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Abstract-Localization and cliscreteness of the eigenmode spectra are examined fbr cylindrical dielec-
tric wave-euides with a small discontinuity in the refractive index. A projective method for calculating
the propagation constants. based on the use of simple-layer potentials, is suggested and analyzed.

This paper is devoted to an analysis of the nonlinear spectral problem for the Helmholtz equation on a
plane whose solutions are the surface and outgoing eigenmodes of dielectric waveguides of arbitrary cross
section with a small discontinuity in the refractive index. The problem is reduced to a spectral problem for
a Fredholm holomorphic operator-valued function. The reduction is based on a representation of the solu-
tions of the original problem as siniple layer potentials. The equivalence of these problems is analyzed. The
localization domains of the spectnlrn are found. By using the results of [], it is proved that the spectrum
can only consist of isolated points. To solve the problem numerically. Galerkin's system with a trigonomet-
ric basis is constructed. The zeros of the determinant of the system's nratrix are taken as approximate ei-een-
values. To justify the method. the results of [2] are employed. An anirlogous approach has been previously
applied to problerns of the eigenmodes of slot and microstrip lines [3], eigenmodes of open resonators
[4. 5], and surface eigenmodes of dielectric waveguides [6].

1. Let the three-dirnensional space Ri = {(;r, v, i): -e (,r, }, : < - } be occupied by an isotropic medium
without sources, and let the reiiactive index be prescribed as a real, piecewise constant function n indepen-
dent of the coordinate :. equal to rr1 inside a cylinder. and n., < n' ontside the o'linder. The axis of the cyl-
inder is parallel to the z-axis. and its cross section is a domain S' bounded by a twice continuously differ-
entiable contour f. Let us find the eigenmocles of the form ei(F:-tott propagatin,s along the z-axis, where the
propagation constant B is an unknown complex parameter, and co > 0 is a given frequency of electromagnetic
oscillations. Assuming that closeness between the refractive indexes of the waveguide and the environment
are close. we reduce the probleni (see [7, Section 2]) to detennination of the valr.res of B for rvhich there
exist nontrivial solutions to the Helmholtz equation

A,u+7:,tt = 0, (x,-v) e S,. j = 1,2, S: = R2\Sr.

satisfying the conjugation conditions

Lt = Lt , du*ldv = du-/dv, (-r, _v) e f,

(l)

(2)

and an appropriate condition at infinity. Here, 1r=
p, is the ma-gnetic constant.

Follorving [8] (see also [9]). we assume that rr satisfies the partiality condition at infinity, i.e.. at suffi-
ciently large r, it can be represented as

ru(r,g) = Lo,u'^t)(X"rr)r"'r, r = rcos(p, y = rsine.

where Hf,') is the rrth oro.. 
"*;., 

lun.r,on of the first kind.

We seek nontrivial solutions to problem (l)-(3) in the classes of continuous and

tiable functions on 5r and S: and twice continuously differentiable tunctions on S,

tcl-F , k3 = coleoirs, €6 is the electric constant, and

continuously differen-

and S,.

(3)
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We assume that the points of the spectrum of p belong to the set A defined as the inrersection of rhe Rie-
mann sutfaces of the functions tnX,(F),f = 1,2. By Ao, we denote the intersection of the principal (physical)
sheetsofthesesurfaces.Wealsodefine.\.={F€ln:IrnX;<0},,1=l,2andG={9e ,4a:1m13>0,ImP=0,
konz ll$l < konrl.

The following theorem can be proved by analogy with [l0, p. 133]:
Theorem l. Within lt1y, the poirtts of the spectrum of problem (1)-(3) can Lie only in G v Ar.
Note that real values of p e C correspond to surface waves (a decays exponentially as r _* -). and

complex F = Ar correspond to outgoing waves (a grows exponentiall) ztS r 
- 

-1. This theorem general-
izes the results of I l] on the localization of the eigenmode spectra of waveguides with circular cross sec-
tions, which were obtained b1' analyzing the characteristic equation with the use of separation of vanables.

2.Let us now reduce the original problem to a spectral problem for an operator-valued function. Con-
sider the functions

Q/P:,vI,Mr) = hHSt'(x,rrr,), Fe A, .i = .1,2,

where rMMu = ,J(.r - ro)' + (-r'- ),0)z , M = (x, y), and Ms= (r0, y0). By applying Graf's sum theorem (see,

for example , U2, p. 2011), it can be readily demonstrated that Oz(0; M, U) satisfies condition (3) at any

9e AandM6e Rr.
We seek solutions to problem ( l)-(3) as simple-layer potentials,

ut.vl) = Ja,f 0' M, M)g,(Ms)dly,,, M e 5,, (5)

I

with densities 97 belonging to the space C0'a of H<ildercontinuous functions. Forany B e A and g; € C0'c,
the function u defined by (5rsatisfies the desired smoothness conditions, equation (l), and condition (3).
Using boundary conditions (l) and the limit properties of simple-layerpotentials, we obtain a nonlinear
spectral problem for the system of integral equations

\

(4)

