
Lecture 6. Fluids

Fluid Flow

In figure we see fluid flowing from left to right in a circular pipe. The pipe is assumed to be
“frictionless” for the time being – to exert no drag force on the fluid flowing within – and
hence all of the fluid is moving uniformly (at the same speed v with no relative internal
motion) in a state of dynamic equilibrium.
• We are interested in understanding the flow or current of water carried by the pipe, which

we will define to be the volume per unit time that passes any given point in the pipe.
• We would like to understand the relationship between area, speed and flow
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Fluid Flow

In a time Δt, all of the water within a distance vΔt to the left of the second shaded surface will
pass through this surface and hence past the point indicated by the arrow underneath. The
volume of this fluid is just the area of the surface times the height of the cylinder of water:

∆𝑉𝑉 = 𝐴𝐴𝑣𝑣∆𝑡𝑡
If we divide out the Δt, we get:

𝐼𝐼 =
∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴𝑣𝑣

This, then is the flow, or volumetric current of fluid in the pipe.
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Conservation of Flow

Fluid does not, of course, only flow in smooth pipes with a single cross-sectional area.
Sometimes it flows from large pipes into smaller ones or vice versa.

Figure shows a fluid as it flows from just such a wider pipe down a gently sloping neck into 
a narrower one. As before, we will ignore drag forces and assume that the flow is as uniform 
as possible. The pressure, speed of the (presumed incompressible) fluid, and cross sectional 
area for either pipe are P1, v1, and A1 in the wider one and P2, v2, and A2 in the narrower one.
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Conservation of Flow

In a time Δt a volume of fluid ΔV = A1v1 Δt passes through the surface/past the point 1
marked with an arrow in the figure. In the volume between this surface and the next grey
surface at the point 2 marked with an arrow no fluid can build up so actual quantity of mass
in this volume must be a constant.
This is a kind of conservation law which, for a continuous fluid or similar medium, is called
a continuity equation.

∆𝑉𝑉 = 𝐴𝐴1𝑣𝑣1∆𝑡𝑡 = 𝐴𝐴2𝑣𝑣2∆𝑡𝑡

𝐼𝐼 =
∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2
Thus the current or flow through the two surfaces marked 1 and 2 must be the same:

𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

A circular cross-sectional necked pipe is arranged so that the pipe changes height between
the larger and smaller sections. We will assume that both pipe segments are narrow
compared to the height change, so that we don’t have to account for a potential energy
difference (per unit volume) between water flowing at the top of a pipe compared to the
bottom, but for ease of viewing we do not draw the picture that way.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

The fluid is incompressible and the pipe itself does not leak, so fluid cannot build up
between the bottom and the top. As the fluid on the bottom moves to the left a distance d
(which might be v1Δt but we don’t insist on it as rates will not be important in our result)
exactly the same amount fluid must move to the left a distance D up at the top so that fluid is
conserved.

The total mechanical consequence of this movement is thus the disappearance of a chunk of
fluid mass:

∆𝑚𝑚 = 𝜌𝜌∆𝑉𝑉 = 𝜌𝜌𝐴𝐴1𝑑𝑑 = 𝜌𝜌𝐴𝐴2𝐷𝐷

that is moving at speed v1 and at height y1 at the bottom and it’s appearance moving at speed
v2 and at height y2 at the top. Clearly both the kinetic energy and the potential energy of this
chunk of mass have changed.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

What caused this change in mechanical energy?
Well, it can only be work.
What does the work?
The walls of the (frictionless, drag free) pipe can do no work as the only force it exerts is
perpendicular to the wall and hence to �⃗�𝑣 in the fluid.
The only thing left is the pressure that acts on the entire block of water between the first
surface (lightly shaded) drawn at both the top and the bottom as it moves forward to become
the second surface (darkly shaded) drawn at the top and the bottom, effecting this net
transfer of mass Δm.
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Work-Mechanical Energy in Fluids: Bernoulli’s Equation

