
  

MULTIDIMENSIONAL NONLINEAR ION-ACOUSTIC WAVES IN A PLASMA IN VIEW OF 

RELATIVISTIC EFFECTS 

V. Yu. Belashov*
 

Kazan Federal University, Kazan, 420008 Russia 

*e-mail: vybelashov@yahoo.com 

Received September 2, 2016 

 

On the basis of the model of the Kadomtsev-Petviashvili (KP) equation, the structure and dynamics 

of ion-acoustic waves in an unmagnetized plasma including a case of weakly relativistic collisional 

plasma, when the high energy flows of particles, as observed in the magnetospheric plasma, should 

be taken into account, are studied analytically and numerically. It is shown that if the velocity of 

plasma particles approaches the speed of light, the relativistic effects start to strongly influence the 

wave characteristics, such as its phase velocity, amplitude and the characteristic wavelength, at 

propagation of the two-dimensional solitary ion-acoustic wave. The results obtained can have appli-

cation in study of the nonlinear wave processes in the magnetosphere and also in the laser and as-

trophysical plasma. 

1. INTRODUCTION. STATEMENT OF A PROBLEM 

Study of nonlinear wave processes in real media with dispersion, despite of essential progress 

taking place in the last years in this research field (see, for example, [Belashov and Vladimirov, 

2005; McKerr et al., 2014, 2016] and numerous references in these works) still remains actual. In 

particular, it concerns dynamics of fluctuations in cases, when in the medium (magnetosphere, 

compact astrophysical systems, for example, white dwarfs, laser plasma [Haas, 2014; Shukla et al., 

1984]) there are the high energy flows of particles take place essentially changing such parameters 

of propagating wave structures as their phase velocity, amplitude and characteristic length. Rather 

big number of works is devoted to investigations of such relativistic effects, for example, [Canuto 

and Ventura, 1977; Giamarchi, 2003; McKerr et al., 2016; Passoni et al., 2010; Rahman and Ali, 

2014; Shukla and Eliasson, 2008], however practically all of them consider only one-dimensional 

(1D) approach. In particular, in Refs. [McKerr et al., 2014, 2016] and in earlier Refs. [Washimi and 

Taniuti, 1966; Das and Paul, 1985] the relativistic effects for the ion-acoustic branch of oscillations 

have been investigated in an 1D plasma. The investigations [Nejon, 1987; Taniuti and Wei, 1968] 

are perhaps some exceptions, however in these papers were studied only some extreme cases. 

The purpose of our work consists in investigating relativistic effects in dynamics of ion-

acoustic multidimensional nonlinear wave structures in electron-ionic plasma, that is especially im-

mailto:vybelashov@yahoo.com


  

portant in astrophysical applications and in the physics of magnetosphere. To solve this problem, in 

principle, we could start from general set of hydrodynamic equations for the relativistic case (see, 

for example, [Elsässer and Popel, 1997]), however since we is interested by the effects which are 

displayed at the relativistic velocities in comparison with the nonrelativistic case, it would be more 

logical to consider, at first, the nonrelativistic approach and further, introducing the relativistic fac-

tor (by analogy with Ref. [Nejon, 1987]), to consider its influence on the time-space characteristics 

of multidimensional nonlinear ion-acoustic wave. We shall undertake this approach further. 

In the absence of the magnetic field and for the negligible ion temperature, the equations of 

motion and continuity for ions take form [Belashov, 1997] 
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where М is a mass of ion,  is an electric potential. A comparison with the equations in generalized 

variables for ideal gas in neglect a dissipation, 
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where  and ( )c c   have a sense of the generalized "density" and velocity of "sound", respective-

ly, at density  in neglect a dispersion [Karpman, 1973], shows that in this case the role of   and c 

plays the ion density in  and the ion-acoustic velocity  
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;s ec T M  the dispersion "length" is de-
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08 ,eT e n  where 0n  is the unperturbed electron density. The electrons in the 

ion-acoustic wave are Boltzmann distributed, 

                                                0 exp ,e en n e T                                                           (2) 

And the densities of the ions and electrons are related to the electric potential  via Poisson’s equation 
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The dispersion equation for the set (1)–(3) is written as [Danilov and Petviashvili, 1983] 
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Following further to the techniques developed in Ref. [Belashov and Vladimirov, 2005] and 

proceeding from the presented reasons, consider the basic equation describing the dynamics of the 

ion-acoustic waves in a unmagnetized collisional plasma, and discuss its possible solutions, and 



  

after that, introducing the relativistic factor, consider the effects related to particles moving with the 

velocities which are rather close to the speed of light. 

