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Abstract: This study addresses the challenge of accurate crop detection using satellite data, focusing
on the application of Long Short-Term Memory (LSTM) networks. The research employs a “spatial
generalization” approach, where a model trained on one geographic area is applied to another
area with similar vegetation conditions during the growing season. LSTM networks, which are
capable of learning long-term temporal dependencies, are used to overcome the limitations of
traditional machine learning techniques. The results indicate that LSTM networks, although more
computationally expensive, provide a more accurate solution for crop recognition compared with
other methods such as Multilayer Perceptron (MLP) and Random Forest algorithms. The accuracy
of LSTM networks was found to be 93.7%, which is significantly higher than the other methods.
Furthermore, the study showed a high correlation between the real and model areas of arable land
occupied by different crops in the municipalities of the study area. The main conclusion of this
research is that LSTM networks, combined with a spatial generalization approach, hold great promise
for future agricultural applications, providing a more efficient and accurate tool for crop recognition,
even in the face of limited training data and complex environmental variables.

Keywords: remote sensing; MODIS; classification; crops; random forest; multilayer perceptron; long
short-term memory

1. Introduction

The cover-management factor (C-factor, land-use factor) is a term used in soil erosion
management to describe the impact of land use and management on soil loss rates [1,2].
It is one of the most critical soil erosion risk factors that policymakers and farmers can
influence to help reduce soil loss rates. The land-use factor is critical in regulating soil
erosion and other environmental processes [3]. Mathematical models have been developed
to incorporate the land-use factor to better understand and predict these processes. One
of the earliest models is the Universal Soil Loss Equation (USLE) [4,5], which was later
corrected and modified to become the Revised Universal Soil Loss Equation (RUSLE) [6,7]
and the Modified Universal Soil Loss Equation (MUSLE) [8]. These models use various
factors, including slope, soil type, rainfall intensity, and land use, to estimate soil erosion
rates. Another model, the Water Erosion Prediction Project (WEPP) model [9–11], also
incorporates land use as a direct factor in its erosion calculations. Land-use data are a crucial
component of these erosion models and are typically obtained from remote sensing data,
land-use maps, and other geographic information systems. These data can be represented
in a variety of ways, including as vector data (point, line, or polygon features), in the case of
analysis of land use change at a farm or municipality level, or as raster data (grid cells with
a specified value), in the case of analysis at a state or global level. In addition to the direct
incorporation of land-use data in erosion models, the indirect effects of land use on soil
erosion can also be considered. For example, land use changes can influence precipitation
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runoff and sediment transport [12]. Physically-based models that incorporate these indirect
effects have been developed, such as the Soil and Water Assessment Tool (SWAT) [13].
These models are beneficial for large-scale assessments of erosion processes and the impact
of land use change on these processes.

The study of global land use is an essential area of research, especially with regard
to its effect on soil erosion and other exogenous processes [14]. To better understand the
impact of land use on erosion, researchers have developed a range of global land-use
models derived from remote sensing data from satellites. These models vary in their spatial
resolution and temporal coverage, depending on the type of sensor data used in their
construction. One of the best-known global land-use models is the MCD12Q1.061-MODIS
Land Cover Type Yearly Global [15]. This model has a spatial resolution of 500 m and
it has been updated annually since 2001. Another well-known model is the GlobCover:
Global Land Cover Map [16], which has a spatial resolution of 300 m. The European Space
Agency/Copernicus also provides the Copernicus Global Land Cover Layers [17], which
have a spatial resolution of 100 m and are available free of charge. With the advancement
of the Landsat program and improvements in software algorithms for processing and
analyzing satellite images, the number of models with a 30 m resolution is increasing.
Examples of these models include the Global Land Cover and Land Use Change [18]
GLC_FCS30-2015 [19], and the GlobeLand30 model [20]. These models have an accuracy
rate of 70% or higher when recognizing different types of land use, as compared with
independent sampling. Recently, models based on multispectral data from the Sentinel-2
program have also been developed. These models have the highest resolution (10 m) and
can reflect recent land use changes. Examples of these models include the ESA WorldCover
10 m [21], ESRI 10 m Annual Land Use Land Cover [22], and the Dynamic World model
developed by the World Resources Institute and Google [23].

Land use models are commonly used in erosion modeling studies to simulate the
impact of land use change on soil erosion processes. These models provide high spatial
and temporal resolution information on land use and land cover changes, but typically,
they need more detailed information on crop type and field-specific tillage practices [24].
This is a critical limitation because crop type and tillage practices significantly impact soil
erosion and sediment yield [25]. Crop models are designed to provide detailed informa-
tion on crops grown in specific fields, including their phenology, growth patterns, and
responses to environmental conditions. This information is essential for understanding the
impact of land use change on erosion and sediment yield, as different crops have differ-
ent root systems, aboveground biomass, and leaf area index, which all influence erosion
processes [26,27].

Several open-use crop recognition products are available to researchers and practi-
tioners. The USDA NASS Cropland Data Layers (CDL) [28] is a well-known example,
providing annual crop data for the United States with a 30 m resolution derived from
Landsat data since 1997. The Canada AAFC Annual Crop Inventory product [29] provides
a similar annual inventory map for North America, also derived from Landsat data. More
recently, the development of the Sentinel program, particularly Sentinel-1 radar data, has
made it possible to produce crop recognition with a much higher spatial resolution. The
EUCROPMAP 2018 model from the Joint Research Center (JRC) [30] is one such exam-
ple, providing crop recognition at a 10 m resolution based on Sentinel-1 radar data. The
classification accuracy of the EUCROPMAP model has been reported to range from 70 to
95 percent, with some crop types having higher accuracy levels than others. However, the
classification accuracy of different crops is uneven. For example, for the EUCROPMAP
product, the user accuracy of different crops varies from 28% to 90%. For the USDA NASS
Cropland Data Layers model, this varies from 28% to 97%, and for the Canada AAFC
Annual Crop Inventory, depending on the year, the figure varies from 64–87% to 74–90%,
from 2011 to 2013 [31].