The force F1 exerted to the right on this block of fluid at the bottom is just F1 = P1A1; the
force F2 exerted to the left on this block of fluid at the top is similarly F2 = P2A2. The work
done by the pressure acting over a distance d at the bottom is W1 = P1A1d, at the top it is W2
= −P2A2D. The total work is equal to the total change in mechanical energy of the chunk Δm:

𝑊𝑊1 + 𝑊𝑊2 = 𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠ℎ 𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑙𝑙 𝑊𝑊𝑡𝑡𝑠𝑠𝑡𝑡 = ∆𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠ℎ

𝑃𝑃1𝐴𝐴1𝑑𝑑 − 𝑃𝑃2𝐴𝐴2𝐷𝐷 =
1
2
𝑚𝑚𝑣𝑣22 + ∆𝑚𝑚𝑚𝑚𝑦𝑦2 −

1
2
𝑚𝑚𝑣𝑣12 + ∆𝑚𝑚𝑚𝑚𝑦𝑦1

(𝑃𝑃1−𝑃𝑃2)∆𝑉𝑉 =
1
2
𝜌𝜌∆𝑉𝑉𝑣𝑣22 + 𝜌𝜌∆𝑉𝑉𝑚𝑚𝑦𝑦2 −

1
2
𝜌𝜌∆𝑉𝑉𝑣𝑣12 + 𝜌𝜌∆𝑉𝑉𝑚𝑚𝑦𝑦1

(𝑃𝑃1−𝑃𝑃2) =
1
2
𝜌𝜌𝑣𝑣22 + 𝜌𝜌𝑚𝑚𝑦𝑦2 −

1
2
𝜌𝜌𝑣𝑣12 + 𝜌𝜌𝑚𝑚𝑦𝑦1

𝑃𝑃1 +
1
2
𝜌𝜌𝑣𝑣12 + 𝜌𝜌𝑚𝑚𝑦𝑦1 = 𝑃𝑃2 +

1
2
𝜌𝜌𝑣𝑣22 + 𝜌𝜌𝑚𝑚𝑦𝑦2 = a constant (units of pressure)

This result is known as Bernoulli’s Principle
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Fluid Viscosity and Resistance

In the discussion above, we have consistently ignored viscosity and drag, which behave like “friction”,
exerting a force parallel to the confining walls of the pipe in the opposite direction to the relative motion
of fluid and pipe.

In figure a circular pipe is carrying a fluid with viscosity μ from left to right at a constant speed.
Once again, this is a sort of dynamic equilibrium; the net force on the fluid in the pipe segment shown
must be zero for the speed of the fluid through it to be maintained unabated during the flow.

The fluid is in contact with and interacts with the walls of the pipe, creating a thin layer of fluid at
least a few atoms thick that are “at rest”, stuck to the pipe. As fluid is pushed through the pipe, this
layer at rest interacts with and exerts an opposing force on the layer moving just above it via the
viscosity of the fluid. This layer in turn interacts with and slows the layer above it and so on right up
to the center of the pipe, where the fluid flows most rapidly.
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Fluid Viscosity and Resistance

The interaction of the surface layer with the fluid, redistributed to the whole fluid via the viscosity,
exerts a net opposing force on the fluid as it moves through the pipe. In order for the average speed of
the fluid to continue, an outside force must act on it with an equal and opposite force. The only
available source of this force in the figure is obviously the fluid pressure; if it is larger on the left
than on the right (as shown) it will exert a net force on the fluid in between that can balance the drag
force exerted by the walls.

