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SOME PROPERTIES OF FUNCTIONALS ON LEVEL SETS

R.G. SALAKHUDINOV

Abstract. In the paper we consider special functionals on a planar domain G constructed
by means of the distance to the boundary ∂G and a classical warping function. The func-
tionals depending on the distance function are considered for simply-connected domains.
We also study the functionals depending on the warping function for a finite-connected
domain. We prove that the property of isoperimetric monotonicity with respect to a free
parameter gives rise to another monotonicity, namely, the monotonicity of the functionals
considered as the functions of the sets defined on subsets of the domain. Some partial cases
of the inequality were earlier obtained by Payne. We note that the inequalities were suc-
cessfully applied for justifying new estimates for the torsional rigidity of simply-connected
and multiply-connected domains. In particular, we construct new functionals of domains
monotone in both its variables. Moreover, we find sharp estimates of variation rate of the
functions, that is, we obtain sharp estimates of their derivatives.

Keywords: distance to boundary, warping function, Payne type inequality, isoperimetric
inequality, isoperimetric monotonicity.
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1. Introduction

To solve effectively some problems of mathematical physics, it is not sufficient to know such
classical geometric characteristics of a domain like the area, volume, area of surface, length of
the boundary, diameter, the maximum of radii of the circles contained in the domain. A more
gentle and effective tool for solving some problems are Euclidean momenta of the domain with
respect to its boundary.

Let G be a simply-connected domain in the plane. An Euclidean momentum of order α with
respect to the boundary of the domain G is the functional

Iα(G) :=

∫

G

ρ(x,G)αdA, (1.1)

where ρ(x,G) is the distance from a point x ∈ G to the boundary ∂G, α > −1 and dA is the
area differential. It follows from work [1] that under an appropriate normalization, functional
(1.1) ranges between the length of the boundary and the maximal radius of a circle contained in
the domain. Each of these values can be attained under an appropriate choice of the parameter.

Euclidean momenta arise in mathematical physics while estimating various physical func-
tionals of a domain. For instance, as it was shown by F.G. Avkhadiev [2], the Euclidean
inertia momentum of a domain (α = 2) and the torsional rigidity of a domain are comparable
quantities on the class of simply-connected domains, that is, the quotient of the functionals is
bounded from above and below by positive finit constants independent of the domain. Euclidean
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momenta of various order arise in studying Hardy type inequalities in a multi-dimensional Eu-
clidean space, see, for instance, [3]. We note that multi-dimensional analogues of functional
(1.1) are employed in solving variational problems, see [4, 5].

Application of isoperimetric inequalities on the level sets often leads one to solving various
problems and to new methods. A bright example of such kind is the application of a classical
isoperimetric inequality in theory of torsion and theory of flow of a viscous liquid, see [6]; we
also mention its important role in the symmetrization methods, see [7, 8].

One of the aims of our work is to study the properties of functional (1.1) on the subsets of
G. We note that in work [9], stationary Euclidean momenta (α = 1) and Euclidean inertia
momenta of subdomains were employed to estimate the torsional rigidity of a domain. On the
other hand, a passage to the limit from the level sets allows one to consider the estimates on
these sets as a generalization of inequalities between functionals of the domain. For instance,
our main statements imply that a series of classical inequalities (Saint-Venant–Pólya inequality,
Payne inequality and others) can be obtained by passing to the limit from the level set of a
classical warping function and the distance to the boundary of a domain.

It was shown in works [1, 9, 10] that the Euclidean momenta of order α and Lp-norms of the
warping function possess a series of similar isoperimetric properties. Following this similarity,
in this work we consider similar issue of the case, when the function ρ(x,G) in (1.1) is replaced
by the classical warping function u(x,G) and in this case the domain G is finitely-connected
on the plane.

The main idea of obtaining inequalities for the functionals is the application of Payne type
inequalities [6, 11] on the level sets of functions.

2. Discussion of problems and preliminary results

We introduce notations we shall need. Let

G(µ) := {x ∈ G | ρ(x,G) > µ} , a(µ) ≡ a(G(µ)) :=

∫

G(µ)

dA.

l(µ) ≡ L(G(µ)) :=

∫

∂G(µ)

ds.

