
Lecture 2. Newton’s Laws

Friction

The maximum force static friction can exert is proportional to both the pressure between the surfaces
and the area in contact. This makes it proportional to the product of the pressure and the area, which
equals the normal force. We write this as:

𝑓𝑓𝑠𝑠 ≤ 𝑓𝑓𝑠𝑠
𝑚𝑚𝑎𝑎𝑥𝑥

= 𝜇𝜇𝑠𝑠𝑁𝑁

where μs is the coefficient of static friction, a dimensionless constant characteristic of the two surfaces
in contact, and N is the normal force.

Static Friction is the force exerted by one surface on
another that acts parallel to the surfaces to prevent the
two surfaces from sliding.

Static friction is as large as it needs to be to prevent any
sliding motion, up to a maximum value, at which point
the surfaces begin to slide.

The frictional force will depend only on the total force, not the area or pressure separately:

𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑃𝑃 ∗ 𝐴𝐴 = 𝜇𝜇𝑘𝑘
𝑁𝑁
𝐴𝐴
∗ 𝐴𝐴 = 𝜇𝜇𝑘𝑘𝑁𝑁
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Inclined Plane of Length L with Friction

A block of mass m released from rest at time t = 0 on a plane of
length L inclined at an angle θ relative to horizontal is once again
given, this time more realistically, including the effects of friction.

a) At what angle θc does the block barely overcome the
force of static friction and slide down the incline?

b) Started at rest from an angle θ>θc (so it definitely
slides), how fast will the block be going when it
reaches the bottom?
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Inclined Plane of Length L with Friction
To answer the first question, we note that static friction exerts
as much force as necessary to keep the block at rest up to the
maximum it can exert, 𝑓𝑓𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 = 𝜇𝜇𝑠𝑠𝑁𝑁.

We therefore decompose the known force rules into x and y
components, sum them componentwise, write Newton’s
Second Law for both vector components and finally use our
prior knowledge that the system remains in static force
equilibrium to set ax = ay = 0. We get:

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑓𝑓𝑠𝑠 = 0

(for θ ≤ θc and v(0) = 0) and 

�𝐹𝐹𝑦𝑦 = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 0

So far, fs is precisely what it needs to be to prevent motion: 𝑓𝑓𝑠𝑠 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃
while N = 𝑚𝑚𝑚𝑚 cos𝜃𝜃 . It is true at any angle, moving or not moving, from the Fy equation
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Inclined Plane of Length L with Friction
The critical angle is the angle where fs is as large as it can be
such that the block barely doesn’t slide. To find it, we can
substitute fs

max = μsNc where Nc = mg cos(θc) into both
equations, so that the first equation becomes:
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Inclined Plane of Length L with Friction
The critical angle is the angle where fs is as large as it can be
such that the block barely doesn’t slide. To find it, we can
substitute fs

max = μsNc where Nc = mg cos(θc) into both
equations, so that the first equation becomes:

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃𝑠𝑠 − 𝜇𝜇𝑠𝑠𝑚𝑚𝑚𝑚 cos𝜃𝜃𝑠𝑠 = 0

at θc. Solving for θc, we get: θc=tan-1(μs)

Once it is moving then the block will accelerate and 
Newton’s Second Law becomes: 

�𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥

which we can solve for the constant acceleration of the block down the incline:
𝑎𝑎𝑥𝑥 = 𝑚𝑚 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘𝑚𝑚 cos𝜃𝜃 = 𝑚𝑚 sin𝜃𝜃 − 𝜇𝜇𝑘𝑘 cos𝜃𝜃)

Given ax, it is now straightforward to answer the second question above. For example, we can integrate 
twice and find vx(t) and x(t), use the latter to find the time it takes to reach the bottom, and substitute that 
time into the former to find the speed at the bottom of the incline.
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Block Hanging off of a Table

Atwood’s machine, sort of, with one block resting on a table with friction and the other dangling over
the side being pulled down by gravity near the Earth’s surface. Note that we should use an “around the
corner” coordinate system as shown, since a1 = a2 = a if the string is unstretchable.
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Block Hanging off of a Table

Suppose a block of mass m1 sits on a table. The coefficients of static and kinetic friction between the
block and the table are μs > μk and μk respectively. This block is attached by an “ideal” massless
unstretchable string running over an “ideal” massless frictionless pulley to a block of mass m2 hanging
off of the table. The blocks are released from rest at time t = 0.