The forces at the ends are F1 = P1A, F2 = P2A. The net force acting on the fluid mass is thus:

∆𝐹𝐹 = 𝐹𝐹1 − 𝐹𝐹2 = 𝑃𝑃1 − 𝑃𝑃2 𝐴𝐴

All things being equal, we expect the flow rate to increase linearly with v, and for laminar flow, the
drag force is proportional to v. Therefore we expect that:

∆𝐹𝐹 = 𝐹𝐹𝑑𝑑 ∝ 𝑣𝑣 ∝ 𝐼𝐼 (the flow)
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Fluid Viscosity and Resistance

We can then divide out the area and write:

∆𝑃𝑃 ∝
𝐼𝐼
𝐴𝐴

We cannot derive the constant of proportionality in this expression, and we will omit some math and
just write following result:

∆𝑃𝑃 = 𝐼𝐼
8𝐿𝐿𝜇𝜇
𝜋𝜋𝑣𝑣4

= 𝐼𝐼𝜋𝜋

where I have introduced the resistance of the pipe to flow:

𝜋𝜋 =
8𝐿𝐿𝜇𝜇
𝜋𝜋𝑣𝑣4

This equation is know as Poiseuille’s Law and is a key relation for physicians and plumbers to know
because it describes both flow of water in pipes and the flow of blood in blood vessels wherever the
flow is slow enough that it is laminar and not turbulent
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A Brief Note on Turbulence

The velocity of the flow in a circular pipe (and other parameters such as μ and r) can be transformed into
a general dimensionless parameter called the Reynolds Number (Re).

The Reynolds number for a circular pipe is:

𝜋𝜋𝑣𝑣 =
𝜌𝜌𝑣𝑣𝐷𝐷
𝜇𝜇

=
𝜌𝜌𝑣𝑣2𝑣𝑣
𝜇𝜇

where D = 2r is the hydraulic diameter, which in the case of a circular pipe is the actual diameter.

The one thing the Reynolds number does for us is that it serves as a marker for the transition to
turbulent flow.

For Re < 2300 flow in a circular pipe is laminar and all of the relations above hold.

Turbulent flow occurs for Re > 4000. In between is the region known as the onset of turbulence, where
the resistance of the pipe depends on flow in a very nonlinear fashion, and among other things
dramatically increases with the Reynolds number.
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The Human Circulatory System

Here is a list of True Facts about the human cardiovascular system:

• The heart, illustrated in the schematic in figure is the “pump” that drives blood through your blood
vessels.
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The Human Circulatory System
• The blood vessels are differentiated into three distinct types:

 Arteries, which lead strictly away from the heart and which contain a muscular layer that
elastically dilates and contracts the arteries in a synchronous way to help carry the surging waves
of blood. This acts as a “shock absorber” and hence reduces the peak systolic blood pressure.
Arteries split up the farther one is from the heart, eventually becoming arterioles, the very small
arteries that actually split off into capillaries.

 Capillaries, which are a dense network of very fine vessels (often only a single cell thick) that
deliver oxygenated blood throughout all living tissue so that the oxygen can disassociate from
the carrying hemoglobin molecules and diffuse into the surrounding cells in systemic circulation,
or permit the oxygenation of blood in pulmonary circulation.

 Veins, which lead strictly back to the heart from the capillaries. Veins also have a muscle layer
that expand or contract to aid in thermoregulation and regulation of blood pressure as one lies
down or stands up. Veins also provide “capacitance” to the circulatory system and store the
body’s “spare” blood; 60% of the body’s total blood supply is usually in the veins at any one time.
Most of the veins, especially long vertical veins, are equipped with one-way venous valves every
4-9 cm that prevent backflow and pooling in the lower body during e.g. diastoli.

Blood from the capillaries is collected first in venules (the return-side equivalent of arterioles)
and then into veins proper.
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The Human Circulatory System

• There are two distinct circulatory systems in humans (and in the rest of the mammals and birds):

 Systemic circulation, where oxygenated blood enters the heart via pulmonary veins from the
lungs and is pumped at high pressure into systemic arteries that deliver it through the capillaries
and (deoxygenated) back via systemic veins to the heart.