(2.1)

In what follows, the sets G(µ) are called level sets of the function ρ(x,G).
We consider the following geometric functional

fα(µ) := Iα(G(µ)), (2.2)

where 0 6 µ 6 ρ(G), ρ(G) := supx∈G ρ(x,G) and α is a real parameter. For a fixed µ, the
structure of the dependence of the function fα(µ) on the parameter α has a isoperimetric nature.
We are interesting in the properties of the function fα(µ) for a fixed value of the parameter.
We shall show that the value of the parameter and the geometry of the domain G determine
many properties of the function fα(µ).

Let Iα0
(G) < +∞ for some α0 > −1 and for the smaller values of the parameter the functional

be unbounded. Then all level sets G(µ) have a bounded are except possibly the set of zero
level, that is, of the area of the domain G, see, for instance, [12]. It is known that if the area
of the domain is bounded and α > 0, then the inequality holds:

Iα(G) 6
A(G)1+

α

2

π
α

2 (α + 1)(α+ 2)
. (2.3)

If we apply the latter inequality to G(µ), then the function fα(µ) is well-defined and finite as
µ ∈ (0,ρ(G)] and α > 0.
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As 0 > α0 > −1, the area of the domain is finite and hence, the same holds for the area of
level sets. But as we shall show below, calculation of fα(µ) for negative values of the parameter
is closely related with the properties of the functional l(µ) as a function of µ.

We note that the restriction α > −1 is natural while considering the functional Iα(G) and the
condition Iα0

(G) < +∞ describes a certain class of domains on the plane; moreover, different
values of the parameter correspond to different classes.

It is natural to consider the value of the function fα(µ) at µ = 0 as a result of the passage
to the limit. Then as α > α0, the point µ = 0 can be included in the domain, while for α 6 α0

we just let fα(0) := +∞. As it was mentioned above, the value of the parameter α = α0 does
not play such role for fα(µ).

On the other hand, the condition ρ(G) < +∞ is necessary for studying functional (1.1)
and also sufficient for studying e function (2.2). The case α = +∞ correspond to the class of
domains with ρ(G) < +∞. The examples of a strip and a half-strip disappoint us since the
function fα(µ) is identically infinite on its domain. But it is easy to construct examples, when
only from some value µ0 the areas of the level sets become unbounded. The simplest example
can be constructed as the union of a strip and a circle, whose diameter exceeds the width of
the strip. Respectively, fα(µ) is not infinite [µ0,ρ(G)]. It follows from inequality

Iα(G) >
πρ(G)4

6

that the class of the domains obeying the condition ρ(G) < +∞ is the widest class, on which
function (2.2) and functional (1.1) describe some geometric properties of the domain.

Since the sets G(µ) are monotonically embedded, this implies that fα(µ) is a non-increasing
function as α > 0. In work [9], the identity was proved:

f2(µ) = i2(µ)− 2µ i1(µ),

where

iq(µ) := q

ρ(G)
∫

µ

tq−1 a(t)dt, q = 1, 2.

This representation implies the identities

(f2(µ))
′ = −2i1(µ), (f2(µ))

′′ = 2a(µ). (2.4)

Thus, f2(µ) is twice differentiable, monotonically increasing and strictly convex function. We
also observe that almost everywhere there exists the third derivative of the function f2(µ), see
[8].

Let us show that the function fα(µ) possesses similar properties.

Lemma 2.1. Let G be a simply-connected domain with a bounded Euclidean momentum of

order α0(> −1). Then fα(µ) is a monotonically increasing function as α > 0 and is strictly

convex as α > 1. This function is differentiable as α > 1, is absolutely continuous as α ∈ (0, 1),
and if l(s) is a function of a bounded variation, then fα(µ) is almost everywhere differentiable

also as 0 > α > −1.