What is the largest that m2 can be before the system starts to move, in terms of the givens and
knowns (m1, g, μk, μs...)?
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Block Hanging off of a Table

Static force equilibrium (ax = ay = 0):

�𝐹𝐹𝑥𝑥1 = 𝑇𝑇 − 𝑓𝑓𝑠𝑠 = 0

�𝐹𝐹𝑦𝑦1 = 𝑁𝑁 −𝑚𝑚1𝑚𝑚 = 0

�𝐹𝐹𝑥𝑥2 = 𝑚𝑚2𝑚𝑚 − 𝑇𝑇 = 0

�𝐹𝐹𝑦𝑦2 = 0

From the second equation, N = m1g. At the point where m2 is the largest it can be (given m1 and so on)
𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑠𝑠

𝑚𝑚𝑎𝑎𝑥𝑥
= 𝜇𝜇𝑠𝑠𝑁𝑁 = 𝜇𝜇𝑠𝑠𝑚𝑚1𝑚𝑚. If we substitute this in and add the two x equations, the T cancels and we

get: 𝑚𝑚2
𝑚𝑚𝑎𝑎𝑥𝑥

𝑚𝑚 − 𝜇𝜇𝑠𝑠𝑚𝑚1𝑚𝑚 = 0 Thus: 𝑚𝑚2
𝑚𝑚𝑎𝑎𝑥𝑥

= 𝜇𝜇𝑠𝑠𝑚𝑚1



Lecture 2. Newton’s Laws

Block Hanging off of a Table

If m2 is larger than this minimum, so m1 will
slide to the right as m2 falls. We will have to
solve Newton’s Second Law for both masses
in order to obtain the non-zero acceleration to
the right and down, respectively:

�𝐹𝐹𝑥𝑥1 = 𝑇𝑇 − 𝑓𝑓𝑘𝑘 = 𝑚𝑚1𝑎𝑎

�𝐹𝐹𝑦𝑦1 = 𝑁𝑁 −𝑚𝑚1𝑚𝑚 = 0

�𝐹𝐹𝑥𝑥2 = 𝑚𝑚2𝑚𝑚 − 𝑇𝑇 = 𝑚𝑚2𝑎𝑎

�𝐹𝐹𝑦𝑦2 = 0

If we substitute the fixed value for 𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑁𝑁 = 𝜇𝜇𝑘𝑘𝑚𝑚1𝑚𝑚 and then add the two x equations once again
(using the fact that both masses have the same acceleration because the string is unstretchable as noted in
our original construction of round-the-corner coordinates), the tension T cancels and we get:
𝑚𝑚2𝑚𝑚 − 𝜇𝜇𝑠𝑠𝑚𝑚1𝑚𝑚 = 𝑚𝑚1 + 𝑚𝑚2 𝑎𝑎 or 𝑎𝑎 = 𝑚𝑚2𝑔𝑔−𝜇𝜇𝑠𝑠𝑚𝑚1𝑔𝑔

𝑚𝑚1+𝑚𝑚2
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Drag Forces

A “cartoon” illustrating the differential force on an
object moving through a fluid.

When the object is moving with
respect to the fluid then we
empirically observe that a
friction-like force is exerted on
the object called drag.

Drag Force is the “frictional”
force exerted by a fluid (liquid or
gas) on an object that moves
through it. Like kinetic friction, it
always opposes the direction of
relative motion of the object and
the medium

Note well: When an object is enlongated and passes through a fluid parallel to its long axis with a
comparatively small forward-facing cross section compared to its total area, we say that it is a
streamlined object as the fluid tends to pass over it in laminar flow. A streamlined object will often have
its total drag dominated by skin friction. A bluff object, in contrast has a comparatively large cross-
sectional surface facing forward and will usually have the total drag dominated by form drag.
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Drag Forces

Note well:
When an object is enlongated and passes through a fluid parallel to its long axis with a comparatively
small forward-facing cross section compared to its total area, we say that it is a streamlined object as the
fluid tends to pass over it in laminar flow. A streamlined object will often have its total drag dominated
by skin friction.
A bluff object, in contrast has a comparatively large cross-sectional surface facing forward and will
usually have the total drag dominated by form drag.
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Drag Forces

Drag is an extremely complicated force. It depends on a vast array of things including but not limited to:

• The size of the object.
• The shape of the object.
• The relative velocity of the object through the fluid.
• The state of the fluid (e.g. its velocity field including any internal turbulence).
• The density of the fluid.
• The viscosity of the fluid (we will learn what this is later).
• The properties and chemistry of the surface of the object (smooth versus rough, strong or weak

chemical interaction with the fluid at the molecular level).
• The orientation of the object as it moves through the fluid, which may be fixed in time (streamlined

versus bluff motion) or varying in time (as, for example, an irregularly shaped object tumbles).

To eliminate most of this complexity and end up with “force rules” that will often be quantitatively
predictive we will use a number of idealizations. We will only consider smooth, uniform, nonreactive
surfaces of convex bluff objects (like spheres) or streamlined objects (like rockets or arrows) moving
through uniform, stationary fluids where we can ignore or treat separately the other non-drag (e.g.
buoyant) forces acting on the object.
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Drag Forces

There are two dominant contributions to drag for objects of this sort.

The first, as noted above, is form drag – the difference in pressure times projective area between the
front of an object and the rear of an object. It is strongly dependent on both the shape and orientation of
an object and requires at least some turbulence in the trailing wake in order to occur.

