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Abstract – The eigenvalue problem for generalized natural modes of an inhomogeneous optical fiber is formulated as a 
problem for the Helmholtz equation with Reichardt condition at infinity in the cross-sectional plane. The generalized 
eigenvalues of this problem are the complex propagation constants on a logarithmic Reimann surface. The original 
problem is reduced to a spectral problem with compact integral operator. Theorem on spectrum localization is 
proved, and then it is proved that the set of all eigenvalues of the original problem can only be a set of isolated points 
on the Reimann surface, and it also proved that each eigenvalue depends continuously on the frequency and can 
appear and disappear only at the boundary of the Reimann surface. The existence of the surface modes is proved. The 
Galerkin method for numerical calculation of the surface modes is proposed. Some results of the numerical 
experiments are presented.  

 
I. INTRODUCTION 

 
Optical fibers are dielectric waveguides (DWs), i.e., regular dielectric rods, having various cross sectional 

shapes, and where generally the refractive index of the dielectric may vary in the waveguide’s cross section [1]. 
The study of the source-free electromagnetic fields, called natural modes, that can propagate on DWs 
necessitates that longitudinally the rod extend to infinity. Since often DWs are not shielded, the medium 
surrounding the waveguide transversely forms an unbounded domain, typically taken to be free space. This fact 
plays an extremely important role in the mathematical analysis of natural waveguide modes, and brings into 
consideration a variety of possible formulations. They differ in the form of the condition imposed at infinity in 
the cross-sectional plane, and hence in the functional class of the natural-mode field. This also restricts the 
localization of the eigenvalues in the complex plane of the eigenparameter [2]. All of the known natural-mode 
solutions (i.e., guided modes, leaky modes, and complex modes) satisfy the Reichardt condition at infinity. The 
wavenumbers β  may be generally considered on the appropriate logarithmic Reimann surface. For real 
wavenumbrs on the principal (“proper”) sheet of this Reimann surface, one can reduce the Reichardt condition 
to either the Sommerfeld radiation condition or to the condition of exponential decay. The Reichardt condition 
may be considered as a generalization of the Sommerfeld radiation condition and can be applied for complex 
wavenumbers. This condition may also be considered as the continuation of the Sommerfeld radiation condition 
from a part of the real axis of the complex parameter β  to the appropriate logarithmic Reimann surface.  

 
II. STATEMENT OF THE PROBLEM  

 
We consider the natural modes of an inhomogeneous optical fiber. Let the three-dimensional space be 

occupied by an isotropic source-free medium, and let the refractive index be prescribed as a positive real-valued 
function  independent of the longitudinal coordinate( 1 2,n n x x= ) 3x  and equal to a constant  outside a 

cylinder. The axis of the cylinder is parallel to the 

n∞

3x -axis, and its cross-section is a bounded domain  with a 

Lipschitz boundary Γ  on the plane 

Ω

( ){ }x2
1 2,R x x1 2, :x= −∞ < < ∞ . Denote by  the unbounded do-

main 

∞Ω
2 \R∞Ω = Ω , and denote by  the maximum of the function  in the domain n+ n Ω , where . Let the 

function  belongs to the space of real-valued continuous and continuously differentiable in Ω  functions. 
By U  denote the space of twice continuously differentiable in 

n+ > n∞

n
Ω  and ∞Ω , continuous and continuously 

differentiable in Ω and ∞Ω  real-valued functions. The modal problem can be formulated as an eigenvalue 
problem for the Helmholtz equation  
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   (1) ( )2 2 2 20, \ .k n u x Rβ⎡ ⎤Δ + − = ∈ Γ⎣ ⎦
Here 2 2

0 0k ω ε μ= , 0ε , 0μ  are the free-space dielectric and magnetic constants, respectively. We consider the 
propagation constant β  as a complex parameter and radian frequency ω  as a positive parameter. We seek non-
zero solutions  of set (1) in the space U . Functions  have to satisfy the conjugation conditions: u u

 , ,u uu u x
ν ν

+ −
+ − ∂ ∂ .= =

∂ ∂
∈Γ  (2) 

Here ν  is the normal vector. By Λ  denote the Reimann surface of the function ln ( )χ β , 
where 2 2 2( ) k nχ β β∞= − , and by  denote the principal (“proper”) sheet of (1)

0Λ Λ , which is specified by the 

following conditions: ( ) (1)
02 arg 3 2 , Im ( ) 0,π χ β π χ β β− < < ≥ ∈Λ( ) . We say that function  satisfies 

the Reichardt condition if the function u  can be represented for all 

u

0x R>  as  

 (1) ( , ) exp( ),l l
l

u a H r ilϕ ϕ
∞

=−∞

= ∑  (3) 

where (1)
lH  is the Hankel function of the first kind and index , l ( ),r ϕ  are the polar coordinates of the point x . 

The series in (1) should converge uniformly and absolutely. 

Definition 1. A nonzero function  is referred to as an eigenfunction (natural mode) of the problem (1)-
(3) corresponding to some eigenvalues 

u U∈
β ∈Λ  and 0ω >  if the relations of problem (1)-(3) are valid. The set of 

all eigenvalues of the problem (1)-(3) is called the spectrum of this problem. 
 