Proof. Following [9], we observe that in the domain G(µ), the distance to its boundary is
defined and we shall distinguish the levels sets of the domains G and G(µ). It is easy to see
that the distance to the boundary of the domain G(µ) is the function ρ(x,G) − µ, therefore,
aµ(s) = a(s + µ) (0 6 s 6 ρ(G(µ))), where aµ(s) is the area of the level set of the function
ρ(x,G(µ)). Employing the definition of the Lebesgue integral and integrating by parts, it is
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easy to obtain the following representation:

fα(µ) =

a(µ)
∫

0

s(aµ)
αdaµ = α

ρ(G(µ))
∫

0

sα−1aµ(s) ds

=α

ρ(G)−µ
∫

0

(s+ µ)α−1 a(s + µ) ds = α

ρ(G)
∫

µ

(s− µ)α−1 a(s) ds,

where α > 0. This representation implies the differentiability of the function as α > 1 and the
existence of the second derivative as α > 2, as well as the identity:

(fα(µ))
′ = −α(α− 1)

ρ(G)
∫

µ

(s− µ)α−2 a(s) ds = −αfα−1(µ),

(fα(µ))
′′ = α(α− 1)fα−2(µ).

(2.5)

Particular cases of the latter identities are (2.4). Thus, fα(µ) decreases monotonically as α > 1
and is strictly convex as α > 2.

Let us show that the above formulae hold under more general assumptions. We denote by
lµ(s) the length of the level set of the function ρ(x,G(µ)), then the identity a′

µ(s) = −lµ(s)
holds almost everywhere. Applying the formula of co-area [13] for the distance to the boundary,
we obtain

fα(µ) =

ρ(G(µ))
∫

0

sα lµ(s) ds =

ρ(G)
∫

µ

(s− µ)α l(s) ds, (2.6)

where α > −1. The latter representation implies the monotonicity of fα(µ) as α > 0 and
another formula for the derivative:

f ′α(µ) = −α

ρ(G)
∫

µ

(s− µ)α−1l(s) ds. (2.7)

By this representation and the expression for the derivative we infer that identities (2.5) hold
for α > 0 and α > 1, respectively.

Employing the non-negativity and measurability of the integrand and the Fubini theorem,
for α > 0 and 0 6 ν 6 ρ(G) we obtain:

ν
∫

0

f ′α(µ)dµ =− α

ν
∫

0

dµ

ρ(G)
∫

µ

(s− µ)α−1l(s) ds

=− α

ν
∫

0

l(s) ds

s
∫

0

(s− µ)α−1 dµ− α

ρ(G)
∫

ν

l(s) ds

ν
∫

0

(s− µ)α−1 dµ

=−

ν
∫

0

sαl(s) ds+

ρ(G)
∫

ν

[

(s− ν)α − sα
]

l(s) ds

=

ρ(G)
∫

ν

(s− ν)αl(s) ds−

ρ(G)
∫

0

sαl(s) ds = fα(ν)− fα(0).
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Hence, the function fα(µ) is absolutely continuous as α > 0.
Assume that l(µ) has a bounded variation. Then for α > −1 we integrate by parts in (2.6)

to obtain:

fα(µ) =
1

α+ 1

ρ(G)−µ
∫

0

l(s + µ) dsα+1 =
1

α + 1

ρ(G)
∫

µ

l(s) d(s− µ)α+1

=
l(ρ(G))(ρ(G)− µ)α+1

α + 1
−

1

α + 1

ρ(G)
∫

µ

(s− µ)α+1 dl(s),

where the latter integral is treated in the Riemann-Stiltjes sense and

l(ρ(G)) := lim
µ→ρ(G)

l(µ).

The assumptions of the lemma and the obtained representation yields that as 0 > α > −1, the
derivative

f ′α(µ) = −l(ρ(G))(ρ(G)− µ)α +

ρ(G)
∫

µ

(s− µ)α dl(s)

exists almost everywhere. In particular,

(a(µ))′ = −l(ρ(G)) +

ρ(G)
∫

µ

dl(s) = −l(µ)

almost everywhere.
In conclusion of the proof we provide simple examples of the domains, for which the function

l(µ) is not continuous. The domain with finitely many jumps of the function l(µ) can be easily
obtained by the well-known dumbbell domain, see [7]. Indeed, we consider the domain being
the union of two same circles and a rectangle, whose width is less than the diameter of the
circles. It is easy to confirm that in this case the considered function has exactly one jump.
The domain with finitely many jumps can be obtained by union of the dumbbells so that they
intersect by the handles of different width. A simpler example is the union of two rectangle of
different widths forming a stair with two steps. In this case we also obtain exactly one jump
for the function l(µ). Increasing the number of the steps, we obtain finitely many or infinitely
many jumps for the function.