2. BASIC EQUATIONS. NONRELATIVISTIC APPROXIMATION 

Consider the wave packet propagating in the direction close to the x-axis. We assume that the 

wave numbers of its harmonics are small satisfying the inequalities,  

                                 2 2
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where 'v  is the x-component of the ion velocity. It is well known that the weakly dispersive [see the 

first inequality of (5)] ion-acoustic wave steepens in the direction of its propagation, therefore, at 

some time moment the second inequality of (5) “switches on.” Conditions (5) enable us to reduce 

the dispersion relation (4) to the form  

 2 2 2 2
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therefore, limiting ourselves in the nonlinear expansion by the terms quadratic in the wave ampli-

tude and considering the solution in the form of a propagating wave  , , ,su u t x c t r   and apply-

ing the procedure described in Ref. [Belashov and Vladimirov, 2005], we obtain the nonlinear equa-

tion 
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that, after the homothetic transformation and in the reference frame moving along the x-axis with 

the velocity ,sc  coincides with the Kadomtsev-Petviashvili (KP) equation in its standard form 

[Belashov, 1997]: 
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where 1   is related to the positive dispersion, and 1    corresponds to the negative dispersion, 

respectively, and the factors at the equation terms for the case of ion sound are [Karpman, 1973]: 
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Generally speaking, for the ion-acoustic wave the sign on the right-hand side of (6) is positive 

so that the dispersion is negative, 1    in (7). However, for other modes there are cases when the 



  

dispersion is positive, i.e. there is the ‘minus’ sign on the right-hand side of (6). The term s xc  v  

describes the wave propagation along the x-axis with the “sound” velocity, and other terms respon-

sible for dispersion, nonlinearity, and diffraction describe slow changes of the acoustic field on the 

background of the wave motion with the velocity .sc  Such acoustic waves is mainly characteristic 

for isotropic media (e.g., an unmagnetized plasma), but sometimes it can be observed in anisotropic 

media as well. Thus, if the characteristic frequency of the ion-acoustic wave packet significantly 

exceeds the ion-cyclotron frequency in a magnetized plasma, ,Hi  the plasma anisotropy can be 

neglected and therefore (6) can be reduced to the KP equation (7) [Danilov and Petviashvili, 1983]. 

In the opposite case, when 
Hi

  the anisotropy cannot be neglected. In this case the additional 

term [ , ]Hi i v  ( i  is the dimensionless vector of the x-axis) appears in the right-hand side of the equa-

tion of motion (1), and sign of the second term in the dispersion equation changes to minus. In this 

case we also have the equation of the KP class but with right-hand side of form   xu  [Zakharov 

and Kuznetsov, 1974]. Upper sign in this equality, as in the equation (6), corresponds to the case of 

negative dispersion, and lower sign corresponds to positive one. 

In Ref. [Belashov, 1997] the isotropic case of (7) for the ion-acoustic waves in un 

unmagnetized plasma was considered. Further, in Ref. [Belashov and Vladimirov, 2005] the results 

were generalized for more wide spectrum of nonlinear systems. Using the approaches proposed in 

these Refs., the numerical simulation based on the specially developed high-accuracy methods 

[Belashov, 1991; Belashov and Vladimirov, 2005], was spent for the initial condition in form of the 

solitary pulse of form (0, , )u x y  = 2 2
0 exp[ ( ) ]x yu x l y l L   with the periodic boundary conditions. 

Figure shows an example of the numerical results obtained for the two-dimensional (2D) ( 2
y   ) 

equation (7). 

 

Figure. General view of 2D solution of the KP equation (7) at 6, 1.     

 

We can see that as a result of the evolution of the 2D acoustic perturbation (0, , )u x y  in an iso-



  

tropic plasma, the 1D soliton of KP equation is formed. The form of the soliton corresponds to that 

obtained analytically for the negative dispersion in Ref. [Kadomtsev and Petviashvili, 1970] by em-

ploying the Krylov-Bogolyubov method and in Ref. [Zakharov et al., 1980] by using the inverse 

scattering transform (IST) method. It was shown in our numerical simulation that for sufficiently 

large t, the soliton velocity and the first three integrals of the 2D KP equation are conserved within 

the limits of the accuracy of the numerical simulation, namely:  
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where   and ,x yh  are the steps on the time and space grids, respectively (the last two integrals has a 

sense of momentum and energy of medium described by the KP equation). It confirms our earlier 

obtained results [Belashov, 1997] and the fact of existence of 2D ion-acoustic soliton in such physi-

cal system. Consider now the problem of influence of relativistic effects on the evolution of ion-

acoustic wave. 

3. WEAKLY RELATIVISTIC EFFECTS 

As we already demonstrated, the ion-acoustic waves in a plasma can be described by the KP 

equation (7). However, if the velocity of plasma particles approaches the speed of light, the relativ-

istic effects start to strongly influence the wave characteristics (such as its phase velocity, amplitude 

and the characteristic wavelength) in the propagation of the two-dimensional solitary ion-acoustic 

wave. 