Jto,tg; M..rt)tp,(Mi-@r(F; M, Mo)rpr(Ms)fdly,, = o, M e t,
f

Itn'trrl + ez(M)1. J(ffi,F' M, M)<p,(Mo)
r

-P,s, \ "
d\',," M'M)9'(Mi)dlu' = o' M el'

sr :' = *'j,"1r,"?1, 
('\)7to1dto, 

t e to,znt,
0

2fr

6{irr1p;.r(r) = *J rti'it1$; t,tr)xu)(to)dto, t e [0,2n).
0

.r"'(ro) = [gr(M0)-gr(Mo)]lr'(re)1, "tt'(to) = glM,.t+gz(Mi,

h"'' (F: t, to) - ZnlG(t' ')(F; r, ro) + G('' 
t'{Bt 

r, ,o;1,
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(6)

0)

Let the contour f be defined parametrically: r = r(t), t e [0, 2n]. Changing to the integration variable r
and isolating the logarithmic singularities of the kernels Q1(M, Mi, we transform system (6). (7) into

Sx('.+ptt.t)1p;"tr)+R(,,r)1p;x121 _ 0, t e fO,2n),

,(2), prr.rrlp;"rr)+R(t,2)1p;x1z) = 0, t e [0,2n].
Here,

(8)

(e)
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h" t'(p, 
r, /.) - 2nlG(t' ')(F; r,ro) - G(r'''(g; r,rn)llr'(r,,)1,

iztr'"1B: t, ts) = 4nlG(?' ')(F; r, toy + cQ' t'(B; 
r, ru)1,

h"'t'(9, t,ti - 4nl6t2' ')(F; r,t)-GQ't'(0, r,ro)llr'(rr)1,

G' i'(B; r. rn; = @i(0 : M, Mi* f r"l''"?1,

G'''i'(g'. t.t,)) - **,f 8, M,Mo), M = M(r), Mo = tvt,,(ts).dv, t

It is well known (see, for example, [ 3, p. l0]) that the continuous linear operator s: C 0. cr 

- 
Ct ' a (Ct. d

is the space of Hcjlder continuously differentiable functions) is continuously invertible, and the inverse oper-
ator S-l ' Cl ' (r --* C 0 o is given by the formula

-r c"(v).f r{.r': t) = "# +z 2lklcolyleik', .r.. e CI'o, (10)

where

2n

cr(,y) = L^[ r{ro)"-'r,, o,o

0

are the Fourier coefficients of the function -y. It is clear that the operators R(2' I )(B). R(2'2)(P): C 0' o 

- 
C 0' a,

R(t't)(B),andR(r'r'(F):C0'ct +Cr'oarecompletelycontinuousatanyFe A.Therefore,system(8),(9)is
equivalent to the operator equatiorr

A($)y = [1+ R(p)]y = Q. (11)

where -v = (-,u( ", -'r,(l)). -v( 
l) = S-r' : = Cl' a, v(l) - ,r(2) € C 0' "; the completely continuous operator R acting in the

Banach space H - Cl' (r X Ctr 'r is defined by the equation

R-v = (R l. l)S-ly(,)+ R('.1)y(l), R(2' 
l)S-lv(l) + R(2.2)y(3)). (rz)

and 1is the identity operator.

By the complete continuitr of R(B). the operator A(F) is a Fredholm operator at any I e A. Using the
well-known properties of the Hankel functions (e.g.. see I l2]), it can be readily verified ,no, Trti' D(B; r. ru) are
analytic functions on A at anr point (r. ro) e [0, 2n][0,2n]. This implies (see [3. p. 7l]) that the operator-
valued f'unction A(B) is holomorphic on A. Therefore, problem (l l) is a spectral problern for a Fredholm
holomorphic operator-valued ftinction.

3. Let us now analyze the equivalence of problems (l)-(3) and (l l). To do this, consider the following
four problems: find the values of p e A for rvhich there exist nontrivial, continuous in ,5;, and twice contin-

uously differentiable on S, solutions to the Helmholtz equation

L,u +72,u = 0, M e 5,, i,i = 1,2,

that satisfy the homogeneous Dirichlet boundary conditions on I and, in the case of M e Sr, the partiality

condition. We denote the interior and exterior problems Uy pl') and D!-), respectively. The sets of values

of p e A that admit nontrivial solutions to Dfi) are denoted by o1D!') ), i, j = 1.2. It is wellknown that the

sets o(D\') ) can onlv consist of isolated points lying on the imaginary axis or the interval (-ksn., k.rf) of

the real axis. A similar result tbr o( D!j) ) is stated by the following lemma.

Lemma l.The sers o(D!'' )U = I .2) can only consist of isolatecl points. Moreover, within |rs, the points

oJ the spectrt,^ o( D| ) can lie onLv on lt1.

This lemma is validated b1 invoking results presented in [0, la].
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Lemma 2. For B e A\(\-/,=,.ro(Dll')) , any soltfiion to problenr (l)-(3) on S,can be represe.nted by
(5) as a simpLe-laver potential.

