

и σ-конечной борелевской мерой µ, удовлетворяющей условию удвоения (суще-
ствует Kµ > 0, что для любого шара B := B(x,r ) = {y ∈ X : d(x, y) < r } выполняется
неравенство

µ(B(x,2r )) ≤ Kµµ(B(x,r )), x ∈ X , r > 0).

Рассмотрим произведение X := X × I , где I = (0, t0), 0 < t0 ≤ +∞, с мерой-
произведением µ×m (m — мера Лебега на I ).

Для x ∈ X определим «некасательную» область D(x) := {(y, t ) ∈ X : d(x, y) < t } и
максимальную функциюN u(x) := sup{|u(y, t )| : (y, t ) ∈ D(x)} для функции u :X→C.

Обозначим H 0(X) — множество всех измеримых функций u : X→ C (эквива-
лентные функции не отождествляются), для которыхN u конечна µ-почти всюду.

Пусть Lp,q (X ) — стандартные пространства Лоренца, 0 < p, q ≤ ∞, и ∥ · ∥p,q —
их обычная квазинорма, f ∗ — убывающая перестановка для измеримой функции
f : X → R [1, п. 1.4].

Рассмотрим классы типа Харди-Лоренца

H p,q (X) := {u ∈H 0(X) : N u ∈ Lp,q (X )},

которые являются расширениями тех или иных (при конкретном выборе X и I )
классов Харди.

Например, для X = Rn, n ≥ 1 и I = (0,∞), класс H 1,1(X) расширяет тент-
пространство Койфмана–Мейера–Стейна T 1∞ из [2]. ПодклассыH p,p (X), состоящие
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из непрерывных функций изучались в [3], для произвольных метрических про-
странств X .

Для 0 < p < ∞ p-атомом назовем любую функцию a ∈ H 0(X) со свойствами:
существует шар B ⊂ X , для которого supp a ⊂ T (B) и |a(y, t )| ≤ [µ(B)]−1/p для всех
(y, t ) ∈ X.

Здесь множество T (B) определяется равенством

T (B) := X \

( ⋃
x∉B

D(x)

)
.

Теорема. Если 0 < p < ∞, 0 < q ≤ ∞, то для любой функции u ∈ H p,q (X)
существует последовательность {uk }k∈Z ⊂ H p,q (X) со свойствами:

1) u(y, t ) = ∑
k

uk (y, t );

2) |uk (y, t )| ≤ 2k+1;

3) supp

(
u −

N∑
k=−N

uk

)
⊂ {(y, t ) : |u(y, t )| ≤ 2−N }∪T ({N u > 2N+1});

4) для каждого k ∈ Z функция uk представима в виде

uk =∑
j
λ

j
k a

j
k , λ

j
k = 2k+1[µ(B

j
k )]1/p ,

где a
j
k — p-атом с носителем supp a

j
k ⊂ T (B

j
k ) для некоторого шара B

j
k , а λ

j
k

удовлетворяют неравенству

• C1∥u∥H p,q (X) ≤
(∑

k

[∑
j |λ j

k |p
]q/p

)1/q

≤C2∥u∥H p,q (X) при q <∞;

• C1,∞∥u∥H p,∞(X) ≤ supk∈Z
(∑

j |λ j
k |p

)1/p ≤C2,∞∥u∥H p,∞(X) при q =∞
(постоянные Ci , Ci ,∞, i = 1,2 не зависят от u).
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ATOMIC DECOMPOSITION OF FUNCTIONS FROM HARDY-LORENTZ TYPE SPACES

M.M. Loginovskaya

Atomic decomposition is constructed for functions from certain classes, which are extensions of Hardy
spaces.
Keywords: spaces of homogeneous type, atomic decomposition, maximal function, Hardy-Lorentz type
spaces.
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ЗАДАЧИ, СВЯЗАННЫЕ С НАХОЖДЕНИЕМ КУСОЧНО-ТРИГОНОМЕТРИЧЕСКИХ
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Рассматривается класс целых функций одной переменной целого порядка и нормаль-
ного типа, с каждой из которых ассоциируется ряд Пюизе, являющийся обращением
той или иной ветви некоторой рациональной функции p = r (z) в окрестности p =∞.
В докладе обсуждаются задачи нахождения кусочно-тригонометрического индикато-
ра целой функции из этого класса по ее коэффициентам Тейлора. Актуальность этой
проблемыобъясняется недавнимиисследованиямиоприложениях неоднолистного ана-
лога теоремы Пойа к решению алгебраических уравнений.

Ключевые слова: целая функция, ряд Пюизе, индикаторная и сопряженная диа-
граммы.

Пусть

f (z) =
∞∑

k=0

ck zk

Γ
(

k+1
ρ

) , z ∈C (1)

− целая функция целого порядка ρ и нормального типа σ.
Полагаем L = {p = (r,ϕ) ∈ (0,∞)×R}− риманова поверхность логарифма. Ассо-

циируем с целой функцией f вида (1) сходящийся ряд Пюизе

F (p) =
∞∑

k=0

ck

p(k+1)/ρ
=

∞∑
k=0

ck

exp{(k +1)(lnr + iϕ)/ρ}
, r > R, ϕ ∈R; c0 ̸= 0, (2)

где pα = rαeiαϕ,α> 0; R > 0 − радиус расходимости ряда. Известно, что R = σ. Ряд
(2) и функция (1) взаимно определяют друг друга. Ряд F определяется значениями
параметраϕ, например, на интервале (−πρ,πρ], поскольку F (r,ϕ+2πρ) = F (r,ϕ), r >
R, ϕ ∈ R.

В. Бернштейн [1] ассоциировал индикаторомh = h f функции f поверхность Ih,
образованную движением полуплоскости Πh(θ) = {p ∈C : ℜpe iρθ > h(θ)}, где θ ∈ R−
пaраметр движения. "Движение" полуплоскости означает ρ оборотов её вращения
вокруг бесконечно удаленной точки. Эта поверхность Ih называется индикаторной
диаграммой целой функции f (1) (после введения на ней топологии, комплексной
структуры, превращающей Ih в риманову поверхность Ih) [2 , Определение 2].

Индикатор h f (θ), θ ∈ R целой функции f (1) принадлежит классу Pρ = {h} за-
данных в R 2π-периодических тригонометрически ρ-выпуклых функций. По ана-
логии с индикаторной диаграммой для h ∈ Pρ можно построить римановую по-
верхность, называемую в [2] ρ-листной вогнутой диаграммой, ассоциированной с
h. ПустьI (F ) − множество всех ρ-листных вогнутых диаграмм, куда аналитически
продолжается ряд F (2). Сопряженной диаграммой целой функции f (1) называется
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наибольшая ρ-листная вогнутая диаграмма IF ∈ I (F ) [2, Определение 2]. Согласно
многолистного аналога теоремы Пойа-Бернштейна, индикаторная и сопряженная
диаграммы целой функции f вида (1) cовпадают [2, теорема 3]. Поэтому для вы-
числения индикатора целой функции f (1) важно знать особые точки на границе ее
сопряженной диаграммы IF [2, определение 6].

В докладе обсуждается подход к решению этой проблемы для ряда Пюизе
F , который является обращением той или иной ветви некоторой рациональной
функции p = r (z) в окрестности p = ∞. В этом случае индикатор h f − кусочно-
тригонометрическая функция классаPρ, а сопряженная диаграмма IF − ρ-листный
в окрестности б.у. точки вогнутый многоугольник [2, Определение 2]. По теореме
Пойа о связи между индикаторной и сопряженной диаграммми функции f вида (1)
при ρ = 1, когда ветвь обращения r (z) является однолистной, индикатор

h f (θ) = sup{ℜp j eiθ, j = 1, ...,k}, θ ∈R,

где {p j }k
1 − все вершинымногоугольника IF . В случае ρ ∈N\{1} возникают две задачи

для определения структуры границы IF .
1. Зная критические значения r (z), найти точки ветвления римановой поверх-

ности обращения r (z), являющиеся вершинами многоугольника.
2. Исследовать "отношение соседства" вершин, т. е. определить в какой после-

довательности ребра многоугольника соединяют его вершины.
В докладе иллюстрируется подход к решению этих задач на примерах, в кото-

рых критические точкифункции r (z)и её критические значения обладают круговой
симметрией, а ассоциированная с рядом F целая функция f порядка ρ (см. (1)) до-
пускает представление f (z) = g (zs), z ∈C, где s ∈N\{1}, а g − целая функция порядка
ρ/s. В этом случае индикатор h f имеет период 2π/s, а на индикаторной диаграмме
Ih и на ее границе ∂Ih действует группа автоморфизмов с образующей, взаимно од-
нозначно отображающей полуплоскость Πh(θ) на полуплоскость Πh(θ−2π/s) с со-
хранением этого свойства для их граничных прямых.

Работа выполнена в рамках базового проекта ФИЦ КНЦ СО РАН №
125030603236-7.
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TASKS RELATED TO FINDING PIECEWISE TRIGONOMETRIC INDICATORS OF ENTIRE
FUNCTIONS OF INTEGER ORDER AND NORMAL TYPE

L.S. Maergoiz

The class of entire functions of one variable of the whole order and normal type is considered, each
of which is associated with a series of Puiseux, which is the conversion of a branch of some rational
function p = r (z) in a neighborhood of p =∞. The report discusses the problems of finding a piecewise
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trigonometric indicator of an entire function from this class, according to its Taylor coefficients. The
urgency of this problem is explained by recent research on applications of the multivalent analogue of
Polya’s theorem to the solution of algebraic equations.
Keywords: entire function, series of Puiseux, indicator and conjugate diagrams.
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ОДНА ТЕОРЕМА СРАВНЕНИЯ ДЛЯ РЕШЕНИЙ НЕОДНОРОДНОГО УРАВНЕНИЯ
ШРЁДИНГЕРА НА НЕКОМПАКТНОМ РИМАНОВОМ МНОГООБРАЗИИ
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В работе получена теорема сравнения для решений краевых задач в классе непрерыв-
ных ограниченных функций для неоднородного уравнения Шрёдингера при вариации его
потенциала на некомпактных римановых многообразиях.

Ключевые слова: неоднородное уравнение Шрёедингера, краевые задачи, теоре-
ма сравнения.

В работе рассматриваются решения краевых задач для неоднородного уравне-
ния Шрёдингера

Lu ≡∆u − c(x)u = h(x) (1)

на произвольных гладких связных некомпактных римановыхмногообразияхM без
края.

Всюду в работе будем полагать, что c(x) ∈C 0,α
l oc (M)—неотрицательная функция

на M , h(x) ∈ C 0,α
l oc (M), где 0 < α É 1.

ПустьG ⊂ M —некоторое предкомпактное подмножество с достаточно гладкой
границей ∂G, {Bk }∞k=1 —исчерпаниемногообразияM , т.е. последовательность пред-
компактных открытых подмножеств риманова многообразия M таких, что Bk ⊂
Bk+1, M = ⋃∞

k=1 Bk .
Пусть f1(x)и f2(x)—непрерывныенаM функции. Будем говорить, чтофункции

f1(x) и f2(x) эквивалентны на M и использовать обозначение f1
M∼ f2, если для

некоторого исчерпания {Bk }∞k=1 многообразия M выполнено равенство

lim
k→∞

∥ f1(x)− f2(x)∥C 0(M\Bk ) = 0,

где ∥ f (x)∥C 0(G) = sup
G

| f (x)|.

Отношение «M∼» не зависит от выбора исчерпаниямногообразия и, таким обра-
зом, разбивает множество всех непрерывных на M функций на классы эквивалент-
ности (см., например, [2]). Обозначим класс эквивалентных f функций через [ f ].

Будем говорить, что для уравнения (1) на M разрешима краевая задача с гра-
ничными условиями из класса [ f ], если на M существует решение u(x) уравнения (1)
такое, что u ∈ [ f ].
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Многообразие M будем называть L-точным многообразием, если на M суще-
ствует решение u однородного уравнения Lu = 0 такое, что u ∈ [1].

Подход к постановке краевых задач на произвольном некомпактном римано-
вом многообразии в терминах классов эквивалентных функций является одним из
альтернативных методов постановки краевых задач на произвольных некомпакт-
ных многообразиях при отсутствии у них естественной геометрической компакти-
фикации. Он был впервые предложен в работе [2], и получил дальнейшее развитие
в [1], [3], [4].

Далее наряду с операторомШрёдингера L рассмотрим наM операторШрёдин-
гера с вариацией потенциала

L1 ≡∆− c1(x),

где c1(x) ∈ C 0,α
loc (M), 0 É c1(x) É c(x) при c1(x) ̸≡ 0, c1(x) имеет некомпактный

носитель.
Ранее доказанная теорема (см. [4]) устанавливает взаимосвязь разрешимости

краевых задач в заданном классе эквивалентности для неоднородного уравнения
Шрёдингера (1) при некоторых вариациях его потенциала c(x).

Теорема 1. Пусть многообразие M является L-точным и f — некоторая огра-
ниченная непрерывная на M функция. Если на M разрешимы краевые задачи для неод-
нородных уравнений Lv = h(x) и ∆w = h(x) с граничными условиями из класса [ f ], то
на M разрешима краевая задача и для уравнения L1u1 = h(x) с граничными условиями
из класса [ f ].

В данной работе получен уточняющий результат.

Теорема 2. Пусть выполнены условия теоремы 1 и пусть u — решение из условия
L-точности многообразия. Тогда существует константа A ≥ 0 такая, что

v − A(1−u) ≤ u1 ≤ w + A(1−u).

При этом, если f ≥ 0, то A = 0. В противном случае A > 0.
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ONE COMPARISON THEOREM FOR SOLUTIONS OF THE INHOMOGENEOUS SCHRÖDINGER
EQUATION ON A NON-COMPACT RIEMANNIAN MANIFOLD

E.A. Mazepa

In this paper, a comparison theorem is obtained for solutions of boundary value problems in the class
of continuous bounded functions for the inhomogeneous Schrödinger equation with a variation of its
potential on non-compact Riemannian manifolds.
Keywords: inhomogeneous Schrödinger equation, boundary value problems, comparison theorem.
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О СПЕКТРАЛЬНЫХ ЗАДАЧАХ ДЛЯ СИСТЕМЫ ДИРАКА
А.С. Макин1
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Исследуется спектральная задача для оператора Дирака с произвольным комплексно-
значным суммируемым потенциалом и краевыми условиями, не являющимися регуляр-
ными. Изучается полнота и базисность системы корневых функций указанного опера-
тора.

Ключевые слова: операторДирака, спектральныеразложения, нерегулярныеивы-
рожденные краевые условия.

В настоящей работе изучается система Дирака

By′+V y =λy, (1)

где y = col(y1(x), y2(x)),

B =
(−i 0

0 i

)
, V =

(
0 P (x)

Q(x) 0

)
,

комплекснозначные функции P,Q ∈ L1(0,π), с двухточечными краевыми условиями

U1(y) = a11y1(0)+a12y2(0)+a13y1(π)+a14y2(π) = 0,
U2(y) = a21y1(0)+a22y2(0)+a23y1(π)+a24y2(π) = 0,

(2)

где коэффициенты a j k – произвольные комплексные числа, а строки матрицы

A =
(

a11 a12 a13 a14
a21 a22 a23 a24

)
линейно независимы.

Оператор Ly = By′ +V y является линейным оператором в пространстве H =
L2(0,π) ⊕ L2(0,π) с областью определения D(L) = {y ∈ W 1

1 [0,π] ⊕W 1
1 [0,π] : Ly ∈ H,

U j (y) = 0 ( j = 1,2)}.
Обозначим через A j k (1 ≤ j < k ≤ 4) определитель, составленный из j -го и k-

го столбцов матрицы A. Краевые условия (2) могут быть разделены на 3 основных
типа:
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1) регулярные; 2) нерегулярные; 3) вырожденные.

Определение 1. Краевые условия (2) называются регулярными, если

A14 A23 ̸= 0.

Определение 2. Краевые условия (2) называются нерегулярными, если

A14 A23 = 0, (A12 + A34)(|A23|+ |A14|) ̸= 0, (3)

и вырожденными, если

A14 A23 = 0, (A12 + A34)(|A23|+ |A14|) = 0. (4)

К настоящему времени регулярные краевые задачи для оператора (1) хорошо изу-

чены. Основной целью настоящей работы является исследование базисных свойств
систем корневых функций оператора (1) с краевыми условиями, не являющимися
регулярными.

Теорема 1. Пусть все собственные значения задачи (1), (2), (3) лежат внутри
полосы Π

|Imλ| ≤ M . (5)

Тогда система корневых функций задачи (1), (2), (3) образует безусловный базис в
замыкании своей линейной оболочки.

Теорема 2. Если спектр задачи (1), (2), (3) удовлетворяет условию (5), а потенци-
ал V ∈ L2(0,π), то система корневых функций рассматриваемого оператора неполна
в пространстве H.

Далее будем считать, что краевые условия (2) вырожденные, т.е. имеет место
равенства (4), причем дополнительно выполняется соотношение

A14 = A23 = A12 + A34 = 0. (6)

Теорема 3. Предположим, существует подпоследовательность собственных
значений λnl , такая что λnl ∈ Π. Пусть порядок присоединенных функций, соответ-
ствующих λnl , ограничен одной постоянной. Тогда система корневых функций задачи
(1), (2), (4), (6) не образует базис в пространстве H .

Заметим, что при некоторых дополнительных условиях на потенциал V систе-
ма корневых функций оператора (1) с краевыми условиями (3) или (4) полна в H.
Вместе с тем в [1] установлено, что если V ≡ 0, а краевые условия не являются регу-
лярными, то указанная система функций неполна в H.

Работа выполнена при финансовой поддержке Министерства науки и выс-
шего образования Российской Федерации в рамках реализации программы
регионального Азово-Черноморского математического центра по соглашению
№ 075-02-2025-1620.
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ON SPECTRAL PROBLEMS FOR THE DIRAC SYSTEM

A.S. Makin

The paper deals with the spectral problem for Dirac operator with complex-valued summable potential
and non-regular boundary conditions. We study completeness and the basis property of root function
systems of the indicated operator.
Keywords: Dirac operator, spectral expansions, irregular and degenerate boundary conditions.
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СУБГАРМОНИЧЕСКИЕ ФУНКЦИИ ВПОЛНЕ РЕГУЛЯРНОГО РОСТА В
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В этой статье некоторые результаты по теории распределения значений аналити-
ческих и субгармонических функций, определенных в комплексной плоскости C и по-
луплоскости C+, полученные для целых функций Б. Я. Левиным и А. Пфлюгером, для
функций, аналитических в C+, Н. В. Говоровым, а для субгармонических функций в C и
C+, А. Ф. Гришиным, будут распространены на более общую ситуацию, когда субгар-
монические функции определены в открытом полукольце. Особый класс этих функций
составляютфункции вполне регулярного роста, для которых доказан основной резуль-
тат, дающий выражение плотности ее полной меры в терминах индикаторной функ-
ции.

Ключевые слова: субгармоническая функция, полукольцо, полная мера, индика-
тор, вполне регулярный рост.

Теория функций вполне регулярного роста в полуплоскости C+ = {z| Im z > 0}
была развита Н. В. Говоровым [1]. Одновременно, А. Ф. Гришин развил теорию
субгармонических функций вполне регулярного роста в C+ [2]. В недавней рабо-
те А. Ф. Ариаса [3] рассматривались некоторые вопросы регулярного роста функ-
ций аналитических в проколотой комплексной плоскости C \ {0}. В данной работе
мы рассматриваем вопросы регулярного роста субгармонических функций, опре-
деленных в неограниченном полукольце D+(R) = {z ∈C+ | |z| > R}. Обозначим через
LR = {z = Reiθ|0 ≤ θ ≤ π} полуокружность. Пусть ρ(r ) уточненный порядок в смысле
Валирона, V (r ) := r ρ(r ).

Пусть SK (R) – пространство субгармонических функций v(z) на D+(R), таких
что v(z)имеет положительную гармоническуюмажоранту на каждой ограниченной
подобласти полукольца D+(R ′) для любого R ′ > R. Предположим, что равномерно
по θ ∈ (0,π)

σ∞ = limsup
r→∞

V −1(r )v(r eiθ) ̸= 0,∞, σR = limsup
r→R+0

V −1((r −R)−1)v(r eiθ) ̸= 0,∞ .
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Функция определенная на (0,π)× {1,2} равенством

hv (θ, j ) =


hv (θ,1) limsup

r→∞
V −1(r )v

((
1

r
+R

)
eiθ

)
, θ ∈ (0,π),

hv (θ,2) = limsup
r→∞

V −1(r )v(r eiθ), θ ∈ (0,π),

называется индикатором v(z) относительно уточненного порядка ρ(r ).
Сформулируем основной результат нашей работы.

Теорема. Пусть v(z) – субгармоническая функция на полукольце D+(R), уточнен-
ного порядка ρ(r ) и вполне регулярного роста, µ – ее мера Рисса. Тогда для всех α,β
таких, что 0 < α < β < π, за исключением, возможно, счетного множества значений
α,β существует предел

lim
r→∞

µ(r,α,β)

V (r )
= 1

2πρ2 Sv (α,β),

где

Sv (α,β) = h′
v,1(β)+h′

v,2(β)− (h′
v,1(α)+h′

v,2(α))+ρ2

β∫
α

(ln |hv,1(ϕ)|+ ln |hv,2(ϕ)|)dϕ ,

µ(r,α,β) =µ({z : R < |z| < r,α< arg z <β}).

Исключительное множество может состоять только из точек, для которых по край-
ней мере одна из производных h′

v,1(α),h′
v,2(α),h′

v,1(β),h′
v,2(β) не существует.

Исследование выполнено за счет гранта Российского научного фонда№ 24-21-
00006, https://rscf.ru/project/24-21-00006/.
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SUBHARMONIC FUNCTIONS OF COMPLETELY REGULAR GROWTH IN A SEMIRING

K.G. Malyutin

In this paper, some results on the theory of distribution of values of analytic and subharmonic functions
defined in the complex plane C and the half-plane C+, obtained for entire functions by B. Ya. Levin and
A. Pfluger, for functions analytic in C+, by N. V. Govorov, and for subharmonic functions in C and C+,
by A. F. Grishin, will be extended to a more general situation when subharmonic functions are defined
in an open semiring. A special class of these functions is made up of functions of completely regular
growth, for which the main result is proved, giving an expression for the density of its total measure in
terms of the indicator function.
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В статье обсуждается применение одного из методов действительного простран-
ства Харди-Соболева для нахождения наилучших рациональных приближений в про-
странстве Lp на прямой. Рассматриваемый метод основан на представлении функ-
ций данного пространства суммой простых функций.

Ключевые слова: пространство Харди, действительное пространство Харди-
Соболева, наилучшие рациональные приближения.

Будем рассматривать пространства Харди в верхней полуплоскости Π = {z ∈
C : ℑz > 0}. Аналитическая в Π функция f принадлежит пространству Харди Hp ,
0 < p ≤ ∞, если

∥ f ∥Hp := sup
y>0

∥ f (·+ i y)∥Lp (R) <∞.

Введем аналитическую вΠ функцию, соответствующую действительной функ-
ции
g ∈ Lp (R), 1 < p < ∞,

f (z) = (C g )(z) = 1

πi

∫
R

g (t )

t − z
d t .

Пусть s ∈ N, 1 < p < ∞ и σ =
(
s + 1

p

)−1
. Тогда g принадлежит действительному

пространству Харди–Соболева H s
σ, если f принадлежит комплексному простран-

ству Харди–Соболева H s
σ, то есть f (s) ∈ Hσ. При этом σ-норма функции g вводится

следующим образом

∥g∥H s
σ
=

∥∥∥(C g )(s)
∥∥∥

Hσ

=
∥∥∥ f (s)

∥∥∥
Hσ

.

Для пространства H s
σ введем еще одну эквивалентную σ-норму. Пусть I ̸= ;

связное подмножество R. Через W s
p (I ) (s ∈ N,1 ≤ p ≤ ∞) обозначим пространство

Соболевафункций f ∈C s−1(I ), таких, что f (s−1) абсолютнонепрерывнана I и f , f (s) ∈
Lp (I ).

Действительнуюфункциюϕ ∈W s∞(R) называем s-простой, если онафинитна. С
s-простой функцией ϕ будем ассоциировать отрезок J = J (ϕ), называемый опор-
ным, такой, что suppϕ⊂ J . Далее для s-простой функции введем характеристику

µsσ(ϕ) = |J | 1
σ∥ϕ(s)∥L∞(J ), |J |— длина отрезка J .

Следующая теорема 1 является следствием результата Р.Койфмана об атомиче-
ском разложении функций пространства ℜHp , p ≤ 1.
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Теорема 1.Функция g ∈ Lp (R), 1 < p <∞, принадлежит H s
σ, s ∈N, σ=

(
s + 1

p

)−1
, в

том и только в том случае, если существует последовательность {ϕk }∞k=1 s-простых
функций, удовлетворяющих условиям

∞∑
k=1

µsσ(ϕ)σ =: A <∞, (1)
∞∑

k=1
ϕk (x) = g (x), (2)

где ряд (2) сходится по норме пространства Lp (R). При этом

∥g∥#
H s
σ
= inf

{
A

1
σ : верно (1) и (2)

}
является σ-нормой в H s

σ, эквивалентной ∥ · ∥H s
σ
.

Теорема 1 вытекает из ее аналога для пространства H s
σ (см. Е.И. Стельмах [1])

и теоремы М. Рисса.

Теорема 2. Пусть s ∈N, 1 < p <∞ и σ=
(
s + 1

p

)−1
. Если g ∈ H s

σ, то

Rn(g )p ≤ c1(s, p)

ns ∥g∥H s
σ

, n ∈N.

В работе [2] показано применение теорем 1 и 2 для нахождения наилучших
рациональных приближений в пространстве Lp . В частности, найдена асимптотика
наилучших рациональных приближений функции

λ(x) =


1

x
1
p (ln x)

1
p +α

при x ≥ e,

0 при x < e,

1 < p <∞, α> 0.

Именно наилучшие рациональные Lp-приближения Rn(λ,Lp (R)) ≍ n−α, n ∈ N, где
постоянные, спрятанные символом ≍, зависят лишь от α и p.

Оценки наилучших рациональных приближений функций со степенно-
логарифмическими особенностями имеются также в работе [3]. Отметим так-
же, что применение действительного пространства Харди-Соболева на прямой
к исследованию скорости наилучших равномерных рациональных приближений
рассмотрено в работе [4].
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THE REAL HARDY-SOBOLEV SPACE ON THE LINE
FOR FINDING THE BEST RATIONAL Lp-APPROXIMATIONS

T.S. Mardvilko

The paper discusses the application of one of the methods of the real Hardy-Sobolev space for
finding best rational approximations in the Lp space on the line. The considered method is based
on representing the functions of this space as a sum of simple functions.
Keywords: Hardy space, real Hardy-Sobolev space, best rational approximations.
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К ЗАДАЧАМ ТИПА ДАРБУ ДЛЯ ОДНОГО ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ
ТРЕТЬЕГО ПОРЯДКА
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Рассмотрены две задачи с условиями на характеристике и нехарактеристической
прямой. Получены достаточные условия однозначной разрешимости задач.

Ключевые слова: уравнение с доминирующей частной производной, уравнение
Баренблатта — Желтова — Кочиной, задача Гурса, задача Коши, задача Дарбу,
функция Римана — Адамара.

Здесь для уравнения третьего порядка с двумя независимыми переменными
(обобщения уравнения Баренблатта — Желтова — Кочиной)

uxx y +a20(x, y)uxx +a11(x, y)ux y +a10(x, y)ux +a01(x, y)uy +a00(x, y)u = f (x, y) (1)

доказаны существование и единственность решения двух задач типа Дарбу в тре-
угольных областях. Отметим, что указанное уравнение рассматривалось, в частно-
сти, в работах [1]–[5].

Определим класс функцийC (k,l ) в областиD следующим образом: функция u ∈
C (k,l )(D), если в D существуют непрерывные производные ∂r+su

∂xr∂y s (r = 0, . . . ,k; s =
0, . . . , l ). Решение уравнения (1) класса C (2,1)(D) назовем регулярным в D.

Пусть D — область, ограниченная прямыми x = 0, y = y0 > 0, y = x, коэффици-
енты уравнения (1) удовлетворяют условиям гладкости ai j ∈C (i , j )(D).

Задача 1. В области D найти регулярное решение уравнения (1), удовлетворяю-
щее условиям

u|x=0 =ϕ(y), ux |x=0 =ϕ1(y), u|x=y =ψ(x),
ϕ(0) =ψ(0), ϕ′(0)+ϕ1(0) =ψ′(0),

(2)

ϕ ∈C 1([0, y0]), ϕ1 ∈C 1([0, y0]), ψ ∈C 2([0, y0]).

Пусть D∗ — область, ограниченная прямыми y = 0, x = x0 > 0, y = x.
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Задача 2. В области D∗ найти регулярное решение уравнения (1), удовлетворя-
ющее условиям

u|x=y =λ(x), ux |x=y =λ1(x), u|y=0 =µ(x),
λ(0) =µ(0), λ1(0) =µ′(0),

(3)

λ ∈C 1([0, x0]), ϕ1 ∈C 1([0, x0]), ψ ∈C 2([0, x0]).

Существование и единственность решений задач 1 и 2 доказаны путем редук-
ции указанных задач к задачам Гурса и Коши соответственно.
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ON DARBOUX TYPE PROBLEMS FOR A HYPERBOLIC EQUATION OF THE THIRD ORDER
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Two problems with conditions on a characteristic and an uncharacteristic straight line are considered.
Sufficient conditions for unambiguous solvability of the problems have been obtained.
Keywords: dominant partial differential equation, Barenblatt — Zheltov — Kochina equation, Goursat
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В статье предлагается конструктивный метод решения краевой задачи типа Газе-
мана для квазигармонических функций первого рода в произвольных односвязных обла-
стях.



130 СОДЕРЖАНИЕ

Ключевые слова: квазигармоническаяфункция, краевая задача типа Газемана, ин-
тегральное уравнение Фредгольма второго рода.

1. Постановка задачи. Рассмотрим на расширенной плоскости комплексного
переменного z = x + i y конечную область T +, ограниченную гладким замкнутым
контуром L, и пусть T − =C\(T +∪L). Будем считать, что точка z = 0 принадлежит T +.

Задача H1: требуется найти все ограниченные на бесконечности кусочно квази-
гармонические функции W (z) = {W +(z),W −(z)} первого рода с линией скачков L, при-
надлежащие классу Q1(T ±)

⋂
H (1)(L) и удовлетворяющие на L краевому условию

W +[α(t )] =G(t )W −(t )+ g (t ), (1)

где G(t ) и g (t ) — заданные на L функции, удовдетворящие условию Гельдера, причем
G(t ) ̸= 0 на L, а α(t ) — функция сдвига контура L, сохраняющая его ориентацию.

2.Метод решения задачиH1.Используя тотфакт, что всякая ограниченная на
бесконечности кусочно квазигармоническая функция W (z) первого рода с линией
скачков Lr представляется в виде (см. например, [1;2]):

W (z) =
{

W +(z) = dϕ+(z)
d z − 2z

1+zzϕ
+(z), z ∈ T +,

W −(z) = dϕ−(z)
d z − 2z

1+zzϕ
−(z), z ∈ T −,

(2)

гдеϕ+(z),ϕ−(z)—пока неизвестные аналитические соответственно вT + иT − функ-
ции, причем ϕ−(z) ограничена на бесконечности, краевое условие (1) перепишем в
виде:

ψ+[α(t )] =G(t )ψ−(t )+ g1(t ), t ∈ L, (3)

где приняты обозначения:

ψ+(z) = dϕ+(z)

d z
,ψ−(z) = dϕ−(z)

d z
, g1(z) = 1+α(t )α(t )

α(t )
ϕ+[α(t )]− tG(t )

1+ t t
ϕ−(t )+ g (t ). (4)

Пусть χ = IndG(t ) = (2πi )−1[argG(t )]L — индекс Коши функции G(t ) вдоль кри-
вой L, а X (z) = {X +(z), X −(z)} — каноническая функция классической однородной
задачи Газемана с коэффициентом G(t ) в краевом условии (см., например, [3, с.
298]).

Далее ради краткости изложения ограничимся описанием конструктивного
метода решения задачи H1 в случае χ= IndG(t ) = (2πi )−1[argG(t )]L ≥ 0.

Считая временно g1(t ) известной функцией и решая неоднородную задачу
Газемана (3) относительно исчезающей на бесконечности кусочно аналитической
функции ψ(z) = {ψ+(z),ψ−(z)}, получаем следующие формулы (см., например, [3,
с. 303]):

ψ+(z) = X +(z)

{
1

2πi

∫
L

g1[β(τ)]

τ− z
dτ+

∫
L

R+(z,τ)g1(τ)dτ+
χ−1∑
k=0

Ck q+
k (z)

}
, z ∈ T +,

ψ−(z) = X −(z)

{
1

2πi

∫
L

g1(τ)

τ− z
dτ+

∫
L

R−(z,τ)g1(τ)dτ+
χ−1∑
k=0

Ck q−
k (z)

}
, z ∈ T −,

(5)

где β(τ) – функция, обратная к α(τ), а R+(z,τ),R−(z,τ), q+
k (z), q−

k (z) - вполне опреде-
ленные функции, и Ck (k = 0,1, ...,χ−1) – произвольные комплексные постоянные.
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Наконец, переходя в формулах (5) к пределу при z →∈ L, находим граничные
значения dϕ+(t )

d t и dϕ−(t )
d t , а затем учитывая, что dϕ+[α(t )]

d t −G(t ) dϕ−(t )
d t = g1(t ), t ∈ L,

будем иметь:

ϕ+[α(t )]−G1(t )ϕ−(t )+
∫

L
R+

1 (z,τ)ϕ+[α(τ)]dτ+
∫

L
R−

1 (z,τ)ϕ−(τ)dτ=Q1(t ), t ∈ L, (6)

где R+
1 (z,τ),R−

1 (z,τ),G1(t ),Q1(t )— вполне определенные функции, причемG1(t ) ̸= 0.
Но равенство (6) есть краевое условие хорошо изученной обобщенной скаляр-

ной задачи Газемана для аналитических функций (см., например, [3, с. 288]).
Таким образом, справедливо следующее утверждение.

Теорема. Если индекс χ ≥ 0, то решение краевой задачи H1 в произвольных од-
носвязных областях с гладкими границами сводится к решению обобщенной скалярной
задачи Газемана (6) в классах аналитических функций.
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ON A METHOD FOR SOLVING THE BOUNDARY VALUE PROBLEM OF HASEMAN TYPE FOR
QUASIHARMONIC FUNCTIONS OF THE FIRST ORDER IN SIMPLY CONNECTED DOMAINS

T.I. Mikhaloyva, K.M. Rasulov

The article presents a constructive method for solving the boundary value problem of Haseman type
for first-order quasiharmonic functions in simply connected domains.
Keywords: quasiharmonic function, boundary value problem of Haseman type, Fredholm integral equation
of the second kind.
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В этой статье некоторые результаты по теории роста субгармонических функций,
определенных в комплексной полуплоскости C+ = {z : ℑz > 0}, полученные для меро-
морфных функций Л. Рубелом и Б. Тейлором, а для функций дельта-субгармонических
в C+ – К. Г. Малютиным, будут распространены на более общую ситуацию, когда суб-
гармонические функции определены в открытом полукольце.
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Пусть f – мероморфная в комплексной плоскости функция, T (r, f ) – ее неван-
линновская характеристика. Функция f называется функцией конечного γ-типа,
если существуют положительные постоянные A и B такие, что T (r, f ) ≤ Aγ(Br ) для
всех r > 0. Класс таких функций обозначим через Γ. Л. Рубел и Б. Тейлор получили
критерий принадлежности функции f классу Γ в терминах коэффициентов Фурье
этой функции [1]. К. Г. Малютин распространил результаты Л. Рубела и Б. Тейлора
на функции, дельта-субгармонические в C+ [2]. Мы распространяем эти результаты
на дельта-субгармонические функции, определенные в открытом полукольце.

Обозначим через D+(R1,R2) = {z : 0 < R1 < |z| < R2 < +∞, Im z > 0} открытое
полукольцо на верхней полуплоскости. Субгармоничность в замкнутом полуколь-
це D+(R1,R2) равносильна субгармоничности в D+(R ′

1,R ′
2,δ) = {z : 0 < R ′

1 < |z| < R ′
2 <+∞, Im z > −δ} при некоторых R ′

1 < R1 < R2 < R ′
2, δ > 0. Поэтому функции, субгар-

монические и ограниченные сверху внутри открытого полукольца D+(R1,R2), об-
разуют более широкий класс, чем субгармонические в замыкании D+(R1,R2) полу-
кольца. Через D+(R) = {z : |z| > R, Im z > 0} обозначаем неограниченное открытое
полукольцо на верхней полуплоскости. Пусть SK (R1,R2) — класс субгармонических
функций вD+(R1,R2). Введём теперь класс δS(D+(R1,R2)) дельта-субгармонических
функций в D+(R1,R2) как разность δS(D+(R1,R2)) = SK (R1,R2)−SK (R1,R2).

Коэффициенты Фурье функции v ∈ δS(D+(R1,R2)) определяются равенством:

ck (r, v) = 2

π

π∫
0

v(r eiθ)sinkθdθ, R1 < r < R2, k ∈N .

Пусть v ∈ δS(D+(R)), v = v+ − v−, λ — полная мера функции v , λ = λ+ −
λ− — жорданово разложение меpы λ (заметим, что λ− не есть полная меpа v−).
Обозначим через

m(r, v) := 1

r

π∫
0

v+(r eiϕ)sinϕdϕ, N (r, v) :=
r∫

r0

λ−(t )

t 3 d t ,

T (r, v) := m(r, v)+N (r, v)+m(r0,−v), r > r0 ,

где r0 — фиксированное положительное число такое, что r0 > R.
Стpого положительная, непрерывная, возрастающая и неограниченная функ-

ция γ(r ), определенная на [0,∞), называется функцией роста.
Функция v ∈ δS(D+(R))называетсяфункциейконечногоγ-типа, если существу-

ют постоянные A и B > 0 такие, что T (r, v) ≤ A
r γ(Br ) для всех r > r0.

Класс данных δ-субгармонических функций конечного γ-типа обозначим
чеpез δS(R,γ). Чеpез SK (R,γ) обозначим соответствующий класс субгаpмонических
функций конечного γ-типа. Понятно, что SK (R,γ) ⊂ δS(R,γ).

Положительная мера λ имеет конечную γ-плотность в D+(R), если при неко-

торых положительных A и B выполняется неравенство N (r,λ) :=
r∫

r0

λ(t )
t 3 d t ≤ A

r γ(Br )

для всех r > r0 > R.
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Сформулируем основной результат нашей работы.

