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Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular
dynamics simulation reveal that the structural ordering in glasses becomes observable over “experi-
mental” (finite) time-scale for the range of phase diagram with high values of pressure. We show that
the structural ordering in glasses at such conditions is initiated through the nucleation mechanism,
and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the
scaled values of the nucleation time, τ1 (average waiting time of the first nucleus with the critical
size), in glassy systems as a function of the reduced temperature, T , are collapsed onto a single
line reproducible by the power-law dependence. This scaling is supported by the simulation results
for the model glassy systems for a wide range of temperatures as well as by the experimental data
for the stoichiometric glasses at the temperatures near the glass transition. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4914172]

I. INTRODUCTION

For a fluid supercooled isobarically below the melt-
ing temperature Tm, the ordered (say, crystalline) state is
thermodynamically favorable. At the moderate supercooling
(Tm − T)/Tm, the transition into an ordered state is started
through nucleation mechanism that involves emergence of the
crystalline nuclei, which are able to grow; T is temperature.
Hence, the behavior of the overall transition should be
essentially determined by the rate characteristics: the waiting
time of the first crystalline critically sized nucleus τ1, the
nucleation rate J that is amount of the supercritical nuclei
formed per unit time per unit volume, and the growth rate vg
that specifies growth law of the supercritical nuclei.

Some general features of the nucleation kinetics can
be comprehended within the classical nucleation theory1–4

and its extensions (see in Refs. 5–7). According to the
classical view, the driving force for the nucleation grows
upon the increase of supercooling. This means that with
the increase of supercooling, an ordered state becomes
thermodynamically more favorable, while the waiting time
for nucleation τ1 and the nucleation time scale 1/J must
be shortened. On the other hand, with temperature lowering
(below the melting temperature Tm), the mobility of molecules
(atoms) decreases. As a result, any structural rearrangements,
including these responsible for nucleation, must be suppressed
by the growing viscosity. When a fluid is cooling down without
crystallization to temperatures corresponding to the viscosity
η(Tg) ≥ 1012–1013 Pa s, it is “freezing” as disordered solid,
where the temperature Tg is identified with the glass transition
temperature. Although crystallization of glasses proceeds over
time-scales,8,9 which are commonly larger than experimentally
acceptable, the structural ordering in a glass can be accelerated
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by out-of-equilibrium processes resulted from reheating or
applied shear deformation.10–14 On the other hand, there are
indications (see Refs. 15–20) that the time-scales of structural
relaxation and of ordering in glassy systems become shorter,
when we move over equilibrium phase diagram to the range
of more higher pressures.

Moreover, debated issues in the field are related to the
temperature dependence of the transition rate characteristics
at deep levels of supercooling.21–28 So, for example, empir-
ical T-dependencies of the nucleation lag-time and of the
steady-state nucleation rate are discussed in review,25 where
results for some stoichiometric glasses (3MgO·Al2O3·3SiO2,
Li2O·2SiO2, Na2O·2CaO·3SiO2, etc.) are given. As it is
demonstrated in Ref. 25 within the available experimental
data, the lag-time of nucleation and the steady-state nucleation
time-scale 1/Js reach the lowest values at certain moderate
levels of supercooling. Moreover, both rate terms start to grow
with the further increase of supercooling and with approaching
the glass transition temperature. Remarkably, the possible
correlation discussed in Ref. 25 between some features in
the temperature dependencies of these rates (for example,
the maximum steady-state nucleation rate) and the reduced
temperature Tg/Tm provides, in fact, indirect implications
about “unified laws,” which can be inherent in the nucleation
kinetics. In this work, we extend this view by focusing on
the crystal nucleation time τ1, identified here as the average
waiting time for the first critically sized nucleus.6,29

The possibility of unified description using scaling rela-
tions has been proposed and studied for the case of nucleation
of liquid droplets in the condensation process. Here, an intrigu-
ing feature emergent in the analysis of data for the vapor-to-
liquid nucleation is a supersaturation-temperature scaling of
the nucleation rate data.30–33 Namely, as shown by Hale,31–33

data for the nucleation rates plotted vs. C0 ln S/[Tc/T − 1]3/2

can collapse onto a single line. Here, S = p/pcoex is the
supersaturation, p is the pressure of supersaturated vapor, pcoex

0021-9606/2015/142(10)/104502/10/$30.00 142, 104502-1 © 2015 AIP Publishing LLC
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is the pressure at the coexistence curve, Tc is the critical
temperature, and C0 is a normalization factor. This result
is very interesting for the following reasons. First, scaling
relation allows one to compare the nucleation data of various
independent studies for a system, even though those studies
have not the identical pressure-temperature (supersaturation-
temperature) conditions. Moreover, if the scaling is valid, then
this is an indication that there is a single reduced variable
instead of the pair, T and S; and this variable is sufficient
for a unified description of the steady-state vapor-to-liquid
nucleation rate. Recently, Diemand et al.34,35 suggested a
new scaling relation for the nucleation rate of homogeneous
droplets from supersaturated vapor phase, where other set of
the parameters is utilized. From the mentioned considerations,
it is reasonable to try to extend the ideas of scaling relations
to the case of other transition—to the case of crystallization.36

The present study is mainly aimed at the consideration of this
issue. For this, the analysis of the crystal nucleation times
from the experiments and molecular dynamics simulations is
carried out for several systems at temperatures T ≤ Tg .