Proof. It is clear that if there exists a nontrivial solution a to problem ( I )-(3) for some 0 e A, then a is
not strictly zero on the contour f, and the trace of u on f belongs to Cr'o. Define/= ufor M e f. The func-
tion rr satisfies the inhomogeneous problem Dfi) inside the domain S,. Seeking a solution to problem (l)-
(3) on $ as a simple-layer potential of the form of (5) with density ei € C0'o, we derive the equation

A/Fl* = Sx + R;(B)x =/ t e l0,Znf, .i = 1,2,

where

Zft

Ri(F)x = L^lh/B; t, to)x(t)dto, t e fo,Znl,
0

h/9: t,ro; = o;(F; M,Mi.fir"lri"fl,
.r(r) = <p(M)l/(t)l€ C0'o, f(t)e Ct'".

The corresponding homogeneous equation has only the trivial solution for B e A\(L,/i=,,ro(Dl')). Con-

sequently, since A(p): C0'o .* Cr'o is aFredholm operator, the inhomogeneous equation has a solution
for any right hand side. Therefore, in the domain S;, a nontrivial solution to problem (1)-(3) can be
expressed as simple layer potential (5) with density g; e C0'd. The lemma is proved.

The following lemma can be proved by analogy with Theorem 2 in [5].
Lemma 3.lf the potential u elefined by (5) with kernel Qlvanishes in Slfor sotne B e A\o(D!r]j) 0 =

1,2), then its densin e1 is stricth :.ero on l.
Lemmas 2 and 3 entail the following theorem.

Theorem 2. Let problem (l l) have a nontrivial solurion for some B e A\(o( Dlr) ) u o'( ^O12) )). Then,
there also exists a nontrivial solution to problem (l)-(3) for this B. Let problem (l l) have a nontrivial solu-

tion for some $ e A\((-/,. 
, = ,., o(DIi))) . Then, there also exists a nontrivial solution to problem (ll) for

this B.
Thus, it is demonstrated that problems (l)-(3) and (11) are equivalent on A, except for the discrete (by

Lemma I ) set of points \Ji. i = ,. , 
o( Dlt) ). Note that problems ( I )-(3) and ( I I ) are completely equivalent

on G (see [6]).
Theorem 3. The spectrum of problem ( I )-(3) can consist of isoktted points onl,-.

The validity of this theorem follows from Theorems 1 and 2 (see []).
4.Let us now describe a method for the numerical solution of problem (l l). We seek an approximate

solution y" = (yL'), ylt') to equation (l l) in the form

r.ll(r) = 2o'l'r'o', ne N, i=t,2.
k=-n

The coeffici"ntr ct[j) are determined by the Galerkin method:

2n

J{,rr,)'*'{r)r-'i'dt = o, i=-n,...,n, k=1,2.
0

By (10), we have

s-r(-v|);,) = # .rilklaf')e'*',

( t3)

(14)

' ,t=-n
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Therefore, equations ( l4) are equir,alent to the following system of linear algebraic equations:

o.f"* I h'o"1g1ct,ul',* i tr,,'o'',(g)o,rt)= 0, j=-rt,....rt,

o,t'* I ii"1p;d,crl"* I h(ii'')(p)a(ot)= 0, .i=-n,....,t.

Here, di= { ln-12 forT - 0,211t f or i + 01,

ir,.""(B) = + I l n' '',(B; r, t,)e ii'eik"'dtdto.' 4"'i',
Let H!, be the set of all trigonometric polynomials of order not higher than n. Denote by H,the subspace

of Hspannedby theelement,s,.u|", -vf,t)), where y',t' , yft e Hl,.Definetheprojection operatorp ni H 
-Hnas

p.). = (onyt", on-r(t)), y = (.y(t), y(t') a H,

where @, is the Fourier operator,

o,,(9; r) = f ,orrr"'o.
k=-n

The systern of linear al_setraic equations (15), (16) is equivalent to the linear operator equation

A,,(0),'t., = p,,A(F).y,,: [1+ p,,R(9)]-y": [1+ R,,(F)].v,, = 0. (18)

Here, A,,: Hu 
- 

H,,, and 1is the unit operator in the space Hr.

Denote by o(.A,,) the set oi singular points of the operator A,,(p). We seek approximations B,, of the prop-
agation constants p as the singulerr points of A,(9), i.e., as the zeros of the determinant of the matrix of sys-
tem (15), (16). The conversence of the method described here is established b."" the following theorem,
which follows fromTheorem I in [2]:

Theorem 4. The set 6(4,.r corr.sis/s of isolated points. Let tlte poirtt $o belong to o(A), the set of sin.gular
pointsof theoperatorA(9).Then.theree.ristssuchasequence {8,,},9,,e o(A,,) that$n._*Fo, n+6.
IJ'theree.uistsasequencelp...vlterep,eo(A,),F,-*9oeAancln__-*.thenBoeo(A).

Numerical experiments hrre demonstrated that this method is highly accurate and requires relatively
small computing resources. Fu'rr example, to calculate the propa-eation constants of the basic surface waves
for dielectric wavesuides with various cross-sectional contours up to the fourth significant digit, it wen suf-
ficient to take n not greater thrn three tl6, 61.
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