Particular cases of monotonicity and convexity are two-sided estimates for the function f2(µ)
and its derivative. However, these estimates are a special case of two-sided estimates obtained
by means of Payne type inequality [9]

I2(G) 6
2ρ(G)

3

(

I1(G)−
πρ(G)3

12

)

.

Indeed, taking into consideration the first identity in (2.4), we apply the latter inequality on
the level sets G(µ) and we obtain the differential inequality:

f2(µ) 6 −
2(ρ(G)− µ)

3

(

(f2(µ))
′

2
+

π(ρ(G)− µ)3

12

)

.

By simple algebraic arguments we can show that the latter inequality is equivalent to
(

f2(µ)

(ρ(G)− µ)3

)

′

6 −
π

6
. (2.8)
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We integrate the obtained inequality over [0, µ] and [µ, ρ(G)] and we get the two-sided estimate:

2

3
l(ρ(G))(ρ(G)− µ)3 +

π

6
(ρ(G)− µ)4 6 f2(µ) 6

(

f2(0)

ρ(G)3
−

πµ

6

)

(ρ(G)− µ)3,

where l(ρ(G)) is the length of the level set of the function ρ(x,G) separated by the distance µ =
ρ(G) from the boundary of the domain. Applying then inequalities (2.4), by latter inequality
we obtain easily two-sided estimates for f ′2(µ) and f ′′2 (µ). In particular, these estimate imply a
polynomial behavior of f2(µ) and its derivatives.

To generalize the latter inequality, we rewrite the right inequality as

1

ρ(G(µ))3

(

f2(µ)−
πρ(G(µ))4

6

)

6
1

ρ(G)3

(

f2(0)−
πρ(G)4

6

)

. (2.9)

We observe that

I2(D) =
πr4

6
,

where D is a circle of radius r. This is why it is natural to consider the functional

Fα(µ) :=
1

ρ(G(µ))α+1

(

fα(µ)−
2πρ(G(µ))α+2

(α+ 1)(α + 2)

)

. (2.10)

In terms of the introduced notations, inequality (2.9) casts into a simple form:

F2(µ) 6 F2(0).

Thus, it is natural to conjecture that similar inequality holds also for Fα(µ). Arguing in the
same way, we obtain lower bounds:

F2(ρ(G)) 6 F2(µ)

and a corresponding conjecture for Fα(µ).
We are going to show that two latter inequalities are particular cases of the monotonicity of

the function Fα(µ).

Theorem 2.1. Let G be a simply-connected domain possessing a bounded Euclidean mo-

mentum of order α(> 0). Then Fα(µ) is a monotonically decreasing function as α > 0.

Corollary 1. Under assumption of Theorem 2.1, the function fα(µ)ρ(G(µ))−(α+1) decreases

monotonically on [0,ρ(G)]. In particular, the inequality holds:

fα(µ) <

(

1−
µ

ρ(G)

)α+1

Iα(G),

where µ ∈ (0,ρ(G)).

Another important corollary of Theorem 2.1 is a property on a power behavior of the func-
tional fα(µ).

Corollary 2. Let G be a simply-connected domain and α > 0. Then the inequalities hold:

fα(µ) 6

(

Iα(G)−
2πµρ(G)α+1

(α + 1)(α+ 2)

)(

1−
µ

ρ(G)

)α+1

, (2.11)

fα(µ) >
ρ(G)α+1

α + 1

(

l(ρ(G)) +
2π(ρ(G)− µ)

α + 2

)(

1−
µ

ρ(G)

)α+1

, (2.12)

where 0 6 µ 6 ρ(G). Both inequalities become identity if and only if G is a Bonnesen type

domain.
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As α = 0 and α = 1, the latter inequalities were proved in [9] and were applied for estimating
the torsional rigidity and Euclidean momenta of domains with respect to the boundary.

It is obvious that inequality (2.11) generalizes Corollary 1. On the other hand, (2.12) implies
the isoperimetric inequality

fα(µ) >
2πρ(G)α+2

(α + 1)(α+ 2)

(

1−
µ

ρ(G)

)α+2

, (2.13)

being opposite to the inequality in Corollary 1, and inequalty (2.13) becomes identity if and
only if G is a circle.