For the 2D ion-acoustic solitary waves in a weakly relativistic collisional plasma, the KP 

equation in form (7) taking into account the relativistic factor u/c can be obtained [Nejon, 1987] 

using the reduced perturbation method [Taniuti and Wei, 1968]. We can rewrite it in the following 

form: 
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where 1 2
1 1 1u    is a small perturbation of the electrostatic potential 2

1 2 ...,         is the 

small expansion parameter; 1u  is the perturbation of the plasma particle velocity (

2
0 1 2 ...u u u u      ),  

                       

     

 

1 22
1 1 1 13 2

1

2
0 0

1 2 2

1 , ,

3 3
1 , .

2 2

u u

c c

 
          

 

    

                                   (9) 

Equation (8) is written in the reference frame moving along the x-axis:  
1 2
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,t     where  is the phase velocity. Note that the coefficient at nonlinear term 0,   since 

21  . In this case we can obtain the stationary solution as the propagating in the system soli-

tary wave. Introducing the new variable x yk k        and substituting it into (8), write the 

solution in the form of a 2D wave 
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where the amplitude 0  and the characteristic size W are defined by the expressions  
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and  
21 ,

2x y xk k k     and the boundary conditions are 1 0,    1 0
n
    for n  = 1, 2 and 

.    The dispersion law for these waves is given by 
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We see from (9) that the factors at the nonlinear term as well at the dispersion term are de-

fined by the relativistic factor 1,  equations (11) shows the dependence of the amplitude and the 

characteristic length of the 2D ion-acoustic soliton of the KP equation on the weakly relativistic 

effects. Comparison of the results following from (9)–(11) with those for the three extreme cases 

considered in Refs. [Кадомцев и Петвиашвили, 1970; Nejon, 1987; Washimi and Taniuti, 1966; 

Das and Paul, 1985] [16,105,106,207] is given in the Table. Here 
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0v  is the velocity of the ion flow (if 0v  ~ 0 and the relativistic effects are ignored, we have 
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s k  ). One can see that the obtained results include all three extreme cases too, but they are 

essentially more general, because describe the influence of the relativistic effects on such parame-

ters as the amplitude, characteristic size and the phase velocity of the 2D solitary wave, which, in its 

turn, are defined by the dependencies of the factors at the nonlinear term as well at the dispersion 

term of KP equation:  1   and  1 ,   respectively, on the particles’ velocity u. One can also see 

that the dependencies of the amplitude and characteristic size of the wave on relativistic factor es-

sentially differ for the 2D and 1D cases (compare the second and the last column in the Table): in 

the expressions for 0  and W we have the parameters  and s, respectively. 

Table 

Comparison of the results obtained with the results for three extreme cases  

Parameter Obtained results  

Results of refs. [Kadomtsev and Petviashvili, 1970; Nejon, 

1987; Washimi and Taniuti, 1966; Das and Paul, 1985] 
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4. CONCLUSION 

So, in this paper on the basis of model of the KP equation the structure and dynamics of the 

ion-acoustic waves in an unmagnetized plasma, including a case of collisional weakly relativistic 

plasma, when the high energy flows of particles should be taken into account, were studied analyti-

cally and numerically. In particular, when kinetic energy of ions 
2
0 2M u  at 0 0.1u c   reaches val-

ues 4.7  MeV, the 2D weakly relativistic ion-acoustic solitary waves will describe a motion of the 

high energy protons with velocity which is significant in comparison with speed of light that is ob-

served in the magnetospheric plasma (trapping region, outer radiation belt, plasma sheet) [Vette, 

1970]. We showed, that if velocity of plasma particles approaches the tenth shares of speed of light 



  

(for example, in the region of the maximum of the outer radiation belt on L-shell L = 3.1 [Krimigis 

and Van Allen, 1967]), the relativistic effects start to strongly influence the wave characteristics, 

such as its phase velocity, amplitude and the characteristic wavelength, at propagation of the 2D 

solitary ion-acoustic wave. Let’s also note that, besides physics of nonlinear processes in the mag-

netosphere, the study of the relativistic nonlinear waves has also the applications in such physical 

systems as laser plasma [Shukla et al., 1984] and astrophysics [Canuto and Ventura, 1977; Arons, 

1979; Haas, 2014; Rahman and Ali, 2014]. 

The work is performed according to the Russian Government Program of Competitive 

Growth of Kazan Federal University. 

REFERENCES 

 Белашов В.Ю. Уравнение КП и его обобщения. Теория, приложения. Магадан: СВКНИИ 

ДВО РАН. 162 с. 1997.  