Crop recognition from remote sensing data has been a significant area of research
for several decades now. Several methods based on machine learning algorithms have
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been developed for crop recognition using geospatial and remote sensing data [32,33]. The
products developed for crop recognition are generally based on state statistics geodata,
which enables the creation of a training sample distributed throughout the study area [34].
Automatic crop identification is a complex task with several challenges. One of the primary
challenges in automatic crop identification is the inherent variability and complexity of spec-
tral characteristics exhibited by different crops [35]. Factors such as growth stage, weather
conditions, and agricultural practices contribute to the unique spectral signatures of crops.
This variability makes it difficult to accurately establish universal algorithms and models to
identify crops [32,33]. Certain crops possess similar spectral signatures, leading to spectral
signature overlap [35]. Distinguishing between these crops based solely on spectral data
becomes challenging, as their characteristic reflectance patterns may exhibit significant
similarities [35]. Discriminating between crops with similar spectral characteristics, such
as wheat and barley, requires advanced algorithms that consider additional contextual
information [36]. Remote sensing data from satellites often need to improve their spatial
resolution [32,33]. This limitation poses challenges when differentiating between crops
occupying small areas, or when adjacent crops share the same pixel [35]. The coarse spatial
resolution may hinder the accurate identification and delineation of individual crops within
mixed cropping systems [34,35]. Agricultural fields are often heterogeneous, as multiple
crops or mixtures coexist [34]. This heterogeneity introduces complexities when attempting
to accurately identify and quantify each crop within a given field [34]. Overcoming this
challenge requires methods that account for the spatial variability and mixed composition
of crops within a field [34]. The success of automatic crop identification relies heavily upon
the availability of sufficient and diverse training data [34]. A significant challenge concerns
the ability to obtain representative and high-quality training datasets encompassing a wide
range of crops, geographic regions, and environmental conditions [34]. The scarcity of such
data limits the development and validation of robust algorithms for crop identification [34].
Crops undergo distinct seasonal changes in spectral characteristics as they progress through
different growth stages [33,36]. These changes can affect the accuracy of crop identification
algorithms, particularly during transitions between growth phases or during the ripening
stage [33,36]. Accounting for the temporal dynamics and capturing the phenological varia-
tions of crops is essential accurate and reliable identification [33,36]. Various factors, such as
cloud cover, atmospheric haze, and shadows, can interfere with the quality and availability
of satellite imagery used for crop identification [32]. These interferences introduce noise
and artifacts in the data, which affect the accuracy of crop classification algorithms [32].
Mitigating the impact of these interferences through preprocessing techniques and data
fusion approaches is essential for improving crop identification accuracy [32].

Traditionally, machine learning techniques such as decision trees (e.g., Canada AAFC
Annual Crop Inventory until 2015), ensemble bagging algorithms (e.g., Canada AAFC
Annual Crop Inventory after 2015, and EUCROPMAP, 2018), and boosting algorithms
(e.g., Catboost library used to create the ESA WorldCover 10 m model) have been used
for crop recognition. However, due to the high computational resource requirements,
neural networks are rarely used in crop recognition, especially when high-resolution data
are used. Neural networks are more commonly used for regional or local models, which
consider not only the variability of pixel brightness in multispectral data, but also other
complex parameters, depending on the type of neural network. For example, convolutional
neural networks have been used to recognize objects on space images based on their shape
and texture [37,38]. Multilayer perceptron (MLP) has been used for both land-use type
recognition [39] and the spatial and temporal extrapolation of the obtained results [40–42].
Recurrent neural networks have been used for sequence analysis [33,43–45], such as the
time series analysis of vegetation indices like the Normalized Difference Vegetation Index
(NDVI), which is an indicator of vegetation health. It can be used to compare the conditions
of the same species at different times of the year, different years, or in different areas within
a region or field. Regarding crop recognition, the classification is conducted pixel-by-pixel,
with each pixel having the predicted class value and the probability of belonging to a
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particular class. This indirectly allows for the estimation of areas of fields with perennial
grasses underplanted with the main crop, for instance. Object-based recognition is not
produced at the global or national level. The methods using MLP and recurrent networks
will be discussed in more detail in the relevant section.

A spatially distributed training sample covering all groups of land use types or crops
is required to train recognition algorithms effectively. However, although it is possible
to manually prepare a training sample for land use types using satellite imagery, it is
not possible to do so for crop types due to the visual similarities between different crops.
This challenge is intensified when analyzing large areas with varying natural and climatic
conditions, such as large countries or the territory of the European Union.

Climatic and soil variations can significantly impact the phenological characteristics of
vegetation, potentially shifting the time of growth onset, maximum growth level, and rate
of green mass drying. Within-field differences in soil properties can also lead to differences
in phenology, making it challenging to accurately identify crops [46].

To overcome these challenges, it is crucial to develop methods that consider not only
the values of spectral brightness and their variance, but also the nature of the variability
during the growing season. This becomes a fundamental task without spatial information
of crop types over large areas.

One possible solution to this problem is to incorporate additional information, such as
climatic data, into the detection algorithms. For example, a study by Shendryk et al. [47]
used a combination of satellite imagery and climate data to accurately classify crops
in a large agricultural region. They found that incorporating information concerning
temperature, rainfall, and other climatic variables improved crop classification accuracy
compared with using satellite imagery alone. Climate data help detect crops in satellite
images because it can provide information about temperature, precipitation, and other
environmental factors that affect crop growth and health. This information can identify
areas where crops are thriving or struggling, which can help farmers make better decisions
about planting, irrigation, and other management practices. For example, increases in
regional temperatures due to climate change, especially in the tropics, can lead to heat
stress for all crops. Many crops start feeling stressed at temperatures above 90 to 95 degrees
Fahrenheit (32 to 35 degrees Celsius), although this will vary depending on crop type and
water availability [48].

Another approach involves using advanced machine learning techniques, such as deep
learning, to effectively distinguish between crops with similar phenologies. For example,
a study by Turkoglu et al. [49] developed a deep learning-based algorithm that used
multispectral satellite imagery to detect different crops in a mixed-crop field accurately.
The algorithm effectively separated crops with similar phenologies, such as corn and
soybean, by using information from multiple spectral bands and the temporal variability of
vegetation growth.

Accurately assessing soil erosion requires spatial data from the locations of fields with
specific crops, so that they can be used in a training sample. Therefore, this study aims
to develop and validate a crop and crop group recognition methodology for large areas,
with diverse natural conditions, without training data. There are several prerequisites
for solving this problem. In the realm of remote sensing for agricultural applications,
the presence and quality of in situ data are pivotal for determining the precision of crop
mapping across diverse regions. Such data not only aid in the training phase, but also in
the validation of crop mapping algorithms. However, the extent of available in situ data
can differ markedly between regions, leading to variations in mapping accuracy.

Regions characterized by sparse in situ data often grapple with the challenge of
formulating precise crop mapping algorithms. The efficacy of these algorithms is inter-
twined with localized insights into management strategies, crop phenology, and historical
cropping trends. Moreover, the accuracy of crop mapping is contingent upon the spatial
and temporal relevance of the in situ data employed during classifier training. Data that
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are either misrepresentative or insufficient can inadvertently introduce errors into the
mapping outcomes.

A significant portion of crop mapping research is localized, heavily reliant on field
data, and consequently, it lacks the versatility to be applied seamlessly across different
regions. The process of in situ data acquisition, particularly in expansive agricultural zones,
can be both time consuming and financially demanding, thereby restricting its availability.
Additionally, certain regions might experience constraints when accessing ground truth
data, which can, in turn, compromise the integrity of crop mapping results.

To navigate these challenges, there is an imperative need to enhance both the accessi-
bility and caliber of in situ data. Innovative data collection methodologies, such as citizen
science or crowdsourcing, could be explored. Furthermore, fostering a culture of data
collaboration and sharing can potentially mitigate the inherent limitations of leveraging
remote sensing for crop mapping. Another approach, which is proposed in this paper,
concerns the use of crop data in areas where the collection and systematization of data at
the locations of the plots is conducted at a qualitatively high level for crop mapping in
areas with similar physiographic conditions and cultivated crops.