The paper is organized as follows. In Sec. II, the
reduced temperature scale is introduced. Sec. III presents
the simulation details and computational methods. It includes
the description of two model systems taken for molecular
dynamics simulations, the cluster analysis and the statistical
method utilized for the evaluation of the nucleation character-
istics within the simulation data. Discussion of the results is
given in Sec. IV. The main conclusions are finally summarized
in Sec. V.

II. REDUCED TEMPERATURE SCALE

In evaluation of the unified temperature dependencies for
characteristics of the supercooled liquids, one encounters the
problem that the interested temperature range, 0 ≤ T ≤ Tm,
contains three control points—the zeroth temperature T = 0 K;
the glass transition temperature Tg , and the melting temper-
ature Tm—where Tg and Tm in the Kelvin scale have not the
same values for different systems. Therefore, there is necessity
to use a reduced temperature defined usually either through
Tm, or through Tg , depending on the problem.24

For example, according to Angell,37,38 the inverse reduced
temperature Tg/T is used to fulfill the “strong-fragile” classi-
fication of viscous (supercooled) liquids by means of the plot,
in which the viscosity in logarithmic scale, log η, is considered
as a function of Tg/T . Since one has log[η(Tg)] = 12–13 for all
the supercooled liquids by definition, then the values of log η
will be comparable on the reduced temperature scale 0 < Tg/
T ≤ 1 in the neighborhood of Tg . Further, the supercooling
(Tm − T)/Tm or its conjugate quantity T/Tm represents also the
reduced temperature scales (Ref. 25) and is used to compare
the characteristics of supercooled liquids for temperature
range T ≤ Tm. Here, a reasonable consistency is ensured as
we approach the melting temperature Tm. Ambiguity of the
choice of reduce temperature scale is because the ratio Tg/Tm

depends on the system (material) and can be different even
for the systems of same type. For example, the ratio of Tg/Tm

for glasses Li2O·2SiO2, BaO·2SiO2, and 2Na2O·CaO·3SiO2,
which belong to the group of silicate glasses, does not have the

same value and is equal to 0.56, 0.568, 0.512, respectively.24

Moreover, the quantity Tg/Tm is dependent on cooling rate
dT/dt applied to prepare glass at a desirable temperature and
can have different values for the different isobaric lines of
a phase diagram. Therefore, the absolute temperature T as
well as the reduced temperatures T/Tg and T/Tm can not be
considered as convenient parameters, with respect to which
evaluation of the unified regularities could be examined.

To overcome this, one needs to specify a temperature scale
T̃ , in which the control points mentioned above—the zeroth
temperature, the glass transition temperature, and the melting
temperature—are fixed and have same values for all systems.
We suggest a possible simple way to realize this. Let us define
the following correspondence between the values of T for the
three temperatures (the zeroth temperature T = 0 K, the glass
transition temperature Tg , and the melting temperature Tm):

T = 0 at T = 0 K, (1a)
Tg = 0.5 at T = Tg , (1b)

Tm = 1 at T = Tm. (1c)

Conditions (1) are fulfilled with the simple parabolic relation,

T = K1

(
T
Tg

)
+ K2

(
T
Tg

)2

(2)

with

K1 + K2 = 0.5, (3a)

K1 =

*.....
,

0.5 −
T2
g

T2
m

1 −
Tg

Tm

+/////
-

, K2 =

*....
,

Tg

Tm
− 0.5

Tm

Tg
− 1

+////
-

. (3b)

With the known Tm and Tg for a system, relation (2) provides
transform of the absolute temperature scale T into the reduced
scale T , where all the temperature points coincide for all
considered systems (see Fig. 1). Moreover, when the ratio
Tg/Tm approaches value 0.5, the quadratic contribution in
Eq. (2) vanishes and Eq. (2) is simplified to

T ≃ 1
2

T
Tg

.

It should be pointed out that the temperatures T = 0 K,
Tg , and Tm in relation (2) correspond to the same isobar.
Relation (2) transforms the (p,T) phase diagram within the
range 0 ≤ T ≤ Tm to the (p,T) phase diagram unified for all
systems, where the glass transition line and the melting line
are parallel to the ordinate, p-axis, and intersect the abscissa
at Tg = 0.5 and Tm = 1, respectively.