II. SPECTRUM PROPERTIES 
 

If  is an eigenfunction of problem (1)-(3) corresponding to some eigenvalues u β ∈Λ  and 0ω > , then  

  (4) 2( ) ( ; , ) ( ) ( ) ( ) , ,v x x y p x p y v y dy xλ β
Ω

= Φ ∈Ω∫
where , , v up= 2 2 2 2 2( ) /(p n n n n∞ + ∞= − − ) 2 2 2 2/( )k n nλ + ∞= − , ( )(1)

04 ( )i H x yχ βΦ = − . The original 

problem (1)-(3) is spectrally equivalent [3] to the problem (4). Let frequency ω  has a fixed positive value. 
Rewrite problem (4) in the form of spectral problem for operator-valued function 

 ( ) ( )2
2 2( ) 0, ( ) ( ) :A v A I B L Lβ β λ β= = − Ω → Ω , (5) 

where  is the operator, defined by the right side of equation (4), B I  is the identical operator.  

Definition 2. A nonzero vector ( )2v L∈ Ω  is called an eigenvector of operator-valued function ( )A β  
corresponding to an eigenvalue β ∈Λ  if the relation (5) is valid. The set of all β ∈Λ  for which the opera-
tor ( )A β  does not have the bounded inverse operator in ( )2L Ω  is called the spectrum of operator-valued 
function ( ).A β  Denote by  the spectrum of operator-valued function ( )Aσ Λ⊂ ( ).A β  

Theorem 1. For all 0ω >  and β ∈Λ  the operator ( )B β  is compact. If ω  has a fixed positive value, then 
the spectrum of the operator-valued function ( )A β  can be only a set of isolated points on , moreover on the 

principal sheet  it can belong only the set 

Λ
(1)
0Λ { }: , Imn nβ β β∞ +

(1)
0G k 0k= ∈Λ < < = . Each eigenvalue β  of 

the operator-valued function (A )β  depends continuously on 0ω >  and can appear and disappear only at the 
boundary of , i.e., at Λ knβ ∞= ±  and at infinity on Λ . 

This theorem was proved in [3]. The well known surface modes satisfy to propagation constants Gβ ∈ . In 

this case ( ) ( )iχ β σ β= , where 2 2 2( ) 0k nσ β β ∞= − > . Let transverse wavenumber σ  has a fixed positive 
value. Rewrite problem (4) in the form of usual liner spectral problem with integral compact operator 
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  ( ) ( )2
2 2( ) , :v B v B L Lλ σ= Ω → Ω , (6) 

Definition 3. A nonzero function  is called an eigenfunction of operator  corresponding to a 
characteristic value 

( )2v L∈ Ω B
2λ  if the relation (6) is valid. 

Theorem 2. For all positive σ  the following statements are valid. There exist the denumerable set of positive 
characteristic values , with only cumulative point at infinity. The set of all 
eigenfunctions l , can be choose as the orthonormal set. The smallest characteristic value 

2 , 1, 2,lλ = …
, 2…

l
,, 1v l = 2

1λ  is 
positive and simple, corresponding eigenfunction  is positive. Each eigenvalue , depends 
continuously on 

1v 2 , 1, 2,l lλ = …
0σ > , and  if 2

1λ 0,→ 0σ → . 
This theorem is proved by the methods of the spectral theory of compact integral operators. The well known 

fundamental mode satisfies to smallest characteristic value 2
1λ . If some values of the parameters 2λ  and σ  are 

known, then β  and ω  can be calculated by evidence formulas.  

 
Fig. 1. The first ten dispersion curves (on the left) for circular step-index fiber calculated by Galerkin method (plotted by 
sold lines) with comparison to exact solutions (marked by circles). The tenth eigenfunction  (on the right), calculated 
for 

v
Im 1σ χ= = .  

 
II. GALERKIN METHOD 

 
Consider the Galerkin method for numerical approximation of integral equation (6). We cover Ω  with small 

triangles  and denote by  the sub-domain iΔ nΩ
1

n

n i
i

Ω Δ
=

Ω= ⊆∪

1
( )

n

n i
i

v x a f
=

= ∑

. We seek the approximate solution  of 

equation (6) in the form of linear combination , 

nv

( )xi nx Ω∈ , where if  are basis func-

tions, , if , , if ( )f x = 1i ix Δ∈ ( )if x 0= ix Δ∉ . We seek the non-zero approximate solution  in the 
space 

nv

{ 1, , }spann nH f f…= . The unknown coefficients  can be determined from the set of linear algebraic 
equations: 

ia

 ( )2

1
( ) ,

n

i i j
i

a I B f fλ
=

0− =∑ , 1, ,j n= … , (7) 

where denotes inner product in . The singular Galerkin elements ( ),⋅ ⋅ ( )2L Ω ( )2( ) ,i iI B f fλ−  are calculated 
analytically. Therefore, using Galerkin method for solving linear spectral problem for integral equation (6), we 
obtain finite–dimensional linear spectral problem (7), that we can rewrite in the operator form: 

 , (8) 2 ( ) , :n n n n nv B v B H Hλ σ= n→
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 where the operator ( )nB σ  is determined by (7). The numerical results are presented on the figures 1-3 with 
comparison to known exact solutions and some results of other authors.  

 
Fig. 2. The first ten dispersion curves (on the left) for triangular step-index fiber calculated by Galerkin method (plotted 
by sold lines) with comparison to results of other authors (marked by circles and squares). The tenth eigenfunction  (on 
the right), calculated for 

v
Im 1σ χ= = .  

 

 
Fig. 3. The first ten dispersion curves (on the left) for rectangular step-index fiber calculated by Galerkin method (plotted 
by sold lines) with comparison to results of other authors (marked by circles). The first and the tenth eigenfunctions  
(on the right), calculated for 

v
Im 1σ χ= = .  
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