2. Materials and Methods
2.1. Study Area

The European part of Russia (EPR) (Figure 1) serves as the focus of this study, and
it covers an area of approximately 4 million sq. km, encompassing over 2400 km, north
to south. An online geoportal, “The River Basins of the European Territory of Russia”
(http://bassepr.kpfu.ru/, accessed on 1 January 2023), has been developed to provide a
comprehensive understanding of the environmental conditions of the territory, including
topography, climate, hydrology, soils, land use, and human-induced impact.
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The landscape of the EPR is diverse and encompasses a range of zones, from tundra
to temperate deserts. The elevation varies from −30 m to 830 m, with 40% of the territory
having altitudes ranging between 120 m and 180 m. The distribution of climatic elements
within the EPR is zonal, with the average annual temperature ranging from −8 ◦C in the
northeast to +12–14 ◦C on the Black Sea coast and the Caspian lowland. Moving from west

http://bassepr.kpfu.ru/
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to east into the mainland, the climate changes due to the transformation of Atlantic air
masses, resulting in longitudinal landscape differentiation.

The annual precipitation in the EPR is significant in the west, approximately 700 mm,
and it decreases in the northern and southeastern regions following the law of latitudinal
zoning. This reduction in precipitation results in a reduction of forest cover and swampiness
from north to south. The southern part of the EPR, where highly fertile soils (Chernozems)
are located, has undergone intensive cultivation for a prolonged period. Arable lands are
primarily located in the steppe, forest-steppe, mixed, and broad-leaved landscapes, and
they cover an area of approximately 530,000 sq. km [50].

Soils in the EPR are predominantly Chernozems, and they have a high level of fertility,
making them ideal for agriculture [51]. However, the intensive cultivation of these lands
has led to degradation and soil erosion in some areas. The climate of the EPR also affects
soil characteristics, with the cold and dry conditions in the northern regions resulting in
permafrost and the formation of bog soils. The mild and humid conditions in the western
regions contribute to development of Greyzems and Phaeozems.

The study area is a region actively involved in the agricultural activities of Russia,
where the dominant types of crops are wheat, barley, sunflowers, and sugar beet.

Wheat and barley are typically sown in spring (April–May) and harvested in late summer
or early autumn (August–September). These cereal crops constitute a significant portion of
sown areas and are integral to the region’s agricultural production. Sugar beet and sunflowers
are also sown in spring and harvested in the fall. These crops also play a crucial role in the
region’s agriculture, with sunflowers often grown within crop rotation schemes to improve
soil health. The primary production and cultivation methods include using modern agritech-
nologies such as minimum tillage, fertilization, and pest management, as well as utilizing
crop rotation to maintain soil fertility and production sustainability.

2.2. Remote Sensing Data

MOD13Q1 [52] and MYD13Q1 [53] data from MODIS satellite imagery were used for
crop recognition.

MODIS is a key instrument aboard NASA’s Terra and Aqua satellites, launched in
1999 and 2002. MODIS provides a range of data products for various scientific disci-
plines, including atmospheric science, oceanography, hydrology, and land use and land
cover studies.

MOD13Q1 and MYD13Q1 are two of the many MODIS data products that provide
information about the state of vegetation on the Earth’s surface. MOD13Q1 is obtained
from the Terra satellite, whereas MYD13Q1 is obtained from the Aqua satellite. Both
products provide 16-day composites of the Normalized Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI) as measures of vegetation health and productivity.
NDVI and EVI are indices that help quantify the amount of green vegetation in an area by
comparing the reflectance levels of visible and near-infrared light. NDVI values range from
−1 to 1, with higher values indicating a greater density of green vegetation. Similarly, EVI
values range from −1 to 1, with higher values indicating greater green vegetation cover.

The MOD13Q1 and MYD13Q1 products have a spatial resolution of 250 m. This makes
them useful for the large-scale monitoring of vegetation, such as tracking the progress of
crop growth, monitoring the impact of drought, and assessing the distribution of vegetation
types over large areas. Two scenes, wherein MOD13Q1 and MYD13Q1 were used to cover
the agriculturally developed part of Canada, and seven scenes wherein corresponding
products were required to cover the European part of Russia, were examined.

The TerraNorte RLC-2016 product is an annual map of terrestrial ecosystems in Russia,
produced from remote sensing MODIS data, that depicts the spatial distribution of the main
types of land cover with a spatial resolution of 230 m. The use of TerraNorte RLC-2016,
in this case, was to identify arable lands within the European part of Russia (EPR) and
to mask the areas occupied by arable land so as not to classify areas knowingly used for
non-agricultural uses [54,55].
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2.3. Training Sample

The study aimed to identify and recognize crops in a specific study area. Of more
than 40 crops mentioned in the government statistics, those that occupied the majority of
the cultivated areas were selected for recognition, including winter cereals, spring cereals,
legumes, buckwheat, corn, sunflower, sugar beet, potatoes, perennial grasses, and fallow
land. The other crop types were found to be rare in the study area.

Geospatial data were needed to locate fields with recognizable crops to create a
robust training sample. However, there needed to be more reliable, publicly available
georeferenced data on the composition of cropland in the study area. As a result, reference
sites for the presence of crops were identified using the Territories–Analogues data from
Canada, which have similar landscapes and climatic conditions to the study area.

The Territories–Analogues data were obtained from the Annual Crop Inventory project
of the Canadian Ministry of Agriculture and Food, which provides publicly available raster
layers of land use/land cover at a spatial resolution of 30 m, including crop type. The
project used satellite data from Landsat, Sentinel, and RADARSAT-2 for processing and
classification (Figure 2).
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Figure 2. Annual Crop Inventory Data 2015 within two MODIS scenes: 10—Cloud; 20—Water;
30—Exposed land/barren; 34—Urban/developed; 35—Greenhouses; 50—Shrubland; 80—Wetland;
110—Grassland; 120—Agriculture (undifferentiated); 122—Pasture/forages; 130—Too wet to be
seeded; 131—Fallow; 133—Barley; 134—Other grains; 136—Oats; 137—Rye; 138—Spelt; 139—Triticale;
140—Wheat; 145—Winter wheat; 146—Spring wheat; 147—Corn; 148—Tobacco; 149—Ginseng;
153—Canola/rapeseed; 154—Flaxseed; 155—Mustard; 157—Sunflower; 158—Soybeans; 162—Peas;
167—Beans; 175—Vegetables; 176—Tomatoes; 177—Potatoes; 178—Sugarbeets; 179—Other vegeta-
bles; 181—Berries; 183—Cranberry; 188—Orchards; 189—Other fruits; 190—Vineyards; 191—Hops;
192—Sod; 193—Herbs; 194—Nursery; 195—Buckwheat; 199—Other crops; 200—Forest (undifferenti-
ated); 210—Coniferous; 220—Broadleaf; 230—Mixed wood.

