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We give a new short proof of a version of a Hankel matrix rank 
theorem. That version expresses the rank of H by the smallest 
possible rank of an infinite Hankel matrix containing H. 
The new approach is based on application of the Kronecker 
theorem.
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A Hankel matrix is a rectangular matrix of form

H =

⎛
⎜⎜⎜⎜⎜⎝

s1 s2 s3 . . . sq
s2 s3 s4 . . . sq+1
s3 s4 s5 . . . sq+2
· · · · ·
sp sp+1 sp+2 . . . sl

⎞
⎟⎟⎟⎟⎟⎠

(l = p + q − 1). (1)

Thus, a Hankel matrix is characterized by the property that the (i, j) entry depends only 
on the sum i + j. Infinite Hankel matrices
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H∞ =

⎛
⎜⎜⎜⎝

s1 s2 s3 . . .

s2 s3 . . . .

s3 · · ·
· · · ·

⎞
⎟⎟⎟⎠ (2)

are also considered in the literature. The intense study of Hankel matrices traces back 
to the second half of the 19th century and it is still continuing due to many applications 
in algebra, functional analysis, random processes, etc. (see [1–4] and references therein). 
Algebraic aspects of the theory of Hankel matrices are analyzed in the monograph of 
Iohvidov [2], where the classical results of Frobenius are comprehended and developed. 
One of the central results of [2] is the theorem on the rank of a complex square Han-
kel matrix. That theorem is based on the concept of (r, k)-characteristic. Then by a 
significant complication of this notion the rank theorem was generalized to rectangular 
matrices [5].

Later [6] we developed a different version of the Hankel matrix rank theorem, where, 
in contrast to Iohvidov’s theorem [5], the key parameter is not the (r, k)-characteristic 
but the smallest rank of an infinite Hankel matrix containing a given matrix as a corner 
submatrix. That theorem gave another view on the rank problem of Hankel matrices. Its 
shortcoming, however, was a quite artificial and technical proof based on some results 
on generalized Hankel matrices arising in the theory of linear automata [7].

In this note we fill this gap and give a new proof based on a straightforward application 
of the Kronecker theorem on the basic minor of an infinite Hankel matrix. The new proof 
is shorter, more natural, and gives a new way to understand the essence of the problem.

The structure of this note is the following. First we give a new proof of Kronecker’s 
theorem by an approach different from that suggested in [1] and [2]. Let us remark that 
Lemma 1 exploited in this proof is then used to prove the main result. Then we give a 
proof of the main result.

We treat the rows of matrix H∞ as vectors of the linear space of infinite rows over a 
field F , and the same with columns. In the sequel both H and H∞ are supposed to be 
nonzero matrices.

Lemma 1. A Hankel matrix H∞ has a finite rank r if and only if the first r rows of H∞
are linearly independent and generate the (r + 1)st row as a linear combination.

Proof. Define a linear operator ϕ in the space of infinite rows as follows: if s = (s1, s2, . . .), 
then ϕ(s) = (s2, s3, . . .). Then the rows of the Hankel matrix H∞ can be considered as 
a sequence

s, ϕ(s), ϕ2(s), . . . (3)

The statement of the lemma becomes equivalent to the following obvious fact: either for 
every r, the vectors

s, ϕ(s), ϕ2(s), . . . , ϕr−1(s) (4)
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are independent, or they are independent for some r and the vector ϕr(s) is a linear com-
bination of vectors (4). In the latter case all further vectors (3) are linear combinations 
of vectors (4). �

Let Hk be the principal corner submatrix of size k of the matrix H∞.

Theorem 2 (Kronecker). If a Hankel matrix H∞ has a finite rank r, then the submatrix 
Hr is nondegenerate.

Proof. Due to Lemma 1, the first r rows of the matrix H∞ are linearly independent. 
Since the matrix H∞ is symmetric, it follows that the first r columns are also linearly 
independent and thus form a basis in the column space of H∞. Denote the columns of 
H∞ by h1, h2, . . ., and given a column hj , let h[r]

j be the column of the first r entries of hj . 
For k ≥ 1, the column hr+k is a linear combination of h1, . . . , hr. Consequently, h[r]

r+k is 
a linear combination of h[r]

1 , . . . , h[r]
r . Now assume h[r]

1 , . . . , h[r]
r are linearly dependent. 