FIG. 1. Demonstration of the transformation of the absolute temperature
scale T into the reduced temperature scale T , which is system-independent
and characterized by fixed values of the melting temperature Tm = 1 and the
glass-transition temperature Tg = 0.5. Simple realization of the transition can
be done by means of relation (2).
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III. SIMULATION DETAILS AND COMPUTATIONAL
METHODS

In this work, we consider two model systems—the
Dzugutov (Dz) system39,40 and the binary Lennard-Jones (bLJ)
mixture.41,42 Both systems are known as the model glass-
formers suitable to study the properties of glasses by means
of molecular dynamics simulations.43–46 In this work, the
glassy samples were generated by fast quench of equilibrated
fluids at the fixed pressure p. The corresponding pathways
are shown on the phase diagrams in Fig. 2. Consideration
of the (p,T)-points of the phase diagrams with high values
of the pressure p allows us to deal with such conditions at
which the structural ordering in the glassy systems proceeds
over time-scales available for simulations even at temperatures
below Tg (Refs. 9 and 10). Thereby, the value of the pressure
p was chosen so that a clearly detected nucleation event was
observable over the simulation time scale. Hence, the simu-
lations with the generated glassy samples were performed in
the N pT-ensemble; N is the number of particles. The constant
temperature and pressure conditions are ensured by using the
Nosé-Hoover thermostat and barostat. For each (p,T)-point,
more than fifty independent samples were generated, the data
of which were used in a statistical treatment. For a single
simulation run, N = 6912 particles were enclosed in a cubic
cell with periodic boundary conditions. Note that the terms ε
and σ define the units of energy and length, respectively. Time,
pressure, and temperature units are measured in τ0 = σ

√
m/ε,

ε/σ3, and ε/kB, respectively.

A. The Dzugutov system

In case of the Dzugutov system, all particles are identical
and interacting via a short-ranged pair potential,

UDz(r∗)
ε

= A(r∗−m − B) exp
( c
r∗ − a

)
Θ(a − r∗)

+ B exp
(

d
r∗ − b

)
Θ(b − r∗), r∗ =

ri j
σ
, (4)

where Θ(. . .) is the Heaviside step function, and the values of
parameters A = 5.82, B = 1.28, m = 16, a = 1.87, b = 1.94,
c = 1.1 are chosen as suggested originally in Ref. 39. The
simulations were performed for the system along the isobaric
line with the pressure p = 14 ε/σ3 at the temperatures T
= 0.05, 0.1, 0.15, 0.3, and 0.5 ε/kB below Tg ≃ 0.65 ε/kB. For
the isobar, the melting temperature is Tm ≃ 1.51 ε/kB, which
yields the temperature ratio Tg/Tm ≃ 0.43.

B. The binary Lennard-Jones mixture

The semi-empirical (incomplete) Lorentz-Berthelot mix-
ing rules,41,42

σBB = 0.8σAA,

σAB =
σAA + σBB

2
,

εBB = 0.5εAA,

εAB = εAA + εBB,

were utilized at the simulations of the binary Lennard-Jones
system A80B20 with the potential

UbLJ
αβ (ri j)
εαβ

= 4


(
σαβ

ri j

)12

−
(
σαβ

ri j

)6
, (5)

where α, β ∈ {A, B}, the labels A and B denote the type of
particles, ri j is the distance between the centers of particles i
and j. Note that we take ε = εAA, σ = σAA, and the mass of a
particle is m = mA = mB = 1. For the bLJ system, we consider
the isobar with the pressure p = 17 ε/σ3 at the temperatures
T = 0.01, 0.05, 0.1, 0.2, and 0.3 ε/kB, which are lower than the
transition temperature Tg ≃ 0.92 ε/kB. The isobar contains the
melting point with Tm ≃ 1.65 ε/kB. Therefore, the temperature
ratio is estimated as Tg/Tm ≃ 0.56.

C. Cluster analysis

The local domains of a crystalline symmetry are examined
by means of the cluster analysis,47,48 introduced originally by

FIG. 2. Pressure-temperature phase diagram for the Dz-system (left panel) and for the bLJ-system (right panel). The full curves denote the boundary between
liquid and solid phases; the curve for the Dzugutov system is reproduced from data of Fig. 4 in Ref. 43. The dashed curves mark the boundary between
the supercooled liquid and the amorphous solid, when liquid is cooled during isobaric simulations with the rate dT /dt = 0.001 ε/(kBτ0). The full squares
indicate the equilibrium liquid states, which were used as starting points to generate glassy samples. Pathways related with preparation of the glassy samples are
schematically shown by dotted arrows; and the full circles denote the (p,T )-points, at which the transition into ordered states was tracked.
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FIG. 3. Snapshots of the Dz-system at
T = 0.5 ε/kB and at different times, for
which the particles recognized as be-
longing to the crystalline phase are only
shown. (a) System at the transient nu-
cleation period; t = 100τ0. There are no
nuclei capable to grow, and their sizes
are smaller than the critical size nc. (b)
System at the time t = 250τ0, when the
first critically sized nucleus emerges;
nc ≃ 105 particles. The critically sized
nucleus is marked by red circle.