The second is skin friction, the friction-like force resulting from the fluid rubbing across the skin at
right angles in laminar flow.
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Stokes, or Laminar Drag

The first is when the object is moving through the fluid relatively slowly and/or is arrow-shaped or
rocket-ship-shaped so that streamlined laminar drag (skin friction) is dominant. In this case there is
relatively little form drag, and in particular, there is little or no turbulence – eddies of fluid spinning
around an axis – in the wake of the object as the presence of turbulence (which we will discuss in more
detail later when we consider fluid dynamics) breaks up laminar flow.

This “low-velocity, streamlined” skin friction drag is technically named Stokes’ drag or laminar drag
and has the idealized force rule:

�⃗�𝐹𝑑𝑑 = −𝑏𝑏�⃗�𝑣
This is the simplest sort of drag – a drag force directly proportional to the velocity of relative motion of
the object through the fluid and oppositely directed.

Stokes derived the following relation for the dimensioned number bl (the laminar drag coefficient)
that appears in this equation for a sphere of radius R:

𝑏𝑏𝑙𝑙 = −6𝜋𝜋𝜇𝜇𝜋𝜋
where μ is the dynamical viscosity.
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Rayleigh, or Turbulent Drag

On the other hand, if one moves an object through a fluid too fast – where the actual speed depends in
detail on the actual size and shape of the object, how bluff or streamlined it is – pressure builds up on
the leading surface and turbulence appears in its trailing wake in the fluid.

This high velocity, turbulent drag exerts a force described by a quadratic dependence on the relative
velocity due to Lord Rayleigh:

�⃗�𝐹𝑑𝑑 = −
1
2
𝜌𝜌𝐶𝐶𝑑𝑑𝐴𝐴 𝑣𝑣 �⃗�𝑣 = −𝑏𝑏𝑡𝑡 𝑣𝑣 �⃗�𝑣

It is still directed opposite to the relative velocity of the object and the fluid but now is proportional to
that velocity squared. In this formula ρ is the density of the fluid through which the object moves (so
denser fluids exert more drag as one would expect) and A is the cross-sectional area of the object
perpendicular to the direction of motion, also known as the orthographic projection of the object on any
plane perpendicular to the motion. For example, for a sphere of radius R, the orthographic projection is a
circle of radius R and the area A = πR2.
The number Cd is called the drag coefficient and is a dimensionless number that depends on relative
speed, flow direction, object position, object size, fluid viscosity and fluid density.
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Example: Falling From a Plane and Surviving

Suppose you fall from a large height (long enough to reach terminal velocity) to hit a
haystack of height H that exerts a nice, uniform force to slow you down all the way to the
ground, smoothly compressing under you as you fall. In that case, your initial velocity at the
top is vt, down. In order to stop you before y = 0 (the ground) you have to have a net
acceleration −a such that:

𝑣𝑣 𝑡𝑡𝑔𝑔 = 0 = 𝑣𝑣𝑡𝑡 − 𝑎𝑎𝑡𝑡𝑔𝑔

𝑦𝑦 𝑡𝑡𝑔𝑔 = 0 = 𝐻𝐻 − 𝑣𝑣𝑡𝑡𝑡𝑡𝑔𝑔 −
1
2
𝑎𝑎𝑡𝑡𝑔𝑔2

If we solve the first equation for tg and substitute it into the second and solve for the
magnitude of a, we will get:

−𝑣𝑣𝑡𝑡2= −2𝑎𝑎𝐻𝐻 or 𝑎𝑎 = 𝑎𝑎𝑡𝑡2

2𝐻𝐻
We know also that 𝐹𝐹ℎ𝑎𝑎𝑦𝑦𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘 − 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎 or

𝐹𝐹ℎ𝑎𝑎𝑦𝑦𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘 = 𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑚𝑚 = 𝑚𝑚 𝑎𝑎 + 𝑚𝑚 = 𝑚𝑚𝑚𝑚′ = 𝑚𝑚
𝑣𝑣𝑡𝑡2

2𝐻𝐻
+ 𝑚𝑚
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Example: Falling From a Plane and Surviving

𝐹𝐹ℎ𝑎𝑎𝑦𝑦𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑘𝑘 = 𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑚𝑚 = 𝑚𝑚 𝑎𝑎 + 𝑚𝑚 = 𝑚𝑚𝑚𝑚′ = 𝑚𝑚
𝑣𝑣𝑡𝑡2

2𝐻𝐻
+ 𝑚𝑚

Let’s suppose the haystack was H = 1.25 meter high and, because you cleverly landed on it
in a “bluff” position to keep vt as small as possible, you start at the top moving at only vt = 50
meters per second. Then g′ = a + g is approximately 1009.8 meters/second2, 103 ‘gees’, and
the force the haystack must exert on you is 103 times your normal weight. You actually have
a small chance of surviving this stopping force, but it isn’t a very large one.

To have a better chance of surviving, one needs to keep the g-force under 100, ideally well
under 100. Since the “haystack” portion of the acceleration needed is inversely proportional
to H we can see that a 10 meter haystack would lead to 13.5 gees
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