The data of the Territories–Analogues were used in the training sample, using the
MODIS pixels (250 m) that covered only one type of crop when they were spatially aligned
with the 30 m land use raster of the Annual Crop Inventory. The NDVI, EVI layers, and QA
(quality assessment) layer values were taken from the MOD13Q1 and MYD13Q1 products
for 2015 and 2016 for each of the MODIS pixels. In this study, we used multi-temporal
remote sensing data to differentiate between various types of crops. This differentiation
was based on the sequence of values of spectral vegetation indices during the vegetation
season. Spectral vegetation indices are calculated using different spectral ranges (bands)
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of remote sensing data and they serve as reliable indicators of vegetation activity on the
Earth’s surface.

The most commonly used spectral vegetation index is the Normalized Difference
Vegetation Index (NDVI), which is calculated using the following formula:
NDVI = (NIR − Red)/(NIR + Red). NIR represents the near-infrared band (841–876 nm),
and Red represents the red band (459–479 nm). Another widely used vegetation index
is the Enhanced Vegetation Index (EVI), which is designed to minimize the impact of
soil and atmospheric conditions on the vegetation signal. EVI is calculated, as follows:
EVI = G·(NIR-Red)/(NIR + C1·Red − C2·Blue + L). In this formula, Blue represents the
blue band (650–680 nm); L represents the canopy background adjustment; C1 and C2 are
coefficients of the aerosol resistance term; and G is the scaling factor. For MODIS data, the
coefficients are set as L = 1, C1 = 6, C2 = 7.5, and G = 2.5.

30 NDVI, 30 EVI, and 30 QA grids were used each year from 22 March to 19 November,
with a time step of 8 days. The NDVI and EVI values on a pixel were considered to be
acceptable if the QA value on the pixel was 0 (“good data”) or 1 (“marginal data”). Missing
data were filled via cubic spline interpolation (in individual pixels for specific dates). In
general, the quality of remote sensing data for the territory of Canada and European Russia
was assessed as good and comparable (Table 1).

Table 1. Comparison of remote sensing data for Canada and the EPR for the study period.

Year Territory Total Number of Pixels Mean % of Cloudy Pixels Median % of
Cloudy Pixels

2015
Canada 35063259 8.1 6.3

EPR 118184464 11.9 6.0

2016
Canada 35063259 9.5 5.5

EPR 118184464 12.4 5.2

The result was a training sample, a multidimensional dataset with pixels of the
references as elements (rows) and crop code values and NDVI and EVI values as variables
(columns). NDVI and EVI time series were constructed for each pixel of the training
sample, reflecting the seasonal dynamics of these indices (with a time step of 8 days).
The constructed NDVI and EVI time series were then fed into the recognition algorithm
for training.

Spectral vegetation indices, such as NDVI and EVI, are frequently used as input
data for analyzing and interpreting vegetation cover using remote sensing data. The sea-
sonal patterns of NDVI and EVI values for different crops are unique. We constructed
and analyzed time series graphs of NDVI and EVI for the pixels of the training sam-
ple, which depicted the changes in these indices from late March to mid-November.
We smoothed these time series using Generalized Additive Models [56] to obtain a general-
ized data representation.

The results, shown in Figure 3, reveal the specific seasonal variability of vegetation
indices for ten different crops. The graphs prove that each crop has a distinct seasonal
pattern due to variations in phenology and agrotechnical activities such as sowing and har-
vesting. For instance, winter cereals and perennial grasses reach their peak photosynthetic
activity earlier than other crops, around the 150th day of the year, and they experience a
rapid decline in vegetation indices by the time of harvest in August (around the 220th day
of the year). These distinct patterns in the time series of NDVI and EVI make using these
data as inputs for crop recognition algorithms promising.

European Russia, the agriculturally developed part of Russia, is characterized by a
wide range of geographic and climatic conditions. The region is primarily dominated by
the East European Plain, with a climate that varies from humid continental to subarctic,
significantly influencing agricultural practices. The soil composition is predominantly
Chernozem, known for its high fertility and organic matter content, making it suitable
for agriculture.
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The main crops grown in European Russia include wheat, barley, oats, rye, corn,
and sunflower seeds. The region is also known for its production of potatoes and veg-
etables. The growing season varies depending on the crop and the specific geographic
location within the region. However, the general growing season is from late April to early
October, with yields heavily influenced by weather conditions, particularly the amount
and distribution of rainfall during the growing season.

Canada has a wide range of geographic conditions, from the fertile plains of Alberta
and Saskatchewan to the mountainous regions of British Columbia. The climate varies
from temperate on the west coast to subarctic and arctic in the north. Soil types also vary
widely across the country, with Chernozem in the prairies, Luvisol in the northern regions,
and Podzol in the boreal forest regions.

The major crops grown in Canada include wheat, canola, barley, corn for grain, and
soybeans. The country is also a major producer of fruits, vegetables, and other specialty
crops. The growing season in Canada is generally shorter than in European Russia due to
the colder climate, typically from May to September. However, this can vary depending on
the geographic location and crop.

Summarized information concerning the study area and the comparison of the Territories–
Analogues is presented in Table 2.
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Table 2. Comparison of natural conditions of Canada and the EPR.

Parameter The Agricultural Part of European Russia The Agricultural Part of Canada

Geographical Latitude Ranges 45◦ to 60◦ N 42◦ to 60◦ N
Geographical Longitude Ranges 27◦ to 61◦ E 65◦ to 141◦ W

Altitude [57] Varies greatly, from −30 ASL to over 1000 m Varies greatly, from sea level to over 1000 m
Climate Zone

(Koppen–Geiger) Mostly Dfb (Humid Continental) Dfb (Humid Continental) in the south, ET
(Tundra), and EF (Ice Cap) in the north

Sum of Precipitations Varies greatly, from 200 to 600 mm/year Varies greatly, from 300 to 1000 mm/year
Maximum Temperature Varies greatly, up to 30 ◦C in the summer Varies greatly, up to 30 ◦C in the summer
Minimum Temperature Varies greatly, down to −40 ◦C in the winter Varies greatly, down to −40 ◦C in the winter

Mean Temperature Varies greatly, from −10 ◦C to 10 ◦C Varies greatly, from −10 ◦C to 10 ◦C

WRB Soil Reference Groups [58] Predominantly Retisols,
Podzols, and Chernozems

Predominantly Retisols,
Podzols, and Chernozems

Main Crops [59,60] Wheat, barley, oats, rye, potatoes, sunflowers Wheat, canola, barley, corn, soybeans
Crop Area Approximately 45% of the land Approximately 25% of the land

Despite the slight differences in geography and climate, both regions have developed
robust agricultural sectors that use their unique conditions to grow various crops. Weather
conditions heavily influence yields in both regions during the growing season, soil health,
and the implementation of modern agricultural practices.