Wolde-Frenkel.49 The consideration of the local environment
around each particle is performed by means of 13-dimensional
complex vector with the components50

q6m(i) = 1
Nb(i)

Nb(i)
j=1

Y6m(θi j, ϕi j). (6)

Here,Y6m(θi j, ϕi j) are spherical harmonics, Nb(i) is the number
of neighbors for i particle, θi j and ϕi j are polar and azimuthal
angles, which characterize the radius-vector r⃗i j. Then, the
local order for each i particle can be numerically evaluated by
means of the parameter50

q6(i) = *
,

4π
13

6
m=−6

|q6m(i)|2+
-

1/2

, (7)

whereas degree of the orientational order can be estimated by
means of the global orientational order parameter Q6 defined
as an average of q6(i) over all N particles,50

Q6 =
1
N

N
i=1

q6(i). (8)

For a fully disordered system, the parameter q6(i) is close to
zero, while it grows with increasing structural ordering. For
perfect fcc, bcc, and hcp systems, one has the largest possible
values for the parameters,50

q6(i) = Q6 ≃ 0.5745 (fcc),
q6(i) = Q6 ≃ 0.5106 (bcc),
q6(i) = Q6 ≃ 0.4848 (hcp).

First, we define “neighbors” as all particles located
within the first coordination, the radius of which is associated
with position of the first minimum in the pair distribution
function.10 Further, according to the Wolde-Frenkel scheme,49

we specify the pair of neighboring particles (i and j) as
connected by a crystal-like bond if the following condition
is fulfilled:

0.5 <

������

6
m=−6

q̃6m(i)q̃∗6m( j)
������
≤ 1, (9)

where

q̃6m(i) = q6m(i)


6
m=−6

|q6m(i)|2


1/2 . (10)

Condition (9) allows one to distinguish the particles correlated
into an ordered structure.49 Finally, particle i is identified as
included into a crystalline structure if it has four and more
crystal-like bonds. The last condition is applied to exclude
from consideration the structures with a negligible number of
bonds per particle, which occurs even in equilibrium liquid
phase.9 By means of this routine, the particles involved into
the crystalline domains are detected.

Figure 3 demonstrates, as an example, the crystalline
clusters emerging in the glassy Dz-system at T = 0.5 ε/kB

over the transient nucleation regime, where no nuclei capable
to grow are detected [Fig. 3(a)], and at the time t = 250 τ0,
when the first nucleus of the critical size appears [Fig. 3(b)].

D. Statistical treatment of the cluster analysis results

The growth trajectories of the crystalline nuclei, nαi(t),
extracted from the different simulation runs are treated within
the mean-first-passage-time method.51,52 Here, n defines
number of the particles involved in the nucleus at the time
t, the mark α denotes the index of simulation run, whereas
the order number of the nucleation event i indicates that the
ith nucleus of the size n appears at the time t during the αth
simulation run. On the basis of the extracted trajectories nαi(t),
the mean-first-passage-time distributions τi(n) are evaluated
for each ith-order nucleus (for details, see Ref. 52). Further,
the critical size nc and the average waiting time for the ith-
order nucleus, τi, i = 1, 2, . . ., are defined from the analysis
of the distributions τi(n) and of the first derivatives ∂τi(n)/∂n,
according to the scheme suggested in Ref. 51. In this work, we
focus on the characteristics for the largest nucleus—i.e., on its
critical size nc and average waiting time τ1.

As an example, we show in Fig. 4 the mean-first-passage-
time distribution τ1(n) and its first derivative ∂τ1(n)/∂n
computed for both the systems. As can be seen, the distri-
butions τ1(n) are characterized by three regimes. The first
regime, for which small values of n correspond to τ1(n) with
zero value, is associated with pre-nucleation. Here, the nuclei
with different sizes (albeit, small sizes) appear with equal
probability. The second regime, in which the distribution τ1(n)
has the pronounced non-zero slope, contains information about
a nucleation event. Namely, detected from the first derivative
∂τ1(n)/∂n location of an inflection point in the distribution
τ1(n) for the regime defines the critical size nc, whereas
τ1(nc) ≡ τ1 is directly associated with the average waiting
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FIG. 4. Mean-first-passage-time distri-
butions τ1(n) and its first derivatives
∂τ1(n)/∂n defined from simulation
data for the Dz-system and the bLJ-
system at different temperatures.

time of the first critically sized nucleus.51 Finally, the third
regime, where the slope of τ1(n) decreases, corresponds to
growth of the nucleus. Note that such shape of the mean-first-
passage-time distribution is typical for an activated process.
The absence of the pronounced plateau in τ1(n) for the third
regime indicates that the nuclei growth proceeds over a time-
scale comparable with the nucleation time τ1 (Ref. 52).