 Данилов Ю.А., Петвиашвили В.И. Солитоны в плазме // Итоги науки и техники. Физика 

плазмы. М.: ВИНИТИ, T. 4. C. 5–47. 1983.  

 Захаров В.Е., Кузнецов Е.А. О трехмерных солитонах // ЖЭТФ. T. 66. Bып. 2. C. 594–597. 

1974. 

 Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: Метод 

обратной задачи. М.: Наука, 319 с. 1980. 

 Кадомцев Б.Б., Петвиашвили В.И. Об устойчивости уединенных волн в слабо дисперги-

рующих средах // ДАН СССР. T. 192. № 4. C. 753–756. 1970. 

 Карпман В.И. Нелинейные волны в диспергирующих средах. М.: Наука, 175 с. 1973. 

 Arons J. Some problems of pulsar physics// Space Sci. Rev. V. 24. P. 417–510. 1979. 

 Belashov V.Yu. The methods for numerical integration of nonlinear evolutional KP-class equa-

tions // XX Int. Conf. on Phenomena in Ionized Gases, Pisa, Italy, 1991. Contributed papers. V. 

6. P. 1241–1242. 1991. 

 Belashov V.Yu. Numerical study of dynamics of 3D ion-acoustic and FMS nonlinear waves in 

plasma using spectral approach // Proc. of 5th Int. School/Symp. for Space Simulation (ISSS-5), 

Kyoto, Japan, 1997. RASC, Kyoto Univ., Kyoto, Japan. P. 118–122. 1997. 

 Belashov V.Yu., Vladimirov S.V. Solitary Waves in Dispersive Complex Media. Theory, Simula-

tion, Applications. Springer-Verlag, Berlin–Heidelberg–New York–Tokyo. 305 p. 2005. 

 Canuto V., Ventura J. Quantizing magnetic fields in astrophysics // Fundamentals of Cosmic 

Physics. V. 2. Gordon and Breach Science Publishers, UK. P. 203–353. 1977. 

 Das G.C., Paul S.N. Ion-acoustic solitary waves in relativistic plasmas // Phys. Fluids. V. 28. P. 

823–837. 1985. 



  

 Elsässer K., Popel S. Plasma equations in general relativity // Phys. Plasmas. V. 4. P. 2348–

2356. 1997.  

 Giamarchi T. Quantum Physics in One Dimension. Oxford University Press, New York. 448 p.  

2003. 

 Haas F. Relativistic hydrodynamic equations for fully degenerate plasma / 17th Int. Congress on 

Plasma Physics – ICPP 2014, Lisbon, Portugal, 2014. Book of Abstracts. BAP.15. 2014. 

 Krimigis S.M., Van Allen J.A. Geomagnetically trapped alpha particles // J. Geophys. Res. V. 72. 

P. 5779–5797. 1967. 

 McKerr M., Haas F., Kourakis I. Relativistic theory for localized electrostatic excitations in de-

generate electron-ion plasmas // Phys. Rev. E. V. 90. Iss. 3. 033112. 2014. 

 McKerr M., Haas F., Kourakis I. Ion-acoustic envelope modes in a degenerate relativistic elec-

tron-ion plasma // Phys. Plasmas. V. 23. 052120. 2016. 

 Nejon Y. A two-dimensional ion acoustic solitary wave in a weakly relativistic plasma // J. Plas-

ma Phys. V. 38. Part 3. P. 439–444. 1987. 

 Passoni M., Bertagna L., Zani A. Target normal sheath acceleration: theory, comparison with 

experiments and future perspectives // New J. Phys. V. 12. 0450122. 2010. 

 Rahman A., Ali S. Solitary and rogue waves in Fermi-Dirac plasmas: relativistic degeneracy ef-

fects// Astrophys. Space Sci. V. 351. Iss. 1. P. 165–172. 2014. 

 Shukla P.K., Yu M.Y., Tsintsadze N.L. Intense solitary laser pulse propagation in a plasma // 

Phys. Fluids. V. 27. P. 327–334. 1984. 

 Shukla P.K., Eliasson B. Nonlinear theory for a quantum diode in a dense Fermi magnetoplasma 

// Phys. Rev. Lett. V. 100. 036801. 2008. 

 Taniuti T., Wei C.C. Reductive perturbation method in nonlinear wave propagation, I // J. Phys. 

Soc. Japan. V. 24. P. 941–946. 1968. 

 Vette J.I. Particles and Fields in the Magnetosphere / Ed.  McCormac B.M., Reidel. 305 p. 1970. 

 Washimi H., Taniuti T. Propagation of ion-acoustic solitary waves of small amplitude // Phys. 

Rev. Lett. V. 17. № 17. P. 966–971. 1966. 

http://link.springer.com/article/10.1007/s10509-014-1816-z
http://link.springer.com/article/10.1007/s10509-014-1816-z