Теорема. Пусть λ(v) = λ+(v)–λ−(v) — полная мера функции v , γ — функция
pоста, v ∈ δS(R). Следующие два утвеpждения эквивалентны:

1) v ∈ δS(R,γ);
2) меpа λ+(v) (или мера λ−(v)) имеет конечную γ-плотность и выполняется

неравенство |ck (r, v)| ≤ Aγ(Br ), k ∈ N , пpи некотоpых положительных A, B и всех
r > R.

Для субгармонических функций справедливо следующее следствие из этой
теоремы.

Теорема. Пусть γ – функция pоста, v ∈ Jδ(R). Следующие два утвеpждения
эквивалентны:

1) v ∈ JSδ(R,γ);
2) пpи некотоpых положительных A, B и всех r > R выполняется неравенство

|ck (r, v)| ≤ Aγ(Br ), k ∈ N .

Исследование выполнено за счет гранта Российского научного фонда№ 24-21-
00006, https://rscf.ru/project/24-21-00006/.
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GROWTH OF DELTA-SUBHARMONIC FUNCTIONS IN A SEMIRING

A.A. Naumova

In this paper, some results on the theory of growth of subharmonic functions defined in the complex
half-plane C+ = {z : ℑz > 0}, obtained for meromorphic functions by L. Rubel and B. Taylor, and for
delta-subharmonic functions in C+ – by K. G. Malyutin, will be extended to a more general situation
when subharmonic functions are defined in an open semiring.
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В настоящей работе рассматривается обобщенная модель Фридрихса на нецелочис-
ленной решетке. Эта модель представляется в виде операторной матрицы второго
порядка. Исследованы собственные вектор-функции в случае пороговых явлений.
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Для каждого фиксированного h > 0 через T3
h обозначим куб (−π/h;π/h]3 с со-

ответствующим отождествлением противоположных граней. По строению множе-
ства T3

h видно, что для любого A ⊂R3 существует h = h(A) > 0 такое, что A ⊂T3
h , т.е.

lim
h→0

T3
h = R3.

Пусть L2(T3
h) — гильбертово пространство квадратично-интегрируемых (ком-

плекснозначных) функций, определенных на T3
h. Обозначим через H прямую

сумму пространств H0 := C, H1 := L2(T3
h), т.е. H := H0 ⊕H1.

При каждом фиксированном h > 0 введем семейства обобщенных моделей
Фридрихса Ah(k), k ∈ T3

h , действующую в H по правилу (операторная матрица
второго порядка)

Ah(k) :=
(

A00(h;k) A01(h)
A∗

01(h) A11(h;k)

)
,

где операторы Ai i (h;k) : H i → H i , i = 0,1 и A01(h) : H1 → H0 определяются по
правилам

A00(h;k) f0 = (l2εh(k)+1) f0, A01(h) f1 =
∫
T3

h

vh(t ) f1(t )d t ,

(A11(h;k) f1)(p) = Eh(k; p) f1(p), Eh(k; p) := l1εh(p)+ l2εh(k −p).

Здесь l1, l2 — вещественные положительные числа. при каждом фиксирован-
ном h > 0 функция vh(·) — вещественнозначная ограниченная функция на T3

h и

εh(k) := 1

h2

3∑
i=1

(1−cos(hki )), k = (k1,k2,k3) ∈T3
h .

Очевидно, что оператор Ah(k) ограничен и самосопряжён в H .
Простые рассуждения показывают, что

σess(Ah(k)) = [mh(k); Mh(k)],

где числа mh(k) и Mh(k) определяются следующим образом:

mh(k) := min
p∈T3

h

Eh(k; p), Mh(k) := max
p∈T3

h

Eh(k; p).

Через C (T3
h) (соот. L1(T3

h)) обозначим банахово пространство непрерывных
(соот. интегрируемых) функций, определенных на T3

h . Пусть 0 := (0;0;0) ∈T3
h.

Определение 1. Говорят, что операторAh(0) имеет резонанс с нулевой энерги-
ей, если число λ= 1 является собственным значением интегрального оператора

(Ghψ)(p) = vh(p)

l1 + l2

∫
T3

h

vh(t )ψ(t )d t

ε(t )
, ψ ∈C (T3

h)

и по крайней мере одна (с точностью до константы) соответствующая собственная
функция ψ удовлетворяет условию ψ(0) ̸= 0.
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Пусть компоненты вектор-функции F = ( f0, f1) определены как

f0 = const ̸= 0, f1(p) =− 1

l1 + l2

vh(p) f0

ε(p)
. (1)

Основной результат работы сформулирован в следующей теореме.
Теорема 1. а) Если оператор Ah(0) имеет нулевое собственное значение, то

элемент F = ( f0, f1), определенный поформуле (1), удовлетворяет уравнениюAh(0)F =
0 (т.е. F – есть собственная вектор-функция) и имеет место соотношение f1 ∈
L2(T3

h);
б) Если оператор Ah(0) имеет резонанс с нулевой энергией, то элемент F =

( f0, f1), определенный по формуле (1), удовлетворяет уравнению Ah(0)F = 0 и имеет
место соотношение f1 ∈ L1(T3

h) \ L2(T3
h).

Следует отметить, что нулевое собственное значение оператораAh(0) в утвер-
ждении а) теоремы 1 называется его пороговым собственным значением. При этом
выполнение соотношения f1 ∈ L2(T3

h) или f1 ∈ L1(T3
h) \ L2(T3

h) зависит от того, при-
нимает ли функция vh(·) нулевое или ненулевое значение в точке 0. Явление, свя-
занное с операторомAh(0), имеющим нулевое собственное значение или резонанс
с нулевой энергией, называется пороговым явлением.

Изложенная теорема важна при изучении дискретного спектра оператора
энергии, соответствующего системе частиц на нецелочисленной решетке, число ко-
торых не сохраняется и не превышает трех [1, 2]. В этом случае оператор энергии
представляется в виде операторной матрицы третьего порядка.
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ON THE EIGENVECTOR FUNCTION OF THE GENERALIZED FRIEDRICHS MODEL ON A
NON-INTEGER LATTICE

Sh.B. Nematova

We consider the generalized Friedrichs model on a non-integer lattice. This model is represented
as a second-order operator matrix. Eigenvector functions are investigated in the case of threshold
phenomena.
Keywords: generalized Fredrichs model, operator matrix, eigenvalue, zero-point resonance, eigenvector
function.
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В статье обсуждается связь классической теоремы Чеботарёва о корнях из единицы
со свойствами альтернативной полноты и переполненности систем элементов ко-
нечномерных евклидовых (унитарных) пространств и бесконечномерных гильберто-
вых пространств.

Ключевые слова: миноры матрицы, фрейм, полный спарк, альтернативная пол-
нота, сигнал, гильбертово пространство.

Пусть заданы два натуральных числа m и n, причем m ≥ n.

Теорема Чеботарёва [1]. Для простого числа m все миноры матрицы Вандер-
монда

(
ε j k

)m−1
0 , ε = exp(2πi /m), отличны от нуля.

Матрица
(
ε j k

)m−1
0 является унитарной матрицей дискретного преобразования

Фурье. Удаляя из этой матрицы m −n строк, получаем (n ×m)-матрицу, столбцы
которойобразуютравномерныйфреймПарсеваля. ТеоремаЧеботарёвапоказывает,
что получившийся таким образом фрейм пространства Cn имеет полный спарк, то
есть любые его n элементов линейно независимы.

Фреймы с полным спарком нашли многочисленные применения. Например,
фрейм {ϕk }2n−1

k=1 с полным спарком в Rn с (2n−1)-м элементом обеспечивает инъек-
тивность нелинейного оператора

A :Rn/{±1} →R2n−1; x 7→ {|〈x,ϕk〉|}2n−1
k=1 ,

которая, в свою очередь, обеспечивает возможность восстановления сигнала по
модулям измерений.

Система элементов {ϕk }k∈K с полным спарком в бесконечномерном сепара-
бельном гильбертовом пространстве H определяется как система векторов, у ко-
торой каждая бесконечная подсистема полна в H , то есть span{ϕk }k∈K ′ = H . Если
∥ϕk∥ ≥ δ> 0 для всех k, то система {ϕk }k∈K не может быть фреймом [2].

В ряде работ определено т.н. свойство альтернативной полноты. Система век-
торов {ϕk }k∈K называется альтернативно полной, если при любом разбиении её на
две части, {ϕk }k∈S и {ϕk }k∈K \S , одна из них будет полной вH .Примеры таких систем
известны и в конечномерных, и в бесконечномерных гильбертовых пространствах
[2, 3]. Вопрос о существовании гильбертова фрейма в бесконечномерном гильбер-
товом пространстве со свойством альтернативной полноты остается открытым.

Работа выполнена в рамках реализации программы развития Научно-
образовательного математического центра Приволжского федерального округа,
соглашение № 075-02-2025-1791.
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CHEBOTAREV’S THEOREM AND SIGNAL RECOVERY

S.Ya. Novikov

The paper considers the relationship of the classical Chebotarev’s theorem on the roots from unity with
the complement property and the overcompleteness of systems of elements from finite-dimensional
Euclidean (unitary) space and infinite-dimensional Hilbert space.
Keywords: the minors of the matrix, Frame, full spark, complement property, signal, Hilbert space.
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РАСПРЕДЕЛЕНИЕ НУЛЕЙ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ И КРИВЫЕ
БУТРУ
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Изучено распределение нулей ортогональных многочленов со специальными весовыми
функциями и установлен вид кривых, где лежат их нули в комплексной плоскости.

Ключевые слова: ортогональные многочлены, рекуррентные соотношения высо-
кого порядка, слабые асимптотики, квазиклассический режим, класс Блюменталя-
Неваи, звездный носитель меры нулей, аппроксимации Эрмита-Паде.

Для многочленовQn(z) := zn + . . ., определяемых трехчленными рекуррентны-
ми соотношениями порядка p + 1: Qn+1 = zQn − an−p+1Qn−p , p ≥ 1, с зависящим
от параметра N коэффициентом an ≡ an,N (varying recurrence coefficient), доказа-
ны слабые пределы мер, равнораспределенных в нуляхQn(z), в квазиклассическом
режиме при n → ∞, n

N → t , и an,N → a(t ). При этих условиях многочлены ортого-
нальны с весом exp

{−N t (|z|2 +ReV (z)
}
с некоторым полиномиальным потенциа-

ломV (z). Доказано, что в квазиклассическомрежименулимногочленовQn(z) лежат
на кривых Бутру, то есть кривых γ в комплексной плоскости, определяемых усло-
вием Re

∫
γ

p
V ′(z)d z = 0.

Для кубического потенциала V (z) вычислены точки накопления нулей на кри-
вой Бутру, которая в данном случае представляет собой три луча arg z = ±2π/3,
arg z = 0. Показано, что точки накопления нулей отвечают полюсам сепаратрисного
решения дискретного уравнения Пенлеве I.

Полученные результаты применены к задаче распределения собственных зна-
чений ансамблей нормальных случайных матриц.
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ZEROS DISTRIBUTION OF ORTHOGONAL POLYNOMIALS AND THE BOUTROUX CURVES

V. Yu. Novokshenov

The distribution of zeros to orthogonal polynomials is studied with respect to the weight functions of
special types. The curves containing the zeros are indentified as the Boutroux curves in the complex
plane.
Keywords: orthogonal polynomials, high-order recurrence relations, weak asymptotics, quasiclassical
regime, Blumethal-Nevau class, zeros measure star-like support, Hermite-Padé approximants.

УДК 517.984

О ТОЧЕЧНОМ СПЕКТРЕ ТЕНЗОРНОЙ СУММЫ ДВУХ МОДЕЛЕЙ ФРИДРИХСА С
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В данной работе рассматривается тензорная сумма двух моделей Фридрихса с конеч-
номерным возмущением. Этот модель, ассоциировано с системой трёх частиц на ре-
шётке и является линейным, ограниченным и самосопряжённым оператором в гиль-
бертовом пространстве. Исследовано точечный спектр изучаемого оператора.

Ключевые слова: решетка, модельный оператор, модель Фридрихса, точечный
спектр.

ПустьTd –d-мерныйториL2((Td)α)—гильбертовопространство квадратично-
интегрируемых (комплексно-значных) функций, определенных на (Td)α, α= 1,2.

В гильбертовом пространстве L2((Td)2) рассмотрим модельный оператор вида

Hµ,λ := H0 −V (1)
µ −V (2)

λ
, (1)

где H0 — оператор умножения на функцию u(k1)+u(k2) :

(H0 f )(k1,k2) = (u(k1)+u(k2)) f (k1,k2)

и V (1)
µ , V (2)

λ
являются нелокальными операторами взаимодействия:

(V (1)
µ f )(k1,k2) =

n∑
i=1

µi v (1)
i (k2)

∫
Td

v (1)
i (t ) f (k1, t )d t ,

(V (2)
λ

f )(k1,k2) =
m∑

j=1
λ j v (2)

j (k1)
∫
Td

v (2)
j (t ) f (t ,k2)d t .

Здесь f ∈ L2((Td)2); n,m ∈N с условием n,m ≥ 3, µ= (µ1, ...,µn) ∈ Rn , λ= (λ1, ...,λm) ∈
Rm; а функции u(·), v (1)

i (·), i = 1, . . . ,n, и v (2)
j (·), j = 1, . . . ,m — вещественно-значные
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непрерывные функции на Td. По определению операторы V (1)
µ и V (2)

λ
являются ча-

стично интегральными операторами с вырожденным ядром ранга n и m соответ-
ственно.

Легко проверить, что при этих предположениях оператор Hµ,λ ограничен и
самосопряжен в гильбертовом пространстве L2((Td)2).

Для изучения спектральных свойств оператора Hµ,λ, введем ограниченные
самосопряженные операторы (модели Фридрихса) hµ,λ,, действующие на L2(Td) по
правилу

hµ,λ := h0 − v (1)
µ − v (2)

λ
,

где h0 — оператор умножения на функцию u(·) на L2(Td) :

(h0g )(k1) = u(k1)g (k1), g ∈ L2(Td)

и v (1)
µ и v (2)

λ
являются нелокальными операторами взаимодействия на L2(Td) :

(v (1)
µ g )(k1) =

n∑
i=1

µi v (1)
i (k1)

∫
Td

v (1)
i (t )g (t )d t , g ∈ L2(Td);

(v (2)
λ

g )(k1) =
m∑

j=1
λ j v (2)

j (k1)
∫
Td

v (2)
j (t )g (t )d t , g ∈ L2(Td).

Далее существенный спектр, дискретный спектр и точечный спектр ограни-
ченного самосопряженного оператора A в гильбертовом пространстве H будут
обозначаться как σess(A), σdisc(A) и σpp(A), соответственно.

Следующая теорема описывает существенный спектр оператора Hµ,λ.
Теорема 1. Для существенного спектра оператора Hµ,λ справедливо равенство

σess(Hµ,λ) = [2umin;2umax]
⋃

{σdisc(h(1)
µ )+ [umin;umax]}

⋃
{σdisc(h(2)

λ
)+ [umin;umax]}.

Более того, множество σess(Hµ,λ) состоит не более чем из n + m + 1 ограниченных
отрезков (замкнутых интервалов).

Основной результат работы состоит в следующем утверждении.
Теорема 2. Точечный спектр оператора Hµ,λ определяется следующим образом:

σpp(Hµ,λ) =σdisc(h(1)
µ )+σdisc(h(2)

λ
).

Здесь для числовых множеств Ω1 и Ω2 из R их арифметическая сумма опреде-
ляется следующим образом Ω1 +Ω2 := {ω1 +ω2 : ωα ∈Ωα, α = 1,2}.

МоделиФридрихса h(1)
µ и h(2)

λ
имеют более простой вид по сравнению с модель-

ным оператором Hµ,λ. Поэтому теоремы 1 и 2 упрощают задачу исследования спек-
тра модельного оператора Hµ,λ. Случай n = m = 2 изучался в работе [1]. Если функ-
циюu(k1)+u(k2) заменить наw(k1,k2), то этот случай изучен в работе [2]. Используя
теорему 2, можно найти условия существования собственных значений, лежащих
внутри и вне существенного спектра модельного оператора Hµ,λ, см. [1].
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ON THE POINT SPECTRUM OF A TENSOR SUM OF TWO FRIEDRICHS MODELS WITH FINITE
RANK PERTURBATION

O.M. Norkulov

In this work, we consider the tensor sum of two Friedrichsmodels with finite-dimensional perturbation.
This model is associated with a system of three particles on a lattice and is a linear, bounded and self-
adjoint operator in a Hilbert space. The point spectrum of the operator under study is investigated.
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О ПОЛУГРУППАХ ОПЕРАТОРОВ, ПОРОЖДЁННЫХ ОРТОГОНАЛЬНЫМИ
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Изучаются полугруппы операторов T (ξ), порождённых ортогональными полиномами.
Получены оценки нормы операторов T (ξ). Доказательства результатов основаны на
представлении ядраФейера, построениимажорантядер и оценкемаксимальнойфунк-
ции Харди–Литтлвуда.

Ключевые слова: полугруппа операторов, ортогональные полиномы, ядроФейера,
рекуррентное соотношение, мажоранты ядер, оператор Штурма–Лиувилля, макси-
мальная функция Харди–Литтлвуда.

Пусть µ— положительная борелевская мера на [−1,1]. В пространстве L2
µ(−1,1)

со скалярным произведением < f , g >= ∫ 1
−1 f (x)g (x)dµ(x) введем систему ортонор-

мированных полиномов pn(x), n ∈ Z+:

pn(x) = kn xn + rn xn−1 + ...,kn > 0, < pn , pm >= δnm (n,m ∈Z+).

Полиномы pn(x) удовлетворяют трехчленному рекуррентному соотношению:

xpn(x) = an+1pn+1(x)+bn pn(x)+an pn−1(x), p0(x) = const , p−1(x) = 0, a0 = 0.

Будем говорить, что полиномы pn(x) принадлежат классу B, если:

Supp(µ) = [−1,1], lim
n→∞an = 1

2
, lim

n→∞bn = 0,
∞∑

n=0
(|an −an+1|+ |bn −bn+1|) <∞.

Как известно [1], если полиномы pn(x) принадлежат классуB, то мера µ абсо-
лютно непрерывна в интервале (−1,1), весовая функция µ′(x) = w(x) непрерывна и
положительна для всех x ∈ (−1,1).
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Пусть E≡ {T (t ); t > 0} — полугруппа линейных операторов в L1
w ([−1,1]):

T (t ) f (x) ∼
∞∑

k=0
e−φ(k)t ck ( f )pk (x), ck ( f ) =< f , pk >, x ∈ [−1,1],k ∈Z+,

где φ(t ) ∈ C 2(0,+∞), φ(t ) ↑ +∞ при t →+∞.
Положим

T ∗ f (x) = sup
t>0

|T (t ) f (x)|, x ∈ (−1,1).

Теорема. Пусть система ортонормированных полиномов {pn(x)} принадлежит
классу B и существует положительная интегрируемая функция h(x) такая, что для
собственных функций {pk (x)} выполнена оценка:

|pn(x)| ≤ h(x), x ∈ (−1,1),n ∈Z+.

Тогда имеют место следующие утверждения:
1. Если функция φ(x) при каждом t > 0 удовлетворяет условию:

exp(−φ(x)t ) ln x =O(1), x →+∞ (1)

и φ′′(x) ≤ 0 при x ∈ (0,+∞), то:
a) для любой функции f ∈ L1

w (−1,1) выполняется

µ{x ∈ K : |T ∗ f (x)| > ς> 0} ≤ C

ς

∫
K
| f (t )|w(t )d t , (2)

где K — произвольное компактное подмножество из (−1,1), постоянная C > 0 не
зависит от функции f и t > 0.

b)для любой функции f ∈ L
p
w (−1,1), (1 < p <∞)

∥T ∗ f (x)∥L
p
w (K ) ≤Cp∥ f ∥L

p
w (K ), (3)

где постоянная Cp > 0 не зависит от функции f .
2. Если функция φ(x) удовлетворяет условию (1),

t xφ′(x)exp{φ(x)t } ≤Cφ

с некоторой постоянной Cφ > 0, и функция ψ(x) = t [φ′(x)2 −φ′′(x)], x > 0, имеет
конечное число перемен знака на 0 < t <+∞, то выполняются оценки (2) и (3).

Примеры функций φ(t ):

ϕ(t ) = tα (α> 0, t > 0);

ϕ(t ) = lnα(t +1) (α> 0, t > 0);

ϕ(t ) = Pn(t ), t > 0, Pn(t ) = an t n +an−1t n−1 +·· ·+a0 (an > 0, n = 1,2, . . .).

ПолугруппыЯкоби [2]: условиямтеоремы, наложеннымна системуортогональ-
ных полиномов {pn(x)}, удовлетворяют классические полиномы Якоби.

Работа выполнена при финансовой поддержке Российского научного фонда,
проект № 24-21-00143.
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ON SEMIGROUPS OF OPERATORS GENERATED BY ORTHOGONAL POLYNOMIALS

B.P. Osilenker

In the paper we study the semigroups of operators T (ξ) generated by orthogonal polynomials. The
norm estimates for a semigroup of operators T (ξ) are obtained. Proofs of these results based on the
representation of the Fejer kernel, on the construction of majorants for kernels and estimates of the
Hardy-Littlewood maximal functions.
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УДК 517.926.7

О НЕПРЕРЫВНОСТИ СКОРОСТЕЙ БЛУЖДАНИЯ И ПОКАЗАТЕЛЕЙ
КОЛЕБЛЕМОСТИ НА МНОЖЕСТВЕ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ,
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В статье обсуждаются свойства скоростей блуждания и показателей колеблемости
двумерных линейных однородных дифференциальных систем, задающих повороты фа-
зовой плоскости. Установлена непрерывность скоростей блуждания на указанном
множестве, а для показателей колеблемости найдены достаточные условия устой-
чивости относительно равномерно малых и бесконечно малых возмущений.

Ключевые слова: линейная система, колеблемость, показатель Ляпунова, показа-
тели колеблемости, скорости блуждания, повороты плоскости.

В работе [1] для любого ненулевого решения линейных однородных диффе-
ренциальных систем с непрерывными на положительной полуоси коэффициента-
ми были определены слабые и сильные показатели колеблемости нулей (ранее они
назывались соответственно векторными и полными частотами) ν̂0◦, ν̌0◦, ν̂0•, ν̌0• и ско-
рости блуждания µ̂, µ̌.

Рассмотрим линейное пространство R̃2 двумерных линейных систем вида

ẋ = a(t )

(
0 −1
1 0

)
x, x ∈R2, t ∈R+ ≡ [0,+∞),

каждая из которых задает повороты плоскости (ориентированной), определяемые
непрерывной функцией a :R+ →R (угловой скоростью), с которой будем отождеств-
лять саму систему. Через S∗(a) обозначим множество всех ненулевых решений си-
стемы a. Наделим пространство R̃2 равномерной на R+ топологией и обозначим

B(a) = {c ∈ R̃2 | lim
t→+∞ |c(t )−a(t )| = 0}, a ∈ R̃2.
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Определение [2]. Бесконечно малым возмущением системы a ∈ R̃2 назовем лю-
бое возмущение b−a, для которого b ∈B(a), а функционал Å : R̃2 →R назовем инва-
риантным вточке a относительно бесконечно малых возмущений, если выполнено
равенство Å(a) = Å(b) при всех b ∈ B(a).

Исследования непрерывности скоростей блуждания ни на каком множестве
решений до сих пор не проводились. Оказалось, что на множестве R̃2 скорости
блуждания устойчивы при равномерно малых возмущениях.

Теорема 1. Для любой системы a ∈ R̃2 множество значений каждой из функций
Å= ν̂0◦, ν̌0◦, ν̂0•, ν̌0•, µ̂, µ̌ : S∗(a) → R+∪ {+∞} состоит из одного элемента.

Указанное в теореме 1 единственное для каждой величины Å значение есте-
ственно было бы считать функцией от системы a, а не только от его решений, имен-
но такмыипоступим, обозначаяÅ(a) значение величиныÅна решениях системы a.

Теорема 2.Cкорости блуждания µ̂ и µ̌ непрерывны и инвариантны относительно
бесконечно малых возмущений в любой точке a ∈ R̃2.

Намножествеn-мерныхдифференциальных системкрайние значенияпоказа-
телей колеблемости нулей ν̂0◦, ν̌0◦, ν̂0•, ν̌0• не являются непрерывными и инвариантны-
ми относительно бесконечно малых возмущений [3] при любом n ≥ 2, а показатели
колеблемости гиперкорней системы из множества R̃2, у которой угловая скорость
отделена от нуля, устойчивы при равномерно малых и бесконечно малых возмуще-
ниях ее коэффициента [4]. Оказалось, что это свойство переносится и на показатели
колеблемости нулей.

Теорема 3. Если система a ∈ R̃2 удовлетворяет условию

inf
t∈R+

a(t ) > 0 или sup
t∈R+

a(t ) < 0,

то в точке a ∈ R̃2 все показатели колеблемости ν̂0◦, ν̌0◦, ν̂0•, ν̌0• непрерывны и инвари-
антны относительно бесконечно малых возмущений.

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект
№ 075-03-2024-074/5).
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ON THE CONTINUITY OF WANDERING VELOCITIES AND OSCILLATION EXPONENTS ON A
SET OF DIFFERENTIAL SYSTEMS DETERMINING ROTATIONS OF PLANE

A.A. Panesh, A.Kh. Stash

This paper describes the properties of wandering velocities and oscillation exponents of two-
dimensional linear homogeneous differential systems that define phase plane rotations. The continuity
of wandering velocities on the specified set is established, and sufficient conditions for stability of os-
cillation exponents with respect to uniformly small and infinitesimal perturbations are found.
Keywords: linear system, oscillation, Lyapunov exponent, oscillation exponents, wandering speeds, rota-
tions of plane.
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ФУНКТОРИАЛЬНОСТЬ КОНСТРУКЦИЙ ПОЛУПРЯМОГО ПРОИЗВЕДЕНИЯ
ГРУПП И СКРЕЩЕННОГО ПРОИЗВЕДЕНИЯ С*-АЛГЕБРЫ

С ЛОКАЛЬНО-КОМПАКТНОЙ ГРУППОЙ
Е.В. Патрин1

1 evgeny.patrin@kpfu.ru; Казанский (Приволжский) федеральный университет

В статье обсуждается функториальность конструкций полупрямого произведения
групп и скрещенного произведения С*-алгебры с локально-компактной группой. Эти
конструкции широко применяются в теории групп и функциональном анализе, соот-
ветственно, и их приложениях.

Ключевые слова: автоморфизмы группы, автоморфизмы С*-алгебры, категория
представлений, функтор.

Пусть G иG ′ -группы, иρ :G−→Aut(G ′) -представление группыG автоморфизмами
группы G ′.

Определение. Полупрямым произведением групп G ′и G с помощью представ-
ления ρ, называется группа, обозначаемая G ′⋊ρG , которая строится следующим
образом:
1) □(G ′⋊ρG)=□(G ′)×□(G) – подстилающее множество есть прямое произведение под-
стилающих множеств сомножителей,
2) ∀ (s′, s), (t ′, t) ∈□(G ′)×□(G) : (s′, s)·(t ′, t):=(s′ρ(s)(t ′), st) – операция умножения,
3) (e ′,e)− единица группы G ′⋊ρG и (s′, s)−1 := (ρ(s−1)(s′−1), s−1) – обратный элемент.

Пусть Gr− категория групп, а RepG− категория представлений группы G ,
автоморфизмами групп, объектами которой являются представления, а морфиз-
мами гомоморфизмы групп коммутирующие с действиями элементов группы G :
т.е. если ρi :G −→Aut(Gi),
i ∈ {1,2}, то

HomRepG (ρ1,ρ2):={g ∈HomGr (G1,G2): ∀s∈G , g ◦ρ1(s)= ρ2(s)◦g }.

Справедлива
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Теорема 1. Имеется функтор RepG −→Gr :

Ob(RepG )∋ρ(:G −→Aut(G ′)) 7−→ G ′⋊ρG −действие на объектах.
HomRepG (ρ1,ρ2)∋g 7−→ g×idG∈HomGr (G1⋊ρ1G , G2⋊ρ2G)−действие на морфизмах.

Пусть A − C∗-алгебра, G − локально-компактная группа, ρ : G −→ Aut(A) −
непрерывное представление.

Определение. Скрещенным произведением A и G с помощью ρ называется
C*-алгебра, обозначаемая A⋊ρG, которая строится следующим образом:
На линейном пространстве Cc (G , A) над C с поточечными сложением и умно-
жением на числа умножение функций определено так: ∀ϕ,ψ∈Cc (G , A), ∀s∈G ,
(ϕ·ψ)(s):=∫

G
ϕ(t)ρ(t)(ψ(t−1s))dµ(t), а инволюция ϕ∗(s):=∆(s−1)ρ(s)(ϕ(s−1)∗). Норма опреде-

лена так: ∥ϕ∥ := sup{∥(π,u)(ϕ)∥ : (π,u) ковариантное представление (A,G ,ρ)}. Тем са-
мым,Cc (G , A) становится нормированной *-алгеброй, а A⋊ρG – это ее пополнение по
данной норме. Здесь µ – левоинвариантная мера Хаара на G , а∆ – модулярный харак-
тер группы. Пусть C∗Al g – категория C*-алгебр, RepG – категория представлений
группы G , автоморфизмами C*-алгебр.

Теорема 2. Имеется функтор RepG −→C∗Al g :

Ob(RepG )∋ρ(:G −→Aut(A)) 7−→ A⋊ρG −действие на объектах,
HomRepG (ρ1,ρ2)∋g 7−→ g∗∈HomC∗Al g (A1⋊ρ1G , A2⋊ρ2G)−действие на морфизмах.
Здесь g∗(ϕ) := g ◦ϕ.
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THIS PAPER DESCRIBES A FUNCTORIAL APPROACH TO CONSTRUCTIONS SEMIDIRECT
PRODUCT OF GROUPS AND CROSSED CRODUCT C*-ALGEBRAS WITH GROUPS

E.V. Patrin

The article discusses the functoriality of the constructions of the semidirect product of groups and the
crossed product of a C*-algebra with a locally compact group. These constructions are widely used in
group theory and functional analysis, respectively, and their applications.
Keywords: automorphisms of groups and C*-algebras, representations category, functors.
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100 ЛЕТ СО ДНЯ РОЖДЕНИЯ ПРОФЕССОРА Л.И. ЧИБРИКОВОЙ
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Статья посвящена жизни и научной деятельности профессора Казанского универси-
тета Чибриковой Любови Ивановны.

Ключевые слова: Чибрикова Любовь Ивановна.

ПрофессорЛюбовьИвановна Чибрикова проработала на кафедре дифференци-
альных уравнений 50 лет, из них 32 года заведовала кафедрой. Она была первой в
истории Казанского университета женщиной-математиком, защитившей доктор-
скую диссертацию.

Любовь Ивановна родилась 2 февраля 1925 г. в деревне Ново-Шигалеево Пест-
речинского района Татарской АССР, в крестьянской семье. Начальное образование
получила в Ново-Шигалеевской начальной школе. В 1939 г. она поступила в 8-й
класс средней школы№ 24 Бауманского района г. Казани и окончила ее в 1942 году.
В этом же году была принята на первый курс физико-математического факультета.
За работу на лесозаготовках студентка Чибрикова получила заслуженную награду -
медаль "За доблестный труд в Великой Отечественной войне".

В 1947 г. Л.И. Чибрикова поступила в аспирантуру, руководителем стал Ф.Д. Га-
хов. Кандидатскую диссертацию "Особые случаи линейных краевых задач теории
аналитических функций, аналогичных задаче Римана" защитила в марте 1951 г.
Первая научная публикация была написана по материалам этой работы. Доктор-
скую диссертацию "Краевая задача Римана для автоморфных функций" Л.И. Чиб-
рикова защитила в Белорусском государственном университете в 1962 г. В 1965 г.
получила звание профессора.

С марта по сентябрь 1951 г. Любовь Ивановна проработала ассистентом кафед-
ры высшей математики в Новочеркасском политехническом институте. В сентябре
вернулась в Казань и была принята на должность ассистента кафедры дифференци-
альных уравнений КГУ. На этой кафедре она и проработала до конца жизни - асси-
стентом, доцентом (с 1954 г.), профессором (с 1965 г.). Заведовала кафедрой с 1959
по 1991 гг.

Тридцать ее учеников защитили кандидатские диссертации, из них десять ста-
ли докторами наук. Темы диссертаций аспирантов были тесно связаны с направле-
ниямиисследований, которые былиинтересныей самой. Все они сформировались в
Казанской научнойшколе Ф.Д. Гахова и лежат в области теории функций комплекс-
ного переменного и ее приложений. Вот основные из них.

1. Краевые задачи для аналитических функций, удовлетворяющих условиям
автоморфности и типа автоморфности, задачи для счетного множества контуров
и особые случаи краевых задач.

2. Сингулярные интегральные уравнения, разрешимые в замкнутой форме, с
автоморфными и квазиавтоморфными ядрами, с ядрами, имеющими логарифми-
ческие или степенные особенности, со специальными функциями в ядрах.
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3. Граничные задачи для уравнений с частными производными в областях с ал-
гебраическими границамии эквивалентныеим задачи для аналитическихфункций
на римановых поверхностях, полученные методом симметрии.

4. Применение кусочно-голоморфных функций при решении обыкновенных
дифференциальных уравнений класса Фукса, развитие теории специальных функ-
ций методами ТФКП.

В списке публикаций Л.И. Чибриковой 111 работ. Среди них две монографии:
"Основные граничные задачи для аналитических функций" (1977 г.) и "Избранные
главы аналитической теории обыкновенных дифференциальных уравнений" (1996
г.). В первой подведен итог многолетних исследований краевой задачи Римана для
симметричных и автоморфных функций, задачи Римана в случае счетного множе-
ства контуров и некоторых сингулярных интегральных уравнений. Во второй изло-
жена локальная теория обыкновенных линейных дифференциальных уравнений с
регулярными особыми точками и нелокальная теория уравнений класса Фукса.

В разные годы Любовь Ивановна читала лекции по всем общим курсам кафед-
ры: "Дифференциальные уравнения", "Теория функций комплексного переменно-
го", "Уравненияматематическойфизики". Из спецкурсов, например, такие как "Кра-
евые задачи для аналитическихфункций", "Сингулярныеинтегральные уравнения",
"Метод симметрии", "Аналитическая теория дифференциальных уравнений". Она
была членом редколлегии журнала "Известия вузов. Математика", входила в состав
нескольких диссертационных советов, принимала активное участие в работе город-
ского семинара по краевым задачам и в подготовке к печати в издательстве КГУ
сборников "Труды семинара по краевым задачам".

Характер Л.И. Чибриковой и ее жизненную позицию исключительно точно
описал В.И. Жегалов [1]: "Она не терпела расхлябанности и неорганизованности.
Не жаловала людей, которые ради своей выгоды были способны на предательство
по отношению к коллегам. . . . Открыто высказывала свою точку зрения на проис-
ходящее, не заботясь особенно о том, что это может кому-то не понравиться. При
решении кадровых вопросов, связанных с кафедрой, могла противостоять давле-
нию начальства".

В 1982 году Любови Ивановне было присвоено почетное звание "Заслуженный
деятель науки ТАССР", в 1997 году - "Заслуженный деятель науки РФ".

Скончалась Л.И. Чибрикова 18 июня 2001 года, после тяжелой продолжитель-
ной болезни. Воспоминания о Любови Ивановне ее учеников опубликованы в кни-
ге [2].
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100TH ANNIVERSARY OF PROFESSOR L.I. CHIBRIKOVA

N.B. Pleshchinskii

This article is devoted to the life and scientific works of the professor of the Kazan University Chibrikova
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Получены формулы обращения некоторых сингулярных интегральных уравнений в
классах обобщенных функций. В качестве обобщенных функций рассматриваются ли-
нейных функционалы, определенные на замыканиях множеств линейных комбинаций
ортогональных полиномов.

Ключевые слова: сингулярные интегральные уравнения, формулы обращения,
обобщенные функции.

Явные формулы обращения сингулярных интегральных уравнений с ядром
Коши и ряда близких к ним уравнений выведены на основе их эквивалентности
краевой задаче Римана для кусочно голоморфных функций [1]. Такие же формулы
можно получить как условия разрешимости вспомогательных краевых задач для
эллиптических уравнений с частными производными [2] или с помощью формулы
Пуанкаре-Бертрана [3].

Рассмотрим технику вывода формул обращения некоторых сингулярных инте-
гральных уравнений в специальных классах обобщенных функций [4].

Одно из замечательных свойств полиномов Чебышева 1-го и 2-го рода Tn(·) и
Un(·) – ортогональность с весом на отрезке [0,1]. Функции T ′

n(x) = Tn(x)/
p

1−x2 и
U ′

n(x) = Un(x)
p

1−x2 образуют вместе с полиномами Чебышева биортогональные
системы функций. Обозначим через T, T′, U, U′ замыкания (в смысле бислабой
сходимости) множеств линейных комбинаций рассматриваемых функций.

Как следует из известных формул

1

π

∫ 1

−1

T0(t )p
1− t 2

d t

t −x
= 0,

1

π

∫ 1

−1

Tn(t )p
1− t 2

d t

t −x
=Un−1(x), n = 1,2, . . . ,

1

π

∫ 1

−1
Un−1(t )

√
1− t 2 d t

t −x
=−Tn(x), n = 1,2, . . . ,

оператор сингулярного интегрирования

S : ϕ(·) 7→ Sϕ)(·), (Sϕ)(x) = 1

π

∫ 1

−1

ϕ(t ) d t

t −x

действует из T′ в U и из U′ в T. Оператор S′ =−S – двойственный к оператору S.
В качестве обобщенных функций будем рассматривать линейные функциона-

лы на пространствах T, T′, U, U′. Каждый такой функционала отождествляется с по-
следовательностью его значений на базисных функциях. Например, функционал
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t ′[·] – элемент пространства T∗ – заменяется на последовательность чисел {t ′n}, где
t ′n = t ′[Tn(·)].

Оператор S действует из T∗ в U′∗, функционал t ′[·] переводится в функционал
u[·] по следующему правилу: u[·] = (St ′)[·] : U ′

n(·) 7→ t ′[(S′U ′
n)(·)], n = 0,1, . . . Так как

(S′U ′
n)(·) = Tn+1(·), то S : t ′[·] = (t ′0, t ′1, . . . )T ∗ 7→ (t ′1, t ′2, . . . )U ′∗. Поэтому интегральные

уравнения с оператором S на языке обобщенных функций становятся бесконечны-
ми системами линейных алгебраических уравнений.

Теорема. Если f [·] = ( f0, f1, . . . )U ′∗ ∈ U′∗, то сингулярное интегральное уравнение
(Sϕ)[·] = f [·] имеет решение ϕ[·] = (c, f0, f1, . . . )T ∗, где c – произвольная постоянная.
Если f [·] = ( f0, f1, . . . )T ′∗ ∈ T′∗, то сингулярное интегральное уравнение (Sϕ)[·] = f [·]
имеет решение ϕ[·] = ( f1, f2, . . . )U∗ тогда и только тогда, когда f0 = 0.