IV. DISCUSSION OF RESULTS

We start from evaluation of some properties of the nascent
ordered structures, which can help to elucidate the mechanism
of the ordering. Figure 5 shows the time-dependent order
parameters—the global orientational order parameter, Q6(t),
and the size of the largest cluster, n(t)—evaluated on the
basis of the simulation data. In initial stages, the parameters
Q6(t) and n(t) fluctuate around their starting values. After an
incubation time, both the parameters start to growth rapidly.
Such evolution of the order parameters indicates on activated
character of the transition.53 The nucleation event is clear
detectable on a particular trajectory n(t), where it is associated
with the start of sharp grow of n(t). While rough estimates

for the nucleation time-scale τ1 and for the critical size nc

can be done even from the particular trajectories n(t) [see
Fig. 5], the averaged values for both the quantities can be
computed directly by means of the statistical method presented
in Sec. III.

Further, cluster analysis reveals that the nuclei of the
critical size are localized. As contrasted to Ref. 54, no ramified
structures were detected even at very deep supercooling. For
quantitative characterization, the asphericity parameter S0 was
computed according to

S0 =

 (Ixx − Iy y)2 + (Ixx − Izz)2 + (Iy y − Izz)2
2(Ixx + Iy y + Izz)2


, (11)

where

Iαβ =

nc
i=1

m(r2
i δαβ − riαriβ) (12)

defines the components of the moment of inertia tensor
associated with a critically sized nucleus; the brackets ⟨. . .⟩
mean the statistical average over results of the different
simulation runs. The parameter S0 approximates the unity,
S0 → 1, for an elongated and ramified cluster, and one has

FIG. 5. Trajectories of the global ori-
entational order parameter Q6(t) and
of the largest crystalline nucleus size
n(t) defined from a single simulation
run for the Dz-system (left panel) and
the bLJ-system (right panel). The dotted
horizontal lines on the plots for n(t)
correspond to the critical sizes nc de-
fined from the statical analysis within
the mean-first-passage-time method.
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S0 → 0 for a cluster, the envelope of which is of spherical
shape. For both the systems (Dz and bLJ), we find that the
asphericity parameter is S0 ≃ 10−3, and the size of the critical
nucleus remains finite. This is an evidence that the transition
into an ordered phase is initiated rather through nucleation
mechanism, and that is in agreement with findings of Refs. 55
and 56. For the Dz-system, our estimations reveal that the
critical size changes from nc = 108 ± 5 to 88 ± 6 particles
with the temperature decrease (increase of supercooling) from
T = 0.5 ε/kB to 0.05 ε/kB. For the bLJ-system, we find that
the critical size decreases from nc = 59 ± 4 to 42 ± 3 particles
with the temperature decrease within the range 0.3 ε/kB ≥ T
≥ 0.01 ε/kB.

Figure 6 shows the values of the average waiting time
of the first nucleus of the critical size, τ1, estimated from
simulation data for the Dz-system and the bLJ-system at
the different temperatures. We note that the deep levels
of supercooling are considered for both the systems corre-
sponding to the temperatures much below Tg . The particle
mobility diminishing with supercooling results in the growth
of τ1 with the temperature decrease. The finite values of τ1
comparable with the duration of numerical experiment may
seem surprising for a glassy system. Actually, the microscopic
kinetics of a glass changes with moving over phase diagram
for the range of high pressures.20 Namely, at high pressures,

FIG. 6. Average waiting time of the first critically sized nucleus τ1 (in units
of τ0) versus reduced temperature for the Dz-system (Tg/Tm = 0.43) and
for the bLJ-system (Tg/Tm = 0.56). The spanned thermodynamic ranges
correspond to deep levels of supercooling with the temperatures below Tg .

the structural relaxation as well as the transition of glassy
system into a state with the lower free energy proceeds over
shorter time scales.8,57,58 Therefore, the reduction of the values
of τ1 is admissible for the range of phase diagrams.

Although the quantity τ1 for both the systems demon-
strates similar temperature dependence, it is difficult to say
something about quantitative correspondence to the general
nucleation trends. Is such temperature dependence of the
nucleation waiting time, τ1(T), is typical for the considered
thermodynamic range or not? One of the possible ways to
clarify this is to bring the extracted values of the nucleation
waiting time τ1(T) into a unified scaled dependence. To
construct scaling relation, we propose to use the reduced
temperature T defined by relation (2), in which the values of
the glass transition temperature and the melting temperature
are fixed for all systems. Then, the simplest nonlinear
T-dependence of τ1 can be chosen in the form

τ1 = τ
g
1
*
,

Tg

T
+
-

γ

, (13)

where τg1 is the average waiting time for the first critically sized
nucleus at the state with the temperature Tg (we remind that
Tg = 0.5). The dimensionless parameter γ > 0 characterizes
ability of the system at the considered (p,T)-state to retain
structural disorder. In particular, the exponent γ takes high
values for the system with good glass-forming properties and
must be characterized by small values for the fast crystallizing
systems. Since the nucleation waiting time τ1 varies with
pressure, then the exponent γ should be dependent on the
pressure, at which a supercooled liquid evolves. Namely, the
exponent γ is the decreasing function of the pressure p for
the systems, in which the nucleation time scale decreases with
pressure. The Dz and bLJ systems correspond to the case.