Corollary 2 can be reformulated as the following double inequality

l (ρ(G))ρ(G)α+1

α + 1
(ρ(G)− µ)α+1

6 fα(µ)−
2π(ρ(G)− µ)α+2

(α+ 1)(α + 2)

6

(

Iα(G)ρ(G)−(α+1) −
2πρ(G)

(α+ 1)(α + 2)

)

(ρ(G)− µ)α+1,

showing a power behavior explicitly, where the domain and the parameter α are fixed. Estimates
for the derivatives of the function fα(µ) are obtained by means of identities (2.5).

Corollary 3. Let G be a simply-connected domain and α > 1. Then the inequalities hold:

f ′α(µ) > −α

(

Iα−1(G)−
2πµρ(G)α

α(α + 1)

)(

1−
µ

ρ(G)

)α

,

f ′α(µ) 6 −ρ(G)α
(

l (ρ(G)) +
2π(ρ(G)− µ)

α + 1

)(

1−
µ

ρ(G)

)α

,

where 0 6 µ 6 ρ(G). Both inequalities become identities if and only if G is a Bonnesen type

domain.

Corollary 4. Let G be a simply-connected domain and α > 2. Then the inequalities hold:

f ′′α(µ) 6α(α− 1)

(

Iα−2(G)−
2πµρ(G)α−1

α(α− 1)

)(

1−
µ

ρ(G)

)α−1

,

f ′′α(µ) >(α− 1)ρ(G)α−1

(

l(ρ(G)) +
2π(ρ(G)− µ)

α

)(

1−
µ

ρ(G)

)α−1

,

where 0 6 µ 6 ρ(G). Both inequalities become identities if and only if G is a Bonnesen type

domain.

It follows from [10] and Theorem 2.1 that the functional

E(α, µ) := (α + 1)Fα(µ) (2.14)

is a monotonically decreasing function in both its arguments. At that, the monotonicity in
the first argument is called an isoperimetric monotonicity in the parameter α. Indeed, fixing
µ, we obtain a relation between various geometric characteristics of the set G(µ) in a form of
an inequality. On the other hand, fixing α, we obtain inequalities similar, for instance, to the
monotonicity of the functional a(µ). In fact, Corollary 3 provides a quantitative variation of
the derivation of the functional.

If instead of the function ρ(x,G) we consider a classical warping function of a domain and
pass from the class of simply-connected domains to the class of finitely-connected domains on
the plane, it turns out that we can prove statements similar to the above ones. In this case, the
base results are those obtained in works [1, 11, 14]. In what follows we formulate the results
omitting their detailed discussion.

Let G be a simply-connected domain on the plane. We denote by Γ0 the external boundary
component of the boundary ∂G, while Γ1, . . . ,Γn stand for the internal components of the
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boundary. A warping function of the domain G is the unique solution u(x,G) of the following
boundary value problem







∆u = −2 in G,

u = 0 on Γ0,

u = ci on Γi, i = 1, . . . , n,

where the constants ci are determined by the condition
∮

Γi

∂u

∂n
ds = −2ai, i = 1, . . . , n.

Here ∂/∂n denotes the derivative along the internal normal and ai be the area enveloped by
the curve Γi.

We denote by G0 the domain containing G with a boundary coinciding with Γ0. We extend
continuously the function u(x,G) by the constants in the sets enveloped by the curves Γi,
i = 1, . . . , n. At that, we keep the same notation for the extension. We consider the following
integral functional of the domain

Tβ(G) :=

∫

G0

u(x,G)βdA,

where β > −1. In the case of a simply-connected domain and as β = 1, the latter functional
coincides with the torsional rigidity of the domain G up to a multiplicative constant.

We denote by G(ν) the level set of the function u(x,G), that is,

G(ν) := {x ∈ G0 |u(x,G) > ν } .

We note that as a part of the boundary of the set G(ν), the curves Γi can serve. For the domain
with the functional Tβ(G) (β < +∞), all level set have finite area as ν < u(G), see [14], where
u(G) := supx∈G u(x,G).

Similar to Euclidean momenta, we consider the functional

φβ(ν) := Tβ(G(ν)),

where 0 6 ν 6 u(G), β > −1.