2.4. Recognition Methods

Crop recognition from remote sensing data is an essential aspect of precision agricul-
ture, supplying valuable information for decision-making related to crop management,
yield prediction, and environmental monitoring [61]. Several machine learning techniques
have been proposed for crop recognition from remote sensing data, with Random For-
est (RF), Multilayer perceptron (MLP), and Long Short-Term Memory (LSTM) recurrent
neural networks being one of the most widely used algorithms. The training and clas-
sification pipeline implementing these methods was developed in Python 3.7 using the
Keras v.2.3.1 + TensorFlow v.2.2.0 framework, with GPU (graphics processing unit), and
the data preprocessing, postprocessing, and analysis programs were developed in R v.3.4.4.

2.4.1. Random Forest

RF is a machine learning technique that builds an ensemble of decision trees, wherein
each tree makes a prediction, and the final prediction is the average of the predictions
made by all the trees. RF is a type of bagging algorithm, and the term “bagging” stands for
bootstrap aggregating. In RF, the bootstrapped samples are drawn with replacements from
the training data and are used to train a separate decision tree. Each tree is trained on a
different subset of the data, and the final prediction is made based on the predictions of all
the trees.

One of the main advantages of RF is that it can handle linear and non-linear relation-
ships between the features and the target. This means that RF is flexible enough to model
complex relationships between the variables and it can be applied to various problems.
Additionally, RF can handle missing values and is relatively insensitive to noisy features.
Another advantage of RF is that it supplies a measure of feature importance, which allows
it to identify the most essential features for the classification task. This can be useful when
conducting crop recognition from remote sensing data, where there may be many features,
and it can be challenging to determine which ones are the most important.

However, one of the limitations of RF is that it is computationally intensive, especially
when compared with other machine learning algorithms such as linear regression or logistic
regression. RF also requires a large amount of memory, which can be an issue when working
with large datasets.

There have been some studies that have used RF for crop recognition from remote
sensing data. For example, a study by [62] used RF to classify crops in the Midwestern
United States based on remote sensing data obtained from Landsat imagery. In this study,
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RF performed better than other machine learning algorithms, including decision trees and
support vector machines.

Another study by [63] used RF to classify crops in the Nile Delta region of Egypt
based on remote sensing data obtained from MODIS imagery. The study found that
RF could accurately classify different crop types and provide valuable information for
decision-making related to crop management and yield prediction.

2.4.2. Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) [64] is a type of Artificial Neural Network (ANN) used
for supervised learning tasks, such as classification and regression. MLP comprises one or
more layers of processing nodes, also known as neurons, which are connected via weighted
links. The input layer receives the input features, whereas the output layer provides the
predicted class labels or continuous values. The hidden layers between the input and
output layers transform the input into a representation suitable for the prediction task.
Each neuron in the MLP model performs a simple calculation that combines the inputs
with a set of weights and applies a non-linear activation function, such as the sigmoid
or rectified linear unit (ReLU) function, to the result. The weights in the MLP model are
optimized during the training process by minimizing the difference between the predicted
outputs and actual target values. This optimization process typically uses backpropagation
algorithms, such as gradient descent or variations thereof.

MLP has several advantages, such as the ability to model non-linear relationships,
handle many input features, and perform well in many practical applications. However,
MLP also has several disadvantages, such as the risk of overfitting, the need for large
amounts of training data, and difficulties in interpreting the internal representation learned
by the model.

MLP can be used in remote sensing applications, such as crop recognition, to predict
the class labels of pixels in satellite or aerial imagery. MLP can learn complex patterns in
the data by combining multiple layers and non-linear activation functions. Additionally,
MLP can provide probabilistic estimates for each class, which can be used to improve the
reliability and interpretability of the predictions.

However, it should be noted that MLP is only sometimes the best choice for remote
sensing classification tasks, especially when dealing with high-resolution data. MLP
requires a lot of computational resources and can be slow to train and predict. In addition,
MLP may need help to capture meaningful spatial and spectral relationships in the data,
especially when the data are highly heterogeneous or contains a large amount of noise.
Other machine learning methods, such as convolutional neural networks or decision trees,
may perform better in such cases.

2.4.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN) algorithm
used to learn long-term dependencies in data sequences. LSTM networks can learn patterns
in data that span long distances and can help solve tasks such as language modeling,
time-series prediction, and classification using remote sensing data. Extended Short-Term
Memory Networks are a type of RNN used in various tasks such as machine translation,
speech recognition, and image captioning. The LSTM architecture was introduced in
1997 by Sepp Hochreiter and Jürgen Schmidhuber [65]. This architecture was designed
to overcome the vanishing gradient problem that plagues traditional RNNs. The LSTM
architecture achieves this by introducing a memory cell that keeps track of information
over long periods, and it utilizes gated recurrent units. Gated recurrent units comprise
an input gate, a forget gate, and an output gate. These gates control what information
is passed on to the cell state and the output. Since their introduction, LSTMs have been
used in many research areas and they have achieved state-of-the-art performance in many
tasks. For example, they have been used in natural language processing (NLP) tasks such
as machine translation and language modeling, as well as in computer vision tasks such as
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image captioning and object detection. They have also been used for robotics tasks such
as robot arm control and navigation. On classification from remote sensing data, LSTM
networks can learn the timesteps in a remote sensing data sequence and classify the data
points. This type of task is often referred to as temporal classification. LSTM networks can
outperform traditional methods, such as Support Vector Machines (SVMs) because they
can learn long-term temporal dependencies.

One of the significant advantages of using LSTM networks for temporal classification
is that they require less data preprocessing than traditional methods, making them more
suitable for remote sensing data. Additionally, the long-term temporal dependencies
learned by LSTM networks can help to reduce false positives in classification results. The
main disadvantage of using LSTM networks for temporal classification is that they are
more computationally expensive than traditional methods. Additionally, they can be prone
to overfitting, especially when a limited amount of training data are available.

2.4.4. Recognition Methodology

As mentioned above, crop recognition was performed using three algorithms, and for
each, hyperparameter optimization and cross-validation were performed. For this purpose,
tenfold cross-validation with a hyperparameter search was used. This procedure was per-
formed using the means of the scikit-learn library. In the first stage, the whole dataset was
randomly divided into three parts, as follows: training, validation, and test datasets. These
parts were based on a ratio of 70%, 20%, and 10%, respectively. The following set of param-
eters was used for the MLP method: number of neurons in the hidden layer equal to 100;
ReLU activation function for the hidden layer; Adam solver for weight optimization; 0.9 for
estimates of the first-moment vector; and 0.999 for estimates of the second-moment vector.

For the Random Forest method, the parameters of the classifiers were chosen, as
follows: 500 trees in the forest; seven was the maximum depth of the tree; the minimum
number of samples required to split an internal node was 10; and the minimum number of
samples required to be a leaf node was 10.

In our study, we also employed recurrent neural network (RNN) architecture with
long short-term memory (LSTM) units to capture the temporal dependencies in our data.
The LSTM model was designed to avoid the vanishing gradient problem that is commonly
encountered when training standard RNNs.