To verify validity of relation (13), we place the rescaled
data for the average waiting time τ1 for the Dz and bLJ systems
vs. the reduced temperature T on common Fig. 7. For clarity,
the axis of ordinates is presented on a logarithmic scale, where
the fitting parameter γ corrects the slope in accordance with
the master-curve (

τ1

τ
g
1

)
=

Tg

T
, (14)

which appears from (13) at the exponent γ = 1. The reduced
temperature T in Eq. (13) guarantees that the temperature
points spread over the abscissa in the same manner for all
the considered systems, whereas the dimensionless parameter
γ forces all the ordinate points to collapse onto master-
curve (14). Since our simulation results for the Dz and bLJ
systems cover the temperature range T < Tg and we did not
estimate the nucleation time τ1 at the transition temperature
Tg , then the term τ

g
1 was taken as a fitting parameter.

Namely, its values were found by extrapolation of the data
for τ1 to the temperature point Tg = 0.5, where the function
(1/γ) log(τ1/τ

g
1 ) must be equal to zero (see Fig. 7). Numerical

values of τg1 are given in Table I. As can be seen from Fig. 7,
all the data obtained on the basis of molecular dynamics
simulations follow the unified master-curve. Moreover, in
contrast to the case of the Kelvin temperature scale, values of
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FIG. 7. (a) Scaled waiting time for the first critically sized nucleus
(1/γ)log10(τ1/τ

g
1 ) is plotted as a function of the reduced temperature T .

Here, Tg = 0.5 is the scaled transition temperature (marked by arrow), τg
1

is the waiting time at the transition temperature Tg , and γ is the fitting
parameter. (b) The same but for the temperature range 0.46 ≤ T ≤ 0.58.
Values of the parameters τg

1 and γ are given in Table I. Consistency of the data
to the master-curve, which set the temperature-dependence Tg/T , provides
support to the validity of scaling relation (13).

the melting temperature Tm and of the transition temperature
Tg are not dependent on pressure. Therefore, the results shown
on Fig. 7 can be supplemented by the data for any supercooled
liquid at arbitrary value of the pressure p.

Moreover, it is attractive to extend the study and to verify
scaling law (13) with the experimental data. While the direct

experimental measurements of τ1 are difficult,61 we suggest the
next routine for the approximative estimation of τ1, which can
be realized with the experimentally measurable quantities—
the steady-state nucleation rate Js and the induction time
τind. According to Kashchiev,6,62 the number density of the
supercritical nuclei in the system, iV , evolves with time as

iV(t)
Jstτind

=
t
τind
− 1 − 12

π2

∞
m=1

(−1)m
m2 exp

(
−m2π2t

6τind

)
. (15)

For the time t = τ1, one has iV(τ1) = 1/V , and Eq. (15) takes
the form

1
JstV

= τ1 − τind +
12τind

π2

∞
m=1

(−1)m
m2 exp

(
−m2π2τ1

6τind

)
. (16)

Further, Eq. (16) was numerically solved with the experimental
Js and τind for Li2O·2SiO2 reported in Ref. 25, for Na2O·
2CaO·3SiO2 presented in Ref. 59, and for K2O·TiO2·3GeO2
given in Ref. 60. The extracted rescaled values of the average
waiting time τ1 are also presented in Fig. 7. As can be seen from
Fig. 7, “experimental” data for τ1 provide the T-dependence,
which is in agreement with scaling relation (13) as well as with
the simulation results for the bLJ-system and the Dz-system.

Analysis of the reduced temperature scale T for the
systems reveals that the quadratic contribution in equation for
T [see Eq. (2)] can be insignificant as for the Dz-system and
for Na2O·2CaO·3SiO2, where the ratio Tg/Tm is equal to 0.43
and 0.53, respectively (see Table I). With away from value
0.5 for the ratio Tg/Tm, weight of the quadratic contribution,
K2, increases. The values of the parameters K1 and K2 are
comparable for K2O·TiO2·3GeO2 characterized by the ratio
Tg/Tm = 0.63. To our knowledge, the highest value of the
ratio Tg/Tm appears for Na2O·Al2O3·6SiO2 and is equal to
0.78 (Ref. 25).