При нулевом значении индекса нужно использовать системы ортогональных
полиномов

Qn(x) = Tn+1(x)−Tn(x)

x −1
, Rn(x) = Tn+1(x)+Tn(x)

x +1
, n = 0,1, . . .

Формулы обращения сингулярного интеграла можно записать в привычном
виде, если использовать специальные символические обозначения

ϕ(x)[·] = ◦+∞∑
n=0

ϕn T ′
n(x) и ϕn = 1

Tn

◦
∫ 1

−1
ϕ(t )Tn(t ) d t .

Бесконечная сумма с кружочком – это обобщенная функция из пространства T∗ со
значениями (ϕn) на функциях T ′

n(·). Если ϕ(t )[·] – обобщенная функция, то ϕn –
ее значение на T ′

n(·) (не предполагается, что интеграл существует в классическом
смысле).

Получены также формулы обращения в классе обобщенных функций инте-
грального уравнения Карлемана с логарифмическим ядром и одного гиперсингу-
лярного уравнения.
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ON THE INVERSION FORMULAS OF SINGULAR INTEGRAL EQUATIONS

N.B. Pleshchinskii

The inversion formulas of some singular integral equations in the classes of generalized functions
are obtained. The linear functionals on the closures of sets of linear combinations are considered
as generalized functions.
Keywords: singular integral equations, inversion formulas, generalized functions.
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Для двух p-ичных аналогов хаоса Радемахера устанавливается неравенство Хинчина
и изучается их единственность.

Ключевые слова: q-лакунарность, неравенство Хинчина, системы ε-
единственности, хаос Радемахера, системы Виленкина–Крестенсона.

Система функций (ϕk : [0,1) → C, k ∈ N) называется системой ε-
единственности, ε > 0, если сходимость к нулю на множестве E с µ(E) > 1 − ε

ряда по этой системе влечет равенство нулю всех его коэффициентов. Классиче-
ские системы функций (тригонометрическая, Уолша, Хаара, Франклина) таковыми
не являются: сходимость к нулю даже почти всюду ряда по любой из них не гаран-
тирует равенства нулю всех его коэффициентов (для тригонометрической системы
примером является нуль-ряд Меньшова). Системами ε-единственности обычно
являются лакунарные в некотором смысле системы. Понятие лакунарности в ши-
роком смысле означает, что система функций обладает свойствами, присущими
системам независимых в вероятностном смысле функций.

Система функций (ϕk : [0,1) → C, k ∈N) называется системой q-лакунарности,
если имеет место L2-Lq-неравенство Хинчина∥∥∥∥∥ n∑

k=1
ckϕk

∥∥∥∥∥
Lq

≤ κ∥∥(ck )n
k=1

∥∥
l2

, κ= κ(q) > 0 не зависит от ck ∈C. (1)

Любая такая система (ортонормированная или система Рисса) является [1] системой
ε-единственности для некоторого ε > 0.

Классический пример q-лакунарной системы — система функций Радемахера,
являющаяся системой независимых симметричных бернуллиевских случайных ве-
личин [2]. Эта система является системой 1/2-единственности, причем константа
1/2 неулучшаема [3]. Система, состоящая из d-членных произведений различных
функций Радемахера (d-хаос Радемахера) является [4] системой q-лакунарности и,
следовательно, согласно [1], и системой ε-единственности принекотором ε> 0. Точ-
ная константа ε-единственности для d-хаоса Радемахера ε= 2−d была найдена в [5].

Мы обобщаем результаты о q-лакунарности и ε-единственности со случая дво-
ичной системы счисления, с которой связана система Радемахера, на случай p-
ичной системы с произвольным натуральным основанием p ≥ 2. При этом возни-
кают как минимум два способа обобщить хаос Радемахера на p-ичный случай. Рас-
смотрим системы функций

{V Cn , n ∈V (d)
p }, {V Cn , n ∈ Ṽ (d)

p }, d ∈N. (2)
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ЗдесьV Cn — функции Виленкина–Крестенсона (функции Уолша при p = 2) [6], аV (d)
p ⊂

Ṽ (d)
p —множества, состоящие из всех натуральных n, p-ичное разложение которых
содержитне болееd членов, причему системыV (d)

p все коэффициентыпри степенях
p в этом разложении равны единице.

Мы показали, что системы (2) являются системами q-лакунарности и нашли
точные константы ε> 0, при которых они являются системами ε-единственности.

При p ≥ 3 функции (случайные величины) из (2) становятся комплекснознач-
ными, а их действительные части при нечетном p уже не являются симметричны-
ми. Также первая из систем (2), как и хаос Радемахера, состоит из всевозможных
d-членных прозведений, составленных из элементов последовательности незави-
симыхфункций, а во второй элементыформируются не только из элементов после-
довательности независимых функций, но и из их степеней.

Интересно, что используемые “p-ичные” методы можно модифицировать
и применить к тригонометрической системе функций: в [7] установлена ε-
единственность с оценкой снизу величины ε для системы функций exp(2πi nx), где
n берется из множеств V (d)

p , ±Ṽ (d)
p или Ṽ (d)

p .
Второй автор является стипендиатом Фонда развития теоретической физики

и математики «БАЗИС».
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ON p-ARY SYSTEMS OF FUNCTIONS OF RADEMACHER CHAOS TYPE

M.G. Plotnikov, A.D. Kazakova

or two p-ary analogues of Rademacher chaos, the Khinchin inequality is established, and their
uniqueness is studied.
Keywords: q-lacunarity, Khinchin inequality, systems of ε-uniqueness, Rademacher chaos, Vilenkin–
Chrestenson systems.
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ФУНКЦИЯ ГРИНА ОПЕРАТОРА ЛАПЛАСА В ПРОСТРАНСТВЕ
С ТОПОЛОГИЕЙ R2 ×S2

А.А. Попов1

1 apopov@kpfu.ru; Казанский федеральный университет

Вычислено поле заряда, являющегося источником массивного неминимально связанно-
го с кривизной скалярного поля в пространстве с топологией R2 ×S2. Показано, что
этот заряд воздействует на себя.

Ключевые слова: функция Грина.

Хорошо известным фактом классической электродинамики является утвер-
ждение о том, что движение точечного заряда определяется взаимодействием заря-
да с полем, которое он создает. Этот эффект (называемый самодействием или ради-
ационной реакцией) связан с нелокальной структурой поля, источником которого
является заряд. Первые исследования в этой области были сфокусированы на са-
моускорении электрически заряженных точечных частиц в плоском пространстве-
времени [1]. В дальнейшем ДеВитт, Брем и Хоббс [2, 3, 4] получили формаль-
ные выражения для силы самодействия на электрический заряд в искривленном
пространстве-времени. Мино, Сасаки, Танака [5] и, независимо, Куин и Уолд [6]
получили аналогичные выражения для гравитационной силы самодействия на то-
чечную массу. Сила самодействия на скалярный заряд, взаимодействующий с соб-
ственным безмассовым минимально связанным с кривизной скалярным полем,
была рассмотрена Куином в работе [7]. Хотя формальные аналитические выраже-
ния для различных типов силы самодействия хорошо известны, вычисления явных
выражений требуют значительных усилий, которые были осуществлены, в основ-
ном, на фоне пространств-времен черных дыр.

В отличие от случая плоского пространства-времени, сила самодействия мо-
жет быть не нулевой даже для статического заряда в искривленном пространстве.
Было также показано, что эта сила может быть не нулевой для статического за-
ряда в плоских пространствах-временах топологических дефектов [8, 9, 10, 11]. В
искривленных пространствах-временах с нетривиальной топологической структу-
рой исследования эффекта самодействия имеют дополнительные интересные чер-
ты [12, 13, 14, 15, 16]. В этих работах эффект самодействия рассматривается для по-
коящихся зарядов в статических пространствах-временах. Это означает, что задача
сводится к отысканию функции Грина трёхмерного искривлённого пространства.
Целью этой работы является изучение силы самодействия на статический заряд,
являющийся источником массивного неминимально связанного с кривизной ска-
лярного поля, удовлетворяющего уравнению

∇µ∇µφ(xσ)− (ξR +m2)φ(xσ) =−4πq
∫
δ(4)(x − x̃(τ))

dτp−g
, (1)

где ξ – константа связи скалярного поляφмассыm с кривизной R пространства, g –
детерминантметрики gµν, q – скалярный заряд, τ–его собственное время,мировая
линия заряда определяется функциями x̃µ(τ), ∇µ – ковариантная производная в
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пространстве-времени с первой квадратичной формой

d s2 =− f (ρ)d t 2 +dρ2 + r 2(ρ)
(
dθ2 + sin2θdϕ2) , (2)

в котором уравнение поля для покоящегося заряда приобретает вид[
∂2

∂ρ2 +
(

f ′

2 f
+ (r 2)′

r 2

)
∂

∂ρ
+ ∂2

∂θ2 +cotθ
∂

∂θ
+ ∂2

∂ϕ2 − (ξR +m2)
]
φ(ρ,θ,ϕ; ρ̃, θ̃,ϕ̃)

=−4πq δ(ρ, ρ̃) δ(θ, θ̃) δ(ϕ,ϕ̃)

r 2 sinθ
. (3)

Рассматриваемый подход дает возможность вычислить выражение для собствен-
ного потенциала заряда, являющегося источником массивного неминимально свя-
занного с кривизной скалярногополяи силысамодействия врассматриваемомпро-
странстве. В случае медленно меняющихся функций f (ρ) и r (ρ) такое пространство
описывает кротовые норы (топологические ручки, соединяющие удаленные части
Вселенной или различные Вселенные) с длинной горловиной.

Литература

1. Dirac P.A.M. A New Basis for Cosmology // Proc. R. Soc. Lond. A. – 1938. – Vol. 167. – P. 148.

2. Dewitt B.S., Brehme R.W. Radiation damping in a gravitational field // Annals of Physics. – 1960. – Vol. 9.
– P. 220–259.

3. Hobbs P.V. Annals of Physics. – 1968. – Vol. 47. – P. 141.

4. Hobbs P.V. Annals of Physics. – 1968. – Vol. 47. – P. 166.

5. Mino Y., Sasaki M., Tanaka T. Gravitational radiation reaction to a particle motion Phys. Rev. D. – 1997. –
Vol. 55. – P. 3457–3476.

6. Quinn T.C., Wald R.M. Axiomatic approach to electromagnetic and gravitational radiation reaction of
particles in curved spacetime // Phys. Rev. D. – 1997. – Vol. 56. – P. 3381–3394.

7. Quinn T.C. Axiomatic approach to radiation reaction and the equivalence principle // Physical Review D. –
2000. – Vol. 62. – No. 6.

8. Linet B. Force on a Charge in the Space-Time of a Cosmic String // Physical Review D. – 1986. – Vol. 33. –
P. 1833–1839.

9. KhusnutdinovN.R. Self-interaction force for a particle in cone space-time // Classical andQuantumGravity.
– 1994. – Vol. 11. – P. 1807–1813.

10. Khusnutdinov N.R. Radiation reaction force for a scalar charge in a space-time with a conical singularity
// Theoretical and Mathematical Physics. – 1995. – Vol. 103. – No. 2. – P. 603–612.

11. De Lorenci V.A. Moreira Jr E.S. Classical self-forces in a space with a topological defect // Physical Review
D. – 2002. – Vol. 65.

12. Khusnutdinov N.R., Bakhmatov I.V. Self-action of a point charge in a wormhole space-time // Physical
Review D. – 2007. – Vol. 76. – No. 12.

13. Linet B. Electrostatics in a wormhole geometry // arXiv:0712.0539. – 2007.

14. Krasnikov S. Unconventional string-like singularities in flat spacetime // Classical and Quantum Gravity.
– 2008. – Vol. 25. – No. 24.



154 СОДЕРЖАНИЕ

15. Bezerra V.B., Khusnutdinov N.R. Self-force on a scalar particle in a class of wormhole spacetimes //
Physical Review D. – 2009. – Vol. 79. – No. 6.

16. Casals M., Dolan S.R., Ottewill A.C., Wardell B. Self-Force Calculations with Matched Expansions and
Quasinormal Mode Sums // arXiv:0903.0395. – 2009.

THE GREEN’S FUNCTION OF THE LAPLACE OPERATOR IN A SPACE WITH
THE TOPOLOGY R2 ×S2

A.A. Popov

The field of a charge that is a source of a massive non-minimally related to curvature scalar field in a
space with the topology R2 ×S2 is calculated. It is shown that this charge acts on itself.
Keywords: Green’s function.
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СКОРОСТЬ СХОДИМОСТИ В ПРИНЦИПЕ ЛОКАЛИЗАЦИИ РИМАНА ДЛЯ
ИНТЕГРИРУЕМЫХ ФУНКЦИЙ
А.Ю. Попов1, Т.Ю. Семенова2
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Доказана оценка скорости сходимости в утверждении, известном как принцип лока-
лизации Римана для тригонометрических рядов.

Ключевые слова: тригонометрический ряд Фурье, принцип локализации Римана.

Пусть f — интегрируруемая по Лебегу 2π-периодическая функция, Dn(t ) =
sin((n+0.5)t )

2sin(t/2) — ядрo Дирихле. Рассмотрим интегральное представление частичной
суммы ряда Фурье функции f

Sn( f ; x) = 1

π

∫ π

−π
f (x + t )Dn(t )d t

и интеграл, учитывающий поведение функции f только на интервале (x −δ, x +δ)

Sn( f ;δ, x) = 1

π

∫ δ

−δ
f (x + t )Dn(t )d t .

Принцип локализации Римана заключается в том, что для любого δ ∈ (0,π) разность

Rn( f ;δ, x) = Sn( f ; x)−Sn( f ;δ, x)

равномерно по x ∈ [−π,π] стремится к нулю при n →+∞.
В работах Э. Хилле, Г. Клейна [1] и С.А. Теляковского [2] была доказана оценка

для разностимежду частичной суммой рядаФурьефункции f и аналогом величины
Sn( f ;δ, x): ∣∣∣∣Sn( f ; x)− 1

π

∫ δ

−δ
f (x + t )

sin(nt )

t
d t

∣∣∣∣≤ K

δ

(
ω

(
f ;

1

n

)
L
+ |a0( f )|

n

)
,
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в которой K — абсолютная постоянная (она не была указана), a0( f ) =π−1
∫ 2π

0 f (t )d t ,
ω

(
f ; h

)
L = sup

0≤|t |≤h

∫ 2π
0 | f (x + t ) − f (x)|d x — интегральный модуль непрерывности

функции f . О.Л. Виноградов и В.В. Жук [3] оценили Rn( f ;δ, x) через интегральные
модули непрерывности второго порядка функции f и ее первообразной, а также
через некоторую модификацию интегрального модуля непрерывности функции.
Постоянные в оценках были в [3] предъявлены.

Пусть k ∈ N. Обозначим

J j ,x =
(

x + 2π( j −1)

k
, x + 2π j

k

)
, fk,x(t ) = k

2π

∫
J j ,x

f (y)d y при t ∈ J j ,x , j = 1, ...,k.

Введем величины

Ek ( f ) = sup
x

∥ f − fk,x∥L[−π,π], Ik ( f ) = sup
x

∣∣∣∫ x+2π/k

x

(
f (t )− a0( f )

2

)
d t

∣∣∣.
Теорема 1. Какова бы ни была 2π-периодическая функция f ∈ L[−π,π], при любых

n ∈ N и δ ∈ (0, π) верно неравенство∣∣Rn( f ;δ, x)
∣∣≤ 1

2sin(δ/2)

(
C1 ·E2n+1( f )+C2 ·I2n+1( f )+K · |a0( f )|

n +0.5

)
,

где C1 = π−1, C2 = 2π−2 +4π−3 < 1/3, K = 1.5π−1.

Из теоремы 1 и оценок Ek ( f ) ≤ k
π

∫ 2π/k
0 ω

(
f ; u

)
L du ≤ 2ω

(
f ; 2π/k

)
L (доказана

П.Л. Ульяновым [4]) и Ik
(

f
)≤ (1

2 − 1
2k

) ·ω(
f ; 2π/k

)
L (доказана авторами) следует

Теорема 2. При выполнении условий теоремы 1 верно неравенство∣∣Rn( f ;δ, x)
∣∣≤ 1

2sin(δ/2)

(
C ·ω

(
f ;

π

n +0.5

)
L
+K · |a0( f )|

n +0.5

)
,

в котором C = 2π−1 +π−2 +2π−3 < 0.803, K = 1.5π−1.

Теорема 3. Для любой 2π-периодической функции f , имеющей ограниченную на
периоде вариацию V ( f ), при любых n ∈N и δ ∈ (0, π) верно неравенство∣∣Rn( f ;δ, x)

∣∣≤ 1

2sin(δ/2)

(
C3 · V ( f )

n +0.5
+K · |a0( f )|

n +0.5

)
,

в котором C3 = π−1 +2π−2 +0.5 < 1.021, K = 1.5π−1.
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RATE OF CONVERGENCE IN THE RIEMANN LOCALIZATION PRINCIPLE FOR INTEGRABLE
FUNCTIONS

A.Yu. Popov, T.Yu. Semenova

An estimate of the rate of convergence is proved in the statement known as the Riemann localization
principle for trigonometric series.
Keywords: trigonometric Fourier series, Riemann localization principle.
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ИССЛЕДОВАНИЕ l-ПРОБЛЕМЫ МОМЕНТОВ ДЛЯ УРАВНЕНИЙ ДРОБНОГО
ПЕРЕМЕННОГО ПОРЯДКА
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В работе обсуждается постановка и решение l-проблемы моментов для дифференци-
альных уравнений дробного порядка в случае, когда порядок уравнения является функ-
цией того же аргумента, что и искомая функция. В частности, рассматривается
случай, когда порядок уравнения является функцией времени, а проблема моментов
представляет собой задачу, к которой сводится задача оптимального управления для
уравнения дробного порядка. Исследуется возможность постановки такой проблемы
моментов и её разрешимость.

Ключевые слова: оптимальное управление, проблема моментов, уравнения дроб-
ного порядка, дробная производная переменного порядка.

Одно из направлений в дробном исчислении посвящено исследованию урав-
нений дробного порядка, который, в свою очередь является функцией того же ар-
гумента, что и функция, входящая в уравнение. В частности, в работе [1] был пред-
ложен подход к построению таких операторов в случае, когда этот порядок явля-
ется локально интегрируемой функцией времени α : [0,T ] → (0,1). Производная и
интеграл переменного дробного порядка α(t ) от некоторой функции f (t ) ∈ L1[0,T ]
определяются при этом следующими выражениями:

0Dα(t )
t f (t ) = d

d t

t∫
0

φα(t −τ) f (τ)dτ−φα(t ) f (0), t ∈ [0,T ],

0Iα(t )
t f (t ) =

t∫
0

ψα(t −τ) f (τ)dτ, t ∈ [0,T ],

где φα(t ) = L −1[ss A(s)−1](t ), ψα(t ) = L −1[s−s A(s)](t ), A(s) = L [α(t )](s); L и L −1 —
операторы прямого и обратного преобразования Лапласа. Для функций φα(t ) и
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ψα(t ) выполняется уравнение Сонина:

t∫
0

φα(t −τ)ψα(τ)dτ= 1.

Введённые таким образом операторы дробного интегрирования и диффе-
ренцирования взаимно-обратны (т.е., для их композиции справедлива формула
Ньютона-Лейбница).

В настоящей работе исследуется линейная система дробного порядка следую-
щего вида:

0Dαi (t )
t qi (t ) = ai j q j (t )+bi ui (t ), t ∈ [0,T ], i = 1, ..., N ,

с начальными условиями qi (0) = q0
i .

Решение данной системы будет при фиксированном значении t аналогично по
форме l-проблеме моментов, к которой сводится ряд задач оптимального управле-
ния и оценивания состояния динамических систем, в том числе дробного порядка
[2]. В данной работе исследована разрешимость такой проблемы моментов и рас-
смотрены частные случаи, соответствующие конкретному выбору функции α(t ). В
частности, доказана следующая

Теорема. Пусть ai j = δi+1, j , bi = δi N (цепочка интеграторов) и пусть ui (τ) ∈
Lp [0,T ], p > 1, i = 1, ..., N . Тогда l-проблема моментов для данной системы будет
корректна и разрешима, если

∀i :ψαi+. . .+αN (t ) ∈ Lp ′[0,T ],
1

p
+ 1

p ′ = 1.
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INVESTIGATION OF THE l-PROBLEM OF MOMENTS FOR THE FRACTIONAL-ORDER
EQUATIONS OF VARIABLE ORDER

S.S. Postnov

The paper discusses the formulation and solution of the l-moment problem for fractional differential
equations in the case of the order of the equation is a function of the same argument as the desired
function. In particular, we consider the case when the order of the equation is a function of time, and
the problem of is reduced moments is a problem to which the optimal control problem for a fractional
equation. The possibility of posing such a problem of moments and its solvability are investigated.
Keywords: optimal control, problem of moments, fractional-order equations, fractional derivative of
variable order.
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Проводится построение сумм Абеля — Пуассона рациональных интегральных опера-
торов Фурье – Чебышёва, представляющих собой рациональные функции с фиксиро-
ванным количеством геометрически различных полюсов, и изучаются аппроксимаци-
онные свойства введенного метода рациональной аппроксимации на классах функций,
задаваемых сингулярными интегралами на отрезке [−1,1] с ядром Коши и весом Чебы-
шёва второго рода. В случае, когда плотность сингулярного интеграла имеет степен-
ную особенность, найдены оптимальные значения полюсов аппроксимирующей функ-
ции, при которых достигаются наилучшие оценки равномерных приближений. Уста-
новлено, что скорости равномерных рациональных приближений в этом случае оказы-
ваются выше соответствующих полиномиальных аналогов.

Ключевые слова: рациональный интегральный оператор Фурье – Чебышёва, сум-
мыАбеля –Пуассона, сингулярныйинтеграл на отрезке, функции со степенной осо-
бенностью, асимптотические оценки.

Пусть задано произвольное множество чисел A = (a1, . . . , an), где ak либо яв-
ляются действительными и |ak | < 1, либо попарно комплексно-сопряженными. На
множестве суммируемых на отрезке [−1, 1] с весом (1−x2)−1/2 функций f (x) в 1979
году былвведен [1] рациональныйинтегральныйоператорФурье–Чебышёва sn(·, ·),
такой, что

sn( f , x) = pn (x)∏n
k=1 (1+ak x)

, pn(x) ∈Pn , sn(1, x) ≡ 1.

Если положить ak = 0, k = 1, . . . ,n, то sn( f , x) представляет собой частичную сумму
полиномиального ряда Фурье – Чебышева.

Пусть q ∈ (0,n) – произвольное натуральное число. Aq ⊂ A – есть множество
параметров таких, что среди чисел a1, a2, . . . , an , ровно q различных и кратность
каждого параметра равна m, n = mq. То есть, речь идет об аппроксимации раци-
ональными функциями с q геометрически различными полюсами в расширенной
комплексной плоскости.

Выражение

Pr,q ( f , x) = (1− r )
+∞∑
k=0

r k skq ( f , x), x ∈ [−1,1], r ∈ (0, 1), (1)

назовем суммами Абеля – Пуассона рациональных интегральных операторов ти-
па Фурье – Чебышева с q геометрически различными полюсами. Отметим, что из
представления (1) и свойств рационального интегрального оператора Фурье – Че-
бышёва следует Pr,q (1, x) = 1.
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Рассмотрим сингулярный интеграл с ядром типа Коши следующего вида:

f̂ (x) =
+1∫

−1

f (t )

t −x

√
1− t 2 d t , x ∈ [−1, 1], (2)

понимаемый в смысле главного значения по Коши, где плотность f (t ) удовлетворя-
ет условию Липшица любого порядка [2]. Задачи, связанные с приближениями син-
гулярного интеграла вида (2) методами численного анализа, являлись предметом
исследованийМ.А.Шешко [3], Б. Г. Габдулхаева [4] и других известныхматематиков.
В. Н. Русаком [5] изучены рациональные аппроксимации сингулярного интеграла
вида (2) с плотностью, принадлежащей различным классам непрерывных функций
на отрезке. В работе [6] решена задача рациональных аппроксимаций сингулярного
интеграла вида (2) интегральным оператором Фурье – Чебышёва.

Обозначим наилучшие равномерные рациональные приближения суммами
Абеля – Пуассона (1) сингулярных интегралов f̂s(x) вида (2) с плотностью |x|s , s ∈
(0,+∞)\N :

εr,q ( f̂s) = inf
Aq

∥∥ f̂s(x)−Pr,q ( f̂s , x)
∥∥

C [−1, 1] , r ∈ (0, 1). (3)

Теорема. Для величины (3) при r → 1 справедливы наименьшие оценки сверху.

εr,q ( f̂s) ≤



µ(q, s)(1− r )1− (1−s)q

1+s , s ∈ (0, 1),

2p
3

(1− r )

√√√√√ln

(
1+ ln

(
1+ . . .

(
lnln

1

1− r

)))
︸ ︷︷ ︸

q раз

, s = 1,

O(1− r ), s ∈ (1,+∞).

Величина µ(q, s) может быть выписана в явном виде.

Работа выполнена при финансовой поддержке государственной программы
научных исследований «Конвергенция 2020», №20162269 (Республика Беларусь).

Литература

1. Ровба Е. А.Об одномпрямомметоде в рациональной аппроксимации // Докл. АНБССР. – 1979. – Т. 23,
№ 11. – С. 968–971.

2. МусхелишвилиН.И. Сингулярные интегральные уравнения. 3-е изд. – М.: Наука, 1968. – 513 с.

3. ШешкоМ.А. О сходимости квадратурных процессов для сингулярного интеграла // Изв. вузов.
Матем. – 1976. –№ 12. – С. 108–118.

4. ГабдулхаевБ. Г. Конечномерные аппроксимации сингулярных интегралов и прямые методы решения
особых интегральных и интегро-дифференциальных уравнений // Итоги науки и техн. Сер. Мат. анал. –
1980. – Т. 18. – С. 251–307.

5. РусакВ.Н. Равномерная рациональная аппроксимация сингулярных интегралов // Изв. НАН Белару-
си. Сер. физ.-мат. наук. – 1993. –№ 2. – С. 22–26.

6. ПоцейкоП. Г., Ровба Е. А. О приближениях одного сингулярного интеграла на отрезке рациональны-
ми интегральными операторами Фурье – Чебышева // Матем. сб. – 2024. – Т. 215, № 7. – С. 96–137.



160 СОДЕРЖАНИЕ

ON RATIONAL ABEL – POISSON SUMS AND APPROXIMATIONS OF ONE SINGULAR INTEGRAL
ON A SEGMENT

P.G. Potseiko, E.A. Rovba

The construction of Abel – Poisson sums of a rational integral Fourier – Chebyshev operators,
which are rational functions with a fixed number of geometrically different poles, are studied, and
approximation properties of the introduced rational approximation method on classes of functions
defined by singular integrals on the segment [−1,1] with a Cauchy kernel and Chebyshev weight of the
second kind are investigated. In the case when the density of the singular integral has a power-law
singularity, optimal values of the poles of the approximating function are found, at which the best
estimates of uniform approximations are achieved. It is established that the rates of uniform rational
approximations, in this case, are higher than the corresponding polynomial analogues.
Keywords: rational integral Fourier – Chebyshev operator, Abel – Poisson sums, singular integral on a
segment, functions with a power singularity, asymptotic estimates.
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ ВОЗМУЩЕНИЙ В
ЖИДКОЙ ПЛЕНКЕ ПРИ НЕОДНОРОДНОСТИ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ

Л.А. Прокудина1
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Представлено нелинейное параболическое уравнение для амплитуды огибающей вол-
нового пакета в условиях неоднородности поверхностного натяжения. Проведены вы-
числительные эксперименты для умеренных чисел Рейнольдса, рассчитаны волновые
характеристики жидкой пленки и исследовано нелинейное взаимодействие возмуще-
ний спектрально узкого волнового пакета.

Ключевые слова: жидкая пленка, неустойчивость, неоднородность поверхностно-
го натяжения, волновой пакет, нелинейное параболическое уравнение.

Течение жидких пленок под действием силы тяжести реализуется в различных
тепло- и массообменных аппаратах. Тепло- и массообменные процессы в жидких
пленках протекают примежфазной неустойчивости поверхности раздела [1, 2]. При
этом на свободной поверхности жидкой пленки при неоднородности поверхност-
ного натяжения возникают произвольные возмущения, и их эволюция представля-
ет как научный, так и практический интерес. Моделирование эволюции возмуще-
ний проведено в рамках нелинейного параболического уравнения амплитуды оги-
бающей A волнового пакета

∂A

∂t2
+ i

∂ωi

∂kx

∂A

∂x1
− i

2

(
∂2ωr

∂k2
x

+ i
∂2ωi

∂k2
x

)
∂2 A

∂x2
1

= ω̄i A− (β1 + iβ2)|A|2 A. (1)

Коэффициенты уравнения (1) выражены через волновые характеристики жид-
кой пленки: частотуωr , инкрементωi и их производные, а коэффициенты (β1 и β2)
при нелинейном члене характеризуют нелинейное затухание возмущений и нели-
нейную зависимость фазы от амплитуды.
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Для вертикальныхжидкихпленок (воды, спирта) в диапазоне чиселРейнольдса
Re < 20 проведены вычислительные эксперименты при возбуждении спектрально
узкого волнового пакета в окрестности максимального инкремента, а также вблизи
кривой нейтральной устойчивости жидкой пленки. В окрестности гармоники мак-
симального инкремента происходит сужение волнового пакета, приводящее к мо-
нохроматической волне. При возбуждении волнового пакета в окрестности кривой
нейтральной устойчивости в результате нелинейного взаимодействия возмущений
идет направленный перенос энергии по спектру в окрестность максимального ин-
кремента.
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MATHEMATICAL MODELING OF PERTURBATIONS EVOLUTION IN A LIQUID FILM UNDER
SURFACE TENSION INHOMOGENUITY

L.A. Prokudina

We present a nonlinear parabolic equation describing evolution of the wave packet envelop ampli-
tude when surface tension is unhomogeneous. For the moderate Reynolds numbers, computational
experiments are performed, the wave characteristics of the liquid film are calculated. In addition, we
investigate the nonlinear interaction of disturbances in a spectrally narrow wave packet.
Keywords: liquid film, instability, surface tension inhomogenuity, wave packet, nonlinear parabolic equa-
tion.
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В данной работе рассматриваются неограниченные линейные операторы A , допус-
кающие представление в виде n×n-блочно-операторных матриц. Установлен аналог
теоремы Гершгорна для диагонально доминирующих n ×n-блочно-операторных мат-
риц.

Ключевые слова: блочно-операторная матрица, доминирующая матрица, теоре-
ма Гершгорина.

Многие научно-прикладные проблемы, исследуемые в современной мате-
матической физике, приводятся к исследованиям спектральных свойств блочно-
операторных матриц, элементы которых являются линейными операторами, дей-
ствующими в банаховых или гильбертовых пространствах. В данной работе мы
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формулируем теорему, которая считается важной при оценке нижних или верхних
границ таких матриц.

Пусть n ∈N, n ≥ 3,
(
H i ,∥ ·∥i

)
, i = 1, · · · ,n, — банахово пространство и

(
H ,∥ ·∥) —

прямая сумма пространств H1, . . . ,Hn, т. е.,

H :=H1 ⊕·· ·⊕Hn , ∥ f ∥ :=
√

∥ f1∥2
1 +·· ·+∥ fn∥2

n , f = ( f1, . . . , fn)t ∈H .

В банаховом пространствеH рассмотрим линейные операторыA , действую-
щие как n ×n - блочно-операторные матрицы

A :=
(

Ai j

)n

i , j=1
,

где матричные элементы Ai j : H j ⊃ D(Ai j ) → H i , i , j = 1, . . . ,n, – плотно опреде-
ленные, допускающие замыкание линейные операторы и область определения

D(A ) =
n⊕

j=1

( n⋂
i=1

D(Ai j )
)
,

оператора A также плотна в H .
Определение. Для блочно-операторной матрицыA определим ее диагональную

часть T и внедиагональную часть S следующим образом

T := diag(
A11, . . . , Ann

)
, S :=A −T ,

и назовем A диагонально доминирующей порядка δS , если оператор S ограничен
относительно T с T -гранью δS .

Заметим, что область определения диагонально доминирующих блочно-
операторных матрицA всегда описывается через области определений диагональ-
ных элементов согласно равенству D(A ) = D(A11)⊕ ·· · ⊕D(Ann). Если A — диаго-
нально доминирующая матрица порядка δS < 1, то операторS ограничен относи-
тельно A с A -гранью ≤ δS /(1−δS ).

Теперь сформулируем аналог теоремы Гершгорина относительно суммы эле-
ментов строк длянеограниченныхдиагонально доминирующихn×n–операторных
матриц A .

Теорема. ПустьA – диагонально доминирующая n×n–операторная матрица с
замкнутыми диагональными элементами A j j и Ai j -грани δi j оператора Ai j удовле-

творяют условию
n∑

j=1
i ̸= j

δi j < 1. Пусть постоянные ai j ,bi j ≥ 0 таковы, что
n∑

j=1
i ̸= j

bi j < 1, и

для i , j = 1, ...,n, i ̸= j выполняются неравенства:

∥Ai j f j∥i ≤ ai j∥ f j∥ j +bi j∥A j j f j∥ j , f j ∈ D(A j j ) ⊂ D(Ai j ).

Тогда имеет место соотношение σ(A ) ⊂ Grow, где

Grow :=
n⋃

j=1

(
σ(A j j )∪ {λ ∈ ρ(A j j ) :

n∑
i=1
i ̸= j

∥Ai j (A j j −λ)−1∥ ≥ 1}
)
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⊂
n⋃

j=1

(
σ(A j j )∪

{
λ ∈ ρ(A j j ) : ∥(A j j −λ)−1∥

( n∑
i=1
i ̸= j

(ai j +|λ|bi j )
)
≥ 1−

n∑
i=1
i ̸= j

bi j

})
.

При доказательстве теоремы 1 реализуется доказательство Хаусхолдера при
использовании разных факторизаций для A −λ, см. [1,2].
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AN ANALOG OF THE GERSHGORIN THEOREM FOR UNBOUNDED DIAGONALLY DOMINANT
OPERATOR MATRICES

T.H. Rasulov

In this note we consider unbounded linear operatorA admitting n×n block operator matrix represen-
tation. The Gershgorin theorem for diagonally dominant n ×n block operator matrix is established.
Keywords: block operator matrix, dominant matrix, Gershgorin theorem.
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О НЕТРИВИАЛЬНЫХ РЕШЕНИЯХ ОДНОРОДНОЙ ЗАДАЧИ ДИРИХЛЕ ДЛЯ
ОБОБЩЕННЫХ ГАРМОНИЧЕСКИХ ФУНКЦИЙ ПЕРВОГО ПОРЯДКА В

КРУГОВЫХ ОБЛАСТЯХ
К.М. Расулов1, Т.Р. Нагорная2
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В статье предлагается комплексно-аналитический метод решения однородной зада-
чи Дирихле для обобщенных гармонических функций первого рода в круговых областях.

Ключевые слова: обобщенная гармоническая функция, однородная краевая зада-
ча типа задачи Дирихле, нетривиальные решения.

Пусть T +
r = {z : |z| < r },0 < r < 1 – круговая область на плоскости комплексного

переменного z = x + i y , а Lr = {t : |t | = r } – граница T +
r .

Рассматривается следующая краевая задача GD0
1: требуется найти все обоб-

щенные гармоническиефункцииW (z) первого порядка, принадлежащие классуG1(T +
r )∩

H (1)(Lr ) и удовлетворяющие на L условию

W (t ) = 0, t ∈ Lr . (1)

Сформулированную выше задачу будем именовать однородной краевой задачей
типа задачи Дирихле для обобщенных гармонических функций первого порядка.

Далее излагается конструктивный алгоритм решения задачи GD0
1, состоящий

из следующих двух логических шагов.
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Шаг 1. С учетом того, что всякую обобщенную гармоническую функцию W (z)
из класса G1(T +

r )∩H (1)(Lr ) можно представить в виде (см., например, [1]):

W (z) = dϕ+(z)

d z
+ 2z

1− zz
ϕ+(z)+ d f +(z)

d z
+ 2z

1− zz
f +(z), z ∈ T +

r , (2)

где ϕ+(z), f +(z) – аналитические в круге T +
r функции, называемые аналитическими

компонентами обобщенной гармонической функцииW(z), вводя в рассмотрение вспо-
могательные аналитические в областях T +

r или T −
r =C \ (T +

r ∪Lr ) функции вида

Φ+(z) = z
dϕ+(z)

d z
+ 2r 2

1− r 2ϕ
+(z), z ∈ T +

r , (3)

F+(z) = z
d f +(z)

d z
+ 2r 2

1− r 2 f +(z), z ∈ T +
r , (4)

Φ−(z) = F+
(

r 2

z

)
, z ∈ T −

r (5)

краевое условие (1) приведём к виду:

Φ+(t ) =− t 2

r 2Φ
−(t ), t ∈ Lr . (6)

Но равенство (7) представляет собой граничное условие однородной краевой
задачи Римана (задачи сопряжения) относительно ограниченной на бесконечности
кусочно аналитической функции Φ(z) = {Φ+(z),Φ−(z)} (см., например, [2, с. 106]),
общее решение которой задается формулами:

Φ+(z) =− 1

r 2 (C0 +C1z +C2z2), z ∈ T +
r ,Φ−(z) = 1

z2 (C0 +C1z +C2z2), z ∈ T −
r , (7)

где C0 =α0 + iβ0,C1 =α1 + iβ1,C2 =α2 + iβ2 – произвольные комплексные числа.
При этом на основании формул (5) и (7) попутно получаем:

F+(z) =Φ−
(

r 2

z

)
= C 0

r 4 z2 + C 1

r 2 z +C2, z ∈ T +
r , (8)

Шаг 2. Подставляя в левые части равенств (3) и (4) вместо Φ+(z) и F+(z) их
значения, задаваемыеформулами (7) и (8), а затемрешаядваполученныхлинейных
дифференциальных уравнений Эйлера первого порядка, находим:

ϕ+(z) =−C0(1− r 2)

2r 4 − C1

r 2 (
1− r 2

1+ r 2 )z − C2(1− r 2)

2r 2 z2, (9)

f +(z) = C2(1− r 2)

2r 2 + C 1

r 2 (
1− r 2

1+ r 2 )z + C 0(1− r 2)

2r 4 z2 (10)

Подставляя полученные по формулам (9) и (10) аналитические функции ϕ+(z)
и f +(z) в правую часть представления (2), находим все нетривиальные решение
искомой однородной задачи GD0

1 в круге T +
r = {z : |z| < r },0 < r < 1 .