The input to the model was a sequence of data with a shape defined by the number
of timesteps and the dimensionality of the data at each timestep (input_shape = (timesteps,
data_dim)). The first layer of the model was an LSTM layer with 32 hidden units that returns
the full sequence of hidden states for each timestep. This layer was followed by a second
LSTM layer with 64 hidden units, which returned the full sequence of hidden states.

A unique feature of our model is the inclusion of a ‘skip’ connection, a concept
popularized by ResNet models. This skip connection was implemented as a third LSTM
layer with 64 hidden units that took the output of the first LSTM layer as input. The output
of this layer was then combined with the output of a fourth and fifth LSTM layer (both
with 64 hidden units) using an addition operation.

The combined output was fed into a sixth LSTM layer with 256 hidden units. However,
unlike the previous LSTM layers, this layer only returned the last hidden state for each sample.
This output was then passed through three fully connected (Dense) layers with 512, 128, and
ncls units, respectively. The first two Dense layers used the ReLU activation function, whereas
the last layer used the softmax activation function to output class probabilities.

The Keras functional API defines the model by specifying the input and output, as
follows: model = Model(input, x). This architecture allowed the model to learn both
short-term and long-term dependencies in the data, making it suitable for time series
classification tasks and other tasks where temporal dependencies are essential.
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2.5. Accuracy Assessment

The classification quality was assessed using two methods. The first method involved
a pixel-by-pixel comparison of the classification results with the training sample, conducted
with cross-validation. The pixel-by-pixel comparison was carried out based on the contin-
gency matrices and the calculation of such classification quality metrics as Recall, Precision,
F1-score, and Accuracy.

Recall = TPR =
TP

TP + FN
(1)

Precision = PPV =
TP

TP + FP
(2)

F1− score =
2× TPR× PPV

TPR + PPV
(3)

Accuracy =
correct classifications

all classifications
(4)

Recall (TPR) is the true positive rate; in other words, the proportion of true positives
correctly classified. Precision (PPV) is the positive predictive value; in other words, the
proportion of correct positive predictions. False Negatives (FN) occurred when our model
incorrectly classified a pixel belonging to a certain crop type as not belonging to that
crop type. Conversely, False Positives (FP) were instances wherein our model incorrectly
identified a pixel belonging to a certain crop type when it did not. In our multiclass
classification task, we extended the concepts of False Positives (FP) and False Negatives (FN)
so that they could be applied outside of their traditional binary classification context. For
each crop type, a False Positive indicated an instance where our model incorrectly predicted
a pixel as belonging to that crop type when it belonged to a different one. Conversely,
a False Negative was an instance where our model incorrectly predicted a pixel as not
belonging to a certain crop type when it did. These metrics were calculated individually
for each crop type in a ‘One-vs.-All’ manner, and then, they were averaged to provide
a single measure of our model’s performance. This approach allowed us to understand
not only the overall accuracy of our model, but also its performance concerning each crop
type. The choice of averaging method, either ‘micro’ or ‘macro’ was determined based on
whether we wanted each class (macro-averaging), or each instance (micro-averaging), to
have equal weight when calculating these metrics. This nuanced evaluation helped us to
identify specific areas where the model’s performance could be improved. The F1-score
measures a model’s overall performance, calculated as the harmonic mean of precision and
recall. Accuracy is the fraction of correct classifications.

The second method involved comparing the model (obtained from the results of crop
recognition) and the real areas (presented in the state statistics database) of arable land
occupied by a particular crop in spatial units such as municipal districts. For each crop,
statistical characteristics concerning errors (differences between real and modelled areas
occupied by crops in the districts) were calculated, as follows: mean error (ME), mean
absolute error (MAE), root mean square error (RMSE), weighted average percentage error
(WAPE), standard error of estimation (SE), and median error (MdE). These metrics are
robust in terms of outliers.

The mean error (ME) is the average of the absolute values of the differences between
the real and model areas. The mean absolute error (MAE) is the average of the absolute
values of the differences between the real and model areas without regard to sign. The root
mean square error (RMSE) is the square root of the average squared differences between
the real and model areas. The weighted average percentage error (WAPE) is the average of
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the percentage errors weighted by the real areas. The standard error of estimation (SE) is
the standard deviation of the errors. The median error (MdE) is the median of the errors.

ME =
∑N

i=1
(
s real,i − smodel,i

)
N

(5)

MdE = mediani=1...N
(
s real,i − smodel,i

)
(6)

MAE =
∑N

i=1 |s real,i − smodel,i|
N

(7)

RMSE =

√
∑N

i=1
(
s real,i − smodel,i

)
N

2

(8)

WAPE =
∑N

i=1 |s real,i − smodel,i|
∑N

i=1 sreal,i
(9)

SE =

√√√√∑N
i=1

((
s real,i − smodel,i

)
−ME)

N− 1

2

(10)

where N is the number of municipal districts, sreal,i and smodel,i are the real and model areas
of arable land occupied by a specific crop in the i-th district.

3. Results

Pixel classification, with the allocation of ten target crop classes (winter cereals, spring
cereals, legumes, buckwheat, corn, sunflower, sugar beet, potatoes, perennial grasses, and
fallow land), was implemented using three methods—MLP, RF, and LSTM. NDVI and EVI
(MODIS) time series data for 2015 and 2016 were analyzed. For each year, the prepared
composite of multi-temporal MODIS data with 60 layers (30 NDVI and 30 EVI layers) and
the training data set were fed into the algorithms as input. In total, two MODIS scenarios
concerning the Territories–Analogues, and 7 MODIS scenarios from the study area of the
EPR were analyzed.

For each of the two territories (Territories–Analogues and the study area), the results
of the recognition are presented in the form of six raster layers, the arable land pixels of
which are assigned the codes of the classes of the recognized crop; these were obtained
via three methods (MLP, RF, and LSTM), and for two years, respectively. For example,
Figure 4 shows some of the classification results from 2015, which concern the study area,
and which used the LSTM method.

The quality of interpretation was assessed by comparing the classification results for the
Territories–Analogues, pixel-by-pixel, with the training samples. A total of six classification
results were obtained, covering two years (2015 and 2016), and using three methods (MLP,
RF, LSTM) for each year. The comparison was conducted using cross-validation.

The recognition quality metrics (1)–(4) for each method were calculated based on
contingency matrices and summarized over two years. The results are shown in Table 3. In
this table, the “weighted avg.” indicator represents the average quality indicators and it
considers the representation of crops in the territory.

The second approach to assess the quality of crop recognition was applied to the
results obtained in the study area. Only the results obtained using the LSTM method were
considered, as it showed noticeably better results in the Territories–analogues. The recog-
nition results were two classification rasters, covering the two years under consideration
(2015 and 2016) in the study area.
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Table 3. Based on the cross-validation results, the accuracy of automated crop recognition in
Territories–analogs using three methods.