The values of the exponent γ differ for the considered
systems by four orders of magnitude and an order of magnitude
between the Dz-system and the bLJ-system (see Table I). The
large scatter in the values of γ is due to the change of the
waiting nucleation time τ1 within the temperature range differs
essentially for the systems. One can demonstrate this with the
results for the Dz and bLJ systems shown on Fig. 6. Within
the temperature range 0.025 ≤ T/Tm ≤ 0.2, the time scale τ1
is changed by the factor 0.625 for the Dz-system, whereas it
changes by the factor 0.96 for the bLJ-system. For the systems

TABLE I. The melting temperature Tm, the ratio Tg/Tm, the waiting time for the first critically sized nucleus τg
1

at the transition temperature Tg , the exponent γ estimated from Eq. (13), and the parameters K1 and K2 evaluated
by Eq. (3b) for several systems.

System Tm Tg/Tm τ
g
1 γ K1 K2

Dz (at p = 14ε/σ3) 1.51 ε/kB 0.43 211τ0 0.27 0.553 −0.053
bLJ (at p = 17ε/σ3) 1.65 ε/kB 0.56 760τ0 0.025 0.427 0.073
Li2O·2SiO2 1286 K 0.56a 1869 sb 70 0.424 0.076
Na2O·2CaO·3SiO2 1549 K 0.53c 5150 sd 50 0.466 0.034
K2O·TiO2·3GeO2 1308 K 0.63e 990 sf 30 0.281 0.219

aExperimental data of Ref. 24.
bFrom experimental data of Ref. 24.
cExperimental data of Ref. 59.
dFrom experimental data of Ref. 59.
eExperimental data of Ref. 60.
f From experimental data of Ref. 60.
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with complicated structural units (i.e., for silicate glasses), the
change is much more pronounced.25 The case with the smaller
change in the temperature dependence of τ1 will correspond to
the smaller values of the exponent γ in scaling relation (13).

Although scaling law (13) is suggested rather as an
empirical result, its qualitative justification can also be done.
At the temperatures comparable with and lower than the glass
transition temperature Tg , the local structural rearrangements
responsible for the nucleation are driven rather by kinetic
aspects associated with the viscosity than by thermodynamic
contribution. Therefore, it is reasonable for the range of high
supercooling to expect the existence of correlation between the
waiting time for nucleation τ1(T) and the structural relaxation
time τα(T) ∼ η(T), and thereby, between the time τ1(T) and
the viscosity η(T),

τ1(T) ∼ η(T). (17)

Hence, the Vogel-Fulcher-Tammann equation provides
the most popular viscosity model (this equation is also known
as the Williams-Landel-Ferry model63,64)

log10 η(T) = log10 η∞ +
A

T − Tc
, (18)

where Tc is the critical temperature of this model. Another
equation for viscosity similar to VFT-model is provided by
the mode-coupling theory,37,65

η(T) = η∞
(T − TMCT)γm , (19)

where TMCT is the (critical) mode-coupling temperature. The
parameters η∞, A, and γm take positive values and are obtained
by fitting Eqs. (18) and (19) to experimentally measured
viscosity data.64 Both the models predict a divergence of the
viscosity η(T) when T → Tc (and T → TMCT). Moreover, both
the models are able to reproduce η(T) for the supercooled
liquid phase, i.e., T > Tc (and T > TMCT), and are not
applicable for the temperature range below Tc (below TMCT)
because of a divergence in the temperature dependencies. On
the other hand, for a high-viscosity regime corresponding
to the temperatures T ≤ Tg , the experimentally measured
temperature-dependence of the viscosity η(T) is reproducible
by the Arrhenius law (see, for example, Fig. 6 in Ref. 66),
which is generalized by the Avramov-Milchev equation,64,67

log10 η(T) = log10 η∞ +

(
A
T

)α′
(20)

or

log10


η(T)
η∞


=

(
T
A

)−α′
, (21)

where A and α′ are positive.
Then, let us now reconsider scaling relation (13), which

can be rewritten in the form

τ1

τ
g
1

=
(
2T

)−γ
, (22)

since Tg = 0.5. After substitution of Eq. (2) into relation (22)
and using the expansion

ln(x + 1) =
∞
n=1

(−1)n−1xn

n
, −1 < x < 1, (23)

we obtain for the temperature range 0 < T < Tm the following
equation:

log10


τ1(T)
τ
g
1


=

1
ln 10

∞
n=1

(−1)n−1

n

(
T
Tg

)−γn
×


2K1

(
1 − T

Tg

)
+

T
Tg

−γ
−

(
T
Tg

)γn
,

(24)

where the parameter K1 is defined by Eq. (3b). Assuming
that proportionality in Eq. (17) holds, one can compare rhs
of Eqs. (21) and (24). A simple analysis reveals that Eq. (24)
is able to approximate the power-law dependence of Eq. (21)
and generalizes the temperature dependence for the viscosity
given by the Avramov-Milchev equation. Thereby, scaling
relation (13) and the viscosity model with Eq. (21) can be
considered as consistent.