Таким образом, справедливо следующее утверждение:

Теорема. Если T +
r = {z : |z| < r },r ∈ (0,1), то все нетривиальные решения задачи

GD0
1 можно задавать формулой (2), где ϕ

+(z) и f +(z) определяются по формулам (9)
и (10) соответственно.
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ON NONTRIVIAL SOLUTIONS OF THE HOMOGENEOUS DIRICHLET PROBLEM FOR
GENERALIZED HARMONIC FUNCTIONS OF THE FIRST ORDER IN CIRCULAR DOMAINS

K.M. Rasulov, T.R. Nagornaya

The article proposes a complex analytical method for solving the homogeneous Dirichlet problem for
generalized harmonic functions of the first kind in circular domains.
Keywords: generalized harmonic function, homogeneous boundary value problem of the Dirichlet type,
nontrivial solutions.
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ДИНАМИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ОПЕРАТОРОВ В ПРОСТРАНСТВЕFϕ

А.И. Рахимова1

1 alsu1405@mail.ru; Институт математики с вычислительным центром УФИЦ РАН, г. Уфа, Россия

В работе обсуждается вопрос о динамических свойствах различных операторов в ве-
совом пространстве целых функций. В частности, рассмотрены операторы, которые
являются в нем гиперциклическими, хаотическими и часто-гиперциклическими.

Ключевые слова: весовое пространство, целые функции, гиперциклические опе-
раторы, дифференциальный оператор.

Рассмотрим некоторые динамические свойства операторов в весовом про-
странстве целых функций Fϕ, где ϕ — семейство выпуклых в Cn функций. Оно
определено как проективный предел компактной последовательности банаховых

пространств Fm в виде Fϕ =
∞⋂

m=1
Fm, поэтому является пространством Фре-

ше––Шварца [1].

Теорема 1. В пространстве Fϕ оператор частного дифференцирования
T = ∂

∂z j
, 1 ≤ j ≤ n, гиперциклический и его образ принадлежиттому же пространству.

Теорема 2. Пусть в пространствеFϕ задан некоторый полином с постоянными
коэффициентами

Φ(z) = ∑
α∈Zn+: |α|≤m

cαzα, z ∈Cn ,

не тождественный постоянной, тогда оператор

T = ∑
α∈Zn+: |α|≤m

cαDα
z f

гиперциклический в Fϕ.
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Теорема 3. В пространстве Fϕ оператор частного дифференцирования
T = ∂

∂z j
, 1 ≤ j ≤ n, является хаотическим и часто-гиперциклическим.

Рассмотрим оператор T , определенный в теореме 2. Он также обладает свой-
ствами хаотичности и часто-гиперцикличности в пространстве Fϕ.
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DYNAMIC PROPERTIES OF SOME OPERATORS IN SPACEFϕ

A.I. Rakhimova

The paper discusses the question of the dynamic properties of various operators in weighted space
of entire functions. In particular, we consider operators that are hypercyclic, chaotic and frequently
hypercyclic in it.
Keywords: weighted space, entire functions, hypercyclic operators, differential operator.
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НАЧАЛЬНО-ГРАНИЧНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ КОЛЕБАНИЯ КРУГЛОЙ
ПЛАСТИНЫ, КОГДА ЕЕ КОНТУР СВОБОДЕН

К.Б. Сабитов1
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В работе изучаются колебания круглой однородной пластины, когда ее контур свобо-
ден. Этот случай в имеющейся литературе исследован в случае осесимметрических
колебаний без соответствующих строгих математических обоснований. Доказано,
что частотное уравнение имеет счетное множество решений, указано их расположе-
ние и найдена асимптотическая формула для вычисления частот при больших индек-
сах. На их основе построено в явном виде решение поставленной начально-граничной
задачи в виде суммы ряда и дано обоснование сходимости ряда в классе регулярных и
обобщенных решений. Установлена устойчивость решения в зависимости от началь-
ных данных.

Ключевые слова: уравнение колебания пластины, начальные и граничные усло-
вия, частотное уравнение, формы собственных колебаний, ряд, существование,
устойчивость.

Рассмотрим дифференциальное уравнение в частных производных четвертого
порядка

ut t +α2∆2u = 0, (1)

которое моделирует свободные поперечные колебания тонкой однородной круглой

пластины радиуса r = a и толщины h, где α2 = ρh/D, D = Eh3

12(1−µ2)
– жесткость
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пластинки при изгибе, ρ – масса на единицу площади пластинки, µ – коэффициент
Пуассона,∆u – оператор Лапласа, u(x, y, t ) – смещение (изгиб) точки (x, y) в момент
времени t .

Отметим, что пластины применяются в различных областях современной
техники: строительстве, авиастроении, машиностроении, судостроении, ядерных
энергетических установках и т.д. Во многих случаях использование пластин связа-
но с различными граничными условиями по их контуру.

Поскольку пластина – круг, то целесообразно записать дифференциальное
уравнение (1) в полярных координатах (r,ϕ), и оно в этих координатах имеет вид( ∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂ϕ2

)2
u + 1

α2 ut t = 0

или в развернутой форме

L u ≡ ur r r r + 2

r 2 ur rϕϕ+ 1

r 4 uϕϕϕϕ+ 2

r
ur r r−

− 2

r 3 urϕϕ− 1

r 2 ur r + 4

r 4 uϕϕ+ 1

r 3 ur + 1

α2 ut t = 0.
(2)

Вид граничных условий по контору r = a круглой пластины D = {(r,ϕ)|0 ≤ r <
a, 0 ≤ϕ≤ 2π} зависит от способа закреплениякрая. В случае, когда контурпластины
свободен, граничные условия имеют вид

Mr (u)|r=a =Qr (u)|r=a = 0, (3)

где Mr (u) – изгибающий момент, который определяется формулой

Mr (u) =−D
[∂2u

∂r 2 +µ
(1

r

∂u

∂r
+ 1

r 2

∂2u

∂ϕ2

)]
,

Qr = Nr + 1

r

∂Mrϕ

∂ϕ
,

здесь Nr – поперечная сила и Mrϕ – крутящий момент, они находятся по формулам

Nr =−D
∂

∂r
(∆u),

Mrϕ =−(1−µ)D
(1

r

∂2u

∂r∂ϕ
− 1

r 2

∂u

∂ϕ

)
.

Начальные условия такие же, как и в случае колебаний мембраны:

u(r,ϕ, t )|t=0 = f (r,ϕ), ut (r,ϕ, t )|t=0 = g (r,ϕ), (r,ϕ) ∈ D . (4)

Уравнение (2) рассмотрим в цилиндрической области

Q = {(r,ϕ, t )| (r,ϕ) ∈ D, 0 < t < T },

где T – заданная положительная постоянная, и поставим следующую задачу.
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Начально-граничная задача. Найти определенную в области Q функцию
u(r,ϕ, t ) со свойствами:

u(r,ϕ, t ) ∈C 4,2
rϕ,t (Q),

L u(r,ϕ, t ) ≡ 0, (r,ϕ, t ) ∈Q,

и удовлетворяющую граничным и начальным условиям (3) и (4), где f и g – задан-
ные достаточно гладкие функции.

Отметим, что работы [1] – [4] и другие посвящены изучению колебаний пря-
моугольной и круглой пластин.

В данной работе изучается колебания круглой однородной пластины, когда ее
контур свободен. Этот случай в указанной выше литературе и других работах ис-
следован в основном в случае осесимметрических колебаний без соответствующих
строгих математических обоснований. Доказано, что соответствующее частотное
уравнение имеет счетное множество решений, указано их расположение и найде-
на асимптотическая формула для вычисления частот при больших индексах. На их
основе построено в явном виде решение поставленной начально-граничной зада-
чи в виде суммы ряда и дано обоснование сходимости ряда в классе регулярных и
обобщенных решений. Установлена устойчивость решения от начальных функций.

Ранее в работах [5] – [8] нами изучены колебания прямоугольной пластины с
различными граничными условиями на краях. Доказаны теоремы единственности,
существования и устойчивости решения начально-граничных задач в классах регу-
лярных и обобщенных решений.

Работа выполнена на средства госбюджета по госзаданию № 123021200015-5(FMRS
– 2023 – 0015).
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INITIAL BOUNDARY VALUE PROBLEM FOR THE EQUATION OF OSCILLATION OF A CIRCULAR
PLATE, WHEN THE CONTOUR OF PLATE IS FREE

K.B. Sabitov

The work studies the vibrations of a round homogeneous plate, when the contour of plate is free. This
case has been studied in the existing literature in the case of axisymmetric vibrations without corre-
sponding strict mathematical justification. It is proved that the frequency equation has a countable set
of solutions, their location is indicated, and an asymptotic formula is found for calculating frequencies
for large indices. On their basis, a solution to the posed initial boundary value problem in the form of
a sum of a series is constructed in explicit form, and a justification for the convergence of the series in
the class of regular and generalized solutions is given. The stability of the solution depending on the
initial data has been established.
Keywords: plate vibration equation, initial and boundary conditions, frequency equations, natural vibra-
tion modes, series, existence, stability.
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КАНАЛЬНЫЙ ОПЕРАТОР ДЛЯ ОПЕРАТОРНОЙ МАТРИЦЫ ТРЕТЬЕГО ПОРЯДКА
С НЕКОМПАКТНЫМ ВОЗМУЩЕНЕМ

Г.Р. Сайлиева1

1 g.r.saylieva@buxdu.uz; Бухарский государственный университет, Бухара, Узбекистан

В данном работе рассматривается операторная матрицатретьего порядка с неком-
пактным возмущением. Построен соответствующий канальный оператор. Установ-
лено, что канальный оператор имеет чисто существенный спектр и совпадает с су-
щественным спектромизучаемого операторнойматрицы, крометого, существенный
спектр как множество состоит из объединения не более четырех отрезков.

Ключевые слова: операторная матрица, некомпактное возмущение, канальный
оператор, спектр, существенный спектр.

Пусть T— одномерный тор, C— одномерное комплексное пространство, L2(T)
— гильбертово пространство квадратично-интегрируемых (комплекснозначных)
функций, определенных на T и Ls

2(T2) — гильбертово пространство квадратично-
интегрируемых (комплекснозначных) симметричных функций, определенных на
T2. Обозначим через H прямую сумму пространств H0 := C, H1 := L2(T) и H2 :=
Ls

2(T2). Обычно пространствоH называется "трехчастичным обрезанным" подпро-
странством бозонного пространства Фока Fb(L2(T)) над L2(T), где

Fb(L2(T)) :=C⊕L2(T)⊕Ls
2(T2)⊕Ls

2(T3)⊕·· · .

Рассмотрим операторную матрицу, действующую в гильбертовом простран-
стве H как

Hµ,λ :=
 H00 µH01 0
µH∗

01 H11 µH12

0 µH∗
12 H 0

22 −λV

 ,
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где элементы этой операторной матрицы определяются по формулам

H00 f0 = ε f0, H01 f1 =
∫
T

v0(t ) f1(t )d t ;

(H11 f1)(x) = (ε+1+cos(2x)) f1(x), (H12 f2)(x) =
∫
T

v1(t ) f2(x, t )d t ;

(H 0
22 f2)(x, y) = (ε+2−cos(2x)−cos(2y)) f2(x, y), V :=V1 +V2;

(V1 f2(x, y) = v2(y)
∫
T

v2(t ) f2(x, t )d t , (V2 f2(x, y) = v2(x)
∫
T

v2(t ) f2(t , y)d t .

Здесь ε> 0; а vi (·), i = 0,1,2 — вещественнозначные непрерывные функции на T.
Можно легко проверить, что операторная матрица Hµ,λ является линейным,

ограниченным и самосопряженным оператором в гильбертовом пространствеH .
Надо отметить, что операторная матрица Hµ,λ, связана с гамильтонианом

системы с несохраняющимся числом частиц на решетке, не превосходящим трёх.
Для формулировки основного результата работы наряду с оператором Hµ,λ

рассмотрим ещё оператор H ch
µ,λ, действующий в гильбертовом пространстве L2(T)⊕

L2(T2) по формуле

H ch
µ,λ :=

(
H11

µp
2

H12
µp

2
H21 H 0

22 −λV1

)
.

Очевидно, что оператор H ch
µ,λ ограничен и самосопряжен в L2(T)⊕L2(T2) и оно

определяется единственном образом по некомпактной части оператора Hµ,λ в силу
свойства разлагаемости в прямой операторный интеграл.

Теперь сформулируем основной результат настоящей работы, который описы-
вает существенный спектр операторной матрицы Hµ,λ.

Теорема. а) Канальный оператор H ch
µ,λ имеет чисто существенный спектр, т.е.

σ(H ch
µ,λ) =σess(H ch

µ,λ);

б) Существенный спектр σess(Hµ,λ) операторной матрицы Hµ,λ совпадает со
спектром канального оператора H ch

µ,λ, т.е.

σess(Hµ,λ) =σ(H ch
µ,λ);

с) Множество σess(Hµ,λ) состоит из объединения не более четырех отрезков.
Следует отметить, что оператор H ch

µ,λ со свойствами а) и б) теоремы 1 обычно
называют канальным оператором.
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THE CHANNEL OPERATOR FOR AN OPERATOR MATRIX WITH A NONCOMPACT
PERTURBATION

G.R. Sayliyeva

In this paper, we consider a third-order operator matrix with a non-compact perturbation. The
corresponding channel operator is constructed. It is established that the channel operator has a
purely essential spectrum and coincides with the essential spectrum of the studied operator matrix;
in addition, it is noted that the essential spectrum as a set consists of a union of no more than four
segments.
Keywords: operator matrix, non-compact perturbation, channel operator, spectrum, essential spectrum.
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При определенных предположениях уравнениеВольтерра первого родаможнопривести
к уравнению второго рода. Если ядро уравнения зависит от разности аргументов, то
можно применить к приведенному уравнению вероятностную теорию восстановле-
ния для плотностей. На ядро уравнения налагаются слабые моментные ограничения.

Ключевые слова: уравнение Вольтерра первого рода, правильно меняющаяся
функция.

We consider the Volterra equation of the first kind∫ x

0
k(x − y)z(y)d y = f (x), x ≥ 0, (1)

where z(x) is the function sought, whereas the kernel k(x) and f (x) are given functions
having continuous derivatives. We assume that

f (0) = 0, f (x) ̸≡ 0, k(0) = 1, k ′(x) ≤ 0,
∫ ∞

0
|k ′(x)|d x = 1.

Denote p(x) := |k ′(x)|, g (x) := f ′(x). Differentiating equation (1) we arrive at the equation

z(x) =
∫ x

0
p(x − y)z(y)d y + g (x), x ≥ 0, (2)

which is known as the renewal equation in probability theory. Let h(x) :=∑∞
n=1 pn∗(x) be

the renewal density, where pn∗(x) is the n-fold convolution of p(x):

p1∗(x) := p(x), p(n+1)∗(x) :=
∫ x

0
pn∗(x − y)p(y)d y, n ≥ 1.
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The function

z(x) := g (x)+
∫ x

0
g (x − y)h(y)d y

is the unique solution to both equations, (2) and (1).
Definition. A positive function L defined on (0,∞) varies slowly at infinity if for each

x > 0

L(t x)

L(t )
→ 1

as t →∞. A function τ varies regularly with exponent ϱ if

τ(x) = xϱL(x)

holds with −∞ < ϱ < ∞ and L varying slowly.
The relation a(x) ∼ cb(x) as x →∞ means that a(x)/b(x) → c as x →∞.
Let q ∈ L1(0,∞). Set T q(x) := ∫ ∞

x q(y)d y , x ≥ 0.
We investigate the asymptotic behavior of the solution z(x) as x →∞ when

µ :=
∫ ∞

0
xp(x)d x =

∫ ∞

0
k(x)d x <∞,

but ∫ ∞

0
x2p(x)d x =∞.

Theorem 1. Let f ′ = g ∈ L1(0,∞) and let the functions xg (x), xp(x), xT p(x) and
T 2p(x) behave likeO(τ(x)) as x →∞, where τ(x) = x−αL(x), 0 ≤α≤ 1, and L(x) is a slowly
varying function at infinity. Then

z(x) = 2 f (x)

µ
− 1

µ2

∫ x

0
f (x − y)k(y)d y + r (x),

where r (x) = O(x−2αL2(x)) for 0 ≤ α < 1 and r (x) = O(x−2L(x)L1(x)) for α = 1 as x →∞;
here L1(x) = ∫ x

1 y−1L(y)d y . The statement remains valid if in its statement the symbol O is
replaced with o-small throughout.

Corollary 1. Let the conditions of Theorem 1 be fulfilled. Then, as x →∞,

z(x) = f (x)

µ
+O(τ(x)).

The statement remains valid if the symbol O is replaced with o-small, throughout.

Corollary 2. Let the conditions of Theorem 1 be fulfilled. Then

lim
x→∞z(x) = 1

µ
lim

x→∞ f (x).

Theorem 2. Suppose that f ′(x) = g (x) ≥ 0, x ≥ 0, is a nonincreasing function. If, as
x →∞, either f (x) →∞ or z(x) →∞, then, as x →∞,

z(x) ∼ f (x)

µ
.
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VOLTERRA EQUATION OF THE FIRST KIND

M.S. Sgibnev

Under certain assumptions, Volterra equation of the first kind can be reduced to that of the second kind.
If the kernel of equation depends on the difference of arguments, we can apply the probabilistic renewal
theory for densities to the reduced equation. Weak moment conditions on the kernel are assumed.
Keywords: Volterra equation of the first kind, regularly varying function.

УДК 517.51

ПРИБЛИЖЕНИЕ НЕПРЕРЫВНЫХ ФУНКЦИЙ И ФУНКЦИЙ ОГРАНИЧЕННОЙ
p-ВАРИАЦИИ СТУПЕНЧАТЫМИ ФУНКЦИЯМИ

Т.Ю. Семенова1

1 station@list.ru; Московский государственный университет, Московский центр фундаментальной и
прикладной математики

Результат Н.П. Корнейчука об оценке приближения непрерывных функций ступен-
чатыми в норме Lp , p ∈ [1, 3], распространяется на случай p ∈ [1, ∞). Результат
П.Л. Ульянова об оценке приближения функции из Lp ступенчатыми через интеграль-
ный модуль непрерывности уточняется для функций ограниченной p-вариации.

Ключевые слова: приближение ступенчатыми функциями, функции ограничен-
ной p-вариации.

Пусть C [a, b] — множество непрерывных на отрезке [a, b] действительнознач-
ных функций с нормой ∥ f ∥C = max

x∈[a,b]
| f (x)|.

ω( f , h) = max{| f (t1)− f (t2)|; t1, t2 ∈ [a, b], | t1 − t2 | ≤ h}

— модуль непрерывности функции f .
Пусть Lp [a, b] —множество измеримых действительнозначных определенных

на [a, b] функций, модуль которых интегрируем в p-й степени, p ∈ [1,∞), ∥ f ∥p =(∫ b
a | f (x)|d x

)1/p
. Если h ∈ [0, b − a], то

ω( f , h)p = sup
0≤t≤h

(∫ b−t

a
| f (x + t )− f (x)|p d x

)1/p
,

— интегральный модуль непрерывности (в Lp) функции f .
Назовём p-вариацией функции f на [a, b], p ∈ [1,∞), величину

Vp ( f ) =Vp ( f , [a, b]) = sup
T

( m∑
i=1

| f (xi )− f (xi−1)|p
)1/p

,

где точная верхняя грань берется по всем разбиениям T = {a = x0 < ... < xm = b} от-
резка [a, b]. Если Vp ( f , [a, b]) < +∞, то функция называется функцией ограничен-
ной p-вариации на [a, b], а класс всех таких функций обозначается Vp [a, b].
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Одним из простых линейных методов приближения функций является при-
ближение кусочно-постоянными функциями со значениями на интервалах посто-
янства, равными среднеинтегральным значениям исходной функции. Обозначим
x j = a + j · b−a

n , j = 0, 1, ..., n;

ψn( f , x) = n

b −a

∫ x j

x j−1

f (t )d t при x ∈ (x j−1, x j ), j = 1, ..., n.

Н.П. Корнейчук [1] доказал, что для f ∈C [a, b], 1 ≤ p ≤ 3, справедлива оценка

|| f −ψn( f )||p ≤ 1

2
(b −a)1/p ω

(
f ,

b −a

n

)
, (1)

которая является неулучшаемой. Из неравенства П.Л. Ульянова [2]

∥ f −ψn( f )∥p ≤
( 2n

b −a

∫ b−a
n

0

(
ω

(
f , u

)
p

)p
du

)1/p
≤ 21/p ω

(
f ,

b −a

n

)
p

,

верного для f ∈ Lp [a, b]∩Vp [a, b], p ∈ [1, ∞), следует соотношение

∥ f −ψn( f )∥p ≤Vp ( f )
(b −a

n

)1/p
. (2)

Для p ≥ 1 и λ ∈ [0,1] определим ϕp (λ) = (
λp (1−λ)+ (1−λ)pλ

)1/p , mp =
max

0≤λ≤1
ϕp (λ).

Теорема 1. Для f ∈ C [a, b] при произвольном p ∈ [1, ∞) справедлива неулучшае-
мая оценка

|| f −ψn( f )||p ≤ mp · (b −a)1/p ω
(

f ,
b −a

n

)
.

Теорема 2. Если f ∈ Lp [a, b]∩Vp [a, b], p ∈ [1, ∞), то верна неулучшаемая оценка

∥ f −ψn( f )∥p ≤ mp ·Vp ( f )
(b −a

n

)1/p
.

Отметим, что при 1 ≤ p ≤ 3 значение mp = 1/2; при p > 3 величина mp
монотонно возрастает, lim

p→∞mp = 1 и выполнено неравенство

max
{

1/2,(p +pp )1/p (p +1)−1−1/p
}
< mp < 2−3/p < 1.

При 1 ≤ p ≤ 3 результат теоремы 1 соответствует неравенству (1). Результат
теоремы 2 при 1 ≤ p ≤ 3 дает оценку в два раза лучше, чем неравенство (2).
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APPROXIMATION OF CONTINUOUS FUNCTIONS AND FUNCTIONS OF BOUNDED
p-VARIATION BY STEP FUNCTIONS

T.Yu. Semenova

N.P. Korneychuk’s result on estimating the approximation of continuous functions by step functions in
the Lp norm, p ∈ [1, 3], extends to the case p ∈ [1, ∞). P.L. Ulyanov’s assessment result of the stepwise
approximation of a function from Lp through the integral modulus of continuity is refined for functions
of bounded p-variation.
Keywords: approximation by step functions, functions of bounded p-variation.
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НАЧАЛЬНО-ГРАНИЧНЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С
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В работе поставлены начально-граничные задачи для неоднородного уравнения сме-
шанного параболо-гиперболического типа с характеристическим вырождением. Для
каждой задачи установлен критерий единственности решений. Решения задач по-
строено в явной форме в виде сумм рядов по системе собственных функций соответ-
ствующей одномерной спектральной задачи. При обосновании сходимости построен-
ных рядов возникают малые знаменатели, затрудняющие сходимость этих рядов. В
связи с этим для доказательства равномерной сходимости рядов установлены оценки
об отделенности от нуля малых знаменателей с соответствующей асимптотикой,
которые позволили при некоторых условиях относительно данных задачи доказать
принадлежность построенного решения классу регулярных решений.

Ключевые слова: уравнение смешанного параболо-гиперболического типа, харак-
теристическое вырождение, спектральный метод, единственность, существование,
ряд, малые знаменатели, равномерная сходимость.

Рассмотрим уравнение

Lu = F (x, t ), (1)

в прямоугольной области

D = {(x, t )|0 < x < l , −α< t <β},

здесь

Lu =
{

uxx − t nut −bu, t > 0,

uxx − (−t )mut t −bu, t < 0,
F (x, t ) =

{
F1(x, t ), t > 0,

F2(x, t ), t < 0,
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где n > 0, m > 0, l > 0, α > 0, β > 0 и b – заданные действительные числа, Fi (x, t ),
i = 1,2, – известные функции и следующие начально-граничные задачи.

Задача 1. Пусть 0 < n < 1, 0 < m < 1. Найти функцию u(x, t ), удовлетворяющую
следующим условиям:

u(x, t ) ∈C (D)∩C 1
x(D)∩C 2

x(D+)∩C 2(D−); (2)

lim
t→0+0

t nut (x, t ) = lim
t→0−0

ut (x, t ); (3)

Lu(x, t ) ≡ F (x, t ), (x, t ) ∈ D+∪D−; (4)

u(0, t ) = u(l , t ) = 0, −α≤ t ≤β; (5)

u(x,−α) =ϕ(x), 0 ≤ x ≤ l , (6)

где ϕ(x) – заданная достаточно гладкая функция, D+ = D ∩ {t > 0}, D− = D ∩ {t < 0}.
Задача 2. Пусть 0 < n < 1, 1 < m < 2. Найти функцию u(x, t ), удовлетворяющую

условиям (2), (4) – (6) и

lim
t→0+0

t nut (x, t ) = lim
t→0−0

(−t )m−1ut (x, t ), 0 ≤ x ≤ l . (7)

Задача 3. Пусть 0 < n < 1, m = 1. Найти функцию u(x, t ), удовлетворяющую
условиям (2), (4) – (6) и

lim
t→0+0

t nut (x, t ) = lim
t→0−0

ut (x, t )

ln(−t )
, 0 ≤ x ≤ l . (8)

Для уравнения (1) линия t = 0, как и в работе М.В. Келдыша [1], является
характеристикой степенного вырождения уравнения, что затрудняет постановку
краевых задач.

Начально-граничная задача для уравнения (1), когда n = 0 и m < 0, n < 0 и
m = 0, n < 0 и m < 0, изучена в работе [2].

В работе получен критерий единственности решения задач 1 – 3 при различ-
ных 0 < n < 1 и 0 < m < 2. Их решения построены в явной форме в виде сумм рядов
по системе собственных функций соответствующей одномерной спектральной за-
дачи. Для этих рядов возникает проблема малых знаменателей, которая затрудняет
обоснование сходимости. Для доказательства равномерной сходимости построен-
ных рядов найдены оценки, гарантирующие отделённость от нуля малых знаме-
нателей, которые позволили доказать существование регулярного решения задач 1
– 3, т.е. решения, удовлетворяющего условиям (2) и (3), (2) и (7), (2) и (8) соответ-
ственно. Когда n ≥ 1 или m ≥ 2 поставленные задачи для уравнения (1) становятся
некорректными.
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INITIAL BOUNDARY VALUE PROBLEMS FOR A MIXED TYPE EQUATION WITH
CHARACTERISTIC DEGENERATION

S.N. Sidorov

The paper poses initial boundary value problems for a non-homogeneous equation of mixed parabolic-
hyperbolic type with characteristic degeneration. For each problem, a criterion for the uniqueness of
solutions is established. Solutions to the problems are constructed explicitly as sums of series over a
system of eigenfunctions of the corresponding one-dimensional spectral problem. When substantiating
the convergence of the constructed series, small denominators arise that complicate the convergence
of these series. In this regard, to prove the uniform convergence of the series, estimates are established
for the separation from zero of small denominators with the corresponding asymptotics, which make it
possible, under certain conditions with respect to the data of the problem, to prove that the constructed
solution belongs to the class of regular solutions.
Keywords: equation of mixed parabolic-hyperbolic type, characteristic degeneration, spectral method,
uniqueness, existence, series, small denominators, uniform convergence.
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ЗАПУТЫВАНИЕ МОД В РАМКАХ ЛОКАЛЬНЫХ АЛГЕБР CAR
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В данной работе мы даем формулировку простой алгебраической модели для исследо-
вания явления запутанности мод для ферми-частиц, используя класс C∗-алгебр, за-
данных каноническими антикоммутационными соотношениями (K AC ).

Ключевые слова: алгебраическая модель,C∗-алгебра канонических антикоммута-
ционных соотношений, квантовая запутанность.

Явление квантовой запутанности лежит в основе всех современных квантовых
технологий и, в то же время, является серьезной, еще далекой от своего решения
проблемой современной науки. В арсенале исследований этого явления основным
инструментом является энтропия — одна из фундаментальных мер запутанности.
Однако при верификации различных энтропий (фон Неймана и т.д.) используют-
ся состояния, основанные на концепции гильбертова пространства, которое счи-
тается заданным априори. При этом возникает много вопросов принципиального
характера, о чем свидетельствуют многочисленные споры, которые ведутся в ли-
тературе. Поэтому в последенее время предпринимаются серъезные попытки при-
менения для исследования запутанности мощные и универсальные методы теории
C∗-алгебр и можно надеяться, что на этом пути удастся получить ответы на некото-
рые основополагающие вопросы подобно тому, как это случилось с квантовой тео-
рией поля после перехода из феноменологического на аксиоматический уровень
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описания.
ИспользуемC∗-алгебру Кунца Od , порожденную изометрическими оператора-

ми ψ1,ψ2, . . . ,ψd (d ≥ 2), удовлетворяющими соотношениям Кунца

ψ∗
i ψ j = δi j I , (1)

d∑
i
ψiψ

∗
i = I . (2)

Генераторы ai и a∗
i C∗-алгебры (K AC ) удовлетворяют соотношениям

{ai , a j } = {a∗
i , a∗

j } = 0, (3)

{ai , a∗
j } = δi , j 1, (4)

где ai − оператор уничтожения фермионной частицы в состоянии i , a∗
j — оператор

рождения такой же частицы в состоянии j . Здесь i , j ∈N иN—множество натураль-
ных чисел. Согласно [1], операторырожденияи уничтоженияфермионовможно вы-
разить с помощью изометрических операторов (1)-(2), используя линейное отобра-
жение ζ : O2 →O2, определяемое как ζ(X ) =ψ1Xψ∗

1−ψ2Xψ∗
2 , X ∈O2. Идентифицируя

рекурсивным образом семейство операторов {a1, a2, ..., ai , ...} с помощью ai = ζ(ai−1)
при a ≡ a1 =ψ1ψ

∗
2 , легко убеждаемся, что соотношения (1)-(2) всегда будут выполне-

ны. Эта схема определяет так называемую стандартную рекурсивную фермионную
систему и осуществляет вложение C∗-алгебрыK AC в C∗-алгебру O2 (d = 2).

Рассмотрим модовую запутанность для двух неразличимых частиц в рамках
вторичного квантования. Разобьем алгебру A ⊂ K AC , генерируемую модами ai ,
i = 1,n, где n ∈ N, на двудольную систему, состоящую из двух подалгебр AA и AB ,
локализованных в соответствующих непересекающихся подмножествах множества
натуральных чисел. ПустьAA генерируется двумя модами i , j , аAB — остальными.
Тогда двухмодовая частичная матрица плотности имеет вид:

ρ =


〈a∗

i ai a∗
j a j 〉 0 0 0

0 〈a∗
i ai a j a∗

j 〉 〈a∗
j ai 〉 0

0 〈a∗
i a j 〉 〈ai a∗

i a∗
j a j 〉 0

0 0 0 〈ai a∗
i a j a∗

j 〉


Дальнейшие вычисления ненулевых матричных элементов показывают, что

предложенный подход позволяет исследовать запутанность, избегая стандартные
утомительные процедуры (применение теорем Вика и т.п.) и используя непосред-
ственно только взаимно ортогональные базисные векторы пространства представ-
ления алгебры Кунца и сами генераторы алгебры Кунца, подчиняющиеся простым
соотношениям (1)-(2).

Литература

1. Mitsuo Abe, Katsunori Kawamura, Recursive Fermion System in Cuntz Algebra. I, Commun.Math. Phys.
– 2002. – Vol. 228. – P. 85–101.



Г.К. Соколова 179

MODE ENTANGLEMENT IN THE FRAMEWORK OF LOCAL CAR ALGEBRAS

A.S. Sitdikov, A.S. Nikitin, D.V. Bushtets

In this paper, we formulate a simple algebraic model for investigating the phenomenon of mode
entanglement for Fermi particles using the class ofC∗-algebras defined by canonical anticommutation
relations (C A R).
Keywords: algebraic model, C∗-algebra of canonical anticommutation relations, quantum entanglement.
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О ХАРАКТЕРИСТИЧЕСКОМ ПОЛИНОМЕ ЛАПЛАСИАНА ЦИРКУЛЯНТНОГО
ГРАФА С НЕФИКСИРОВАННЫМИ СКАЧКАМИ

Г.К. Соколова1
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ситет, Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук

В докладе рассматривается семейство циркулянтных графов с нефиксированными
скачками. Описывается структура характеристического полинома лапласиана та-
ких графов. Характеристический полиномпредставлен произведением алгебраических
функций, задаваемые корнями линейной комбинации полиномов Чебышева первого ро-
да, при этом из него можно выделить полный квадрат некоторого целочисленного по-
линома. Для графов приведена формула подсчета числа корневых остовных лесов и
аналитическая формула индекса Кирхгофа.

Ключевые слова: циркулянтный граф, характеристический полином матрицы Ла-
пласа, корневые остовные леса, индекс Кирхгофа.

Рассматривается связный конечный граф G, который допускает кратные ребра
и не содержит петель. Для графа G составим матрицу смежности A и матрицу
валентности вершинD. ТогдаматрицаL = D−A называетсяматрицейЛапласаили
лапласианом графа G, а соответствующий ей характеристический полином χL (µ)
определяется через определитель χL (µ) = det(L −µE), где E— единичная матрица
соответствующего порядка.

Определение. ГрафCβn =Cβn(s1, . . . , sk ,α1n, . . . ,αℓn) на βn вершинах называет-

ся циркулянтным графом с нефиксированными скачками 1 ≤ s1 < s2 < . . . < sk <
[
βn
2

]
, и

1 ≤α1 < . . . <αℓ ≤
[
β
2

]
, если любая i-я вершина смежна с вершинами i±s1, i±s2, . . . , i±sk

и i ±α1n, i ±α2n, . . . , i ±αℓn по модулю βn. Здесь β и ℓ— целые положительные числа,
а n предполагается достаточно большим.

Для графа важными инвариантами являются число корневых остовных лесов и
число остовных деревьев. Эти величины зависят от собственных значений характе-
ристического полинома χL (µ). Ранее была получена структурные теоремы о числе
остовных деревьев [1, 2, 3, 4] для рассматриваемого класса графов, не опирающие-
ся на структуру χL (µ).
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В данной работе опишем структуру полинома χL (µ) матрицы Лапласа цирку-
лянтного графа Cβn с нефиксированными скачками с помощью следующей теоре-
мы.

Теорема 1. Характеристический полином χL (µ) матрицы Лапласа L цирку-
лянтного графа Cβn задается формулой

χL (µ) = (−1)n(β−1)
β−1∏
u=0

sk∏
j=1

(
2Tn(w j (u))−2cos

(
2πu

β

))
,

гдеTs(w)—полиномЧебышева первого рода, и числаw j (u), для каждого u = 0,1, . . . ,β−
1, являются корнями уравнения

k∑
i=1

Tsi (w) = k − µ

2
+2

ℓ∑
m=1

sin2
(
πuαm

β

)
.

Следующая теорема утверждает, что характеристический полином циркулянт-
ного графа всегда является полным квадратом некоторого целочисленного полино-
ма с точностью до явно заданных линейных множителей.

Теорема 2. Пусть числа p ∈ N и q ∈ N равны количеству нечетных элементов в
последовательностях скачков s1, s2, . . . , sk иα1,α2, . . . ,αℓ в графеCβn, соответственно.
Тогда существует целочисленная последовательность dn(µ) такая, что

1. χL(µ) =µ(µ−4p)(dn(µ))2, если n четно;

2. χL(µ) =µ(µ−4(p +q))(dn(µ))2, если n нечетно, β четно;

3. χL(µ) =−µ(dn(µ))2, если n нечетно, β нечетно.

В качестве приложений Теоремы 1 в докладе указывается формула подсчета
корневых остовных лесов в циркулянтном графе Cβn . Отметим, что последнее
значение можно найти как величину χL (−1) = det(L +E). Также приводится явная
аналитическая формула для индекса Кирхгофа графа Cβn .

Материалы данного доклада частично были опубликованы в статье [5].
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ON THE CHARACTERISTIC POLYNOMIAL OF THE LAPLACIAN OF A CIRCULANT GRAPHWITH
NON-FIXED JUMPS

G.K. Sokolova

The report deals with the class of circulant graphs with non-fixed jumps. The structure for the
characteristic polynomial of the Laplace matrix of the graphs is described. The characteristic
polynomial is represented by the product of algebraic functions defined by the roots of a linear
combination of Chebyshev polynomials of the first kind. From it one can extract the complete square
of some integer polynomial. A formula for calculating the number of root spanning forests and an
analytical formula for the Kirchhoff index are given for the graphs.
Keywords: circulant graph, characteristic polynomial for Laplacematrix, rooted spanning forests, Kirchhoff
index.
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О КВАДРАТУРНЫХ ФОРМУЛАХ ДЛЯ ОСОБЫХ ИНТЕГРАЛОВ С ВЕСОМ ПО
ОТРЕЗКУ ДЕЙСТВИТЕЛЬНОЙ ОСИ
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Для особых интегралов с весовой функцией Лащенова строятся и исследуются интер-
поляционные квадратурные формулы с кратными узлами.

Ключевые слова: особый интеграл, интерполяция, кратные узлы, квадратурная
формула.

Рассмотрим особый интеграл

Im f = Im( f ; x) =
∫ 1

−1
p(t )

f (t )

(t −x)m d t , m = 1,2, ..., (1)

понимаемый в смысле главного значения по Коши (m = 1) или в смысле конечного
значения по Адамару (m > 1), где f (x) — заданная плотность интеграла, а p(x) —
весовая функция.

В работе [1] для интеграла I1 f построена и исследована квадратурная формула
заменой плотности f (x) интерполяционным полиномом Лагранжа с узлами — ну-
лями полинома Ln(x) К.В.Лащенова [2]; такие полиномы ортогональны на [−1;1] с
весом p(x) = (1− x2)p |x|q (p > −1, q > −1).

Результаты работы [1] переносятся на интеграл Im f , m > 1.
Рассмотрим случай кратных узлов интерполирования.
Через Sn(x) = Sn( f ; x) обозначим полином степени 2n + 1, удовлетворяющий

условиям

Sn( f ;−1) = f (−1), Sn( f ;1) = f (1), Sn( f ; xk ) = f (xk ), S′
n( f ; xk ) =βnk ,

где βnk (k = 1,n) — произвольные числа, x0 = 1, xn+1 = −1, а xk — нули полинома
Ln(x) с весом p(x) = (1− x2)p |x|q , 0 < p É 1

2 , 0 < q < 1.
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Аппроксимируя плотность интеграла полиномом Sn(x) = Sn( f ; x), получим
квадратурную формулу

I1 f = I1(Sn f ; x)+Rn f =
n+1∑
k=0

f (xk )Ãk (x)+
n∑

k=1
βnk B̃k (x)+Rn f , (2)

где Ãk (x) = I1(Ak ; x), B̃k (x) = I1(Bk ; x), а фундаментальные полиномы интерполиро-
вания Ak (x) и Bk (x) определены в работе [3].