MLP RF LSTM

Crops Recall Precision F1-Score Recall Precision F1-Score Recall Precision F1-Score

Winter cereals 0.945 0.017 0.033 0.046 1.000 0.088 0.931 0.657 0.770
Spring cereals 0.371 0.963 0.536 0.979 0.883 0.929 0.964 0.960 0.962

Legumes 0.498 0.370 0.425 0.231 0.896 0.367 0.795 0.917 0.852
Buckwheat 0.348 0.027 0.050 0.013 0.167 0.024 1.000 0.526 0.689

Corn 0.778 0.595 0.674 0.001 0.333 0.001 0.945 0.781 0.855
Sunflower 0.180 0.478 0.262 0.002 0.250 0.004 0.954 0.546 0.695

Sugar beets 0.900 0.001 0.002 0.000 1.000 0.001 1.000 0.376 0.547
Potatoes 0.598 0.001 0.002 0.002 0.200 0.005 0.987 0.056 0.106
Perennial
grasses 0.146 0.994 0.255 0.946 0.938 0.942 0.951 0.966 0.958

Fallow 0.424 0.145 0.216 0.404 0.879 0.554 0.870 0.641 0.738

Weighted avg. 0.400 0.872 0.458 0.897 0.897 0.876 0.937 0.948 0.941
Accuracy 0.401 0.897 0.937

To assess the quality of crop recognition, real (ground) data (represented in the state
statistics database) and model data (obtained from the recognition results) were compared
in terms of spatial units, such as municipalities. Open data from the Federal State Statistics
Service (Rosstat) were used, specifically, the Database of Indicators of Municipalities [66].
Queries in this database were used to obtain information concerning the areas of arable
land occupied by different crops in the municipal districts of the subjects of the Russian
Federation. This information was then geocoded using the vector layer of municipal
districts in the study area, which included 1120 districts with arable land. The resulting
classification raster was sampled on the vector layer of districts. The model areas were
calculated for each of the 1120 districts (i.e., the areas occupied by recognizable crops,
according to the interpretation results). This procedure was repeated for each of the two
years under consideration.

The consistency of the crop recognition results was verified by comparing the values
of the areas against different crops estimated from the recognition results, and the Rosstat
data concerning the areas of arable land occupied by these crops in the 1120 municipal
districts. The comparison was limited to significant crop groups as per the state statistics
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(Winter cereals, Spring cereals, Legumes). The statistical characteristics (5)–(10) of the errors
(differences between the real and modelled areas of crops in the districts), summarized
over the two years under consideration, are given in Table 4. Figure 5 shows the frequency
histograms of these errors.

Table 4. Comparison of the real and modelled areas of arable land occupied by different crops in the
municipal districts of the study area.

Crops Mean of Real
Area (ha)

Mean of
Modelled Area (ha) ME MdE MAE RMSE WAPE SE Pearson Correlation Coefficient

Winter cereals 11,400 11,200 200 60 4500 8100 0.39 8100 0.91
Spring cereals 13,000 12,000 2200 1700 4700 7000 0.34 6700 0.90

Legumes 1100 1700 −700 −150 1300 2300 1.26 2200 0.60

The total area
of arable land 46,000 50,000 −4800 −100 11,000 18,500 0.25 18,000 0.96
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The thematic maps of Figure 6 show the spatial distribution of the real (based on
Rosstat data) and modelled (predicted) values of the area, using one of the crops in the
municipal districts of the study area. These maps provide a visual assessment of the
quality of interpretation, and they reveal the spatial specifics of the agreement between the
modelled and real values.
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4. Discussion

The recognition quality evaluation showed that the LSTM model outperformed the
RF and MLP models in recognition of ten crop classes. The overall accuracy of the correct
recognition of ten crop classes using the LSTM method reaches 0.937 on the training set
with cross-validation. In contrast, the RF method demonstrates an accuracy of 0.897 and an
MLP of −0.401.

The F1-score, a metric that evaluates the accuracy and sensitivity of the method, further
confirms the superiority of the LSTM model with a score of 0.941 compared with 0.876 for
the RF method and 0.458 for the MLP method. The MLP method, as a whole, showed the
weakest results. The RF method recognized crop classes that were abundantly represented
in the Territories–analogues (spring cereals, perennial grasses) well, but it did not recognize
crops that were poorly represented (buckwheat, corn, sunflower, sugar beets, potatoes)
well, despite attempts to balance the sample. This was due to insufficient efforts to balance
the training data in the implementation of the RF algorithm, and training with rebalancing
could improve the quality of this model.

The LSTM method demonstrated excellent recognition quality with high precision and
recall values for crops. Its recall value of more than 0.95 indicates a correct recognition of
more than 95% with regard to the pixels occupied by these crops; conversely, its precision
value of more than 0.96 means that more than 96% of the pixels in the class correspond
with the target crop. The LSTM method also performed well for rare crops, with high
recall values and lower precision values, indicating correct recognition of almost all pixels
occupied by these crops, but it also flagged many false positive pixels.

The advantage of the LSTM method lies in its ability to analyze sequences of data
and time series data, such as NDVI and EVI, making it an ideal choice for classification,
processing, and prediction based on time series data. The LSTM method is also rela-
tively robust with regard to gaps in the time series, making it a compelling option for
sequence analysis.
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The LSTM method was validated on the arable land of the study area by comparing
its detection results with state statistical data from 1120 EPR municipal districts for the
main crops of winter cereals, spring cereals, and legumes. The comparison showed a high
degree of agreement between the actual and predicted values of areas with regard to the
different crops in the regions. The LSTM method slightly underestimated the presence of
spring cereals and overestimated the presence of legumes.

The effectiveness of the LSTM in capturing patterns in time series data for crop
detection has been demonstrated in numerous case studies worldwide. For example,
studies in India [67,68] and Brazil [69] used LSTM to classify different crop types, and they
achieved better results than other machine learning algorithms. Similarly, a study in the
United States combined remote sensing data with deep learning algorithms, including
LSTMs, to achieve high accuracy in crop mapping [70].

Although the landscape and climatic conditions in Canada may differ from those in
the European part of Russia, the approach of using analog data from similar landscapes
and climatic conditions has proven effective for remote sensing studies. The similarities
between the territories in Canada and the study area in the European part of Russia was
considered regarding vegetation types, topography, climate, and land use patterns.

The two key agrarian regions are Canada and European Russia, located in roughly the
same latitudinal belts (40 to 60 degrees north latitude).

The Canadian agricultural belt is in a temperate climate zone with fairly mild winters
and warm summers; the temperature ranges from −10 to 30 ◦C, depending on the season
and region. In comparison, the European part of Russia has a moderately continental
climate, with colder winters and warmer but shorter summers. Temperatures in this region
range from −20 to 30 ◦C. The soil cover in both regions is characterized by fertile soils,
which are typical of a temperate climate. Chernozems and Greyzems are common in
Canada, whereas in European Russia, Chernozems, Podzols, and Greyzems are common.

Vegetation in both regions includes temperate broadleaved and coniferous forests,
steppes, and prairies, which are ideal for agricultural use.

