Representation of tripotents and representations via tripotents

Airat M. Bikchentaev ${ }^{*, 1}$, Rinat S. Yakushev
Kazan (Volga Region) Federal University, Kazan 420008, Russia

ARTICLEINFO

Article history:

Received 6 December 2010
Accepted 4 April 2011
Available online 4 May 2011
Submitted by P. Šemrl

AMS classification:

15A21
15A27
47B15

Keywords:
Algebra
Tripotent
Commutativity
Idempotent
Matrix
Trace

Abstract

Let \mathcal{A} be an algebra. An element $A \in \mathcal{A}$ is called tripotent if $A^{3}=A$. We study the questions: if both A and B are tripotents, then: Under what conditions are $A+B$ and $A B$ tripotent? Under what conditions do A and B commute? We extend the partial order from the Hilbert space idempotents to the set of all tripotents and show that every normal tripotent is self-adjoint. For $\mathcal{A}=\mathbb{M}_{n}(\mathbb{C})$ we describe the set of all finite sums of tripotents, the convex hull of tripotents and the set of all tripotents averages. We also give the new proof of rational trace matrix representations by Choi and Wu [2].

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{A}, \mathcal{D} be algebras. An element $A \in \mathcal{A}$ is called idempotent if $A^{2}=A$; and tripotent if $A^{3}=A$. Let

$$
\mathcal{A}^{\mathrm{id}}=\left\{A \in \mathcal{A}: A^{2}=A\right\}, \quad \mathcal{A}^{\mathrm{tr}}=\left\{A \in \mathcal{A}: A^{3}=A\right\}
$$

Tripotent matrices have values in applications to digital image encryption [17].
We study the following questions: if both A and B are tripotents, then: Under what conditions are $A+B$ and $A B$ tripotent? Under what conditions do A and B commute? We decompose any tripotent

[^0]
[^0]: * Corresponding author. Tel.: +7 843 2927524; fax: +7 8432382209.

 E-mail addresses: Airat.Bikchentaev@ksu.ru (A.M. Bikchentaev), Rinat.Yaqushev@ksu.ru (R.S. Yakushev).
 ${ }^{1}$ This author was supported by the Federal Agency for Science and Innovation (State Contract 02.740.11.0193).