Для вычисления коэффициентов C̃k (x) квадратурной формулы (2), где Ck (x) =
Ak (x) или Ck (x) = Bk (x), используем представление

C̃x(x) = I1(Ck ; x) =
∫ 1

−1
p(t )

Ck (t )−Ck (x)

t −x
d t +Ck (x)I1(1; x)

иразлагаемподынтегральнуюфункциюпополиномам Ln(x). Тогда задача сводится
к вычислению известных значений моментов весовой функции

µk =
∫ 1

−1
t k p(t )d t = {0, k = 2n +1; B

(
q +k +1

2
, p +1

)
, k = 2n, n = 0,1, ...}

и интеграла [4]

∫ 1

−1

(1− t 2)β

t −x
d t =π(1−x2)βctg(β+1)π−22βB(β,β+1)F

(
−2β,1;1−β;

1−x

2

)
,

где B(m,n),F (m,n; p; z) — бэта–функция и соответственно гипергеометрическая
функция.

Теорема 1. Пусть f (x) ∈ H (r )
α (M , [−1;1]), 0 <αÉ 1, βnk = f ′(xk ) =O(nv )(k = 1,n),

0 É 2v < δ < 2, δ = min(2p, q). Если r Ê 1, то для остаточного члена квадратурной
формулы (2) справедлива оценка

∥Rn f ∥C =O(n−r−α+v lnn), r +α> v.

Теорема 2. Если в условиях теоремы 1 r Ê m, m > 1, то

∥Im( f −Sn f ; x)∥C =O(n−r−α+v+m−1 lnn), r +α+1 > v +m.

Аналогичные результаты получены для интеграла (1) с весовой функцией
p(x) = (1− x2)γ, γ > −1.
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ON QUADRATURE FORMULAS FOR SINGULAR INTEGRALS WITH WEIGHT OVER A SEGMENT
OF THE REAL AXIS

Yu.S. Soliev

For singular integrals with the Laschenov weight function, interpolation quadrature formulas with
multiple nodes are constructed and investigated.
Keywords: singular integral, interpolation, multiple nodes, quadrature formula.
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АППРОКСИМАЦИИ ЭРМИТА-ПАДЕ РЯДОВ ЛОРАНА
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Для системы рядов Лорана определены аппроксимации Эрмита-Лорана, которые яв-
ляются аналогами аппроксимаций Эрмита-Паде степенных рядов. В условиях класси-
ческой теоремы Фабри "об отношении" установлено, что рациональные аппроксима-
ции Эрмита-Лорана локализуют особые точки сумм рядов Лорана.

Ключевые слова: многочлены Паде, степенные ряды, ряды Лорана, теорема Фаб-
ри, аппроксимации Паде, аппроксимации Эрмита-Паде, проблема Паде-Лорана.

Рассмотрим набор (систему) fL = ( f1, . . . , fk ), состоящую из k рядов Лорана

f j (z) =
∞∑

l=−∞
c

j
l zl , j = 1, . . . ,k .

Множество k–мерных мультииндексов, являющихся упорядоченным набором k
целых неотрицательных чисел, обозначим Zk+. Порядком мультииндекса −→m =
(m1, . . . ,mk ) ∈ Zk+ назовём сумму m = m1 + . . .+mk . Обозначим через Lm множество
всех рациональных дробей вида

Q(z) = a−p

zp + . . .+ a−1

z
+a0 +a1z + . . .+ap zp , p É m.

ФункциюQ ∈ Lm будем называть обобщенным многочленом степени не выше m.
Задача HL (Эрмита-Лорана). Для мультииндекса (n,−→m) ∈ Zk+1+ и набора fL

найти тождественно не равный нулю обобщенный многочлен многочлен Qm ∈ Lm
и такие обобщенные многочлены Pn j ∈ Ln j , n j = n +m −m j , чтобы

(
Qm f j −Pn j

)
(z) =

∞∑
k=n+m+1

c̃
j
k zk +

c̃
j
−k

zk

 , j = 1, . . . ,k .
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Определение. Если пара (Qm ,P L), где P L = (Pn1 , . . . ,Pnk ), является решением
задачи HL, то рациональные дроби

[
n j /−→m]

fL (z) = Pn j (z)/Qm(z), j = 1, . . . ,k , будем
называть аппроксимациями Эрмита-Лорана (см. [1]) для мультииндекса (n,−→m) ∈
Zk+1+ и системы рядов fL.

Комплексному числу z и каждому l ∈ Z поставим в соответствие матрицы-
строки

Em(z) = (
z−m z−m+1 ... z−1 1 z ... zm−1 zm)

,

C
j
l =

(
c

j
l+m c

j
l+m−1 . . . c

j
l+1 c

j
l c

j
l−1 . . . c

j
l−m+1 c

j
l−m

)
, j = 1, . . . ,k .

Для заданного j ∈ {1, . . . ,k}, фиксированных индекса n ∈Z1+ и ненулевого мультиин-
декса −→m = (m1, . . . ,mk ) в предположении, что m j ̸= 0, определим матрицы порядка
m j × (2m + 1)

F
j
+ :=


C

j
n j+m j

C
j
n j+m j−1
...

C
j
n j+1

 ,F j
− :=


C

j
−n j−1

C
j
−n j−2
...

C
j
−n j−m j

 .

Введём в рассмотрение определитель D(n,−→m; z) := det
[

F k+ . . .F 1+ Em(z) F 1− . . .F k−
]T

.
Обозначим через Hn,−→m(fL) матрицу, полученную из элементов определителя
D(n,−→m; z) после удаления в нём (m + 1)-ой строки Em(z). Если в определите-
ле D(n,−→m; z) строку Em(z) заменить на строку C j

l , получим новый определитель

d
j
l (n,−→m).

Теорема. Задача HL всегда имеет решение. Для того, чтобы для мультииндекса
(n,−→m),−→m ̸= (0, . . . ,0) задачаHL имела единственное решение необходимо и достаточно,
чтобы r ank Hn,−→m(fL) = 2m. Если r ank Hn,−→m(fL) = 2m, то при определенном выборе
нормирующего множителя и j = 1, . . . ,k справедливы представления

Qm(z; fL) = D(n,−→m; z), Pn j (z; fL) =
n j∑

p=−n j

d
j
p (n,−→m)zp .

Рассмотрим систему fL = { f j (z)}k
j=1, где каждая функция f j аналитична в кольце

K j = {z : r j < |z| < R j } и разлагается в этом кольце в ряд Лорана. Предположим, что
c

j
±n ̸= 0 при n Ê n0 и для j = 1, . . . ,k существуют пределы

lim
n→+∞

c
j
n

c
j
n+1

= z j ̸= 0, lim
n→+∞

c
j
−n

c
j
−n−1

= 1

z− j
̸=∞, |z− j | < |z j | ,

где комплексные числа {z± j }k
j=1 попарно различны. По теореме Фабри точки z± j

являются особыми точками функции f j и лежат на границе кольца K j : |z− j | = r j ,
а |z j | = R j . Пронормируем дробь [n j /

−→
1 ]fL, умножив её числитель и знаменатель на
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1/λn, где λn = ∏k
j=1 c

j
n+2mc

j
−n−2m и

−→
1 = (1, . . . ,1) ∈ Zk . Полагая Q∗

n,
−→
1

(z) = Q
n,
−→
1

(z)/λn,
из теоремы получаем

lim
n→+∞Q∗

n,
−→
1

(z) = Az−k
k∏

j=1
(z − z j )(z − z− j ).

Литература

1. Никишин Е.М., Сорокин В.Н. Рациональные аппроксимации и ортогональность. –М.: Наука, 1988.
– 256 с.

HERMITE-PADÉ APPROXIMATIONS OF LAURENT SERIES

A.P. Starovoitov, I.V. Kruglikov

For the system of Laurent series, Hermite-Laurent approximations are defined, which are analogs of
Hermite-Padé approximations of power series. Under the conditions of the classical Fabry theorem
"on the ratio" it is established that rational Hermite-Laurent approximations localize singular points
of the sums of Laurent series.
Keywords: Padé polynomials, power series, Laurent series, Fabry theorem, Padé approximants, Hermite-
Padé approximants, Padé-Laurent problem.
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АСИМПТОТИКА НЕЛИНЕЙНЫХ АППРОКСИМАЦИЙ ЭРМИТА-ЧЕБЫШЕВА
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В работе описана асимптотика поведения нелинейных аппроксимаций Эрмита-
Чебышёва для систем специальных функций, ассоциированных с функциями Миттаг-
Леффлера. Найдены точные порядковые оценки равномерных уклонений указанных ап-
проксимаций от соответствующих специальных функций.

Ключевые слова: многочлены Чебышёва, аппроксимации Паде-Чебышёва, нели-
нейные аппроксимации Эрмита-Чебышёва.

Рассмотрим систему Chγ = Chγ(
−→
λ )={C hγ(x;λ j )}k

j=1, состоящую из функций,
представленных рядами Фурье по многочленам Чебышёва Tn(x) = cos(n arccos x),

C hγ(x;λ j ) = ∑∞
p=0

λ
p
j

(γ)p
Tp (x), j = 1, . . . ,k .

При k Ê 1 и n Ê m j −1, j = 1, . . . ,k, существуют (см. [1], [2]) рациональные дроби

πch
j (z;Chγ) =πch

j (z;Chγ(
−→
λ )) =πch

n j ,n,m(z;Chγ(
−→
λ )) =

P ch
j (z;Chγ)

Qch
m (z;Chγ)

,
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где многочлены Qch
m (x;Chγ), P ch

j (x;Chγ), степени которых не превышают соответ-
ственно m и n j , подобраны так, что

C hγ(x;λ j )−πch
j (x;Chγ) =

∞∑
l=n+m+1

c
j
l Tl (x), j = 1, . . . ,k .

Как и в [1], [2] координатные функции вектора −→π ch
n,−→m(Chγ)={πch

j (z;Chγ(
−→
λ ))}k

j=1

будем называть нелинейными аппроксимациями Эрмита–Чебышёва для мультиин-
декса (n,−→m) и системы Chγ(

−→
λ ). При k = 1 дроби πch

n,m(x;Chγ) :=πch
n,n,−→m(x;Chγ(

−→
λ )) на-

зывают нелинейными аппроксимациями Паде–Чебышёва (см. [3]).

Пусть {λ j }k
j=1 – корни уравнения λ

k = 1, т.е. λ j = ei
2π( j−1)

k , j = 1, . . . ,k, где i —

мнимая единица. Полагаем ϕ(x) := x(1− xk ). Через x j обозначим нули ϕ′(x):

x j = k

√
1

k +1
ei

2π( j−1)
k , j = 1, . . . ,k.

Рассмотрим функцию S(x) := lnϕ(x), x ∈ (0,1). По определению полагаем, что S(0) =
S(1) = −∞. Справедливы равенства см.[4]

S(x1) = ln
k

k
√

(k +1)k+1
, S′(x) = ϕ′(x)

ϕ(x)
, S′′(x) = ϕ′′(x)ϕ(x)− [ϕ′(x)]2

ϕ2(x)
,

из которых следует, что S′(x1) = 0, S′′(x1) = ϕ′′(x1)
ϕ(x1) =− k

√
(k +1)k+2 , и

Bk (n) :=
√

− 2π

nS′′(x1)
en S(x1) =

√
2π

n
k
√

(k +1)k+2

(
k

k
√

(k +1)k+1

)n

.

Везде в дальнейшем будем рассматривать только такие значения λ j , что {λ j }k
j=1

являются корнями уравнения λk = 1

Теорема 1. Если k = 1, то для любого x, n = m при n →∞

C hγ(x;1)−πchn,n(x;C hγ) = (−1)n
√
π

n

1

22n+γ
1

(γ)2n
×

×Re
{

ei (2n+1)arccos x ex+i
p

1−x2
(1+O(1/n))

}
.

Теорема 2. Если k Ê 2, то для любого x, n = m1 = . . . = mn при n →∞

C hγ(x;λ j )−πchj (x;C hγ) = (−1)n x
γ−1
1

Bk (n)

γkn+n
×

×Re
{

ei (kn+n+1)arccos x λn+1
j e

λ j (1−x1)
(
x+i

p
1−x2

)
(1+O (1/n))

}
, j = 1, . . . ,k.
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ON THE ASYMPTOTICS OF NONLINEAR HERMITE-CHEBYSHEV APPROXIMATIONS

A.P. Starovoitov, N.V. Ryabchenko, M.A. Kukhlich

The paper describes the asymptotic behavior of nonlinear Hermite-Chebyshev approximations for sys-
tems of special functions associated with Mittag-Leffler functions. Exact ordinal estimates of uniform
deviations of the indicated approximations from the corresponding special functions are found.
Keywords: Chebyshev polynomials, Padé-Chebyshev approximations, nonlinear Hermite-Chebyshev
approximations.
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Мы получаем необходимые и достаточные условия ограниченности в весовых про-
странствах Лебега одномерных операторов типа Харди, включающих супремумы.

Ключевые слова: неравенство Харди, супремум, весовое пространство Лебега.

В работе решены задачи из [1, страницы 326 и 331]. Сообщение основано на
статье [2].
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WEIGHTED INEQUALITIES WITH ONE–DIMENSIONAL HARDY OPERATORS INVOLVING
SUPREMA

V.D. Stepanov

We obtain necessary and sufficient boundedness conditions in weighted Lebesgue spaces for one–
dimensional Hardy operators involving suprema.
Keywords: Hardy inequality, supremum, weighted Lebesgue space.
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ПРЯМОУГОЛЬНЫЙ ОПЕРАТОР ХАРДИ В ВЕСОВЫХ ПРОСТРАНСТВАХ ЛЕБЕГА
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В работе представлены характеристики свойств ограниченности, компактности
и аппроксимируемости оператора Харди прямоугольного интегрирования в весовых
пространствах Лебега. Дается обзор известных результатов для одномерного случая.
Особое внимание в докладе уделяется двумерному оператору Харди, для которого
авторами недавно были получены новые критерии выполнения требуемых свойств.

Ключевые слова: интегральный оператор Харди, весовое пространство Лебега,
ограниченность, компактность, поведение аппроксимативных чисел.

Пусть n ∈ N. Для измеримой по Лебегу функции f на Rn+ := (0,∞)n n–мерный
оператор Харди прямоугольного интегрирования имеет вид

In f (x1, ..., xn) : =
∫ x1

0
...

∫ xn

0
f (y1, ..., yn)d y1...d yn (x1, ..., xn > 0). (1)

Пусть 0 < p, q ≤∞ и v, w ≥ 0 – весовые функции (веса) на Rn+. Весовое пространство
Лебега L

p
v (Rn+) состоит из всех измеримых на Rn+ функций f таких, что ∥ f ∥p

p,v =∫
Rn+ | f |

p v < ∞.
Основная задача состоит в характеризации интегрального неравенства∥∥In f

∥∥
q,w ≤Cn∥ f ∥p,v (2)

для всех f ∈ L
p
v (Rn+) и дальнейшем исследовании свойств (1). Константа Cn > 0

предполагается наилучшей (наименьшей из возможных) и не зависящей от f . Ха-
рактеризация (2) эквивалента задаче об ограниченности оператора (1) в весовых
пространствах Лебега. Соответствующий критерий должен быть представлен неко-
торым функционалом F (v, w, p, q) =: F ≈ Cn . При этом эквивалентность означа-
ет выполнение неравенства F ≲ Cn ≲ F , где A ≲ B , означает, что A ≤ cB с кон-
стантой, зависящей от p, q и n. Мы обозначаем p ′ := p/(p − 1), I∗n g (y1, ..., yn) : =∫ ∞

y1
...

∫ ∞
yn

g (x1, ..., xn)d x1...d xn, ∥h∥r,1 =: ∥h∥r .
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Характеризация (2) в случаях 1 = p ≤ q ≤∞, 1 < p ≤ q =∞ или 1 = q ≤ p ≤∞,
1 < q ≤ p =∞ хорошо известна [1, Гл. XI]. Например, если 1 = p < q <∞, то

∥In∥L1
v (Rn+)→L

q
w (Rn+) = esssup

ti≥0,i=1,..,n
[v(t1, . . . , tn)]−1[I∗n w(t1, . . . , tn)

]1/q .

Для 0 < p < 1 известно [2, теорема 2], что ограниченность In : L
p
v (Rn+) → L

q
w (Rn+)

влечет
∥In∥L

p
v (Rn+)→L

q
w (Rn+) = 0.

Случай n = 1 неравенства (2) полностью изучен: 1 < p = q < ∞ — G. Talenti
(1969) [3], G. Tomaselli (1969) [4], B. Muckenhoupt (1972) [5]; 1 < p ≤ q <∞— J. Bradley
(1978) [6]; 1 < q < p <∞ — V.G. Maz’ya, V.A. Rozin (1978) [7]; 0 < q < 1 ≤ p <∞ — G.
Sinnamon, V.D. Stepanov (1996) [8]; 1 < q < p <∞—L.–E. Persson, V.D. Stepanov (2002)
[9]. Приведемосновныерезультаты, так как они служатмотивацией кисследованию
n > 1.

I : Ограниченность. (aI) Если 1 < p ≤ q <∞, то C1 ≈ AM ≈ AT ≈ A∗
T , где

AM := sup
t>0

AM (t ) := sup
t>0

[
I∗1 w(t )

]1/q[
I1σ(t )

]1/p ′
, AT := sup

t>0

[
I1

(
[I1σ]q w

)
(t )

]1/q[
I1σ(t )

]−1/p ,

A∗
T := sup

t>0

[
I∗1

(
[I∗1 w]p ′

σ
)
(t )

]1/p ′[
W (t )

]−1/q ′
и σ := v1−p ′

.

(bI) Если 0 < q < p <∞, p > 1, 1/s := 1/q −1/p, то C1 ≈ BMR ≈ B∗
MR ≈BPS ≈B∗

PS , где

BMR :=
(∫ ∞

0
[I∗1 w]s/q [I1σ]s/q ′

σ
)1/s

, BPS :=
(∫ ∞

0

[
I1

(
[I1σ]q w

)]s/p
[I1σ]q−s/p w

)1/s
,

B∗
MR :=

(∫ ∞

0
[I∗1 w]s/p [I1σ]s/p ′

w
)1/s

, B∗
PS :=

(∫ ∞

0

[
I∗1

(
[I∗1 w]p ′

σ
)]s/q ′

[I∗1 w]p ′−s/q ′
σ

)1/s
.

(c I) Если 0 < q < 1 и p = 1, то C1 ≈B :=
(∫ ∞

0

[
I∗1 w(t )

] q
1−q

[
esssup

s∈[0,t ]

1
v(s)

] q
1−q w(t )d t

) 1−q
q

.

II : Компактность. (aII) Если 1 < p ≤ q < ∞, то оператор I1 : L
p
v (R+) → L

q
w (R+)

компактен, если и только если AM <∞ и limt→0 AM (t ) = limt→∞ AM (t ) = 0 (см. (aI)).
Ограниченность I1 : L

p
v (R+) → L

q
w (R+) при 0 < q < p < ∞, p ≥ 1 равносильна

компактности в силу интегральной формы функционалов, эквивалентных C1 (см.
(bI) и (c I)).
III : Аппроксимативное число (a−число) порядка k ∈N линейного оператора T : X →
Y определяется по формуле ak (T ) := inf

{∥T − L∥X→Y : rank L < k
}
, что совпадает с

линейным поперечником порядка k образа единичного шара T B в Y .
(aIII) Первые оценкина a−числа оператораT : Lp (R+) → Lq (R+), где Lr (R+) := Lr

1(R+),
вида T f := w I1( f v) в случае 1 < p ≤ q <∞ были найдены в [10] в следующем виде.

Пусть 0 < ε < ∥T ∥. В предположении, что T компактен, можно подобрать
последовательность точек 0 = c0 < c1 < ... < cN <∞ такую, что норма оператора T ,
суженного на интервал (ck−1,ck ), k = 1, . . . , N (ε), равна ε, и меньше либо равна ε на
(cN ,∞). Тогда

[N (ε)]1/q−1/pε≲ aN (T )≲ ε.
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(bIII) Следующим шагом исследовались асимптотические оценки a−чисел для T :
L2(R+) → L2(R+). В частности, было доказано соотношение типа Х. Вейля [11]:

lim
k→∞

kak (T ) =π−1∥w v∥1. (3)

(c III) Результат (bIII) дополняет верхняя оценка на второй асимптотический член
[12]:

limsup
k→∞

p
k
∣∣∣π−1∥w v∥1 −kak (T )

∣∣∣≤ c
(∥v ′∥2/3 +∥w ′∥2/3)(∥w∥2 +∥v∥2

)+3π−1∥w v∥1.

(d III) В [13] формула (3) была распространена на негильбертовы пространства Ле-
бега для дальнейшего изучения поведения ak (T ) и поперечников Колмогорова. Из-
вестно, что

dk (T ) := inf
Xk⊂Lq (R+)

sup
0<∥ f ∥p≤1

∥ f ∥p
−1 inf

g∈Xk
∥T f − g∥q ,

где Xk произвольное линейное подпространство размерности ≤ k. Если 1 < q ≤ p <
∞, то

lim
k→∞

kak (T ) = lim
k→∞

kdk (T ) = cpq∥w v∥r , где 1/r := 1/p ′+1/q,

2cpq B(1/q,1/p ′) = (p ′)1/q q1/p ′
(p ′ + q)1/p−1/q и w ∈ Lq (R+), v ∈ Lp ′

(R+). При этом
c22 = 1/π.
(eIII) Двусторонние асимптотические оценки на a−числа (точные по порядку убы-
вания) весового оператора Харди для всех p, q ∈ (1,∞) были получены в [14]. По-
ложим

λ :=


1/r, 1 < p ≤ q ≤ 2 или 2 ≤ p ≤ q <∞,

1, 1 < q < p <∞,

1/2+min{1/q,1/p ′}, 1 ≤ p < 2 < q ≤∞.

Так как специальная техника позволяет свести двухвесовой случай к одновесовому,
рассмотрим оператор Tρ f := ρI1( f ) с одним весом ρ. Пусть ∆k := [2k ,2k+1], где k ∈Z,
и

δk = δk (ρ) := 2k/p ′∥ρ∥Lq (∆k ), |ρ|r := ∥(δk )∥r =
( ∑

k∈Z
δr

k

)1/r
, где ∥ρ∥r ≤ |ρ|r .

Условие ∥ρ∥r <∞ влечет |ρ|r <∞ при дополнительных условиях регуларности на ρ.
Для всех p, q > 1 в предположении |ρ|r <∞ имеет место оценка из [14, 15]:

∥ρ∥r ≲ liminf
k→∞

kλak (Tρ) ≤ limsup
k→∞

kλak (Tρ)≲ ∥ρ∥r .

( f III) Кроме асимптотических оценок были найдены нижние и верхние границы
норм Шаттена–Неймана для a−чисел компактного T : Lp (R+) → Lp (R+), где p, s > 1
[16]: ∑

k
as

k (T ) ≈
∫ ∞

0

[
I1v p ′]s/p ′[

I∗1 w p]s/q w p .
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Для n > 1 задача характеризации неравенства (2) была обозначена Б. Мукенхо-
уптом в 1979 г. [17]. В частности, отмечалось, что, по сравнению с n = 1, необходи-
мое условие

sup
(t1,t2)∈R2+

[
I∗2 w(t1, t2)

]1/p[
I1σ(t1, t2)

]1/p ′ <∞, (4)

вообще говоря, не является достаточнымв случаеn = 2и 1 < p = q <∞. Эта гипотеза
нашла подтверждение в знаменитой работе Э. Сойера [18], посвященной характе-
ризации двумерного неравенства (2) в случае 1 < p ≤ q < ∞. Уникальная схема в
[18] позволяет извлечь критерии ограниченности I2, когда он действует из L

p
v (R2+) в

L
q
w (R2+), без ограничений на веса v и w , кроме I∗2 w(t1, t2) < ∞ и I1σ(t1, t2) < ∞ для
всех (t1, t2) ∈ R2+, что необходимо вытекает из (4). При этом I2 : L

p
v (R2+) → L

q
w (R2+),

по сравнению с n = 1, в общем случае контролируется суммой трех функционалов
— двумерными аналогами AT и A∗

T , а также функционалом (4), который является
обобщением AM (см. (aI)) на n = 2.

Схема Э. Сойера послужила методом получения новых критериев ограничен-
ности I2 в случае 1 < p ̸= q < ∞ [4, 2]. На этой основе в [4] исследовалась ком-
пактность I2, были найдены оценки меры некомпактности [3], а также установле-
ны неявные оценки типа (aIII) на аппроксимативные числа двумерного оператора
Харди [1].

Дляn > 1неравенствоисследовалось в [7] с некоторымиограничениямина веса
v , w , которые позволяют характеризовать (2) только одним функционалом.

Более подробно этапы изучения многомерного оператора (1) будут представ-
лены в докладе.

Работа частично поддержана Российским научным фондом (проект № 22-21-
00579).
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RECTANGULAR HARDY OPERATOR IN WEIGHTED LEBESGUE SPACES

V.D. Stepanov, E.P. Ushakova

The paper describes boundedness, compactness and approximation properties of the Hardy operator
of rectangular integration in weighted Lebesgue spaces. A separate review of known results for the
one–dimensional case is given. Particular attention is paid to the two–dimensional Hardy operator,
for which the authors have recently obtained new criteria for satisfying the required properties.
Keywords: Hardy integral operator, weighted Lebesgue space, boundedness, compactness, behavior of
approximation numbers.
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ОБ АБСОЛЮТНОЙ СХОДИМОСТИ ДВОЙНЫХ РЯДОВ ФУРЬЕ
ПОЧТИ-ПЕРИОДИЧЕСКИХ ФУНКЦИЙ БЕЗИКОВИЧА

Ф.М. Талбакзода1
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В работе исследуются критерии абсолютной сходимости двойных рядовФурье почти-
периодически в смысле Безиковича функций в случае, когда показатели Фурье имеют
единственную предельную точку в бесконечности. В качестве структурной характе-
ристики рассматриваемой функции используется модуль непрерывности.

Ключевые слова: почти-периодические функции Безиковича, двойные ряды Фу-
рье, спектр функции, коэффициенты Фурье, модуль непрерывности.

Пусть Bp (R2) (1 ≤ p ≤ ∞) — линейное пространство, состоящее из функций
f (x, y), для которых | f (x, y)|p (1 ≤ p <∞) интегрируема по Лебегу на R2 с нормой

|| f ||Bp = {M {| f (x, y)|p }}1/p = {limT→∞
1

4T 2

∫ T

−T

∫ T

−T
| f (x, y)|p d xd y}1/p <∞,

а при p = ∞
|| f ||B∞ = vrai sup

x,y∈R
| f (x, y)| <∞.

А. Безикович [1] при 1 ≤ p < ∞ ввел следующее понятие Bp-почти-
периодической функции.

Функция f (x, y) называется почти-периодической в смысле Безиковича или
Bp-почти-периодической, если существует последовательность конечных тригоно-
метрических полиномов Pn,n(x, y) вида

Pn,n(x, y) =
n∑

k=1

n∑
l=1

ck,l ( f )ei (λk x+µl y)

для которых выполняется условие

lim
n→∞ | f (x, y)−Pn,n(x, y)|Bp = 0.

В настоящей работе рассматриваются некоторые новые достаточные условия
абсолютной сходимости двойных рядов Фурье почти-периодических функций из
пространства B2, когда спектры Λ1 = {λk }∞k=1, Λ2 = {µl }∞l=1 имеет единственную
предельную точку в бесконечности, т.е. (см., например, [2-4]).

λ0 = 0,λ−k =−λk , |λk | > |λk−1|, lim
k→∞

λk =∞,

µ0 = 0,µ−l =−µl , |µl | > |µl−1|, lim
l→∞

µl =∞. (1)

Хорошо известно, что для произвольной функции f (x, y) ∈ B2, имеет место
разложение в двойной ряд Фурье следующего вида:

f (x, y) ∼
∞∑

k=0

∞∑
l=0

Ek,l (ak,l cosλk x cosµl y +ak,l sinλk x cosµl y+
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+ak,l cosλk x sinµl y +ak,l sinλk x sinµl y),

где Ek,l = 1, Ek,0 = E0,l = 1
2 , k, l ≥ 1, E0,0 = 1

4 .
Теорема. Пусть спектры Λ1 = {λk }∞k=1, Λ2 = {µl }∞l=1 функции f (x, y) ∈ B2 удовле-

творяют условиям (1), Φ(u) > 0, u > 0. Пусть для некоторого β ∈ (0,2) выполняется
условие

∞∑
v=1

∞∑
θ=1

[m(2vπ)−m(2v−1π)+1]1−β/2[m(2θπ)−

−m(2θ−1π)+1]1−β/2ωβ( f ;2−v ,2−θ)ω
β/2
Φ

( f ;2−v ,2−θ)Φ−β
2 [ω( f ;2−v ,2−θ)] <∞,

где
ω( f ;h,η) = vr ai sup

x,y∈R
sup

x,y∈R
sup
|δ|≤h

sup
|r |≤η

|∆(1)
δ
∆(2)

r f (x, y)|,

ωΦ( f ;h,η) = sup
|δ|≤h

sup
|r |≤η

M {Φ[|∆(1)
δ
∆(2)

r f (x, y)|]},

∆(1)
δ

f (x, y) = f (x +δ, y)− f (x, y), ∆(2)
r f (x, y) = f (x, y +η)− f (x, y),

тогда ряд

∞∑
k=1

∞∑
l=1

(|ak,l ( f )|β+bk,l ( f )|β+ ck,l ( f )|β+dk,l ( f )|β

сходится.
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ON THE ABSOLUTE CONVERGENCE OF DOUBLE FOURIER SERIES OF ALMOST PERIODIC
BESICOVITCH FUNCTIONS

F.M. Talbakzoda

The paper studies criteria for absolute convergence of double Fourier series of almost-periodic
functions in the Besicovitch sense, in the case when the Fourier exponents have a single limit point
at infinity. The modulus of continuity is used as a structural characteristic of the function under
consideration.
Keywords: Besicovitch almost-periodic functions, double Fourier series, spectrum of a function, Fourier
coefficients, modulus of continuity.
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В настоящей работе исследуются достаточные условия абсолютной сходимости
двойных рядов Фурье с пропусками вида (mk+1 − mk )(nl+1 − nl ) ≥ 16

ηθ , если этот ряд
Фурье имеет заданный модуль непрерывности на отрезках [−η,η] ⊂ [−π,π], [−θ,θ] ⊂
[−π,π].

Ключевые слова: ряд Фурье, периодические функции, малые пропуски, коэффи-
циенты Фурье, модуль непрерывности.

Будем говорить, что ряд Фурье S[ f ] функции f (x, y) имеет пропуски, если для
коэффициентов этого ряда выполняются следующие условия a2

m,n + b2
m,n + c2

m,n +
d 2

m,n > 0 только для m = mk и n = nl (k, l = 1,2. . . ), где m1,m2, . . . , n1,n2, . . . —
натуральные числа, причём 1 < m1 < m2 < ..., 1 < n1 < n2 < ... .

Нобль [2] доказал, что если f (x) удовлетворяет условиям теоремы Бернштейна
и Зигмунда [1] и, кроме того nk+1−nk

lognk
→∞, k →∞, то ряд

S[ f ](x) = a0

2
+

∞∑
n=1

(an cosnx +bn sinnx)

абсолютно сходится. БояничиТомин [3] обобщили результатНобля для рядовФурье
с малыми пропусками вида nk+1 −nk ≥ 4π/δ (0 < δ< π, k = 0,1,2, . . . ).

В настоящей работе исследуются достаточные условия абсолютной сходимости
двойных рядов Фурье с малыми пропусками вида (см., например, [3-5])

(mk+1 −mk )(nl+1 −nl ) ≥ 16π2

ηθ
(k = 0,1,2, . . . , m0 = 1,n0 = 1). (1)

Пусть f ∈ Lp , и ряд Фурье этой функции имеет вид

S[ f ](x, y) =
∞∑
µ=1

∞∑
ν=1

(amµ,nν cosmµx cosnνy +bmµ,nν sinmµx cosnνy+

+cmµ,nν cosmµx sinnνy +dmµ,nν sinmµx sinnνy).

Рассмотрим величины

∆1
h f (x, y) = f (x +h, y)− f (x, y),∆2

r f (x, y) = f (x, y + r )− f (x, y);

ω1( f ;ε) = sup
x,y

sup
|h|≤ε

|∆1
h f (x, y)|, (2)

ω2( f ;δ) = sup
x,y

sup
|r |≤δ

|∆2
r f (x, y)|, (3)

ω11( f ;ε,δ) = sup
x,y

sup
|h|≤ε

sup
|r |≤δ

|∆1
h∆

2
r f (x, y)|. (4)
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Величины (2) и (3) называются частными модулями непрерывности, а (4) – моду-
лем непрерывности функции f (x, y). Если Ω(x, y) = ∑

mk≤x
∑

nl≤y 1, то имеет место
следующая теорема для двойных рядов Фурье с малыми пропусками вида (1).

Теорема. Пусть (mk+1 −mk )(nl+1 −nl ) ≥ 16π2

ηθ (k, l = 0,1,2. . . , m0 = n0 = 1) и∫ ∞

1

∫ ∞

1
ω11( f ;

1

s
,

1

t
)

p
Ω(s, t )

st
d sd t <∞, (5)

тогда ∞∑
µ=1

∞∑
ν=1

|amµ,nν|+ |bmµ,nν|+ |cmµ,nν|+ |dmµ,nν| <∞.

Поскольку из неравенства L = {mink≥0 minl≥0(mk+1 − mk )(nl+1 − nl )}
1
2 ≥

4πη−
1
2θ−

1
2 следуетmk = L(k+1), k = 0,1,2, ..., nl = L(l +1), l = 0,1,2, ..., то естьmk ≥ Lk

(k = 1,2, . . . ), nl ≥ Ll (l = 1,2, . . . ), то выполняются следующие соотношения

Ω(x, y) = ∑
mk≤x

∑
nl≤y

1 ≤ ∑
Lk≤x

∑
Ll≤y

1 ≤ x y

L2 .

С другой стороны, если считать, что пропуски малы (1) и mk ≥ Akp , nl ≥
Bl q (p, q ≥ 1;k, l = 1,2, . . . ), то Ω(x, y) = ∑

mk≤x
∑

nl≤y 1 ≤ ∑
Akp≤x

∑
Bl q≤y 1 ≤

( x
A )1/p ( y

B )1/q .

В этом случае условие (5) примет вид
∫ ∞

1

∫ ∞
1 ω11( f ; 1

s
1
t )

√
s

1
p t

1
q

st d sd t <∞.
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ON THE ABSOLUTE CONVERGENCE OF DOUBLE FOURIER SERIES WITH SMALL GAPS

F.M. Talbakzoda

In this paper, we study the theorem on the absolute convergence of double Fourier series with gaps of
the form (mk+1 −mk )(nl+1 −nl ) ≥ 16

ηθ , if this Fourier series has a given modulus of continuity on the
intervals [−η,η] ⊂ [−π,π], [−θ,θ] ⊂ [−π,π].
Keywords: Fourier series, periodic functions, small gaps, Fourier coefficients, modulus of continuity.
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О СПЕКТРЕ ТРЕХМАГНОННЫХ СИСТЕМ В D-МЕРНОЙ РЕШЕТКЕ
С.М. Ташпулатов1

1 sadullatashpulatov@yandex.com; Институт ядерной физики академии наук республики Узбекистан

Рассматривается оператор энергии трехмагнонных систем в модели Гейзенберга и
исследуется структура существенного спектра и дискретный спектр системы в d−
мерной целочисленной решетке Z d .Получены нижняя и верхняя оценка для числатрех-
магнонных связанных состояний системы N .

Ключевые слова: трехмагнонная система, существенный спектр, дискретный
спектр.

В работе автора [1] трехмагнонная система была рассмотрена в изотропной
негейзенберговской ферромагнитной модели со значениями спина единицы с вза-
имодействием ближайших соседей. Была изучена структура существенного спектра
системыибылиполученыверхняяинижняя оценкидля количество трехмагнонных
связанных состояний системы. Гамильтониан рассматриваемых систем имеет вид:

H = J
∑
m,τ

(
−→
S m

−→
S m+τ), (1)

где J < 0—параметр билинейного обменного взаимодействие между атомами бли-
жайших соседей в решетке,

−→
S m = (Sx

m ,S
y
m ,Sz

m)− оператор атомного спина величи-
ны s = 1

2 узла m d-мерной решетки Z d , а τ = ±e j , j = 1,2, ...,d , где e j− единичные
орты, т.е. суммирование ведется по ближайшим соседям. Положим S±

m = Sx
m ± i S

y
m .

Обозначим через ϕ0 вектор, называемый вакуумным и однозначно определяемый
условиями: S+

mϕ0 = 0, Sz
mϕ0 = 1

2ϕ0, ||ϕ0|| = 1. Векторы S−
p S−

q S−
r ϕ0 описывают состоя-

ние системы трех магнонов, находящихся в узлах p, q и r. Замыкание пространства,
образованного всевозможными линейными комбинациями этих векторов, обозна-
чим через H3. Обозначим через H3 сужение оператора H на подпространстве H3.
Спектральные свойства оператора энергии трехмагнонных систем тесно связаны
со спектральными свойствами его двухмагнонных подсистем. Поэтому, сначала ис-
следуем спектр и связанные состояния (СС) двухмагнонных систем.

Теорема 1. a) Еслиν= 1 и полный квазиимпульс системыΛ=π,тогда существен-
ный спектр H̃3Λ состоит из трех точек σess(H̃3Λ) = {−12J ,−8J ,−10J }, и для число
трехмагнонных СС N имеет место соотношение 1 ≤ N ≤ 10.

b) Если ν= 1 и полный квазиимпульс системы Λ= 0, тогда существенный спектр
оператора H̃3Λ состоит из единственного отрезка: σess(H̃3Λ) = [0,−24J ], и для число
трехмагнонных СС N имеет место соотношение 0 ≤ N ≤ 9.

c) Если ν = 1 и полный квазиимпульс системы Λ ̸= π, и Λ ̸= 0, тогда существен-
ный спектр оператора H̃3Λ состоит из объединения трех отрезков: σess(H̃3Λ) =
[−4J

∑3
i=1(1 − cos Λi

2 ),−4J
∑3

i=1(1 + cos Λi
2 )] ∪ [−8J + 2J (2cos Λ1

2 + ∑3
i=2(cos2 Λi

2 ),−8J −
4J cos Λ1

2 +2J
∑3

i=2(cos2 Λi
2 )]∪[−10J+4J

∑3
i=2(cos Λi

2 )+2J cos2 Λ1
2 ,−10J−4J

∑3
i=2(cos Λi

2 )+
2J cos2 Λ1

2 ] и для число трехмагнонных СС N имеет место соотношение 1 ≤ N ≤ 10.
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Теорема 2. Если ν = 2 и полный квазиимпульс системы Λ = (π,π), тогда суще-
ственный спектр H̃3Λ состоит из трех точек σess(H̃3Λ) = {−24J ,−20J ,−22J }, и для
число трехмагнонных СС N имеет место соотношение 1 ≤ N ≤ 19.