 Pulmonary circulation, where deoxgenated blood that has returned from the system circulation is
pumped into pulmonary arteries that deliver it to the lungs, where it is oxygenated and returned to
the heart by means of pulmonary veins. These two distinct circulations do not mix and together,
form a closed double circulation loop.
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The Human Circulatory System
• Blood pressure is generally measured and reported in terms of two numbers:

 Systolic blood pressure. This is the peak/maximum arterial pressure in the wave pulse generated
that drives systemic circulation. It is measured in the (brachial artery of the) arm, where it is
supposed to be a reasonably accurate reflection of peak aortic pressure just outside of the heart,
where, sadly, it cannot easily be directly measured without resorting to invasive methods that are,
in fact, used e.g. during surgery.

 Diastolic blood pressure. This is the trough/minimum arterial pressure in the wave pulse of
systemic circulation.

“Normal” Systolic systemic blood pressure can fairly accurately be estimated on the basis of the
distance between the heart and the feet; a distance on the order of 1.5 meters leads to a pressure
difference of around 0.15 atm or 120 mmHg.

Blood is driven through the relatively high resistance of the capillaries by the difference in arterial
pressure and venous pressure. The venous system is entirely a low pressure return; its peak pressure is
typically order of 0.008 bar (6 mmHg). This can be understood and predicted by the mean distance
between valves in the venous system – the pressure difference between one valve and another (say) 8 cm
higher is approximately ρbg × 0.08 ≈= 0.008 bar. However, this pressure is not really static – it varies
with the delayed pressure wave that causes blood to surge its way up, down, or sideways through the
veins on its way back to the atria of the heart.
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Atherosclerotic Plaque Partially Occludes a Blood Vessel

Atherosclerosis – granular deposits of fatty material called plaques that attach to the walls of e.g.
arteries and gradually thicken over time, generally associated with high blood cholesterol and lipidemia.
The risk factors for atherosclerosis form a list as long as your arm and its fundamental causes are not
well understood, although they are currently believed to form as an inflammatory response to surplus
low density lipoproteins (one kind of cholesterol) in the blood.

In figure two arteries are illustrated.
Artery a) is “clean”, has a radius of r1, and (from the
Poiseuille Equation above) has a very low resistance to any
given flow of blood. Because Ra over the length L is low,
there is very little pressure drop between P+ and P− on the
two sides of any given stretch of length L. The velocity
profile of the fluid is also more or less uniform in the artery,
slowing a bit near the walls but generally moving smoothly
throughout the entire cross-section.
Artery b) has a significant deposit of atherosclerotic
plaques that have coated the walls and reduced the effective
radius of the vessel to ∼ r2 over an extended length L. The
vessel is perhaps 90% occluded – only 10% of its normal
cross-sectional area is available to carry fluid.
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Atherosclerotic Plaque Partially Occludes a Blood Vessel

We can now easily understand several things about this situation. First, if the total flow in artery b) is
still being maintained at close to the levels of the flow in artery a) (so that tissue being oxygenated by
blood delivered by this artery is not being critically starved for oxygen yet) the fluid velocity in the
narrowed region is ten times higher than normal! Since the Reynolds number for blood flowing in
primary arteries is normally around 1000 to 2000, increasing v by a factor of 10 increases the
Reynolds number by a factor of 10, causing the flow to become turbulent in the obstruction. This
tendency is even more pronounced than this figure suggests – I’ve drawn a nice symmetric occlusion,
but the atheroma (lesion) is more likely to grow predominantly on one side and irregular lesions are
more likely to disturb laminar flow even for smaller Reynolds numbers.

This turbulence provides the basis for one method of possible detection and diagnosis – you can hear
the turbulence (with luck) through the stethoscope during a physical exam. Physicians get a lot of
practice listening for turbulence since turbulence produced by artificially restricting blood flow in the
brachial artery by means of a constricting cuff is basically what one listens for when taking a patient’s
blood pressure. It really shouldn’t be there, especially during diastole, the rest of the time.
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