Then the first r rows of H∞ do not contain a nonzero minor of order r. As the theorem 
on the equality of the rank (= maximal order of a nonzero minor), the row rank, and the 
column rank holds for both finite and infinite matrices, it follows that the first r rows of 
H∞ must be linearly dependent, which is a contradiction. �

Obviously, an arbitrary extension H∞ of the matrix H contains the triangle table

τ(s1, s2, . . . , sl) =

⎛
⎜⎜⎜⎜⎜⎝

s1 . . . sq . . . sl
· · · ·
sp . . . sl

. . .

sl

⎞
⎟⎟⎟⎟⎟⎠

. (5)

A row si, si+1, . . . , sl of the table (5) is said to be a prefix linear combination of the 
rows located above if it is a linear combination of the initial subrows of length l − i + 1
of the mentioned rows.

Let m(s1, s2, . . . , sl) be the maximal number k such that none of the rows of the table 
(5) with index i ≤ k is a prefix linear combination of rows located above.

Lemma 3. The smallest possible rank of an infinite Hankel extension of the matrix H is 
equal to m = m(s1, s2, . . . , sl).

Proof. 1. The rank of an arbitrary extension H∞ is at least m. Otherwise some ith row of 
that extension (i ≤ m) is a linear combination of the previous rows. Therefore, its prefix 
si, . . . , sl is a prefix linear combination of the rows located above in τ(s1, s2, . . . , sl), 
which contradicts the definition of m.

2. There exists an extension H∞ of rank m. Define an element sl+1 as follows. If m < l, 
then the row sm+1, . . . , sl of the table τ(s1, s2, . . . , sl) is a prefix linear combination of 
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the rows located above. Let α1, α2, . . . , αm be the coefficients of that combination. In 
this case, we set sl+1 = α1sl−m+1 + α2sl−m+2 + . . . + αmsl. If m = l, then sl+1 can be 
an arbitrary element of the field F . Clearly, for every element sl+1, the row with the 
number m +1 of the table τ(s1, s2, . . . , sl, sl+1) is a prefix linear combination of the first 
m rows. Similarly one defines the element, sl+2, etc. This way one constructs an infinite 
sequence

s1, s2, . . . , sl, sl+1, sl+2, . . .

for which the corresponding Hankel matrix H∞ has its first m rows independent and the 
(m +1)st row is a combination of the first m rows. Lemma 1 yields that the rank of this 
matrix is m. �

Now all the preparations are done and we can attack the main theorem.

Theorem 4. For every rectangular Hankel matrix, we have rkH = min(p, q, m, p +q−m).

Proof. Let H∞ be the matrix of the minimal rank m, Hm be its corner submatrix of 
order m. There are three possible cases.

1. m ≤ min(p, q), and hence, m ≤ p + q − m. In this case, Hm is a submatrix 
of H. This matrix in nondegenerate by Theorem 2, hence rkH ≥ m. On the other 
hand, H is a submatrix of the matrix H∞, which is also of rank m. Consequently, 
rkH = m = min(p, q, m, p + q −m).

2. min(p, q) < m < max(p, q). Suppose, for example, p < m < q. Then, of course, p <
p +q−m. The first p rows of the nondegenerate matrix Hm are linearly independent and 
are actually subrows of the rows H. Hence, the rows H are linearly independent. Taking 
into account the inequality p < p + q−m, we obtain rkH = p = min(p, q, m, p + q−m). 
In the case q < m < p we similarly conclude that rkH = q = min(p, q, m, p + q −m).

3. m ≥ max(p, q), or, equivalently, p + q − m = min(p, q, m, p + q − m). Denote by 
Q the matrix composed with the first q columns of Hm. Arguing as in the first part of 
the proof of Lemma 3, we see that none of the rows of Q with index i > p is a linear 
combination of rows of Q located above the ith row. There are in total m − p such rows, 
therefore rkQ = rkH +(m −p). On the other hand, rkQ = q, because the columns of Q
being columns of a nondegenerate matrix are independent. Therefore, rkH+(m −p) = q, 
i.e. rkH = p + q −m. �

Let us remark that in case 3, the nondegenerate Hankel matrix Hm of order m =
p + q − rkH contains the matrix H as a corner submatrix. As shown in [8], for an 
arbitrary (p × q) matrix A, not necessarily Hankel, the number p + q − rkA is equal to 
the smallest order of a nondegenerate matrix containing A as a submatrix. Consequently, 
in case 3 it is impossible to reduce the order of the comprising nondegenerate matrix by 
relaxing the Hankel property.
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