Теорема 3. Если ν = 2 и Λ = (0,0), тогда существенный спектр оператора H̃3Λ
состоит из объединения трех отрезков: σess(H̃3Λ) = [0,−48J ] ∪ [2z1,−16J + 2z1] ∪
[z1,−32J+z1], и для числатрехмагнонных ССN имеетместо соотношение 1 ≤ N ≤ 19.

Теорема 4. Если ν = 2 и полный квазиимпульс системы Λ = (π,0), или Λ = (0,π),
тогда существенный спектр оператора H̃3Λ состоит из объединения трех отрезков:
σess(H̃3Λ) = [−12J ,−36J ]∪[4(−5+p

5)J ,4(−7+p
5)J ]∪[2(−8+p

5)J ,2(−16+p
5)J ], и для

числа трехмагнонных СС N имеет место соотношение 1 ≤ N ≤ 19.
Теорема 5. Если ν= 2 иΛ= (Λ0,Λ0),тогда существенный спектр H̃3Λ состоитиз

объединения пяти отрезков: σess(H̃3Λ) = [−24J (1−cos Λo
2 ),−24J (1+cos Λo

2 )]∪ [−8J (1−
cos Λo

2 )+2z1,−8J (1+cos Λo
2 )+2z1]∪[−8J (1−cos Λo

2 )+2z2,−8J (1+cos Λo
2 )+2z2]∪[−16J (1−

cos Λo
2 )+z1,−16J (1+cos Λo

2 )+z1]∪[−16J (1−cos Λo
2 )+z2,−16J (1+cos Λo

2 )+z2], и для число
трехмагнонных СС N имеет место соотношение 4 ≤ N ≤ 22.

Теорема 6. Если ν = 3 и Λ = (π,π,π), тогда существенный спектр H̃3Λ состоит
из четырех точек: σess(H̃3Λ) = {−36J ,−32J ,−24J ,−34J } и для числа трехмагнонных СС
N имеет место соотношение 4 ≤ N ≤ 30.

Теорема 7. Если ν= 3 иΛ= (0,0,0),тогдаσess(H̃3Λ) = [0,−72J ]∪[2z1,−24J+2z1]∪
[z1,−48J+z1], и для числатрехмагнонных ССN имеетместо соотношение 1 ≤ N ≤ 27.

Теорема 8. Если ν= 3 иΛ= (π,0,0),тогда существенный спектр H̃3Λ состоит из
объединенияшести отрезков:σess(H̃3Λ) = [−12J ,−60J ]∪[−4J+2z⋆,−20J+2z⋆]∪[−4J+
2z̃,−20J +2z̃]∪ [−4J + z⋆+ z̃,−20J + z⋆+ z̃]∪ [−8J + z⋆,−40J + z⋆]∪ [−8J + z̃,−40J + z̃],
и для числа трехмагнонных СС N имеет место соотношение 4 ≤ N ≤ 30.

Теорема 9. Если ν = 3 и Λ = (π,π,0), тогда существенный спектр H̃3Λ состо-
ит из объединения пяти отрезков: σess(H̃3Λ) = [−24J ,−48J ] ∪ [−8J ,−16J ] ∪ [−4(5 +p

5)J ,−4(10+p
5)J ]∪ [−16J ,−32J ]∪ [−2(14+p

5)J ,−2(24+p
5)J ], и для числа трехмаг-

нонных СС N имеет место соотношение 3 ≤ N ≤ 29.
Теорема 10. Если ν = 3 и Λ = (Λ0,Λ0,Λ0), тогда существенный спектр H̃3Λ со-

стоит из объединения пяти отрезков:σess(H̃3Λ) = [−36J (1−cos Λ0
2 ),−36J (1+cos Λ0

2 )]∪
[−12J (1−cos Λ0

2 )+2z1,−12J (1+cos Λ0
2 )+2z1]∪[−12J (1−cos Λ0

2 )+2z2,−12J (1+cos Λ0
2 )+

2z2] ∪ [−12J (1 − cos Λ0
2 ) + 2z1,−12J (1 + cos Λ0

2 ) + 2z1] ∪ [−24J (1 − cos Λ0
2 ) + z1,−24J (1 +

cos Λ0
2 )+z1]∪[−24J (1−cos Λ0

2 )+z2,−24J (1+cos Λ0
2 )+z2] и для числа трехмагнонных СС

N имеет место соотношение 4 ≤ N ≤ 30.

Работа финансируется за счет средств гос. бюджета Республики Узбекистан.
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SPECTRA OF THE THREE-MAGNON SYSTEMS IN THE d−DIMENSIONAL LATTICE
S.M. Tashpulatov
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We consider the energy operator of three-magnon systems in the Heisenberg model and investigated
the structure of essential spectrum and discrete spectra of the system in the d-dimensional integer
lattice Z d . A lower and upper estimates are obtained for the number of three-magnon bound states N

of the system.
Keywords: three-magnon systems, essential spectrum, discrete spectra.
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СПЕКТРАЛЬНАЯ ДЕКОМПОЗИЦИЯ ЯДРА В ЗАДАЧЕ МУЛЬТИСКВАЖИННОЙ
ДЕКОНВОЛЮЦИИ И НЕКОТОРЫЕ ЕЕ СЛЕДСТВИЯ

М.Р. Тимербаев1

1 marat.timerbaev@kpfu.ru; Казанский (Приволжский) федеральный университет

В статье рассматривается система интегральных уравнений типа свертки, возни-
кающая при описании связи перепада давлений в интерферирующих скважинах с деби-
тами на них. Доказывается, что матричное ядро этой системы может быть пред-
ствалено в видефакторизации специального вида, основанной на спектральномразло-
жении неограниченного самосопряженного оператора в гильбертовом пространстве.
Как следствия этой факторизации устанавливаются такие важные свойства этого
ядра, как симметричность, положительная определенность в каждый момент време-
ни, и некоторые другие свойства, обобщающие известные свойства ядра в односква-
жинном случае.

Ключевые слова: мультискважиннаядеконволюция, интегральное уравнение типа
свертки 1-го рода, обратная задача, начально-краевая задача, задача Коши в гиль-
бертовом пространстве с неограниченным оператором.

Задача мультискважинной деконволюции (см. напр. [1, 2, 3]) заключается в
определении матричного ядра интегрального оператора типа свертки по отклику
перепада давления в интерферирующих скважинах на дебиты этих скважин. Связь
(в линейной модели) между давлениями и дебитами может быть записана в виде
системы интегральных уравнений 1-го рода:

p0 −pi (t ) =
n∑

j=1

t∫
0

gi j (t − s)q j (s) d s,

где p0 — начальное пластовое давление, pi (t ) — давление на скважине i в момент
времени t > 0, q j (t ) — функция дебита на скважине j , ядро интегрального опера-
тора g (t ) — n ×n-матрица в каждый момент времени t > 0, n — число взаимовли-
яющих друг на друга скважин. Эта задача некорректная, численно неустойчивая,
поэтому для ее численного решения используются различные методы регуляриза-
ции. Важным элементом построения разного рода регуляризаций, а также валида-
ции построенных решений, являются априорные свойства решения. Одно из таких
свойств устанавливается в теореме ниже.
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Теорема. Матричное ядро задачи g (t ) может быть факторизовано следующим
образом:

g (t ) = vT eλt v,

где eλt = diag{eλ1t ,eλ2t , . . .} — бесконечная диагональная матрица с числами 0 ≥ λ1 >
λ2 ≥ λ3 ≥ . . ., λk → −∞, v — постояннная (не зависящая от t ) полубесконечная n-
столбцовая матрица, vT — транспонированая к ней полубесконечная n-строковая
матрица.

Устанавливается корректность этого представления в смысле сходимости бес-
конечных сумм в этом представлении, а также корректность последующего диффе-
ренцирования по t этой факторизации.

Из полученной декомпозиции непосредственно вытекает свойство симметрии
и положительной определенности: g (t ) = g (t )T > 0. Дифференцируя это представ-
ление по t и учитывая отрицательность λk , получим g ′(t ) = g ′(t )T = vT (λeλt )v < 0.
Дальнейшее дифференцирование будет чередовать знаки определенности получа-
ющихся производныхматриц. Этот факт обобщает намногоскважинный случай хо-
рошо известное свойство скалярного ядра в односкважинной деконволюции.
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SPECTRAL KERNEL DECOMPOSITION IN MULTI-WELL DECONVOLUTION
AND ITS COROLLARIES

M.R. Timerbaev

This paper studies a system of convolution-type integral equations describing the relationship between
pressure drawdowns in interfering wells and their flow rates. We prove that the matrix kernel of
this system admits a special factorization based on the spectral decomposition of an unbounded self-
adjoint operator in a Hilbert space. As corollaries of this factorization, we establish key properties of
the kernel, including its symmetry, time-dependent positive definiteness, and other generalizations of
known properties from the single-well case.
Keywords: multi-well deconvolution, first-kind convolution integral equations, inverse problems, initial-
boundary value problem, Cauchy problem in Hilbert space with unbounded operator.
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ОПИСАНИЕ СУЩЕСТВЕННОГО СПЕКТРА СЕМЕЙСТВА ОПЕРАТОРНЫХ
МАТРИЦ ТРЕТЬЕГО ПОРЯДКА

Н.А. Тошева1

1 n.a.tosheva@buxdu.uz; Бухарский государственный университет

В данной работе рассматривается cемейства операторов H(K ), представленных в
виде блочных операторных матриц третьего порядка. Выделен канальный оператор
и описан его спектр. Установлено, что существенный спектр операторной матрицы
H(K ) совпадает со спектром канального оператора и состоит из объединения трех
отрезков.

Ключевые слова: бозонное пространство Фока, операторная матрица, существен-
ный спектр, операторы уничтожения и рождения.

Через Td := (−π;π]d обозначим d-мерный тор, в котором противоположные
грани отождествляются. Пусть H0 := C — одномерное комплексное пространство,
H1 := L2(Td) - гильбертово пространство квадратично-интегрируемых (комплекс-
нозначных) функций, определённых на Td, H2 := L2(Td)2 — гильбертово простран-
ство симметричных (по комплексным переменным) функций, квадратично инте-
грируемых на (Td)2 иH :=H0⊕H1⊕H2. ПространствоH называется обрезанным
трехчастичным подпространством бозонного пространства Фока.

В гильбертовом пространстве H рассмотрим семейства операторных матриц
вида

H(K ) :=
 H00(K ) H01 0

H∗
01 H11(K ) H12

0 H∗
12 H22(K )

 , (1)

где матричные элементы определяются по формулам

H00(K ) f0 = w0(K ) f0, H01 f1 =
∫
Td

v0(t ) f1(t )d t ;

(H11(K ) f1)(p) = w1(K ; p) f1(p), (H12 f2)(p) =
∫
Td

v1(t ) f2(p, t )d t ;

(H22(K ) f2)(p, q) = w2(K ; p, q) f2(p, q), fi ∈H i , i = 0,1,2.

Здесь H∗
i j (i < j ) — сопряжённый оператор к оператору Hi j , а функции w0(·) и vi (·),

i = 0,1 — вещественнозначные ограниченные функции на Td,

w1(K ; p) := l1ε(
K

2
−p)+l2ε(

K

2
+p)+λ, w2(K ; p, q) := l1ε(

K

3
+p)+l1ε(

K

3
+q)+l2ε(

K

3
−p−q),

λ, l1, l2 > 0 и

ε(q) :=
d∑

i=1
(1−cos(nq (i ))), q = (q (1), q (2), ..., q (d)) ∈Td, n ∈N.

При изучении спектральных свойств семейства операторных матриц H(K )
рассмотрим еще обобщенную модель Фридрихса h(k), k ∈Td, действующую вH0 ⊕
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H1 по правилу

h(k) :=
(

h00(k) h01
h∗

01 h11(k)

)
,

где

h00(k) f0 = (l2ε(k)+1) f0, h01 f1 = 1p
2

∫
Td

v1(t ) f1(t )d t ,

(h11(k) f1)(q) = Ek (q) f1(q), Ek (p) := l1ε(
K

2
−p)+ l2ε(

K

2
+p).

Из теоремы Вейля о сохранении существенного спектра при конечномер-
ных возмущениях вытекает, что σess(h(k)) = [Emin(k);Emax(k)], где числа Emin(k) и
Emax(k) определяются следующим образом:

Emin(k) := min
q∈Td

Ek (q) и Emax(k) := max
q∈Td

Ek (p).

Рассмотрим так называемый канальный оператор, соответствующий опе-
раторной матрице H(K ) и действующий в гильбертовом пространстве L2(Td) ⊕
L2((Td)2) как

Hch(K ) :=
(

H11(K ) 1p
2

H12
1p
2

H∗
12 H22(K )

)
, K ∈Td.

Введём следующие обозначения:

mK := min
p,q∈Td

w2(K ; p, q), MK := max
p,q∈Td

w2(K ; p, q), σK := ⋃
p∈Td

{σdisc(h(K−p))+l1ε(p)}.

Сформулируем основные результаты работы.
Теорема 1. Канальный оператор Hch(K ) имеет чисто существенный спектр и

имеет место равенство σ(Hch(K )) := [mK ; MK ]∪σK .
Теорема 2. Существенный спектр операторной матрицы H(K ) совпадает со

спектром канального оператора Hch(K ), т.е. имеет место равенство σess(H(K )) =
Hess(K ). Крометого, множествоσess(H(K )) состоит из объединения не более чемтрех
отрезков.
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DESCRIPTION OF THE ESSENTIAL SPECTRUM OF A FAMILY OF THIRD-ORDER OPERATOR
MATRICES

N.A. Tosheva

In this work, we consider a family of operators H(K ), represented as block operator matrices of order
three. The channel operator is identified and its spectrum is described. It is established that the
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spectrum of the operator matrix H(K ) coincides with the spectrum of the channel operator and consists
of the union of three segments.
Keywords: bosonic Fock space, operator matrix, essential spectrum, annihilation and creation operators.
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О СИНК-ПРИБЛИЖЕНИИ СУММИРУЕМЫХ ФУНКЦИЙ
А.Ю. Трынин1

1 atrynin@gmail.com; Саратовский государственный университет им. Н.Г. Чернышевского

Предложен новый оператор, позволяющий аппроксимировать функции пространства
L[0,π] с помощью линейной комбинации синков.

Ключевые слова: синк-аппроксимации, интерполяцияфункций, пространство Ле-
бега.

На пространстве L[0,π] суммируемых функций f определим линейный опера-
тор, концептуально близкий одному из операторов, предложенных в [1] для при-
ближения непрерывных функций:

ÃT n( f , x) =
n−2∑
k=0

{ n

2π

(k+2)π
n∫

kπ
n

f (t )d t − 1

2π


π∫

(n−1)π
n

f (t )d t −
π
n∫

0

f (t )d t

 (2k +1)

−
π
n∫

0

f (t )d t
}sin(nx −kπ)

nx −kπ
+ n

π2


π∫

(n−1)π
n

f (t )d t −
π
n∫

0

f (t )d t

x +
π
n∫

0

f (t )d t .

Theorem 1. Пусть функция f ∈ L[0,π]. Тогда справедливо соотношение

lim
n→∞

∥∥ f − ÃT n( f , ·)∥∥L[0,π] = 0.
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ABOUT THE SINC APPROXIMATION OF SUMMABLE FUNCTIONS
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A new operator is proposed that makes it possible to approximate the functions of the space L[0,π]

using a linear combination of sinc functions.
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ЧИСЛЕННЫЕ И АНАЛИТИЧЕСКИЕ РЕАЛИЗАЦИИ МАТЕМАТИЧЕСКИХ
МОДЕЛЕЙ ДИНАМИКИ ДИСПЕРСНЫХ СРЕД

Д.А. Тукмаков1

1 tukmakovda@imm.knc.ru; ИММ ФИЦ КазНЦ РАН, лаборатория механики сплошных сред

В тезисах представлены математические модели динамики неоднородных сред, реа-
лизованные с помощью численных и аналитических методов решения дифференциаль-
ных уравнений в частных производных. Рассмотрены вопросы динамики дисперсных
частиц в газе и жидкости.

Ключевые слова: механика жидкости и газа, математическое моделирование,
неоднородные среды.

Одним из приложений математики является разработка математических мо-
делей механики жидкости и газа [1–12]. Частным случаем течений газа или жидко-
сти являются течения неоднородных сред [1–8]. Исследование течений неоднород-
ных сред связано с различными прикладными задачами [4–8]. При этом модели-
рование может осуществляться как на основе аналитических методов [9,10] так и
на основе численного моделирования [11]. Для линейных математических моделей
[12] более применимыми являются аналитическиеметоды, например, методФурье,
тогда как для нелинейных процессов необходимы конечно-разностные алгоритмы.

Рассмотрим численный алгоритм на примере скалярного нелинейного диффе-
ренциального уравнения в частных производных от функции f , где a( f ), b( f ) c( f )
— нелинейные функции:

∂ f

∂t
+ ∂a( f )

∂x
+ ∂b( f )

∂y
= c( f ). (1)

Для нелинейного уравнения (1) численное решение явным конечно-
разностным методом Мак-Кормака на n-ом временном слое записывается сле-
дующим образом [11]:

f ∗
j k = f n−1

j k − ∆t

∆x
(an−1

j+1k −an−1
j k )− ∆t

∆y
(bn−1

j k+1 −bn−1
j k )+∆tcn−1

j k ,

f n
j k = 0.5( f ∗

j k + f n
j k )−0.5

∆t

∆x
(a∗

j k −a∗
j−1k )−0.5

∆t

∆y
(b∗

j k −b∗
j k−1)+0.5∆tc∗j k .

Здесь∆t ,∆x,∆y —шаги по переменной времени и пространственным направлени-
ям. С целью подавления численных осцилляций нами использовалась схема нели-
нейной коррекции сеточной функции [6].

Работа выполнена за счет гранта Академии наук Республики Татарстан, предо-
ставленногомолодымкандидатамнаук (постдокторантам) с целью защитыдоктор-
ской диссертации, выполнения научно-исследовательских работ, а также выпол-
нения трудовых функций в научных и образовательных организациях Республики
Татарстан в рамках Государственной программы Республики Татарстан «Научно-
технологическое развитие Республики Татарстан» (соглашение№ 84/2024-ПД от 16
декабря 2024 г.).
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NUMERICAL AND ANALYTICAL IMPLEMENTATIONS OF MATHEMATICAL MODELS OF THE
DYNAMICS OF DISPERSED MEDIA

D.A.Tukmakov

The theses present mathematical models of the dynamics of inhomogeneous media implemented using
numerical and analytical methods for solving partial differential equations. The issues of the dynamics
of dispersed particles in gas and liquid are considered.
Keywords: fluid and gas mechanics, mathematical modeling, applied mechanics.
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РАСПОЛОЖЕНИЕ ВЕТВЕЙ СУЩЕСТВЕННОГО СПЕКТРА МОДЕЛЬНОГО
ГАМИЛЬТОНИАНА СИСТЕМЫ ТРЕХ ЧАСТИЦ НА ОДНОМЕРНОЙ РЕШЕТКЕ

Г.Х. Умиркулова1

1 g.h.umirqulova@buxdu.uz; Бухарский государственный университет

В данной работе модельный гамильтониан, соответствующий системе трёх частиц
на одномерной решётке, изучен как линейный, ограниченный и самосопряжённый опе-
ратор в гильбертовом пространстве. Анализируется расположение ветвей суще-
ственного спектра изучаемого гамильтониана.

Ключевые слова: решетка, модельный гамильтониан, существенный спектр, двух-
частичные и трехчастичные ветви, гильбертово пространство.

Через T1 :≡ (−π;π]1 обозначим одномерный тор. В гильбертовом пространстве
Ls

2(T2) симметрических функций, квадрат которых интегрируем (в общем случае,
принимающих комплексные значения), определённых на T2, рассмотрим модель-
ный гамильтониан, заданный равенством

H
(γ)
µ,λ := H

(γ)
0 −µ(V1 +V2)−λV3. (1)

Здесь H
(γ)
0 — оператор умножения на функцию Eγ(·, ·), то есть невозмущенный

оператор:

(H
(γ)
0 f )(x, y) = Eγ(x, y) f (x, y), Eγ(x, y) := ε(x)+ε(y)+γε(x + y),

ε(x) := 1−cos(mx), m ∈N.

Операторы Vα, α = 1,2,3 являются операторами нелокального потенциала и пред-
ставляют собой частично интегральные операторы вида:

(V1 f )(x, y) = v(y)
∫
T1

v(t ) f (x, t )d t , (V2 f )(x, y) = v(x)
∫
T1

v(t ) f (t , y)d t ,

(V3 f )(x, y) =
∫
T1

f (t , x + y − t )d t .

Здесь µ,λ> 0—параметры взаимодействия и γ> 0, а функция v(·), входящая в ядро
операторов Vα, α = 1,2, является действительнозначной непрерывной функцией,
определённой на торе T1.

Модельный гамильтониан H
(γ)
µ,λ, заданный равенством (1), является линейным,

ограниченным и самосопряжённым оператором, определённым в гильбертовом
пространстве Ls

2(T2).
Для иллюстрации основного результата работы рассмотрим два (ограничен-

ных и самосопряженных) семейства моделей Фридриха в гильбертовом простран-
стве L2(T1):

(h
(γ,1)
µ (k)g )(x) = (ε(x)+γε(k +x))g (x)−µv(x)

∫
T1

v(t )g (t )d t ;
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(h(2)
λ

(k)g )(x) = (ε(x)+ε(k −x))g (x)−λ
∫
T1

g (t )d t .

Можно, показать, что для существенного спектра гамильтониана имеет место
равенство σess(H

(γ)
µ,λ) = σthree(H

(γ)
µ,λ)∪σtwo(H

(γ)
µ,λ), где

σthree(H
(γ)
µ,λ) = [0,3+3γ/2];

σtwo(H
(γ)
µ,λ) := ⋃

k∈T1

(
σdisc(h

(γ,1)
µ (k))+ε(k)

)
∪ ⋃

k∈T1

(
σdisc(h(2)

λ
(k))+γε(k)

)
.

Эти множества называются, соответственно, трёхчастичной и двухчастичной вет-
вями существенного спектра модельного оператора H

(γ)
µ,λ.

Представляем основной результат работы.
Теорема 1.При всех значениях параметров µ,λ,γ> 0 двухчастичная ветвь суще-

ственного спектра гамильтониана H
(γ)
µ,λ расположена левее его трёхчастичной ветви,

т.е. следующие оценки справедливы для нижних границ двухчастичной и трехчастич-
ной ветвей существенного спектра:

minσtwo(H
(γ)
µ,λ) < minσthree(H

(γ)
µ,λ).

Более, того для верхней границы существенного спектра оператораH
(γ)
µ,λ имеетместо

равенство:
maxσess(H

(γ)
µ,λ) = 3+3γ/2.

Следует отметить, что исследуемый в работе гамильтониан H
(γ)
µ,λ соответствует

оператору энергии системы трех частиц на одномерной решетке. Теорема 1 важ-
на при анализе дискретного спектра оператора H

(γ)
µ,λ, в частности, при определении

числа собственных значений (его конечность или бесконечность), см. например [1,
2]. При доказательстве первой части теоремы 1 важную роль играет тот факт, что
модель Фридрихса h(2)

λ
(0) имеет отрицательное собственное значение при всех зна-

чениях параметра λ. А при доказательстве второй части используется тот факт, что
семейство моделей Фридрихса h

(γ,1)
µ (k) и h(2)

λ
(k) не имеет собственных значений,

больших 3+ 3γ/2.
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LOCATION OF BRANCHES OF THE ESSENTIAL SPECTRUM OF THE MODEL HAMILTONIAN OF
A THREE-PARTICLE SYSTEM ON A ONE-DIMENSIONAL LATTICE

G.H. Umirkulova

In this work, the model Hamiltonian corresponding to a system of three particles on a one-dimensional
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lattice is studied as a linear, bounded and self-adjoint operator in a Hilbert space. The location of the
branches of the essential spectrum of the studied Hamiltonian is analyzed.
Keywords: lattice, model Hamiltonian, essential spectrum, two-particle and three-particle branches,
Hilbert space.
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О ПОПЕРЕЧНИКАХ ПО КОЛМОГОРОВУ КЛАССОВ АНАЛИТИЧЕСКИХ
ФУНКЦИЙ
Ю.А. Фарков1
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Президенте РФ

Формулируются три нерешенные задачи о колмогоровских и линейных поперечниках
классов аналитических функций. Отмечаются некоторые связанные с этими задача-
ми недавние результаты.

Ключевые слова: поперечники, энтропия, емкость Грина, неравенства Бернштей-
на, классы Харди-Соболева.

Теория поперечников возникла под влиянием идей А.Н. Колмогорова и при-
меняется для оценки оптимальности вычислительных алгоритмов и современных
методов анализа данных. Напомним, что поперечник по Колмогорову множества A
в нормированном пространстве X определяется по формуле

dn(A, X ) := inf
Vn

sup
x∈A

inf
y∈Vn

∥x − y∥,

где Vn − произвольное подпространство в X размерности n, а линейный попереч-
ник определяется равенством

λn(A, X ) := inf
Λn

sup
x∈A

∥x −Λn x∥,

где нижняя грань берется по всем линейным ограниченным операторам Λn ранга
n, отображающих X в себя (см. [1]-[4]).

Пусть B H p (UR )− единичный шар класса Харди H p (UR ), где 1 ≤ p ≤ ∞ и UR −
круг радиуса R ≥ 1 на комплексной плоскости C. Напомним, что нормализованные
меры Лебега определяются равенствами dσ(eiθ) = dθ/2π и dν(z) = d xd y/π, где
z = x + i y . Для l ∈ N, 1 ≤ p ≤ ∞ класс Харди-Соболева HR (l , p) состоит из всех
функций f , аналитических в UR и таких, что f (l ) ∈ B H p (UR ) (для l = 0 положим
HR (0, p) := B H p (UR )). Значения колмогоровских и линейных поперечников для
класса HR (l , p) в пространствах Lp (σ) и Lp (ν) хорошо известны; при этом в случае
p =∞ классы Lp (σ)и Lp (ν) заменяются наC (U ), гдеU − замкнутый единичныйкруг.
В дальнейшем через sn обозначается любой из поперечников dn и λn .

Задача 1. Вычислить точные значения поперечников

sn(HR (l , p);Lq (σ)) и sn(HR (l , p);Lq (ν))
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для 1 ≤ q < p ≤ ∞, n > l , R ≥ 1.

Решение задачи 1 для l = 0 дано в [5]; см. также замечание в [6] и обзор [7]. По-
добные задачи (и связанные с ними задачи восстановления) можно рассматривать
для гельфандовских поперечников и для классов функций, аналитических в круго-
вом кольце, в полосе и в некоторых других областях (см., например, [8]-[10]).

Пусть B Ap (UR )− множество аналитических в UR функций f таких, что∫
U | f (Rz)|p dν(z) ≤ 1, гдеU − единичныйкруг. Класс AR (l , p) состоит из всехфункций

f , аналитических в UR и таких, что f (l ) ∈ B Ap (UR ). Напомним, что запись xn ≍ yn
означает, что существуют c1 > 0 и c2 > 0 такие, что c1xn ≤ yn ≤ c2xn для всех n ∈ N;
кроме того, xn ∼ yn, если lim

n→∞(xn/yn) = 1.

Для любых 1 ≤ p, q ≤∞, R > 1, l ∈N имеют место соотношения
sn(HR (l , p);Lq (σ)) ≍ n−l R−n , (1)

sn(HR (l , p);Lq (ν)) ≍ n−l−1/q R−n , (2)

sn(AR (l , p);Lq (σ)) ≍ n−l+1/p R−n , (3)

sn(AR (l , p);Lq (ν)) ≍ n−l+1/p−1/q R−n . (4)

Оценки сверху в этих соотношениях получаются тейлоровскими аппроксимация-
ми, а оценки снизу следуют из теоремы Тихомирова о поперечниках шара и нера-
венств Бернштейна для алгебраических полиномов.

Для функций, голоморфных в шаре B d
R := {z ∈ Cd : |z| < R}, классы HR (l , p,d)

и AR (l , p,d) определяются [11] с помощью радиальной производной аналогично
классам HR (l , p) и AR (l , p) с заменой круга UR на B d

R . Решение следующей задачи
исправит доказательство предложения 4.1 в [11] (сравните с полученными в [12]
оценками для случая 2 ≤ p ≤ q ≤ ∞).

Задача 2. Доказать аналоги соотношений (1)-(4) для классов HR (l , p,d) и
AR (l , p,d).

Пусть все k = (k1, . . . ,kd ) ∈Zd+ занумерованы такимобразом, что k = k( j ), |k( j )| ≤
|k( j +1)| ( j = 0,1,2, . . . ), где |k| = k1 +·· ·+kn . Тогда для ñ := |k(n)| имеем

ñ = m ⇐⇒
(

m +d −1

d

)
≤ n ≤

(
m +d

d

)
−1.

Согласно [6, 11] справедливо равенство

dn(B H∞(B d
R );C (B

d
)) = R−ñ , (5)

где B
d − замкнутый единичный шар в Cd . Полученные в [11] обобщения равенства

(5) на классы функций HR (l , p,d) и AR (l , p,d) в Lp-метриках даны в дополнение к
рассмотренному в [2, глава 13] случаю d = 1, а соответствующая формула для ε-
энтропии класса HR (l , p,d) установлена в [13] (сравните с [14]-[17]).

Пусть Ω− открытое множество в Cd и пусть E − компактное множество в Ω.
Класс B H∞(Ω) состоит из всех функций f , голоморфных в Ω и таких, что | f (z)| ≤ 1
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для всех z ∈ Ω. При некоторых условиях на E и Ω имеет место асимптотическая
формула

logdn(B H∞(Ω);C (E)) ∼−2π

(
d !

C (E ,Ω)

)1/d

n1/d , (6)

где C (E ,Ω)− емкость Грина E относительно Ω; см. [18] и цитированную в этой
работе литературу. Для достаточно регулярных E и Ω в [11, раздел 5] предлагалось
решить следующую задачу.

Задача 3. Для 1 ≤ q ≤ ∞ найти порядковые оценки поперечников
dn(B H∞(Ω);Lq (E)).

Эта задача в случае d = 1 решается с помощью рядов Фабера и их обобщений
(см. [5, 7, 19, 20]).
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ON KOLMOGOROVWIDTHS OF CLASSES OF ANALYTIC FUNCTIONS

Yu. A. Farkov

Three open problems on Kolmogorov and linear widths of classes of analytic functions are formulated.
Some recent results related to these problems are mentioned.
Keywords: widths, entropy, Green’s capacity, Bernstein inequalities, Hardy-Sobolev classes.
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РАСПРЕДЕЛЕНИЕ КОРНЕЙ ГОЛОМОРФНЫХ НА ЕДИНИЧНОМ КРУГЕ
ФУНКЦИЙ С СУБГАРМОНИЧЕСКОЙ МАЖОРАНТОЙ

Б.Н. Хабибуллин1

1 khabib-bulat@mail.ru; Институт математики с вычислительным центром Федерального государ-
ственного бюджетного научного учреждения Уфимского федерального исследовательского центра
РАН

Недавно в журнале «Математический сборник» опубликована статья автора «Рас-
пределение корней целых функций с субгармонической мажорантой». Ключевую роль в
ней играют некоторые новые категории интегральных неравенств для субгармони-
ческих функций. Будут обсуждаться возможности адаптации результатов и мето-
дов указанной статьи к весовым классам голоморфных на единичном круге функций. В
основе их как отмеченные интегральные неравенства для субгармонических функций,
так и их дополнительные вариации.

Ключевые слова: голоморфная функция, распределение корней, субгармониче-
ская функция, риссовское распределение масс, тригонометрически и степенно вы-
пуклые функции.

Через N = {1,2, . . . }, R и C обозначаем множества соответственно натуральных,
действительных и комплексных чисел со стандартными алгебраическими, геомет-
рическими и топологическим трактовками, положительной полуосью R+ := {

x ∈
R

∣∣ x Ê 0
}
, модулем | · |, расширениями N0 := {0}

⋃
N, N0 := N0

⋃
{+∞}, R := R⋃

{±∞},
R
+

:= R+⋃
{+∞}, единичным открытым кругом D := {

z ∈ C ∣∣ |z| < 1
}
.

Функция положительная, если область её значений содержится в R
+
.

Функция F : X →R на подмножестве X ⊆R убывающая, если для любых x1, x2 ∈
X из x1 É x2 следует противоположное нестрогое неравенство F (x2) Ê F (x1).
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Как обычно, функция F : I →R— выпуклая на промежутке I ⊆R, если для любых
двух пар чисел a,b ∈ I и c1,c2 ∈ R из неравенств F (x) É c1x + c2 при x := a и x := b
следует выполнение такого же неравенства при любых x ∈ [a,b].

Функция F : I → R — выпуклая относительно логарифма ln, или, кратко, ln-
выпуклая, на промежутке I ⊆ R+, если для любых двух пар a,b ∈ I и c1,c2 ∈ R из
неравенств F (x) É c1 ln x + c2 при x := a и x := b следует такое же неравенство при
всех x ∈ [a,b].

При p ∈ R+ функция s : R → R p-тригонометрически выпуклая на R [2], [3],
если для любых двух пар чисел a É b < a +π/p и c1,c2 ∈ R из неравенств s(x) É
c1 cos px + c2 sin px при x := a и x := b следует выполнение такого же неравенства
при любых x ∈ [a,b].

При 0 < p ∈ R+ функцию F : I → R на промежутке I ⊆ R+ называем p-степенно
выпуклой на I , если для любых двух пар чисел a,b ∈ I и c1,c2 ∈ R из выполнения
неравенств F (x) É c1xp + c2x−p при x := a и x := b следует выполнение такого
же неравенства при любых x ∈ [a,b]. По определению функцию F на промежутке
I ⊆ R называем 0-степенно выпуклой, если и только если она ln-выпукла на этом
промежутке.

Все указанные именные функции F и s — частные варианты обобщённых
выпуклых функций, или субфункций, на интервалах в R [4], [5, гл. VIII, п. 84].
Они всегда непрерывны и обладают как левой, так и правой производной F ′

пр на
промежутке определения.

Для радоновской меры ∆ на круге D и 2π-периодической на R положительной
непрерывной функции s считающей радиально-аргументной функцией для ∆ с весом
s называется функция ∆ra(s) на интервале [0,1) ⊂ R, определяемая равенством [1,
п. 1.2.4]

∆ra(s)(t ) :=
t∈[0,1)

Ï
|z|Ét

s(arg z)d∆(z), где s(arg0) := ∥s∥R := sup
R

s. (1)

В частности, при s = 1 это считающая радиальная функция ∆r :=∆ra(1).
СубгармоническойнаобластиD ⊆Cфункцииu : D →Rприu ̸≡ −∞ сопоставля-

ется риссовское распределениемасс, определяемое как радоновскаямера∆u := 1
2π△u,

где △ — оператор Лапласа, действующий в смысле теории обобщённых функций
на D.

Теорема 1 ([1, теорема 5.2]). Пусть p ∈ R+, функция s : R→ R+ — 2π-периоди-
ческая p-тригонометрически выпуклая, а для некоторого промежутка (r,R) ⊂ [0,1]
функция F : (r,R) →R+ — убывающая и p-степенно выпуклая с F (R) := lim

R>t→R
F (t ) ∈R+

и

F (r ) := lim
r<t→r

F (t ) <+∞, F ′
пр(r ) := lim

r<t→r

F (t )−F (r )

t − r
>−∞. (2)

Если M и u — субгармонические на D функции, u(z) É M(z) при всех z ∈D и u(0) ̸= −∞,

то для Qp,F (r ) := p
(
F (r )−F (R)

)− r F ′
пр(r )

(2)< +∞ выполнено неравенство∫ R

r

(−F ′
пр(t )

)(
∆ra(s)

u (t )−∆ra(s)
M (t )

)
dt É ∥s∥RQp,F (r )

(
M◦r −u(0)

)
. (3)
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Еслифункция F положительная убывающая p-степенно выпуклая на всём промежутке
(0,R) ⊂ [0,1), то при условии конечности верхнего предела

lim
p
0 F := limsup

0<t→0
t p F (t ) при p > 0 или lim0

0F := limsup
0<t→0

F (t )

ln(1/t )
при p = 0, (4)

неравенство (3) выполняется при всех r ∈ (0,R) с сомножителем

lim
p
0 F

r p ·
{

2p при p > 0,

1 при p = 0
(5)

вместо Qp,F (r ) в правой части (3).

Любую функцию Z : D → N0 называем распределением точек на открытом
единичном круге D [6, пп. 0.1.2–0.1.3], [1, п. 1.2.3] с кратностями Z (z) ∈ N0 точек
z ∈D в Z .При положительнойфункции s Ê 0 считающая радиально-аргументная фу-
нкция для распределения точек Z с весом s на D— это положительная возрастающая
и непрерывная справа на интервале [0,1) функция

Z ra(s)(t ) :=
t∈[0,1)

∑
|z|Ét

Z (z)s(arg z) ∈R+
. (6)

В частности, при s = 1 — это обычная считающая радиальная функция

Z r : t 7−→
tÊ0

Z ra(1)(t ) = ∑
|z|Ét

Z (z),

В отличие от последней считающая радиально-аргументная функция (6) с непосто-
янным весом s по аргументам достаточно тонко учитывает распределение точек из
Z не только по радиусу, но и по аргументам.

Если f — голоморфная наDфункция, то распределение точек, равное в каждой
точке z ∈ D кратности корня функции f в этой точке, называем распределением
корней голоморфной функции f на D и обозначаем его как

Z f : z 7−→
z∈D

sup
{

p ∈R
∣∣∣ limsup

z ̸=w→z

| f (w)|
|w − z|p <+∞

}
∈N0.

Для субгармонической функции u := ln | f | точная взаимосвязь между риссовским
распределением масс ∆ln | f | и распределением корней Z f задаётся равенством [7,
теорема 3.7.8]

∆ln | f |(S) = ∑
z∈S

Z f (z) для любого S ⊆D.

Пусть M = Mup−Mlow — разность субгармонических на D функций Mup ̸≡ −∞
и Mlow ̸≡ −∞, значения которой определены почти всюду по лебеговской мереm2 в
D. Тогда однозначно определено риссовское распределение зарядов

∆M :=∆Mup −∆Mlow

с соответствующей радиально-считающей функцией

∆ra(s)
M

(1)
:=∆ra(s)

Mup −∆ra(s)
Mlow

.
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Из теоремы 1 в этих обозначениях и для тех же функций s и F , что и в теореме 1
с (2), выводится следующий общий результат для голоморфных на D функций f с
f (0) ̸= 0.