Moreover, the fragility of a system can be estimated by
means of the index m defined as38

m =
∂log10(η)
∂(Tg/T)

�����T=Tg
. (25)

Then, from Eqs. (17), (22), and (25) we obtain the following
relation:

m ∼
∂log10(τ1)
∂(Tg/T)

�����T=Tg
∼ 2γ(1 − K1), (26)

which after substitution of Eq. (3b) can be rewritten as

m ∝ 2γ



0.5 −
Tg

Tm
+

(
Tg

Tm

)2

1 −
Tg

Tm



. (27)

Here, the contribution in square brackets is positive for the
range 0 ≤ (Tg/Tm) ≤ 1. Last two relations indicate that the
exponent γ and the index m are correlated terms, whereas γ
can provide an estimate of fragility.

V. CONCLUSION

The mechanism of the structural ordering in the su-
percooled melts at extremely deep level of supercooling is
one of the most debated issues in the consideration of the
crystallization kinetics.68–70 Let us mention some viewpoints
in this regard. The mean-field theories, starting from the
gradient theory of Cahn-Hilliard, provide indications that
the structural ordering at a deep level of metastability can
proceed through the spinodal decomposition.71 Interestingly,
Trudu et al. for the freezing bulk Lennard-Jones system
found a spatially diffuse and collective phenomenon of
nucleation at deep supercooling. Authors treated such features
as indirect signatures of a mean-field spinodal.54 This was later
criticized by Bartell and Wu.56 According to experimental72
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and other simulation55,73 studies, the size of the critical
embryo remains finite with decrease of the temperature of
the supercooled liquid, in contrast to the mean-field theory
predictions for a spinodal. Moreover, results of Ref. 74
reveal that crystallization in hard sphere glasses proceeds
due to “a chaotic sequence of random micronucleation events,
correlated in space by emergent dynamic heterogeneity,” and
agree with findings of Bartell-Wu.56 In view of this, it remains
still desirable to examine the mechanisms of the structural
ordering in glasses within the new experimental/simulation
results.

In the present work, two model glassy systems with
different interparticle interactions—the single-component
Dzugutov system and the binary Lennard-Jones system—are
simulated with the aim to study the structural ordering at
deep supercooling. Remarkably, the simulation study covers
a wide temperature range: from the temperatures comparable
with Tg to the temperatures corresponding to very deep levels
of supercooling (Tm − T)/Tm ≃ 0.97. By means of cluster
analysis, we show that the structural ordering even at deep
supercooling proceeds through the formation of the localized
crystalline domains, where the size of the critical embryo
still remains finite. This supports the nucleation scenario of
crystallization in the glassy systems and is in agreement with
the recent findings of Saika-Voivod et al.8,55 and Sanz et al.74

The average nucleation time is the quantity of main
interest in the characterization of the initial stages in the
nucleation kinetics. Here, it is estimated on the basis of
the molecular dynamics simulation data (for the two model
glassy systems) and from the available experimental data
for the several glasses within the Kashchiev’s approximative
equation. Our results show that, with the decrease of the
temperature, the nucleation time τ1 increases but still remains
finite. Further, we find that the nucleation time τ1 plotted as
a function of the proposed reduced temperature follows the
power-law dependence, unified for all the considered systems.
The correlation between the proposed reduced temperature
dependence for τ1 and the viscosity models for the amorphous
solids supports the conclusion about the kinetic character of
the initiation of the structural ordering in glasses, where the
inherent glassy microscopic dynamics is predominating over
thermodynamic aspects.

Results of this study extend the idea of a unified
description of the nucleation kinetics using scaling relations,
which was originally applied to the analysis of the droplet
nucleation rate data for the vapor-to-liquid transition (see
Ref. 31 and references to Ref. 33). The latter treatment
indicates that the nucleation rate can be well described by
the scaling function ln(p/pcoex)/[Tc/T − 1]3/2. In this study,
we pursue a similar approach applied to crystallization and
define such a variable, which might provide consistency in
comparison of the crystal nucleation time data for different
systems. Our realization differs from the scalings of Refs. 31
and 35; it is based on the reduced temperature scale with
the fixed control points: the temperature T = 0, the glass
transition temperature Tg = 0.5, and the melting temperature
Tm = 1 for a considered system. Using this approach, we
find a correspondence of the scaled nucleation times as
extracted from simulation and experimental data for the

various systems to a unified power-law dependence. Finally,
we note that because of experimental difficulties in extraction
of the quantitative information about the initial stages of
the crystallization kinetics, few of the experimental studies
cover the range of supercooling (Tm − T)/Tm > 0.6.24 In this
regard, it could be desirable to verify the suggested scaling
law with additional experimental studies, especially, for the
glassy systems at deep supercooling.
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