Lemma 2.2. Let G be a finitely-connected domain with a bounded functional Tβ(G) (β > 0).
Then φβ(µ) is a monotonically decreasing function as β > 0 and is strictly convex as β > 1,
and also is absolutely continuous as β > 0.

Proof. By the definition of the function u(x,G) and the sets G(ν) we establish easily the identity

u(x,G(ν)) = u(x,G)− ν (x ∈ G(ν)), (2.15)

in particular, u(G(ν)) = u(G)− ν. Applying the definition of the Lebesgue integral, we obtain

φβ(ν) =

∫

A(G(ν))

0

t(aν)
βdaν =

∫

u(G)

ν

(t− ν)βda(t) +
∑

ci>ν

(ci − ν)βai.

We apply the formula of co-area [13] to the function u(x,G) to get:

φβ(ν) =

∫

u(G)

ν

(t− ν)βℓ(t)dt+
∑

ci>ν

(ci − ν)βai, (2.16)

where

ℓ(t) :=

∫

Γ(t)

ds

|∇u(x,G)|

and Γ(t) = {x ∈ G|u(x,G) = t}. The obtained formula implies a monotonous decreasing of
φβ(ν) as β > 0.
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Formula (2.16) implies also the identity

φ′

β(ν) = −β

∫

u(G)

ν

(t− ν)β−1ℓ(t)dt− β
∑

ci>ν

(ci − ν)β−1ai = −βφβ−1(ν). (2.17)

This yields a strict convexity of φβ(ν) as β > 1. The absolute continuity of the function φβ(ν)
can be proved in the same way as in Lemma 2.1.

Following work [14], similar to definition (2.10), we consider the functional

Φβ(ν) :=
1

u(G(ν))β

(

φβ(ν)−
2πu(G(ν))β+1

β + 1

)

,

where β > 0. In the case, where the domain G is contained in a concentric annulus, it is
well-known that the expression in the brackets vanish identically, while in other cases, Payne
showed [6] that this expression is strictly positive.

The following analogue of Theorem 2.1 holds true.

Theorem 2.2. Let G be a finitely-connected domain with a bounded functional Tβ(G) for

some β(> 0). Then Φβ(ν) is a monotonically increasing as β > 1.

We also provide some corollaries indicating a power behavior of the function φβ(ν).

Corollary 5. Under the assumptions of Theorem 2.2, the inequalities

0 6 φβ(ν)−
2πu(G)β+1

β + 1

(

1−
ν

u(G)

)β+1

6 Tβ(G)

(

1−
ν

u(G)

)β

,

hold, where 0 6 ν 6 u(G). Both inequalities become identities if and only if G is a concentric

annulus.

Corollary 6. Let G be a finitely-connected domain and β > 1. Then the inequalities hold

φ′

β(ν) > −
(

βTβ−1(G)− 2πνu(G)β−1
)

(

1−
ν

u(G)

)β−1

, φ′

β(ν) 6 −2π (u(G)− ν)β ,

where 0 6 ν 6 u(G). Both inequalities become identities if and only if G is a concentric

annulus.

Corollary 7. Let G be a finitely-connected domain and β > 2. Then the inequalities hold

φ′′

β(ν) 6 β
(

(β − 1)Tβ−2(G)− 2πνu(G)β−2
)

(

1−
ν

u(G)

)β−2

, φ′′

β(ν) > 2πβ (u(G)− ν)β−1 ,

where 0 6 ν 6 u(G). Both inequalities become identities if and only if G is a concentric

annulus.

3. Proof of main results

Proof of Theorem 2.1. The statement of Lemma 2.1 on absolute continuity of the function fα(µ)
implies that the decreasing of Fα(µ) is equivalent to the inequality F′

α(µ) 6 0 for almost each
µ ∈ (0,ρ(G)). In view of the identity ρ(G(µ)) = ρ(G) − µ and Definition (2.10), the latter
inequality is equivalent to the estimate

(

fα(µ)

(ρ(G)− µ)α+1

)

′

6 −
2π

(α + 1)(α + 2)
. (3.1)

As α = 2, this inequality coincides with (2.8), therefore, the statement of the theorem in this
particular case has been justified earlier.