Теорема 2. Пусть ln | f | ÉM на D почти всюду по лебеговской мереm2. Тогда∫ R

r

(−F ′
пр(t )

)(
Z ra(s)

f (t )−∆ra(s)
M

(t )
)

dt É ∥s∥RQp,F (r )
(
M◦r −u(0)

)
. (7)

Если функция F такая же, как в теореме 1 после (3), то при условии (4) неравенство
(7) выполняется при всех r ∈ (0,R) с (5) вместо Qp,F (r ) в правой части (7).

Утверждению, обратному кпротивоположному теореме 2,можнопридатьфор-
му разнообразных теорем единственности дляфункцийна единичном круге подоб-
но тому, как это было проделано в [1, теоремы 2.2, 2.3, следствия 2.4–2.7] примени-
тельно к целым функциям и к субгармоническим функциям на плоскости. Они бу-
дут содержать в себе как довольно специальные предшествующие наши результаты
в этом направлении из статей [8] и [9] с нерадиальными по существу условиями на
распределения точек, формулируемые в терминах частных проявлений радиально-
аргументной считающей функции (6).

Исследование выполнено за счет гранта Российского научного фонда№ 24-21-
00002, https://rscf.ru/project/24-21-00002/.
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DISTRIBUTION OF ZEROS OF HOLOMORPHIC FUNCTIONS ON THE UNIT DISK WITH A
SUBHARMONIC MAJORANT

B.N. Khabibullin

The autor’s article "Distribution of zeros of entire functions with a subharmonicmajorant" was recently
published in the journal “Sbornik: Mathematics”. Some new categories of integral inequalities for
subharmonic functions play a key role in this. The possibilities of adapting the results and methods of
this paper to the weight classes of holomorphic functions on the unit disk will be considered. They are
based both on the mentioned integral inequalities for subharmonic functions and on their additional
variations.
Keywords: holomorphic function, distribution of zeros, subharmonic function, Riesz mass distribution,
trigonometrically and powerly convex functions.

УДК 514.822

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ НА ОСНОВЕ МЕТОДА
ИСКУССТВЕННОЙ ГИПЕРБОЛИЗАЦИИ

Г. Хайруллозода1

1 gulshandjuraeva9@gmail.com; Таджикский Педагогический университет им. Садриддина Айни

В работе рассмотрена модельная начально-краевая задача в случае, когда функции
правой части и начального условия представимы конечными суммами рядов Фурье по
тригонометрическому базису, исследована точность соответствующего приближён-
ного метода.

Ключевые слова: точность, уравнение диффузии-конвекции, погрешность ап-
проксимации.

В работе [1] рассмотрены аналоги операторов конвективного и диффузионного
переноса при стационарном теплопереносе в конденсированных средах и модели
диффузионно-реактивного переноса. Основной целью этих исследований является
тот факт, что предложенное модельное исследование схемы решения сингулярно-
возмущённого уравнения стационарной теплопроводности, близкой к решению за-
дачи для невозмущенного уравнения, позволило намизучить изменение теплового
потока и температуры в широком диапазоне температур и является эффективным
методом для решения задачи стационарной теплопроводности.

В этой работе мы продолжаем исследование, результаты которого были опуб-
ликованы ранее. Рассмотрим начальную задачу для неоднородного уравнения теп-
лопроводности. Её можно записать следующим образом:

ε
∂2T

∂t 2 + ∂T

∂t
= a

∂2T

∂x2 + f (x, t ), 0 < x < L, 0 < t < R, (1)

T (0, x) = T0(x),
∂T

∂t

∣∣∣∣
t=0

= 0; T (0, t ) = 0, T (L.t ) = 0. (2)

Что касается характеристик температуры T (x, t ) и источник тепла f (x, t ), мыможем
выразить их с помощью рядов Фурье по тригонометрическим функциям.
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Наряду с задачей (1)-(2), которую мы будем называть «точной» непрерывной
задачей, мы рассмотрим первую начально-краевую задачу с «усечённой» правой
частью и «усечёнными» начальными условиями

Для решения задачи с усеченной правой частью справедлива оценка в гильбер-
товом пространстве H∞(L∞) для любого t > 0 [2]:

∥u(N )(x, t )∥ ≤ ∥u(N )
0 ∥+

∫ t

0
∥g (N )(x,Θ)∥dΘ. (3)

Было доказано, что для определённого класса периодических функций, производ-
ная которых порядка k удовлетворяет определённому условию |Ψ(k)| ≤ K , остаточ-
ный член в ряде Фурье имеет предел для любого натурального числа k [2]:

sup
0≤x≤L

∣∣∣∣∣Ψ(x)−
N−1∑
m=1

C (Ψ) sin(mx)

∣∣∣∣∣≤ 4k

π2

ln N

N k
+

(
1

N k

)
. (4)

Учитывая оценку (4), из неравенства (3) получим оценку для любого t > 0:∥∥∥u(N )
( x

ω
, t

)∥∥∥≤ 4
K1 +N 2K2

π2N 2

ln N

N k−2
+O

(
1

N k−2

)
,

где
K1 = max

0≤x≤L

∣∣∣( x

ω

)∣∣∣ , K2 = max
0≤x≤L

∣∣∣ f k−2
( x

ω
, t

)∣∣∣ .

Выполняянекоторыематематические вычисления, из представленийправойчасти,
начальных и краевых условий, получаем:

ε
d 2C (T )

m

d t 2 + dC (T )
m

d t
=−a(ωm)2C (T )

m +C
( f )
m . (5)

Решение уравнения (5) примет вид:

C (T )
m =

(
C (T )

m,0 −
C

( f )
m

a(ωm)2

)
1+ηm

1+ (1−ε)ηm
ηe−ηm t

(
1+ 2aω2m2

1+ηm
e−t/ε

)
+ C

( f )
m

a(ωm)2 ,

где

ηm = 2aω2m2

1+
p

1−4εω2m2
.

После проделанных преобразований и вычислений, с учётом заданных начальных
и граничных условий, будет найдена искомая функция:

T (x, t ) =
N−1∑
m=1

C T
m(t )sin(ωmx).
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ANALYTICAL SOLUTION OF THE DIFFUSION EQUATION BASED ON THE ARTIFICIAL
HYPERBOLIZATION METHOD

The paper considers a model of the initial boundary value problem, in the case when the functions
of the right-hand side and the initial condition are represented by finite sums of Fourier series on a
trigonometric basis, and the accuracy of the corresponding approximate method is investigated.
Keywords: accuracy, diffusion-convection equation, approximation error.
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О ДИХОТОМИИ МАРКОВСКИХ ОПЕРАТОРОВ НА ВЕРОЯТНОСТНОМ
КАЛИБРОВОЧНОМ ПРОСТРАНСТВЕ
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В статье рассматриваются марковские операторы, действующие в пространстве
L2(M ,τ), где (H ,M ,τ) — калибровочное вероятностное пространство, то есть, H
— комплексное гильбертово пространство, M — алгебра фон Неймана на H , а τ —
точное нормальное следовое состояние наM . Также будет введено понятие бистоха-
стического состояния и рассмотрены связи с марковскими операторами.

Ключевые слова: вероятностное калибровочное пространство, марковские опера-
торы, дихотомия.

Определение 1. (см., например, [1])Вероятностнымкалибровочнымпростран-
ством называется тройка (H ,M ,m), где H — комплексное гильбертово простран-
ство, M алгебра фон Неймана на H , а m — неотрицательная вещественнозначная
функция на проекторах (калибровка), являющаяся точным нормальным следовым со-
стоянием на алгебре M .

Существует единственное непрерывное по норме линейное продолжение τ ка-
либровки m на всеM , которое также будет точным нормальным следовым состоя-
нием на алгебреM . Естественным образом на алгебреM вводится скалярное про-
изведение: (x, y) = τ(y∗x). Если x ∈ M , положим ∥x∥2 = τ(x∗x). Пополнение алгеб-
рыM относительно этой нормы образует гильбертово пространство, обозначаемое
L2(M ,τ).

Пусть (H1,M1,m1) и (H2,M2,m2) — два вероятностных калибровочных про-
странства, τ1 и τ2—соответствующие точныенормальные следовые состояния. Рас-
смотрим алгебру фон Неймана M , являющуюся тензорным произведением M1 ⊗
M2, определённым на тензорном произведении H = H1 ⊗H2, то есть,

M =: M1 ⊗M2 = {x1 ⊗x2 : x1 ∈M1, x2 ∈M2}′′,

где (·)′′ означает взятие второго коммутанта, который является наименьшей алгеб-
ройфонНеймана, содержащей алгебраическое тензорное произведение алгебрфон
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Неймана. Хорошо известно, что M является мультипликативной алгеброй с есте-
ственными операциями умножения и сопряжения. Зададим наM точное нормаль-
ное следовое состояние ρ, а также «редуцированные» состояния τ1 и τ2, определён-
ные по формулам τ1(x1) = ρ(x1 ⊗1), τ2(x2) = ρ(1⊗ x2), которые будут точными нор-
мальным следовыми состояниями на соответствующих алгебрах.

Определение 2. Точное нормальное следовое состояние ρ, заданное на алгебре
M ⊗M , назовём бистохастическим, если редуцированные состояния (проекции на
первую и вторую координаты) есть заданное состояние τ.

Введём определение марковского оператора, следуя идеям М. Розенблатта [3]
и А.М. Вершика, [4], [5].

Определение 3. Марковским оператором в гильбертовом пространстве
L2(M ,τ) назовём линейный ограниченный оператор T : L2(M ,τ) → L2(M ,τ), удовле-
творяющий следующим условиям: 1) оператор T сжимающий, то есть, ∥T ∥ ≤ 1; 2)
T (1) = T ∗(1) = 1; 3) оператор T сохраняет положительность, то есть, T x будет по-
ложительным элементом L2(M ,τ), если x является положительным.

Очевидно, марковские операторы образуют выпуклое множество.
Теорема 1. Между множеством марковских операторов {T } и множеством би-

стохастических состояний {ρ} существует взаимно однозначное соответствие, ко-
торое задаётся соотношением: ρ(p1 ⊗p2) = (T p1, p2), где проекторы p1, p2 ∈M .

Определение 4. Марковский оператор T , действующий в L2(M ,τ), называется
неразложимым, если у него не существуетинвариантного собственного подпростран-
ства Пирса. Марковский оператор T , действующий в L2(M ,τ), называется эргодиче-
ским, если для любых x, y ∈ L2(M ,τ), 0 < x < 1, 0 < y < 1 существует такое n ∈ Z+,
что (T n x, y) > 0.

Теорема 2. Если T — самосопряжённый марковский оператор, действующий на
L2(M ,τ), где (H ,M ,τ) — вероятностное калибровочное пространство, то T эргоди-
чен тогда и только тогда, если T неразложим. Если выполнено одно из свойств выше,
то T является крайней точкой в множестве самосопряжённых марковских операто-
ров.

Определение 5. Скажем, что марковские операторы T1 и T2 эквивалентны, если
(T1x, y) = 0 ⇔ (T2x, y) = 0, x > 0, y > 0 ∈ L2(M ,τ); марковские операторы T1 и T2
назовём взаимно сингулярными, если существуют такие x > 0, y > 0 ∈ L2(M ,τ), что
(T1x, y) = 0 и, в то же время, (T2x, y) = 1.

В этом случае соответствующие бистохастические состояния назовём эквива-
лентными и сингулярными.

Теорема 3. Пусть T1 и T2 — два различных самосопряжённых марковских эргоди-
ческих оператора, действующих на L2(M ,τ). Тогда они либо эквиваленты, либо син-
гулярны.
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ON THE DICHOTOMY OF MARKOV OPERATORS ON A PROBABILITY GAUGE SPACE

S.G Haliullin

The article considers Markov operators on L2(M ,τ), where (H ,M ,τ) is a gauge probability space, that
is, H is a complex Hilbert space,M is the von Neumann algebra on H , and τ is a faithful normal tracial
state on M . The concept of a bistochastic state will also be introduced and connections with Markov
operators will be considered.
Keywords: probability gauge space, Markov operators, dichotomy.
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Рассматривается гамильтониан системы двух бозонов на двумерной решетке Z2 с
потенциалом определенного типа. Подпространство чётных функций Le

2(T2) разла-
гается в прямую сумму двух инвариантных относительно оператора H(k) подпро-
странств: Lee

2 (T2) и Loo
2 (T2), где k = (k1,k2) ∈T2. Для любого k1 ∈ (−π,π] доказано, что

оператор H ee(k1,π) = H(k1,k2)
∣∣
Lee

2 (T2) имеет бесконечное число собственных значений

и для любого k1 ∈ (−π,π) оператор H oo(k1,π) = H(k1,k2)
∣∣
Loo

2 (T2) имеет конечное число
собственных значений, лежащих левее существенного спектра. При k1 → π получена
асимптотическая формула для числа собственных значений оператора H oo(k1,π).

Ключевые слова: оператор Шредингера, решетка, бозон, квазиимпульс, инвари-
антные подпространства, существенный спектр, собственное значение.

Пусть L2(T2) – гильбертово пространство квадратично интегруемых функций,
определённых на двумерном торе T2. Обозначим через Lo

2(T2) и Le
2(T2) подпро-

странство нечетных и четных функций соответственно, пространства L2(T2). Опе-
ратор H(k), k ∈T2, соответствующий системе двух бозонов на двумерной решетке,
действует в гильбертовом пространстве четных функций Le

2(T2)⊂L2(T2) по формуле

H(k) = H0(k)−V ,

где
(H0(k) f )(q) =εk(q) f (q),
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εk(q)=ε(
k

2
+q)+ε(

k

2
−q); ε(q)=

2∑
i=1

(1−cosqi ), q=(q1, q2) ∈T2,

(V f )(q) = 1

2π

∫
T2

[
1+ 2

10
cos(q1 − s1)

]{
1+2

∞∑
m=1

10−m cosm(q2 − s2)
}

f (s) ds.

Отметим что, существенный спектр оператора H(k) состоит из отрезка
[m(k), M(k)], где

m(k) = min
q∈T2

εk(q), M(k) = max
q∈T2

εk(q).

Пусть Loo
2 (T2) =Lo

2(T)⊗Lo
2(T) и Lee

2 (T2) = Le
2(T)⊗Le

2(T), тогда пространство Le
2(T2)

можно представить в виде прямой суммы Le
2(T2) = Loo

2 (T2)⊕Lee
2 (T2)) (см. [1]).

Заметим, что подпространства Lee
2 (T2) и Loo

2 (T2) инвариантны относительно
оператора H(k) (см. [2]). Через H ee(k) и H oo(k) обозначаем сужения оператора H(k)
в подпространства Lee

2 (T2) и Loo
2 (T2), соответственно.

Теорема 1. Для любого k1 ∈ (−π,π] оператор H ee(k1,π) имеет бесконечное число
собственных значений, лежащих левее существенного спектра.

Пусть N (k1) – число собственных значений оператора H oo(k1,π), лежащих
левее существенного спектра. Тогда для числа N (k1) при k1 → π справедливо
следующее утверждение:

Теорема 2. Для любого k1 ∈ (−π,π] оператор H oo(k1,π) имеет конечное число
собственных значений, лежащих левее существенного спектра. Число собственных
значений N (k1) увеличивается при k1 → π и верна следующая асимптотическая
формула:

lim
k1→π

N (k1)

| lgcos k1
2 |

= 1.
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ON THE SPECTRUM OF THE SCHRÖDINGER OPERATOR CORRESPONDING TO A SYSTEM OF
TWO PARTICLES ON A LATTICE

A.M. Khalkhuzhaev, Kh.Sh. Makhmudov

We consider the Hamiltonian of a system of two bosons on a two-dimensional lattice Z2 with a cer-
tain type potential. It is proved that the subspace of odd functions Le

2(T2) is represented as a di-
rect sum of the subspaces Lee

2 (T2) and Loo
2 (T2), which are invariant under the operator H(k), k =

(k1,k2) ∈ T2, associated with this Hamiltonian. For any k1 ∈ (−π,π], it is proved that the operator
H ee (k1,π) = H(k1,k2)|Lee

2 (T2) has an infinite number of eigenvalues and for any k1 ∈ (−π,π), the oper-
ator H oo(k1,π) = H(k1,k2)|Loo

2 (T2) has a finite number of eigenvalues lying to the left of the essential
spectrum. An asymptotic formula is obtained for the number of eigenvalues of the operator H oo(k1,π)
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as k1 →π.

Keywords: Schrödinger operator, lattice, boson, quasi-momentum, invariant subspaces, essential spec-
trum, eigenvalue.

УДК 514.822

О ЧИСЛЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ ТРЕХЧАСТИЧНОГО ОПЕРАТОРА
ШРЕДИНГЕРА НА ТРЕХМЕРНОЙ РЕШЕТКЕ
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Рассматривается трехчастичный дискретный оператор Шредингера Hµ,γ(K), K =
(K1,K2,K3) ∈ T3, ассоциированный с системой трех частиц (две - фермионы с массой
1 и одна - другая частица с массой m = 1/γ), взаимодействующих с помощью парных
контактных потенциалов µ> 0 натрехмерной решеткеZ3.Описывается существен-
ный спектр этого оператора.

Ключевые слова: решетка, гамильтониан, оператор Шредингера, контактный по-
тенциал, фермион.

В данной работе изучаются спектральные свойства семейства операторов

Hµ,γ(K ) := H0,γ(K )−µ(V1 +V2), µ,γ> 0,

определенных в гильбертовом пространстве L2,as((T3)2) квадратично-
интегрируемых и антисимметричных функций относительно перестановки пере-
менных, где T3 — трехмерный тор (зона Бриллюэна) с единичной мерой

∫
T3 dp = 1.

Невозмущенный оператор H0,γ(K ) — оператор умножения на функцию

EK ,γ(p,q) = ε(p)+ε(q)+γε(K−p−q), K = (K1,K2,K3) ∈T3,

где

ε(p) = 3−ξ(p), ξ(p) =
3∑

i=1
cos pi , p = (p1, p2, p3) ∈T3,

а возмущения Vi определяются как

(V1 f )(p,q) =
∫
T3

f (p,s)ds, (V2 f )(p,q) =
∫
T3

f (s,q)ds.

Мы вводим так называемые "канальные операторы" спектр которых описыва-
ет существенный спектр оператора Hµ,γ(K ).

Поскольку в рассматриваемой нами трехчастичной системе две частицы оди-
наковы, (т.е. операторы V1 и V2 унитарно эквивалентны), есть только один каналь-
ный оператор H ch

µ,γ(K ) = H0,γ(K )−µV1, действующий в гильбертовом пространстве
L2((T3)2). Оператор H ch

µ,γ(K ) коммутирует с группой {Us, s ∈ Z3} унитарных опера-
торов

(Us f )(p,q) = exp{−i (s,p)} f (p,q), f ∈ L2((T3)2),
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где
(s,p) = s1p1 + s2p2 + s3p3, s = (s1, s2, s3) ∈Z3, p = (p1, p2, p3) ∈T3.

Оператор H ch
µ,γ(K ) разлагается в прямой операторный интеграл

H ch
µ,γ(K ) =

∫
T3

⊕H ch
µ,γ(K ,p)dp.

Пространство L2((T3)2) также разлагается в соответствующий прямой интеграл

L2((T3)2) =
∫
T3

⊕L2(T3)dp.

Из единственности разложения следует, что слойныйоператорH ch
µ,γ(K ,p)имеет

вид
H ch
µ,γ(K ,p) = hµ,γ(K−p)+ε(p)I ,

где I− единичный оператор, а hµ,γ(k)− оператор, определенный по формуле

hµ,γ(k) = h0,γ(k)−µv,

где (
h0,γ(k) f

)
(p) = Ek,γ(p) f (p), Ek,γ(p) = ε(p

)+γε(k−p
)
,

(
v f

)
(p) =

∫
T3

f (s)ds,

γ = 1
m > 0 — отношение масс частиц, µ > 0 — энергия взаимодействия фермиона с

третьей частицей.
Для каждого K = (K1,K2,K3) ∈ T3 обозначим

Emin,γ(K ) = min
p,q∈T3

EK ,γ(p,q), Emax,γ(K ) = max
p,q∈T3

EK ,γ(p,q),

Λmin
µ,γ (K ) = min

p∈T3
{zµ,γ(K −p)+ε(p)}, Λmax

µ,γ (K ) = max
p∈T3

{zµ,γ(K −p)+ε(p)},

где zµ,γ(k)− единственное собственное значение оператора hµ,γ(k).
Следующая теорема опысивает структуру и местоположение существенного

спектра оператора Hµ,γ(K ).

Теорема 1. Существенный спектр σess(Hµ,γ(K )) оператора Hµ,γ(K ) совпадает
со спектром канального оператора H ch

µ,γ(K ):

σess(Hµ,γ(K )) = [Λmin
µ,γ (K ),Λmax

µ,γ (K )]∪ [Emin,γ(K ),Emax,γ(K )].
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ON THE NUMBER OF EIGENVALUES OF THE THREE-PARTICLE SCHRÖDINGER OPERATOR ON
A THREE-DIMENSIONAL LATTICE

A.M. Khalkhuzhaev, X.G. Khayitova

A three-particle discrete Schrodinger operator Hµ,γ(K), K = (K1,K2,K3) ∈ T3 is considered, it is
associated with a system of three particles (two fermions with mass 1 and one other particle with mass
m = 1/γ) interacting via pairwise contact potentials on the three-dimensional lattice Z3. The essential
spectrum of this operator is described.
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В заметке найдены аналоги теорем типа Вихманна о суммируемости по мере в про-
странстве измеримых почти всюду функций, т.е. получены аналоги классических тео-
ремам о суммируемости в пространстве M(S,Σ,µ), где S = [0,1] и µ – мера Лебега, а
множество M состоит из измеримых почти всюду конечных на [0,1] функций.

Ключевые слова: теорема Вихманна, суммируемость по мере, пространство изме-
римых функций, матрица конечного типа, сходимость по мере.

Пусть gk (t ) (k = 0,1,2, . . .) – измеримые функции и A = (αnk ) – числовая матри-
ца.В дальнейшем нам понадобиться следующее преобразование

Pn(t ) =
∞∑

k=0
αnk gk (t ). (1)

Определение 1 [1]. Последовательность измеримых функций fn(x) (n =
0,1,2, . . .) сходится по мере к функции F (x), если для любого положительного число σ
выполняется

lim
n→∞µ{x : | fn(x)−F (x)| ≥σ} = 0.

Определение 2. Последовательность измеримых функций fn(x) (n = 0,1,2, . . .)
суммируема по мере методом A или A–суммируема по мере, если сходится по мере
последовательность e(t ) = Pn(t ), которая определена соотношением (1).
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Пространство всех A–суммируемых по мере последовательностей обозначим
через FA(M), где M – измеримые почти всюду конечных на отрезке [0,1] функций.

Пусть S = [0,1] есть µ–мера Лебега и M состоит из измеримых почти всюду
конечных на отрезке [0,1] функций. Вихманн Ф. [2] доказал, что для включения
FA(M) ⊂ F (M) необходимо и достаточно, чтобы существовали:

lim
n→∞αnk =αk ; lim

n→∞
∞∑

k=0
αnk =αk ; sup

n→∞

∞∑
k=0

|αnk | <∞, (2)

кроме того, существует натуральное число K такое, что числа отличных от нуля
элементов любой строки матрицы A не превосходит K .

Здесь нам удалось найти анлоги теорем типа Вихманна о суммируемости по
мере в пространстве измеримых почти всюду функций.

Теорема 1. Пусть матрица A является матрицей конечного типа, т.е. суще-
ствует натуральное число K такое, что числа отличных от нуля элементов любой
строки матрицы A не превосходит K . Тогда для включения FA(M) ⊂ F 0(M) необходи-
мо и достаточно, чтобы были выполнены условия (2) и F = FA(R).

Заметим, что теорема 1 устанавливает необходимые и достаточные условия A–
суммируемости по мере для всех сходящихся по мере к нулю последовательностей.

Следующее утверждение устанавливает A–суммируемость по мере к нулю для
всех сходящихся по мере к нулю последовательностей.

Теорема 2. Пусть матрица A является матрицей конечного типа. Тогда для
включения FA(M) ⊂ F 0(M) необходимо и достаточно, чтобы были выполнены условия
(2) и F = FA(R).
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ON THE SUMMABILITY OF A MEASURE IN THE SPACE OF MEASURABLE FUNCTIONS

Yu.Kh. Khasanov, A.N. Davlatov

In this note, we find analogues of the Wichmann type theorem on summability over a measure in the
space of almost everywheremeasurable functions, i. e. analogues of classical theorems on summability
in the spaceM(S,Σ,µ), where S = [0,1] andµ are the Lebesguemeasure, and the setM consists of almost
everywhere measurable finite on [0,1] functions.
Keywords: Wichmann’s theorem, summability over measure, space of measurable functions, finite type
matrix, convergence in measure.
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В данной работе рассматривается модель Фридрихса H с четырехмерным возму-
щением, соответствующая оператору энергии системы двух частиц на одномерной
решетке. С помощью числовой области значений четырех вспомогательных моделей
Фридрихса с одномерными возмущениями была проанализирована числовая область
значений исследуемой модели Фридрихса.

Ключевые слова: модель Фридрихса, возмущения, система частиц, числовая об-
ласть значений.

Одним из классических методов изучения спектра линейного ограниченного
оператора A в комплексном гильбертовом пространстве H является изучение
его числовой области значений. Последнее множество определяется следующим
образом:

W (A) := {(Ax, x) : x ∈H , ∥x∥ = 1}.

В данной работе исследуем числовую область значений модели Фридрихса с четы-
рехмерным возмущением в одномерном случае. В работе [1] для моделиФридрихса
с двумернымвозмущениемнайдены условия совпадаемости его спектра с числовой
областью значений.

В гильбертовом пространстве L2[−π;π] рассмотрим оператор вида:

H := H0 −V1 −V2 −V3 −V4, (1)

где H0 — оператор умножения на функцию u(·):
(H0 f )(x) = u(x) f (x), f ∈ L2[−π;π];

а Vα, α = 1,2,3,4 - интегральные операторы вида:

(Vα f )(x) = vα(x)
∫ π

−π
vα(t ) f (t )d t , f ∈ L2[−π;π].

Здесь u(·) и vα(·), α= 1,2,3,4 – вещественнозначные непрерывные функции, опре-
деленные на отрезке [−π;π], причем функции v1(·), v2(·), v3(·) и v4(·) линейно неза-
висимы.

При этих предположениях на параметр функции, оператор H , определенный
по формуле (1), ограничен и самосопряжен в гильбертовом пространстве L2[−π;π].

Оператор возмущения V невозмущенного оператора H0 является самосопря-
женным оператором ранга 4. Следовательно, из известной теоремы Г. Вейля о со-
хранении существенного спектра при возмущениях конечного ранга вытекает, что
σess(H) = [m; M ], где числа m и M определяются следующим образом:

m := min
x∈[−π;π]

u(x), M := max
x∈[−π;π]

u(x).
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Можнопоказать, чтомодельФридрихсаH имеетне более четырех собственных
значений, лежащих левее точки m. По определению оператор Vk является положи-
тельным. Следовательно, операторV также является положительнымкак суммапо-
ложительных операторов. Теперь из положительности оператораV следует, чтомо-
дель Фридрихса H не имеет собственный значений, лежащих правее M и поэтому

maxσ(H) = maxσess(H) = M .

Следующее утверждение является основным результатом работы.
Теорема 1. а) Имеет место соотношение M ̸∈ W (H);
б) Число z = M является предельной точкой множества W (H).
Чтобы использовать в дальнейших исследованиях наряду с моделью Фридрихса H ,

рассмотрим линейные, ограниченные и самосопряженные операторы

Hk := H0 −Vk , k = 1,2,3,4

в гильбертовом пространстве L2[−π;π]. По определению модели Фридрихса H1, H2,
H3 и H4 имеют одномерное возмущение.

Теорема 2. Существуют индексы i , j ,k ∈ {1,2,3,4} такие, что

W (Hi ) ⊂W (H j ) ⊂W (Hk ).

Для формулировки следующего результата обозначим через supp{vα(·)} носитель
функции vα(·) и через µ(Ω) меру Лебега множества Ω ⊂ R.

Теорема 3. Если для любых i ̸= j , i , j = 1,2,3,4 выполняется условие

µ(supp{vi (·)}∩ supp{v j (·)}) = 0,

то существует индекс k ∈ {1,2,3} такой, что W (Hk ) = W (H).
Следует отметить, что класс функций vk (·), k = 1,2,3,4, удовлетворяющих

условию теоремы, не пуст.
Полученные в данной работе утверждения о числовой области значений моде-

ли Фридрихса H важны при определении интервала, в котором расположены соб-
ственные значения этой модели.
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NUMERICAL RANGE OF THE FRIEDRICHS MODEL WITH RANK FOUR PERTURBATION

J.T. Husenova

In this note we consider the FriedrichsmodelH with rank four perturbation corresponding to the energy
operator of system of two particles on one-dimensional lattice. Using the numerical range of four
auxiliary Friedrichsmodels with rank one perturbations the numerical ranges of investigated Friedrichs
model is analyzed.
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АППРОКСИМАЦИЯ КОНСТАНТЫ ЛЕБЕГА ОПЕРАТОРА ФУРЬЕ
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1 iskander.sh.57@yandex.ru; Набережночелнинский институт Казанского (Приволжского) федераль-
ного университета

Константа Лебега классического оператора Фурье равномерно приближается
логарифмическо-дробно-рациональной функцией двумя различными способами, про-
водится сравнение результатов аппроксимации.

Ключевые слова: оператор Фурье, константа Лебега, дробно-рациональная функ-
ция, погрешность аппроксимации.

Рассматривается константа Лебега Ln = ||Sn || классического оператора Фурье

Sn : C2π→C2π (Sn(x, t ) = 1

π

2π∫
0

x(s)Dn(t − s)d s, t ∈ T̃ = [0,2π],n ∈ N ). (1)

Ее улучшенная верхняя оценка используется в работе [1] при оценке равномер-
ной сходимости сумм Фурье Sn(x, t ) для функций, имеющих ограниченную вариа-
цию, а также для гельдеровых функций; в [2] более детально изучено поведение яд-
ра Дирихле Dn(u), на основе которого получены несколько отличные от ранее из-
вестных точные и асимптотические формулы для Ln; в [3] и [4] установлены неулуч-
шаемые двусторонние оценки константы Лебега логарифмическими функциями, а
также хорошее ее приближение логарифмическо-дробно-рациональной функцией.
Частичные суммы Фурье, оператор (1) и его фундаментальная характеристика Ln
остаются актуальным объектом изучения.

Построена логарифмическо-дробно-рациональная приближенная формула
вида

Ln ≈ 4

π2 ln(n +a)+b + c1

(n +a)2 − c2

(n +a)4

de f= un(a,b,c1,c2), n ∈ N (2)

двумя способами: 1) используя асимптотическое разложение константы Лебега Ln
по степеням 1/(n + a)2, 2) исходя из условия совпадения левой и правой частей (2)
при первоначальных значениях аргумента n; проведено сравнение аппроксима-
тивных качеств этих приближенных формул.

Коэффициенты a,b в правой части (2) определим как a = 0.5, b = α̃0 =
1,270353244921... (α̃0 = c0 + (4/π2) ln2, c0 — константа Ватсона), заметим, что
при таком их выборе константа Лебега наилучшим образом оценивается снизу
логарифмической составляющей [3]. Затемдляопределениядругих коэффициентов
из (2) используем первые две дробно-рациональные слагаемые в соответствующем
асимптотическом разложении

Ln ≈ 4

π2 ln(n +0.5)+ α̃0 + 4

π2

∞∑
r=1

(−1)r−1 cr

22r (
1

n +0.5
)2r , n ∈ N .
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Тогда аппроксимационная формула имеет вид

Ln ≈ un(0.5, α̃0,c∗1 ,c∗2 ), n ∈ N , (c∗1 = 0,002997974544...,c∗2 = 0,000124835270...). (3)

При построении второй приближенной формулы вида (2) поступим следу-
ющим образом. Первые два коэффициента при логарифмической составляющей
оставим без изменения (a = 0.5,b = α̃0 ), а неизвестные константы c1,c2 опреде-
лим из условия совпадения правой и левой частей (2) при значениях аргумента
n = 1,n = 2:

L1 = un(0.5, α̃0,c1,c2), L2 = un(0.5, α̃0,c1,c2).

Полученная относительно c1,c2 система уравнений с ненулевым определите-
лем имеет единственное решение c1 = 0.002996972641..., c2 = 0.000116069468..., что
и завершает построение второй аппроксимационной формулы:

Ln ≈ un(0.5, α̃0,c1,c2), n ∈ N . (4)

Для допущенной в приближенных формулах (3), (4) абсолютной равномерной
(дискретной) погрешности имеет место следующая

Теорема. Величина погрешности аппроксимации константы Лебега Ln
логарифмическо-дробно-рациональной функцией в приближенной формуле (4) со-
ставляет 10−8 степени, что на полтора порядка лучше, чем в формуле (3).
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APPROXIMATION OF THE LEBESGUE CONSTANT OF THE FOURIER OPERATOR

I.A. Shakirov

The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic
fractional rational function in two different ways, and the results of the approximation are compared.
Keywords: Fourier operator, Lebesgue constant, fractional rational function, approximation error.
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ИНВАРИАНТЫ ДИНАМИЧЕСКИХ СИСТЕМ
НЕЧЕТНОГО ПОРЯДКА С ДИССИПАЦИЕЙ
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Представлены новые случаи интегрируемых однородных по части переменных дина-
мических систем произвольного нечетного порядка, в которых может быть выделена
система на касательном расслоении к четномерному многообразию. При этом сило-
вое поле (генератор сдвига в системе) разделяется на внутреннее (консервативное) и
внешнее, которое обладает диссипацией разного знака. Внешнее поле вводится с по-
мощью некоторого унимодулярного преобразования и обобщает ранее рассмотренные
поля. Приведены полные наборы как первых интегралов, так и инвариантных диффе-
ренциальных форм.

Ключевые слова: инвариант динамической системы, существенно особые точки
инварианта, система с диссипацией, интегрируемость.

Как известно, нахождение достаточного количества тензорных инвариантов
(не только автономных первых интегралов) [1, 2, 3] облегчает исследование, а ино-
гда позволяет точно проинтегрировать систему дифференциальных уравнений.
Так, наличие инвариантной дифференциальнойформыфазового объема позволяет
уменьшить количество требуемых первых интегралов. Для консервативных систем
этот факт естествен, когда фазовый поток сохраняет объем с гладкой (или посто-
янной) плотностью. Сложнее (в смысле гладкости инвариантов) дело обстоит для
систем, обладающих притягивающими или отталкивающими предельными мно-
жествами. Для них коэффициенты искомых инвариантов должны, вообще говоря,
включать функции, обладающие существенно особыми точками (см. также [4, 5, 6]).
Наш подход – в том, что для точного интегрирования автономной системы порядка
m надо знать m −1 независимый нетривиальный тензорный инвариант. При этом
для достижения точной интегрируемости приходится соблюдать также ряд допол-
нительных условий.

Ранее [5, 7] важные случаи интегрируемых систем с конечнымчислом степеней
свободы в неконсервативном поле сил уже рассматривались автором. При этом
упор делался на нахождение достаточного количества именно первых интегралов.
Но, как известно, иногда полного набора первых интегралов для систем может и не
быть, зато достаточное количество инвариантных форм может быть обеспечено.

Понятия “консервативность”, “силовое поле”, “диссипация” и др. для систем
классической механики вполне естественны. Поскольку в работе изучаются систе-
мы на касательном расслоении к гладкому многообразию (пространству положе-
ний), уточним данные понятия для таких систем.

Исследование “в целом” начинается с изучения приведенных уравнений гео-
дезических, левые части которых при правильной параметризации представляют
собой ускорение движения материальной частицы, а правые части приравнены к
нулю. Соответственно, величины, которые ставятся в дальнейшем в правую часть,
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рассматриваются как обобщенные силы. Такой подход традиционен для классиче-
ской механики, а теперь он естественно распространяется на более общий случай
касательного расслоения к гладкомумногообразию.Последнее позволяет, в некото-
ром смысле, конструировать “силовые поля”. Так, например, введя в систему коэф-
фициенты, линейные по одной из координат касательного пространства (по одной
из квазискоростей системы), получим силовое поле (генератор сдвига) с диссипа-
цией разного знака.

Словосочетание “диссипация разного знака” несколько противоречиво, тем не
менее, будем его употреблять. Учитывая при этом, что в математической физике
диссипация “со знаком “плюс” — это рассеяние полной энергии в обычном смысле,
а диссипация “со знаком “минус”— это своеобразная “подкачка” энергии (при этом
в механике силы, обеспечивающие рассеяние энергии называются диссипативны-
ми, а силы, обеспечивающие подкачку энергии называются разгоняющими).

Консервативность для системможно понимать в традиционном смысле, но мы
добавим к этому следующее. Будем говорить, что система консервативна, если она
обладает полным набором гладких первых интегралов, что говорит о том, что она
не обладает притягивающими или отталкивающими предельными множествами.
Если же она последними обладает, то будем говорить, что система обладает дисси-
пацией какого-то знака. Как следствие этого — обладание системы хотя бы одним
первым интегралом (если они вообще есть) с существенно особыми точками.

В предлагаемой работе силовое поле (генератор сдвига системы) разделяется
на так называемые внутреннее и внешнее. Внутреннее поле характерно тем, что
оно не меняет консервативности системы. А внешнее может вносить в систему
диссипацию разного знака. Заметим также, что вид внутренних силовых полей
заимствован из классической динамики твердого тела.

В данной работе приведены первые интегралы, а также инвариантные диф-
ференциальные формы классов однородных по части переменных динамических
систем произвольного нечетного порядка, в которых может быть выделена система
с конечным числом степеней свободы на своем четномерном многообразии. При
этом силовое поле разделяется на внутреннее (консервативное) и внешнее, кото-
рое обладает диссипацией переменного знака. Внешнее поле вводится с помощью
некоторого унимодулярного преобразования и обобщает силовые поля, рассматри-
ваемые ранее.
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INVARIANTS OF DYNAMICAL SYSTEMS OF ODD ORDER WITH DISSIPATION

M.V. Shamolin

We present new cases of integrable dynamical systems homogeneous in terms of variables of arbitrary
odd order in which a system on a tangent bundle to an even-dimensionalmanifold can be distinguished.
In this case, the force field (the shear generator in the system) is divided into an internal (conservative)
and an external one, which has a dissipation of different signs. The external field is introduced using
some unimodular transformation and generalizes the previously considered fields. Complete sets of
both the first integrals and invariant differential forms are given.
Keywords: invariant of a dynamical system, essentially special points of invariant, systemwith dissipation,
integrability.
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НИЖНЯЯ ОЦЕНКА ДЛЯ СПЕКТРА ОПЕРАТОРНОЙ МАТРИЦЫ ТРЕТЬЕГО
ПОРЯДКА, ЗАВИСЯЩЕЙ ОТ ПАРАМЕТРА
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В данной работе исследуется операторная матрицатретьего порядкаAµ, действую-
щая в обрезанном трёхчастичном подпространстве пространствa Фока, зависящая
от спектрального параметра µ> 0. С помощью классической теории возмущений по-
лучена нижняя оценка для спектра операторной матрицыAµ.

