МЕЖДУНАРОДНЫЙ ЦЕНТР ИННОВАЦИОННЫХ ИССЛЕДОВАНИЙ «ОМЕГА САЙНС»

НАУЧНЫЙ ВЗГЛЯД НА СОВРЕМЕННОЕ ОБЩЕСТВО

Сборник статей Международной научно-практической конференции 28 апреля 2015 г.

> Уфа РИО МЦИИ «ОМЕГА САЙНС» 2015

Ответственный редактор: Сукиасян Асатур Альбертович, кандидат экономических наук.

H 57

НАУЧНЫЙ ВЗГЛЯД НА СОВРЕМЕННОЕ ОБЩЕСТВО: сборник статей Международной научно-практической конференции (28 апреля 2015 г. г. Уфа). - Уфа: РИО МЦИИ ОМЕГА САЙНС, 2015. – 168 с.

ISBN 978-5-906781-38-3

Настоящий сборник составлен по материалам Международной научнопрактической конференции «НАУЧНЫЙ ВЗГЛЯД НА СОВРЕМЕННОЕ ОБЩЕСТВО», состоявшейся 28 апреля 2015 г. в г. Уфа. В сборнике научных трудов рассматриваются современные вопросы науки, образования и практики применения результатов научных исследований

Сборник предназначен для научных и педагогических работников, преподавателей, аспирантов, магистрантов и студентов с целью использования в научной работе и учебной деятельности.

Ответственность за аутентичность и точность цитат, имен, названий и иных сведений, а так же за соблюдение законов об интеллектуальной собственности несут авторы публикуемых материалов.

Сборник статей, который постатейно размещён в научной электронной библиотеке elibrary.ru и зарегистрирован в наукометрической базе РИНЦ (Российский индекс научного цитирования) по договору № 981-04/2014К от 28 апреля 2014 г.

УДК 00(082) ББК 65.26

ISBN 978-5-906781-38-3

Николаев Александр Анатольевич

канд. геогр. наук, доцент КФУ г. Казань, РФ E-mail: aleksandr.nikolaev@ksu.ru **Куляшова Злата Викторовна**

студентка, КФУ

ВЗАИМОСВЯЗЬ СОЛНЕЧНОЙ РАДИАЦИИ С МЕТЕОРОЛОГИЧЕСКИМИ ПАРАМЕТРАМИ

По данным Всемирной метеорологической организации, актинометрическая информация в настоящее время собирается менее чем на 1% поверхности земного шара [2, с. 116, 3, с. 44]. В связи с этим возникает необходимость получения требуемых данных о радиационном режиме с помощью расчетных методов. Применение этих методов оказывается возможным благодаря тому, что основные характеристики радиационного режима связаны как между собой, так и с важнейшими метеорологическими характеристиками [1, с. 131].

Обсуждаемая в данной работе методика построена на составлении уравнений плоскости регрессии для потоков суммарной солнечной радиации, основываясь на данных высоты Солнца, количества общей облачности и температуры воздуха [1, с. 133].

Полученные значения коэффициентов корреляции (r_{xy}) между количеством солнечной радиации и количеством облачности на ст. Казань – Университет, а также коэффициенты корреляции между количеством солнечной радиации и температурой (r_{xz}) , представлены в таблице 1.

Из табл. 1 видно, что с увеличением количества облачности (у), солнечная радиация (х) уменьшается, а возрастание температуры воздуха (z) указывает на увеличение прихода солнечной радиации. Величина коэффициента множественной корреляции R_{xyz} больше $|r_{xy}|$ и $|r_{xz}|$. Это указывает на то, что результативный признак зависит от обоих факторов и учет их совокупного влияния дает более полную информацию о солнечной радиации по сравнению с той, которую содержит каждый факториальный признак в отдельности.

Таблица 1 Распределение значений коэффициента по градациям высот Солнца

коэф. корреляции	высота Солнца				
	5-15	15-25	25-35	35-45	45-55
r _{xy}	-0.47	-0.68	-0.66	-0.66	-0.43
r_{xz}	0.32	0.30	0.39	0.30	0.51
R_{xyz}	0.53	0.69	0.71	0.67	0.62

Были вычислены характеристики регрессионного анализа (табл. 2), распределенные по различным значениям высот Солнца. Используя полученные значения коэффициентов регрессии ρ_{xy} получили следующие уравнения регрессии по градациям высот Солнца (табл. 3):

0.2224

0,2104

Характеристики регрессионного анализа, распределенные по различным градациям высот Солнца.

высота Солнца 5-15 15-25 25-35 35-45 45-55 σ_x , $\kappa B \tau / m^2$ 0.08 0.13 0.18 0.23 0.27 $σ_v$, $κBτ/m^2$ 4,43 4.00 3.30 3,46 3,69 8.59 8.79 σ_z , $\kappa B T/m^2$ 6.83 8.14 6.09 -0,0089 -0.0225 -0,0365 -0,0431 -0,0412 ρ_{xy}

0.096

0,095

0.0733

0,0704

Подставляя в уравнения плоскости регрессии вместо у - значения количества облачности, а вместо z - значения температуры воздуха, можно найти эмпирические (рассчитанные) значения солнечной радиации (x), которая поступает на земную поверхность при данных метеорологических условиях и при определенной высоте Солнца.

Таблица 3

0.1374

0,1295

0.1700

0,1670

Уравнения регрессии в зависимости от высот солнцавысота СолнцаУравнение регрессии $15-25^{\circ}$ x = -0.0225 y + 0.3369 $25-35^{\circ}$ x = -0.0365 y + 0.5657 $35-45^{\circ}$ x = -0.0431 y + 0.7176 $45-55^{\circ}$ x = -0.0412 y + 0.8139

Сравнивая S_{xvz} и S_{xv} , мы видим, что дополнительный (к количеству облачности) учет температуры воздуха z в уравнении имеет смысл, так как результативный признак (количество солнечной радиации) при этом определяется уже точнее.

При сравнении эмпирически рассчитанных и исходных данных актинометрических наблюдений, отклонения от значений реальных наблюдений составляют в среднем 15%, что говорит о взаимосвязи солнечной радиации с метеорологическими параметрами; и об актуальности использования уравнений плоскости регрессии солнечной радиации для станций не производящих актинометрических наблюдений.

Список используемой литературы:

- 1. Николаев А.А. Косвенные методы расчета характеристик солнечной радиации. Вестник Удмурт. ун-та. Серия 6: Биология. Науки о Земле. Выпуск 1. 2013 с.130-135
- 2. Николаев А.А. Климатические ресурсы солнечной радиации на территории Удмуртской республики. Вестник Удмурт. ун-та. Серия 6: Биология. Науки о Земле. Выпуск 4. -2012 с.115-121
- 3. Переведенцев Ю.П. Климатические ресурсы солнечной радиации и ветра на территории Среднего Поволжья и возможности их использования в энергетике/ Ю.П.Переведенцев, А.А.Николаев. Казань: Изд-во Отечество, 2002, 120 с

©А.А.Николаев, З.В. Куляшова, 2015