In works [9, 10], there were studied the properties of the functional (α + 1)Fα(0) as of the
function of the argument α. A Bonnesen type domain is a convex domain being the union of



SOME PROPERTIES OF FUNCTIONALS . . . 127

two semi-circles and a rectange, in particular, as the rectangle degenerates, we obtain a circle.
Since this statement is a key one in the proof, we formulate it in terms of our notations.

Theorem A. [10] Let G be a simply-connected domain and Ip0(G) < +∞ for some p0 ∈
[−1,∞). Then

1) if G does not coincide with an extremal in the Bonnesen inequality, then (α + 1)Fα(0) is
a strictly decreasing function of α,

2) if G coincides with one of the extremals in the Bonnesen inequality, then (α+ 1)Fα(0) ≡
l(ρ(G)) as α ∈ [−1,+∞).

In particular, the inequality

(α + 1)Fα(0) 6 αFα−1(0)

holds true. The inequality becomes an identity if and only if G is a Bonnesen type domain.
An important fact is that all level set of the distance function of a Bonnesen type domain also
envelop a Bonnesen type domain.

We apply the latter inequality on the level sets G(µ). In view of definition (2.2), the inequality
casts into the form

fα(µ) 6
αρ(G(µ))

α + 1
fα−1(µ)−

2πρ(G(µ))α+2

(α + 1)2(α + 2)
.

Taking into consideration identities (2.5), after simple algebraic transformations we obtain that
the latter inequality is equivalent to inequality (3.1). This completes the proof.

Proof of Corollary 2. Inequality (2.11) is equivalent to inequality

Fα(µ) 6 Fα(0)

being a direct corollary of Theorem 2.1.
We again employ the fact that the functional (α + 1)Fα(0) is a monotonically increasing

function of α. On the other hand, it was proved in work [9] that

lim
α→+∞

α Iα(G)

ρ(G)α+1
= l(ρ(G)).

These two statements yield the following isoperimetric inequality

Iα(G) >
ρ(G)α+1

α + 1

(

l(ρ(G)) +
2πρ(G)

p+ 2

)

.

We apply the obtained inequality on the level sets G(µ) as well as the identity ρ(G(µ)) =
ρ(G)− µ and we arrive at inequality (2.12).

Proof of Theorem 2.2. The statement of Lemma 2.2 on absolute continuity of the function
φβ(ν) yields that the decreasing of Φβ(ν) is equivalent to Φ′

β(ν) 6 0 for almost each ν ∈
(0,u(G)). In view of the identity u(G(ν)) = u(G)− ν and corresponding definitions, the latter
inequality is equivalent to the estimate

(

φβ(ν)

(u(G)− ν)β

)′

6 −
2π

β + 1
. (3.2)

In our case, a key ingredient in the proof is a statement from work [14]. We provide this
statement in a form adapted to our notations.

Theorem B. Let G be a finitely-connected domain, Tp0(G) < +∞ for some p0 ∈ [0,∞).
Then

1) If G is not a concentric annulus, then Φβ(0)(u(G))−1 is a strictly increasing function in β
as β > p0.
2) If G is a concentric annulus, then Φβ(0)(u(G))−1 ≡ 0 for β ∈ [0,+∞).
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In particular, the inequality holds true:

Φβ(0) 6 Φβ−1(0). (3.3)

The inequality becomes an identity only for a concentric annulus. We observe that the level
sets of the warping function of a concentric annulus also envelop a concentric annulus.

Applying the latter inequality on the level sets G(ν), we obtain

φβ(ν) 6 u(G(ν))φβ−1(ν)−
2πu(G(ν))β+1

β(β + 1)
. (3.4)

Employing (2.17), it is easy to establish that inequality (3.4) is equivalent to inequality (3.2).
The proof is complete.

Proof of Corollary 5. The left inequality in the statement is the Payne inequality for G(ν),
while the right inequality is equivalent to inequality Φβ(ν) 6 Φβ(0).

In conclusion we note that in this case, an analogue of functional (2.14) is the functional

R(β, ν) := Φβ(ν)

monotone in both variables. A monotonous behavior in the free parameter β was proved in
work [14]. As for the distance to the boundary, this monotonicity is isoperimetric.

The author thanks an anonymous referee for valuable remarks and comments on the work.
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