Canada and European Russia grow many of the same crops, such as wheat, barley,
and corn. In both regions, wheat and barley are usually sown in spring (April–May) and
harvested in late summer or early fall (August–September).

Additional crops, such as corn in Canada and sugar beets and sunflowers in Russia,
are also usually sown in spring and harvested in early or mid-autumn.

Agroecological conditions in Canada and European Russia also have many similari-
ties. Both regions have fertile soils suitable for temperate climates, and both are located in
temperate climate zones, which are ideal conditions for many crops. Comparing the vege-
tation time series of the main crops of both territories involves analyzing the growth and
development of crops in different periods, in accordance with climatic and soil conditions.

Based on the data presented, we found similarities between Canada and the European
part of Russia in terms of seasonal patterns, similarity of crops, and climatic and soil
conditions. These factors provide a basis for comparing the vegetation time series of
the main crops of both territories. However, it is worth remembering that there are also
differences in terms of agroecological conditions and agrotechnical practices, which may
affect the vegetation indices and their interpretation. The latter is challenging to consider
when using the MODIS RS data with a resolution of 250 m, therefore, we neglected these
parameters in this stage of the study.

The NDVI and EVI time series were constructed to reflect the seasonal dynamics
of these indices, and the constructed NDVI and EVI time series were then fed into the
recognition algorithm for training purposes. Therefore, the classification of crop types
in the European part of Russia is based on the analysis of the NDVI and EVI time series’
seasonal dynamics and the crop type information obtained from the Canadian data, rather
than on the physical properties of the study area. Canadian data can be used as a form of
transfer learning, where knowledge gained from one domain (in this case, Canadian crop
types) is applied to another related domain (crop types in the European part of Russia). As
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far as we know, similar approaches have yet to be used, distinguishing this work in terms
of novelty.

The TerraNorte RLC-2016 product provides valuable insight into the distribution
and characteristics of different land cover types within the EPR, including arable lands.
By using TerraNorte RLC-2016 to identify and mask the arable lands, the study focused
specifically on agricultural land use and excluded non-agricultural land uses from the
analysis. The study conducted its classification based on the land cover types identified by
TerraNorte RLC-2016 was used to mask the areas occupied by arable land. For example, the
study may have identified the pixels in TerraNorte RLC-2016 that correspond with arable
land cover types (such as cropland or pasture) and then masked those pixels to exclude
them from further analysis. This approach allows for significant computing optimization
when analyzing big data over vast areas and the possibility of scaling the study results.

The recognition quality assessment highlights the potential of the LSTM method for
crop mapping and the importance of using time-series data in remote sensing to improve
accuracy. The superior overall accuracy and F1 score of the LSTM model, and the high
correlation between the modelled and real values, demonstrate its reliability as a promising
approach for crop mapping in different regions. Further comparative studies with different
crops and regions are needed to validate the results and assess the global potential of the
LSTM method.

The results of crop identification aggregated in the districts are in average agreement
with the Rosstat data for the European part of Russia. Nevertheless, the quality of recogni-
tion in the analogous territories is relatively high. Using the LSTM algorithm with training
data specific to the study area may further improve the agreement between the model’s
results and the Rosstat data. Although more than recognition accuracy may be required
for the reliable estimation of crop presence in specific locations, it is acceptable for solving
regional scale tasks. The crop detection results were used to study soil erosion processes, a
critical issue in nature management. Incorporating the results into the Universal Soil Loss
Equation (USLE) model, the intensity of soil erosion loss in the European part of Russia
could be estimated. An essential factor in the USLE model is the C-factor, a ratio comparing
soil loss from land, using a given crop, with the corresponding loss from fallow land. The
C-factor depends on the soil-conserving properties of the crop, which vary throughout the
season based on crop growth stages and agronomic practices [71,72]. The resulting crop
maps were used to calculate the C-factor for each month of a particular year from 2014 to
2019. A two-step process was used to estimate the C-factor. First, MODIS remote sensing
data for a given year were used to automatically identify the crops grown on the cropland.
Then, the C-factor in the pixels of the cropland on a given date was estimated based on the
values of the soil conservation coefficients of the identified crops and the dynamics of these
coefficients during the warm part of the year.

The average C-factor value for the European part of Russia was 0.401; for the forest
zone of the landscape, it was −0.262; for the forest-steppe zone, it was −0.362; and for the
steppe zone, it was −0.454. The obtained results correlate well with the results of previous
field studies, and they provide current (based on 2014–2019 data) C-factor estimates for
rainfall erosion (monthly, annual) with high spatial detail (250 m) [14].

This innovative approach to soil erosion estimation could provide valuable insights
into the complex interactions between crops, vegetation, and soil loss, and it has the poten-
tial to inform conservation management strategies and decision-making processes [73].

The intricacies of crop mapping and agricultural research are deeply intertwined with
the methodologies and tools employed [74]. Our study, focused on the European part
of Russia, has illuminated a spectrum of challenges and potential pathways for enhance-
ment. A primary constraint was the resolution limitation of the MODIS images, which, at
250 m [74], is suitable for regional analyses, but it falls short for detailed, large-scale studies.
Such a resolution might inadvertently overlook micro-level variations in crop patterns,
which are essential for nuanced agricultural decision-making.
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Another significant challenge was the absence of comprehensive field data, making
it difficult to verify the pixel-by-pixel accuracy of the classification [75]. Although our
findings show a commendable correlation with statistical data concerning cultivated areas,
such indirect measures cannot substitute the precision and authenticity of direct field
verification [76]. Additionally, the study’s methodology might not be adept at capturing
swift temporal changes, potentially missing out on insights into seasonal variations and
short-term agricultural shifts.

Regarding future research, there is a palpable need for integrating higher resolution
satellite images, like those from Landsat and Sentinel-2. Such images can offer a richer, more
detailed view of the landscape, capturing nuances that might have been previously missed.
Ground-truthing, or field verification, remains a cornerstone for remote sensing research,
and future endeavors in this domain should prioritize this aspect [75]. This ensures a
harmonious alignment between satellite-derived findings and on-ground realities.

The Asian part of Russia, with its rich agricultural heritage, presents a promising
avenue for future research [77]. Extending the methodologies and insights from this study
to that region can offer a comprehensive understanding of Russia’s agricultural dynamics.
Moreover, the rapid advancements in machine learning and artificial intelligence present
a plethora of opportunities. By integrating these techniques, we can refine classification
accuracy, anticipate future trends, and delve deeper into the socio-economic implications
of observed crop patterns. Collaborative research, involving farmers, agricultural ex-
perts, and regional authorities, can further enrich the study, offering a multi-dimensional
perspective [78].

In conclusion, although our study has charted significant progress in terms of un-
derstanding crop patterns in the European part of Russia, the road ahead is filled with
opportunities [76]. By addressing current limitations and leveraging advanced technolo-
gies and collaborative insights, we can set the stage for a more informed and sustainable
agricultural future [78].
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