Ключевые слова: операторнаяматрица, спектр, классическая теория возмущения.

Обозначим через T одномерный тор. Пусть H1 := C — одномерное простран-
ство комплексных чисел, H2 := L2(T) — гильбертово пространство квадратично-
интегрируемых (комлекснозначных) функций, определённых на T и H3 := L2(T2)
— гильбертово пространство квадратично-интегрируемых (комплекснозначных)
функций, определённых на T2. Обозначим через H прямую сумму пространств
H1, H2 и H3, т.е. H := H1 ⊕H2 ⊕H3. В современной математической физике
гильбертово пространствоH называют трёхчастичным обрезанным подпростран-
ством пространства Фока. Произвольный элемент f этого пространства имеет вид
f = ( f1, f2, f3), где fi ∈H i , i = 1,2,3, а его норма вычисляется по следующейформуле:

∥ f ∥ =
(
| f1|2 +

∫
T1

| f2(x)|2 d x +
∫
T2

| f3(x, y)|2 d x d y

) 1
2

.
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Рассмотрим операторную матрицу третьего порядкаAµ, действующую в гиль-
бертовом пространствеH и зависящую от спектрального параметра µ> 0, вида

Aµ :=
 A11 µA12 0
µA21 A22 µA23

0 µA32 A33


со следующими матричными элементами Ai j : H j → H i , i , j = 1,2,3:

A11 f1 = ε f1, (A12 f2) =
∫
T

v(t ) f2(t )d t ;

A21 = A∗
12, (A22 f2(x)) = (ε+u(x)) f2(x), (A23 f3)(x) =

∫
T

v(t ) f3(x, t )d t ;

A32 = A∗
23, (A33 f3)(x, y) = (ε+u(x)+u(y)) f3(x, y), fi ∈H i , i = 1,2,3.

Здесь ε ∈ R; u(·) и v(·) – вещественнозначные непрерывные функции на T.
С помощью простых вычислений имеем:

(A∗
12 f1)(x) = v(x) f1, f1 ∈H1,

(A∗
23 f2)(x, y) = v(y) f2(x), f2 ∈H2.

Отметим, что операторная матрица Aµ, заданная в таком виде, является ли-
нейным, ограниченным и самосопряженным оператором в гильбертовом про-
странстве H .

В математической физике операторы A12 и A23 обычно интерпретируются как
операторы уничтожения, а их сопряжённые операторы A∗

12 и A∗
23 называются опе-

раторами рождения. Операторная матрица Aµ, зависящая от спектрального пара-
метра µ> 0, как правило, рассматривается в качестве гамильтониана квантовой си-
стемы частиц на одномерной решётке, в которой число частиц не сохраняется и не
превышает трех.

Введем обозначение:

m := min
x∈T

u(x); M := max
x∈T

u(x).

Основной результат работы является следующее утверждение.

Теорема 1. Имеет место следующая оценка для нижней границы:

minσ(Aµ) ≥
{
ε−p

2µ∥v∥, если m ≥ 0;

ε+2m −p
2µ∥v∥, если m < 0.

Следует отметить, что теорема 1 доказывается с использованием классической
теоремытеории возмущений [1]. Аналогичнуюоценкуможнополучить для верхней
границы операторной матрицы Aµ.
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THE LOWER ESTIMATE FOR THE SPECTRUM OF A THIRD-ORDER OPERATOR MATRIX
DEPENDING ON A PARAMETER

M.Sh. Sharipova

In this work we investigate a third-order operator matrix Aµ, acting in the truncated three-particle
subspace of the Fock space and depending on a spectral parameter µ> 0. Using classical perturbation
theory, we obtain the lower estimate for the spectrum of the operator matrix Aµ.
Keywords: operator matrix, spectrum, classical perturbation theory.
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В работе изучается вопрос о существовании периодических решений-циклов в нели-
нейных дифференциальных уравнениях с малым параметром. Получены необходимые
и достаточные условия существования периодических решений, которые существен-
но расширяют область применимости метода малого параметра Л.С.Понтрягина из
теории динамических систем на плоскости. В отличие от метода Понтрягина, не
предполагается дифференцируемость всех входящих в систему функций, кроме этого,
система не является гамильтоновой. В работе применяются топологические методы
нелинейного анализа. На основе предложенных методов сформулированы и доказаны
теоремы о необходимых и достаточных условиях существования периодических реше-
ний при условии непрерывности всех входящих в систему функций. С целью упрощения
изучаемой системы в работе используется переход к полярной системе координат и
жордановы преобразования.

Ключевые слова: нелинейные дифференциальные уравнения, малый параметр,
жорданово преобразование, гомотопия, вращение векторных полей.

Рассмотрим систему дифференциальных уравнений, векторная запись кото-
рой имеет вид

ẋ = Ax +ε f (x,ε), (1)

где x = (x1, x2, ..., xn)T ∈ Rn, а f (x,ε) – непрерывная вектор–функция по совокупно-
сти переменных x,ε; ε— параметр; A = (ai j ), i , j = 1,2,3, ...,n, — квадратная матри-
ца. В дальнейшем предполагается, что характеристическое уравнение матрицы A
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системы (1): det(A −λI ) = 0 и сред всех своих корней имеет собственное значение
вида ±iβ,β > 0.

При сделанных относительно спектраматрицы A системы (1) предположениях,
согласно теореме Жордана получим систему дифференциальных уравнений следу-
ющего вида: 

ẏ1 =βy2 +∑n
j=3 b1 j y j +εg1(y1, y2, y3,ε),

ẏ2 =−βy1 +∑n
j=3 b2 j y j +εg2(y1, y2, y3,ε),

ẏ3 =∑n
j=3 b3 j y j +εg3(y1, y2, y3,ε),

................................................,
ẏn =∑n

j=3 bn j y j +εgn(y1, y2, y3,ε).

(2)

По правой части системы (2) определим аналог функции Понтрягина[1]:

F (ρ) =
∫ 2π

0
[g1(ρ cosϕ,ρ sinϕ,0,0, ...,0)cosϕ+ g2(ρ cosϕ,ρ sinϕ,0,0, ...,0)sinϕ]dϕ.

Напомним, что норма в пространстве непрерывных функций определяется
следующим равенством: ∥x(t )∥ = max

t
|x(t )|, где | · | — евклидова норма в простран-

стве Rn . Сформулируем необходимое условие существования периодических реше-
ний системы (1) при ε→ 0,ε > 0.

Теорема 1. Предположим, что для некоторой последовательности значений ε=
εk ̸= 0,εk → 0, при k → ∞ система (1) имеет периодическое решение x(t +ωk ,εk ) ≡
x(t ,εk ), с наименьшим периодом ωk = ω(εk ) > 0, удовлетворяющее условию C1 ≤
∥x(t ,εk )∥ < C2, 0 < C1 < C2 заданные числа. Тогда существует такое ρ0 ∈ [C1,C2] что
F (ρ0) = 0.

Сформулированное необходимое условие при некоторых дополнительных
ограничениях поведения функции F (ρ) в окрестности решения уравнения F (ρ) = 0
является также и достаточным условием существования периодического решения
системы (1) при достаточно малых значениях ε > 0, а именно справедливо следу-
ющая теорема.

Теорема 2. Пусть ρ0 > 0 – решение уравнения F (ρ) = 0, и в окрестности [ρ0 −
δ0,ρ0 + δ0], точки ρ0, где ρ0 − δ0 > 0, функция F (ρ) ̸= 0 при ρ ̸= ρ0, причём F (ρ0 −
δ0) ·F (ρ0 +δ0) < 0. Тогда система (1) при достаточно малых значениях |ε| > 0 имеет
нестационарное ω(ε) – периодическое решение x(t ,ε).
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ON ONE ANALOGUE OF PONTRYAGIN’S THEOREM ON THE EXISTENCE OF PERIODIC
SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS DEPENDING ON A SMALL

PARAMETER

Z.I. Sharifzoda, I.D. Nurov

This work considered the question of the existence of periodic solutions-cycles in nonlinear differential
equations with a small parameter. Necessary and sufficient conditions for the existence of periodic
solutions are obtained, they significantly expand the area of applicability of the small parameter
method of L.S. Pontryagin from the theory of dynamic systems on the plane. Unlike the Pontryagin
method, the differentiability of all functions included in the system is not assumed. Moreover, the
system is not Hamiltonian. The work employs topological methods of nonlinear analysis. Based on
the proposed methods, theorems on necessary and sufficient conditions for the existence of periodic
solutions are formulated and proven, assuming the continuity of all functions included in the system.
To simplify the studied system, the work uses a transition to the polar coordinate system and Jordan
transformations.
Keywords: nonlinear differential equations, small parameter, Jordan transformation, homotopy, rotation
of vector fields.
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НЕКОТОРЫЕ ФОРМУЛЫ ДЛЯ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ: НОВЫЕ
ДОКАЗАТЕЛЬСТВА И ОБОБЩЕНИЯ

И.А. Шилин1

1 ilyashilin@li.ru; Московский технический университет связи и информатики; Национальный ис-
следовательский университет МЭИ

Теоретико-групповыми методами выведены некоторые известные формулы для ин-
тегральных преобразований Мейера, Меллина, Бушмана–Эрдейи и Мелера–Фока и их
обобщения.

Ключевые слова: преобразование Мейера, обратное преобразование Меллина,
преобразование Бушмана–Эрдейи, преобразование Мелера–Фока, интеграл Барн-
са, максимальная компактная подгруппа, максимальная абелева подгруппа, макси-
мальная нильпотентная подгруппа, представление группы.

Рассматриваются три родственные группы размерностей 3, 6 и 6, в каждой
из которых выделяются некоторые подгруппы (максимальная компактная, макси-
мальная абелева, максимальная нильпотентная и некоторые другие) и для каждой
из которых вводятся два представления. В пространстве первого представления для
выделенных подгрупп конструируются базисы, состоящие из общих собственных
функций коммутирующих друг с другом операторов Казимира для соответствую-
щей вложенной цепочки подгрупп.
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Формула связи между Q-образами базисных функций, где Q — линейный
оператор, сплетающий указанные выше представления, зависит от нескольких
параметров. Присваивая этим параметрам нулевые значения, получаем в точности
известные формулы для интегральных преобразований Мейера

+∞∫
0

Kσ+1/2(t ) J−σ−1/2(t )dt =
p
πΓ(−σ/2)

4Γ
(1−σ

2

) (−1 <ℜ(σ), (1)

+∞∫
0

t−1/2 Kσ+1/2(t )dt = 2−3/2Γ(−σ/2)Γ

(
1+σ

2

)
(−1 <ℜ(σ) < 0), (2)

+∞∫
0

[Kσ+1/2(t )]2 dt = 2−2πΓ(−σ/2)Γ(1+σ/2) (−1 <ℜ(σ), (3)

+∞∫
0

t [Kσ+1(t )]2 dt = 1

2
Γ(2+σ)Γ(−σ) (−2 <ℜ(σ) < 0)

и обратного преобразования Меллина (интегралов Барнса)
+i∞∫

−i∞
Γ

[σ
2
+1+ t , −σ

2
+ t , −σ

2
− t ,

σ

2
+1− t

]
dt = 2πiΓ(−σ)Γ(σ+2) (−2 <ℜ(σ) < 0),

+i∞∫
−i∞

(
p2

4

)−t

Γ
[σ

2
+1+ t , −σ

2
+ t

]
dt = 4πi p Kσ+1(p) (−2 <ℜ(σ) < 0).

Кроме того, полученаизвестныеранееформула дляпреобразованияБушмана–
Эрдейи

1∫
0

t−σ−2 P |m|
n (t )P−|m|

− 1
2+ip

(t−1)dt = (−1)m 2n−σ−2Γ

(
1

2
+n

)
Γ

[ n−|m|−σ+ip
2 , n−|m|−σ−ip

2
1+n −|m|, n −σ

]
×

× 4F3

[ |m|−n
2 , 1+|m|−n

2 , 1+σ−n
2 ,1− σ+n

2
1
2 −n, 5

8 +
σ+|m|−n+ip

2 , 5
8 +

σ+|m|−n−ip
2

∣∣∣∣∣ 4

] (
ℜ(σ) <−1

2

)
и связанная с ней формула для преобразования Мелера–Фока

+∞∫
0

t sinh(πt )Γ

(
1

2
+ it

)
Γ

(
1

2
− it

)
Γ

(
ν+ it

2

)
Γ

(
ν− it

2

)
P−1/2+it (s)dt =

= 23/2−2νπ3/2 s−2ν−1/2Γ

(
1

2
+2ν

)
(0 Éℜ(ν) < 1

4
).

Для некоторых из этих формул найдены обобщения: они получаются из формул
связи между Q-образами во втором пространстве представления, если придавать
параметрам этих формул произвольные (допустимые) значения.

Подробный вывод формул (1) и (2) и их обобщений приведен в статье [2], а
формулы (3) и ее обобщения — в работе [1].
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SOME FORMULAS FOR INTEGRAL TRANSFORMS: NEW PROOFS AND GENERALIZATIONS

I.A. Shilin

Some well-known formulas for the integral transformations of Meijer, Mellin, Bushman–Erdelyi and
Mehler–Fock and their generalizations obtained by using group-theoretical methods.
Keywords: Meijer transform, Mellin transform, Bushman–Erdelyi transform, Mehler–Fock transform,
Barnes integral, maximal compact subgroup, maximal Abelian subgroup, maximal nilpotent subgroup,
group representation.
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УСЛОВИЯ НА ГРАНИЧНЫЕ СМЕЩЕНИЯ, ОБЕСПЕЧИВАЮЩИЕ КОНЕЧНЫЕ
ЗНАЧЕНИЯ КОМПОНЕНТ ТЕНЗОРА НАПРЯЖЕНИЙ В ГРАНИЧНОЙ ТОЧКИ

ВОЗВРАТА
Е.А. Широкова1, М. Алхело2

1 elena.shirokova@kpfu.ru; Казанский (Приволжский) федеральный университет
2 alhelomustafa@outlook.sa;

Для плоской задачи теории упругости рассматривается область с граничной точкой
возврата, где при напряжениимогут развиватьсятрещины. Найдены условия на пред-
ставление в виде полиномов Фурье плоских граничных смещений в терминах полярно-
го угла единичной окружности при соответствующем конформном отображении, ко-
торые обеспечивают конечные значения компоненттензора напряжений в граничных
точках возврата. Построены примеры.

Ключевые слова: точка возврата, тензор напряжений, краевая задача.

Нахождение условий на граничные смещения, предотвращающих сингулярно-
сти напряжений в точке возврата, например, для области, полученной отображени-
ем z(ζ) = (ζ−1)2, где ζ= 1—прообраз точки возврата z = 0, связь компонент тензора
напряжений с граничными смещениями проявляется через комплексные потенци-
алы Φ(z) и Ψ(z):

σ11 =Re
[

2Φ′(z)− zΦ′′(z)−Ψ′(z)
]

,

σ22 =Re
[

2Φ′(z)+ zΦ′′(z)+Ψ′(z)
]

,

σ12 =−Im
[

zΦ′′(z)+Ψ′(z)
]

.

(1)
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Аналитические в соответствующей области функции Φ(z) и Ψ(z) являются
решением краевой задачи:

[−κΦ(z)+ zΦ′(z)+Ψ(z)]z=z(s)∈∂D =−2µ(u(s)+ i v(s)), s ∈ [0,L]. (2)

Введем обозначения f (ζ) = Φ(z(ζ)), g (ζ) =Ψ(z(ζ)). Тогда краевое условие (2) при-
мет вид:

[−κ f (ζ)+ z(ζ)

z ′(ζ)
f ′(ζ)+ g (ζ)]ζ=eiθ = R1(θ)+ i R2(θ), где q(ζ) = z

(
1

ζ

)
. (3)

Граничные смещения задаются в форме рядов Фурье:

R1(θ) = α0

2
+

∞∑
k=1

αk coskθ+βk sinkθ,

R2(θ) = γ0

2
+

∞∑
k=1

γk coskθ+δk sinkθ.

Очевидно, что раз точке возврата соответствует ζ= 1,для того, чтобы значения
компонент тензора напряжений были конечными в точке возврата, необходимо
выполнение условий:

f ′(1) = 0, (4)

и

[ q(ζ)

(
f ′(ζ)

z ′(ζ)

)′
+ g ′(ζ)

]
ζ=1

= 0. (5)

В соответствии с необходимым условием ограниченности напряжений (4) и (5)
мы получаем условие на заданные коэффициенты::

∞∑
k=1

k(δk + iγk )+ i
[
(γ1 −β1)+2(γ2 −β2)

] · 1−κ
2κ2 +κ−1

= 0. (6)

−1

2

∞∑
k=1

k[(αk +δk )− i (βk −γk )]+ α1 +δ1 +2(α2 +δ2)

4κ+2
− i

(γ1 −β1)+2(γ2 −β2)

4κ−2
= 0. (7)

Пусть, например, µ = 10,

α0 = 0, α1 = 1, α2 = 1, α3 =−1, δ1 =−1, δ2 =−1, δ3 = 1,

γ0 = 0, γ1 =−1, γ2 =−1, γ3 = 1, β1 =−1, β2 =−1, β3 = 1.
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В этом случае получаем результат смещений (красная линия):

CONDITIONS ON BOUNDARY DISPLACEMENTS THAT ENSURE FINITE VALUES OF THE
STRESS TENSOR COMPONENTS AT THE BOUNDARY CUSP POINT

E.A. Shirokova, M. Alhelo

A domain with boundary cusp points is considered, where the boundary displacements can provide the
stress that promotes crack propagation from the cusp. Boundary displacements in the form of Fourier
polynomials are found that ensure the finite values of the stress tensor components at the cusp points.
Examples are constructed where non-zero displacements yield finite stress tensor components at the
boundary cusp points.
Keywords: cusp point, Stress tensor, Boundary value problem.

УДК 512.58, 517.986

О ФУНКТОРАХ МЕЖДУ КОМПАКТНЫМИ C∗-СООТНОШЕНИЯМИ
К.А. Шишкин1

1 keril911@gmail.com; Казанский (Приволжский) Федеральный Университет

Т. А. Лорингом был предложен категорный подход к понятию универсальной C∗-
алгебры, порождённой множеством образующих, удовлетворяющих набору соотноше-
ний. В рамках данного подхода рассматриваются категории, называемые C∗-соот-
ношениями. Для заданного множества X объектами C∗-соотношения на X являются
функции из X вC∗-алгебры, а морфизмами служат ∗-гомоморфизмыC∗-алгебр, дела-
ющие соответствующие треугольные диаграммы коммутативными. При этом объ-
екты и морфизмы C∗-соотношения должны удовлетворять ряду естественных акси-
ом.C∗-соотношение, определяющее универсальнуюC∗-алгебру, называется компакт-
ным. Данный доклад посвящен функторам междуC∗-соотношениями, заданными, во-
обще говоря, на различных множествах. Показывается, что каждый функтор между
компактными C∗-соотношениями с точностью до изоморфизмов категорий являет-
ся функтором между компактными ∗-полиномиальными соотношениями на одном и
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том же множестве X .

Ключевые слова: C∗-соотношение, универсальная C∗-алгебра, функтор, ∗-
полиномиальное соотношение.

В работеТ.А. Лоринга [1] былпредложенкатегорныйподходкпонятиюунивер-
сальной C∗-алгебры, порождённой множеством образующих, удовлетворяющих
набору соотношений. В рамках данного подхода рассматриваются специальные ка-
тегории представлений. Такие категории удовлетворяют ряду естественных акси-
ом и называются C∗-соотношениями. В этих терминах универсальная C∗-алгебра,
порождённая C∗-соотношением R, - это инициальный объект в категории R. Од-
нако, универсальная C∗-алгебра существует не для всякой категорииR. В том слу-
чае, когдаC∗-соотношение определяет универсальнуюC∗-алгебру, оно называется
компактным.

В [2] было показано, что всякое компактное C∗-соотношение изоморфно ка-
тегории ∗-полиномиальных соотношений. Иначе говоря, порождающие соотноше-
ния соответствующей универсальнойC∗-алгебрымогут быть представленымноже-
ством инволютивных полиномов от порождающих элементов. В [3] был установлен
категорный критерий для существования универсальной C∗-алгебры для заданно-
го множества порождающих соотношений. В [4] было показано, что всякий функ-
тор между C∗-соотношениями, с точностью до изоморфизмов категорий, являет-
ся функтором между ∗-полиномиальными соотношениями, заданными на одном и
том же множестве. Соответствующие универсальныеC∗-алгебры при этом являют-
ся изоморфными.

В докладе обсуждается следующий результат.

Теорема. ПустьR1 ⊂FX1,R2 ⊂FX2 – компактные C∗-соотношения на множе-
ствах X1 и X2 соответственно и T : R1 → R2 – функтор. Тогда существуют мно-
жество Y , наборы инволютивных полиномов P1,P2 ⊂ F (Y ), функтор G : R(Y ,P1) →
R(Y ,P2) и изоморфизмы V : R1 →R(Y ,P1) иW : R2 →R(Y ,P2)такие, что диаграмма

R1
T //

V

��

R2

W

��
R(Y ,P1) G //R(Y ,P2)

коммутативна. Более того, имеют место изоморфизмы C∗-алгебр

C∗(R1) ∼=C∗(Y ,P1) и C∗(R2) ∼=C∗(Y ,P2).
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ON FUNCTORS BETWEEN COMPACT C∗-RELATIONS

K.A. Shishkin

In the framework of a categorical approach to the notion of a universal C∗-algebra generated by a
set of generators subject to relations, T.A. Loring introduced and studied categories called the C∗-
relations. Given a set X , a C∗-relation on X is a category whose objects are functions from X to
C∗-algebras and morphisms are ∗-homomorphisms of C∗-algebras making the appropriate triangle
diagrams commute. Moreover, these functions and ∗-homomorphisms satisfy certain natural axioms.
A C∗-relation is said to be compact if it determines a universal C∗-algebra. In this report, it is shown
that every functor between arbitrary compactC∗-relations is a functor between ∗-polynomial relations
on the same set X up to isomorphisms of categories.
Keywords: C∗-relation, universal C∗-algebra, functor, ∗-polynomial relation.

УДК 517.52

ПРИЗНАКИ ДИНИ ДЛЯ СИСТЕМ ТИПА ХААРА
В.И. Щербаков1

1 kafmathan@mail.ru; Московский технический университет связи и информатики

В статье формулируются некоторые признаки сходимости рядов Фурье по системам
типа Хаара, аналогичные признаку Дини.

Ключевые слова: системы типаХаара, обобщённые системыХаара, системыПрай-
са.

Пусть p0 = 1,{pn}∞n=1− целочисленная последовательность с pn ≥ 2; mn =
n∏

k=0
pk (n = 0,1,2, . . .), a G = {{xn}∞n=1|xn = 0,1,2, . . . pn −1} — абелева группа последова-

тельностей с операцией +̇ покоординатного сложения по модулю pn : ({xn}+̇{yn} =
{(xn + yn)modpn}) и обратной операцией −̇. Отображение {xn}∞n=1 7→ x =

∞∑
n=1

xn

mn
переводит группу последовательностей G на отрезок [0,1] и является взаимно-

однозначным, за исключением прообразов точек
l

mn
(l = 1,2,3 . . . ,mn −1;

n = 1,2, . . .), которые имеют два прообраза. Поэтому на группу G с отрезка [0,1] пе-
реносятся понятия меры и интеграла Лебега, а также понятия ортогональных и ор-
тонормированных систем функций (под функцией будем понимать отображение
группы G во множество комплексных чисел C). Окрестностями нуля в G являются
подгруппы Gn = {{xk }∞k=1 ∈G|x1 = x2 = . . . xn = 0}. Эта топология задаёт непрерывные
функции.

Пусть Γ= {γn(x)}∞n=0} — система типа Хаара, определённая и занумерованная в
[1], а Ψ = {ψn(x)}∞n=0 — система Прайса [2].

Пусть V (x) = mn, если x ∈Gn−1 \Gn и S(x) = mn−1

sin
xn

pn

для x ∈Gn−1 \Gn(n = 0,1, . . .)
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—мажорантыядерДирихле (V (x)—мажорантаВиленкина, которая в [3] обозначена
[1/x]). Для систем Прайса и систем типа Хаара эти мажоранты совпадают.

Один из 6 признаков сходимости Дини на системах Прайса даёт
ТеоремаDP (классический признак Дини) При выполнении обоих условий∫

G

| f (x+̇t )− f (x)|
t

d t =
∞∑

n=0

∫
Gn\Gn+1

| f (x+̇t )− f (x)|
t

d t <∞ и

∫
G

| f (x−̇t )− f (x)|
t

d t =
∞∑

n=0

∫
Gn\Gn+1

| f (x−̇t )− f (x)|
t

d t <∞ (1)

ряд Фурье по системе Прайса от функции f (t ) сходится к ней в точке x.
Для систем типа Хаара соответствующий признак выглядит следующим обра-

зом:
ТеоремаDН (классическийпризнакДини) При выполнении обоих условий

lim
n→∞

∫
Gn\Gn=1

| f (x+̇t )− f (x)|
t

d t = 0 и lim
n→∞

∫
Gn\Gn+1

| f (x−̇t )− f (x)|
t

d t = 0 (2)

ряд Фурье по системе типа Хаара от функции f (t ) сходится к ней в точке x.
То есть для систем типа Хаара сходимость ряда (1) не требуется; достаточно,

чтобы общий член этого ряда стремился к нулю.
Теорема KDS (классический симметричный признак Дини) При выпол-

нении обоих условий

lim
n→∞

∫
Gn\Gn+1

| f (x+̇t )+ f (x−̇t )−2 f (x)|
t

d t = 0 и lim
n→∞

∫
Gn\Gn+1

| f (x+̇t )− f (x−̇t )|
t

d t = 0

(3)
ряд Фурье по системе типа Хаара от функции f (t ) сходится к ней в точке x.

В зависимости от мажорант ядер Дирихле V (x) и S(x) существуют так-
же V-признак Дини (признак Дини-Виленкина), симметричный V-признак Дини
(симметричный признак Дини-Виленкина), S-признак Дини и симметричный S-
признак Дини как для систем типа Хаара, так и для систем Прайса. B отличие от
“классического” признака Дини в них требуется выполнение хотя бы одного из
условий, аналогичного (1) (для системПрайса) или (2) (для систем типа Хаара), при-
чём оба этих условия будут эквивалентными. Подробнее об этом будет сказано в
докладе, см. также [3] — [5].
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DINI CONVERGENCE TEST FOR HAAR TYPE SYSTEMS

V.I. Shcherbakov

Some tests of convergence of the Fourier series for Haar type systems similar to Dini’s tests are
presented.
Keywords: Haar type systems, generalized Haar’s systems, Price’s systems.
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САМОРЕГУЛЯРИЗИРУЮЩИЙ МЕТОД ДЛЯ ДИНАМИЧЕСКИХ СИСТЕМ
С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Д.Д. Япаров1

1 iaparovdd@susu.ru; Южно-Уральский государственный университет(НИУ)

В работе предлагается подход к построению численных решений обратных задач в
динамических измерительных системах, в условиях зашумленности исходных данных.

Ключевые слова: обратная задача, численный метод, динамиченские системы.

Внастоящее времяоднойиз актуальных задач вобластиресурсосбереженияяв-
ляется проблема эффективности контроля расходажидкостей и газов в трубопрово-
дах. Контроль осуществляется посредством кориолисовых расходомеров, которые
можно представить в виде динамической системы с распределенными параметра-
ми.

В данной работе предлагается численный метод определения колебаний пря-
молинейного участка трубы с учетом воздействия внешнего импульса с учетом по-
токажидкости в соответствии с результатамидинамическихизмерений.Модель ко-
лебаний представлена дифференциальными уравнениями в частных производных
четвертого порядка с заданными начальными и граничными условиями.

∂4η

∂4ξ
+ (βv2 +γ)

∂2η

∂2ξ
+2βv

∂2η

∂τ
∂ξ+ (1+β)

∂2η

∂2τ
+χ∂η

∂τ
,

где функция ξ характеризует расстояние от левого конца трубы до текущей точки,
ξ ∈ [0;L], а τ соответствует текущему моменту времени. В данной работе мы иссле-
дуем колебания элемента сечения трубы длиной L. Пусть v – приведенная скорость
потока жидкости, β = M f

MT
, где MT – масса трубки на единицу длины, а M f – масса

жидкости на единицу длины, η(ξ,τ) — отклонение трубы от исходного состояния в
направлении, перпендикулярном оси трубы, χ – коэффициент демпфирования, γ –
отношение произведения осевого усилия и квадрата длины кжесткости при изгибе.

Поскольку концы трубного элемента жестко закреплены, граничные условия
рассматриваемой задачи имеют вид: η(0,τ) = η(L,τ) = 0,η′

ξ
(0,τ) = η′x i (L,τ) = 0.
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Отсутствие дополнительного прогиба трубы в начальный момент времени для
значений ξ ∈ [0;L] реализуется в виде начального условия η′τ(ξ,0) = 0.

Ситуация, когда труба получает внешний импульс, представляется в виде до-
полнительного условия η(ξ,0) = f (ξ).

В работе представлен метод обработки зашумленных динамических измере-
ний, основанный на решении обратных задач, обладающий эффектом саморегуля-
ризации для динамических систем с распределенными параметрами. Разработа-
ны вычислительные схемы, на основе которых проведен вычислительный экспе-
римент и выполнен сравнительный анализ результатов восстановления входного
сигнала с тестовымифункциями. Результаты эксперимента свидетельствуют о том,
что предложенный метод сохраняет уровень погрешности восстановленного вход-
ного сигнала на уровне погрешности исходных данных.

SELF-REGULARIZING METHOD FOR DYNAMIC SYSTEMS WITH DISTRIBUTED PARAMETERS

D.D. Yaparov

The paper proposes an approach to constructing numerical solutions of inverse problems in dynamic
measuring systems, under conditions of noisy initial data.
Keywords: inverse problem, numerical method, dynamic systems.
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ЧИСЛЕННОЕ РЕШЕНИЕ ОБРАТНЫХ ЗАДАЧ ТЕПЛОПЕРЕДАЧИ В УСЛОВИЯХ
НЕОПРЕДЕЛЕННОСТИ

Н.М. Япарова1
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В статье обсуждается подход к построению численных решений обратных задач
теплопередачи в условиях неопределенности, обусловленной отсутствием начальных
условий в рассматриваемых задачах.

Ключевые слова: обратная задача, численный метод, устойчивость метода.

Реализация современных быстро протекающих энергоемких процессов связа-
на с разработкой и исследованием методов обработки информации в автоматиче-
ских системах управления технологическими процессами для систем с распреде-
ленными параметрами. Важнейшими объектами исследования, имеющими вид си-
стем с распределенными параметрами, являются процессы, связанные с распре-
делением тепла внутри технического объекта, когда по измерениям температу-
ры в граничной области технического объекта необходимо определить внутреннее
тепловое состояние объекта. Математические модели распределения тепла внут-
ри объекта представлены обратными задачами теплопроводности. При этом осо-
бого внимания требуют технологические процессы, такие как комплексная и вто-
ричная термообработки, диагностика теплового состояния работающего оборудо-
вания, в которых невозможно сформировать априорную информацию о начальном
тепловом состоянии объекта, что, в свою очередь, приводит к отсутствию началь-
ных условий в обратных задачах.
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В данной работе представлен подход к построениюметодов решения обратных
задач теплопроводности с неизвестными начальными условиями, Обобщенная ма-
тематическая модель задач теплопереноса в линейном приближении имеет следу-
ющий вид. Объект представлен ограниченной замкнутой областьюΩ⊂ Rm, n = 1,n.
Измерения температуры проводятся во временном интервале [0,T ] на части внеш-
ней поверхности объекта. Этой части соответствует множество Γ. Объект подверга-
ется внешнему тепловому тепловому воздействию, плотность внешних тепловых
потоков характеризуется функцией G(x, t ), x ∈ Γ. Температуре тела соответствует
функция u(x, t ), а теплофизические свойства материала характеризуются функци-
ями ρ = ρ(x, t ), c = c(x, t ) и λ = λ(x, t ). Влияние теплообмена с окружающей сре-
дой представлено температурой окружающей среды и коэффициентом теплообме-
на с окружающей средой h(x, t ) и наличие возможных внутренних источников теп-
ла учитывается в функции f (x, t ). Уравнение теплопереноса внутри объекта имеет
вид:

∂u

∂t
=

m∑
s,k=1

a(x, t )
∂2u

∂xs∂xk
+

m∑
k=1

b(x, t )
∂u

∂xk
+γ(x, t )u + f (x, t ), (1)

где a = λ(x,t )
c(x,t )ρ(x,t ) , b = ∂λ

∂xk

1
c(x,t )ρ(x,t ) , γ(x, t ) = −h(x,t )

c(x,t )ρ(x,t ) .
Тепловому режиму, оказывающему внешнее воздействие, соответствуют гра-

ничные условия

u(x, t ) |Γ= p(x, t ),
∂u

∂n
|Γ= g (x, t ), t ∈ [0,T ].

где функция g (x, t ) = −G(x,t )
λ(x,t ) , а вектор n является нормалью к внешней границе

объекта.
Принимая во внимание технические требования к отсутствию фазовых пере-

ходов второго рода и резких изменений температурных градиентов, получаем, что
существуют Φ,β,C > 0 такие, что{

max
ΩT

∣∣∂2ut
∣∣ ,max

ΩT

|∂ux | ,max
ΩT

∣∣∂2ux
∣∣ ,max

ΩT

∣∣∂3ux
∣∣}≤C ,

max
ΩT

|u(x, t )| ≤Φeβ(x+t ).

Коэффициенты уравнения теплопроводности удовлетворяют условиям: a(x, t ) ∈
C 1(ΩT ), b(x, t ) ∈C (ΩT ), γ(x, t ), f (x, t ) ∈C (ΩT ), а множество ΩT =Ω× (0,T ).

Так как в начальный момент времени невозможно определить температуру во
внутренних точках объекта без нарушения его целостности, получаем, что началь-
ные условия не могут быть сформированы из результатов измерений и являются
неизвестными. В задаче требуется найти значения u(x, t ), соответствующие темпе-
ратуре в внутренних точках объекта, а также в тех граничных точках, где она неиз-
вестна.

В работе представлен подход к построению методов решения обратных задач
теплопроводности с неизвестными начальными условиями. Разработаны вычисли-
тельные схемы и найдены условия, гарантирующие устойчивость предложенных
численныхметодов. Проверкапредставленной концепциииреализованных вычис-
лительных процедур проводилась посредством экспериментальных исследований.
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Экспериментальные данные свидетельствуют о работоспособности предлагаемого
подхода, а полученные практические показатели точности соответствуют теорети-
ческим оценкам.

NUMERICAL SOLUTION OF INVERSE HEAT TRANSFER PROBLEMS UNDER UNCERTAINTY

N.M. Yaparova

The article discusses an approach to numerical solving the inverse heat transfer problems under
uncertainty that is caused by the absence of initial conditions in these problems.
Keywords: inverse problem, numerical method, stability of the method.
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ИССЛЕДОВАНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ МОДЕЛИ ФРИДРИХСА С
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В данной работе рассматриваютсямоделиФридрихса с одномерными двумерным воз-
мущениями. Обсуждается вопрос об исследования собственных значений этих моделей
Фридрихса с помощью математических пакетов.

Ключевые слова: модельФридрихса, возмущения, собственное значение, матема-
тический пакет.

В гильбертовом пространстве L2(T) квадратично-интегрируемых (комплекс-
нозначных) функций, определенных на T, рассмотрим модель Фридрихса вида

H (1) := H0 −V1, (1)

где H0 – оператор умножения на функцию u(·):
(H0 f )(x) = u(x) f (x), f ∈ L2(T);

а V1 – интегральный оператор вида:

(V1 f )(x) = v1(x)
∫
T

v1(t ) f (t )d t , f ∈ L2(T).

Здесь u(·) и v1(·) – вещественнозначные непрерывные функции, определенные на
торе T.

При этих предположениях на параметр функции оператор H (1), определенный
по формуле (1), ограничен и самосопряжен в гильбертовом пространстве L2(T).

Оператор возмущения V1 невозмущенного оператора H0 является одномер-
ным самосопряженнымоператором. Следовательно, из известной теоремыГ. Вейля
о сохранении существенного спектра при возмущениях конечного ранга вытекает,
что σess(H (1)) = [m; M ], где числа m и M определяются следующим образом:

m := min
x∈T

u(x), M := max
x∈T

u(x).
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Определим регулярную в C \ [m; M ] функцию (детерминант Фредгольма, ассо-
циированный с оператором H (1))

∆1(z) := 1−
∫
T

v2
1(t )d t

u(t )− z
.

Отметим, что число z ∈C\ [m; M ] является собственным значением оператора
H (1) тогда и только тогда, когда ∆1(z) = 0. Из этого факта следует, что

σdisc(H (1)) = {z ∈C\ [m; M ] : ∆1(z) = 0}. (2)

Эта функция монотонно убывает на интервалах (−∞;m) и (M ;+∞). Модель Фри-
дрихса H (1) имеет максимум одно простое собственное значение, меньшее m, и не
имеет собственных значений, больших M . Если параметр функции имеют явный
вид, томожемнайтиприближенное значение собственных значений, используяма-
тематические пакеты, такие как MathCad и Maple.

Теперь в гильбертовом пространстве L2(T), рассмотрим модель Фридрихса
вида

H (2) := H0 −V1 −V2, (3)

где V2 – интегральный оператор вида:

(V2 f )(x) = v2(x)
∫
T

v2(t ) f (t )d t , f ∈ L2(T).

Здесь v2(·) – вещественнозначная непрерывная функция, определенная на торе T.
Можно легко проверить, что оператор H (2), определенный по формуле (3),

ограничен и самосопряжен в гильбертовом пространстве L2(T).
По определению оператор H (2) является двумерным. Случай n-мерных возму-

щений проанализирован в работе [1].
Определим регулярную в C \ [m; M ] функцию (детерминант Фредгольма, ассо-

циированный с оператором H (2))

∆2(z) :=
(

1−
∫
T

v2
1(t )d t

u(t )− z

)(
1−

∫
T

v2
2(t )d t

u(t )− z

)
−

(∫
T

v1(t )v2(t )d t

u(t )− z

)2

.

В отличие от функции ∆1(·), функция ∆2(·) не обладает свойством монотонно-
сти. Поэтому анализ собственных значений оператораH (2) представляет некоторую
сложность. В работе [2] частично (в некоторых условиях на параметр функции) изу-
чено количество собственных значений, их расположение и условия их существо-
вания модели Фридрихса H (2). Если параметрическая функция имеет специальный
вид, то интервал, в котором лежит собственное значение, можно определить с по-
мощью математических пакетов.
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In this work we consider the Friedrichs model with rank one and two perturbations. The eigenvalues
of these models are investigated using mathematical redactor.
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