# МОДЕЛИРОВАНИЕ МНОГОСЕКТОРНОГО ЗОНДА ИМПУЛЬСНОГО НЕЙТРОННОГО КАРОТАЖА ДЛЯ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ТРЕЩИНЫ ГРП

<u>Хамиев Маратович</u>, Косарев Виктор Евгеньевич, Гончарова Галина Сергеевна Казань, Институт геологии и нефтегазовых технологий Казанский (Приволжский) федеральный университет

#### Аннотация

Проведено численное моделирование многосекторного зонда импульсного нейтронного каротажа для определения пространственного положения трещины ГРП. Построены различные модели коллимации детекторов в зонде, проведена оценка качества коллимации. Предложены оптимальные конфигурации многосекторных зондов ИНК.

Ключевые слова: импульсный нейтронный каротаж (ИНК), замедление нейтронов, поглощение нейтронов, нейлон, капролон, кадмий, ГРП, коллимация.

# 1. Введение.

В современное время истощение крупных месторождений нефти и газа, вопрос разработки трудно-извлекаемых углеводородов стал очень актуален. Одним из ведущих, наиболее популярных и результативных методов добычи такого рода углеводородов стал гидроразрыв пласта (ГРП) — метод позволяющий извлекать сланцевый газ и многократно повысить дебит добывающих скважин. Технология осуществления ГРП при добычи нефти включает в себя закачку в скважину с помощью мощных насосных станций жидкости разрыва при давлениях выше давления разрыва нефтеносного пласта. Для поддержания трещины в открытом состоянии, как правило, в терригенных коллекторах используется расклинивающий агент — проппант. Несмотря на все свои преимущества, метод является дорогостоящим и требует тщательного контроля. В частности, когда неизвестен азимут трещины, необходимо производить перфорацию с плотностью 6 отверстий на фут и фазировкой 60°, когда определен азимут трещины, для улучшения качества ГРП может быть использовано направленное перфорирование (с фазировкой 180°).

В данной работе моделируется многосекторная аппаратура ИНК, позволяющая оценивать не только пористость пласта (интегральная аппаратура), но и определять пространственное положение трещины ГРП за счет использования нескольких (6) детекторов в ближнем и дальнем зондах. В состав аппаратуры импульсного нейтронного каротажа (ИНК) входит источник быстрых нейтронов (т.н. «генератор нейтронов») [1], а также набор тепловых детекторов, формирующих ближний (БЗ) и дальний (ДЗ) зонды [2]. Цикл измерения прибором ИНК включает процесс облучения породы потоком быстрых нейтронов, создаваемым генератором нейтронов, и регистрации количества тепловых нейтронов, достигших детекторов ближнего и дальнего зондов.

Целью данной работы является исследование зависимости вклада нейтронов приходящих из породы в показания детекторов от конструкции коллимации детекторов. В данной работе предложена эффективная модель коллиматора детекторов, позволяющая изолировать приходящий с соответствующего сектора породы сигнал (например трещины,

которая имеет отличный состав материала от породы) от сигнала из соседних секторов породы.

# 2. Моделирование многосекторной аппаратуры ИНК.

Построение физической модели ИНК не представлялось возможным в первую очередь вследствие высокой стоимости генератора нейтронов. Однако для подобных случаев в мировой практике широко распространен подход создания математических моделей и проведения численного моделирования. Для этого в настоящее время широко используются программные средства, использующие аппарат методов Монте-Карло ([3], [4] и др.). Процесс моделирования заключается в отслеживании положения каждой элементарной частицы (в данном случае – нейтрона), покинувшей источник, от ее «рождения» до исчезновения.

На рисунке 1 представлена математическая модель аппаратуры ИНК в скважине. Внешний диаметр прибора составляет 90мм, толщина стенки прибора (кожух) 6мм, аппаратура имеет ближний и дальний зонд с гелиевыми детекторами 20мм\*160мм, источник нейтронов находится на расстоянии 25 см от ближнего зонда, расстояние между источником и ближним детекторам, также как и между ближним и дальним детекторами заполнялось капролоном (нейлон). В данном случае рассматривается однородная горная порода (известняк) с вертикальной скважиной (d=216мм), обсадной металлической колонной (9мм), с цементированием за колонного пространства (35мм). Вода в скважине — не минерализованная. Горная порода пересечена вертикальной трещиной 10мм заполненной смесью проппанта и воды. Рассчитывались разный состав проппанта (с разным % содержания гадолиния).



Рис.1: Математическая модель аппаратуры ИНК в скважине с трещиной ГРП

На рисунке 2 представлены два случая пространственного положения трещины относительно зонда с 6-ю гелиевыми счетчиками (детекторами) и счет нейтронов до и после проведения ГРП. Рассматривался случай, а) когда хотя бы один детектор «смотрит» в трещину, и случай, б) когда все детекторы расположены под углом от трещины. Все основные элементы конструкции соответствуют реально существующим и используемым в геофизическом приборостроении. Количество детекторов (а именно 6) было продиктовано внутренним диаметром корпуса прибора, который в свою очередь выбран по рекомендациям конструкторов используемых в Татарстане зондов ИННК. Были проведены расчеты попадания нейтронов в детекторы для определения пространственной ориентации трещины. Как показано на рисунке 2в, график счета нейтронов для 6 детекторов имеет вид шестигранника. Там, где наименьшее количество нейтронов (вид «эллипса»)— там и трещина. Содержание гадолиния в проппанте 0.2% или 0.4% и под каким углом к трещине детектор особенно не влияет на интерпретацию - где трещина.



Рис.2: а) и б) Пространственное положение трещины относительно 6-детекторного зонда; в) Условный счет нейтронов на 6 детекторах до (линия 1) и после (линия 2) проведения ГРП.

# 3. Оценка качества коллиматора детектора.

Основной задачей данного исследования являлось нахождение оптимальной (информативной) коллимации конструкции детекторов зонда для обеспечения приема нейтронов на детектор с определенного сектора породы. На рисунке 3 представлены траектории движения нейтронов в зонде. Очевидно, что быть ОДИН TOT же нейтрон может зарегистрирован В нескольких детекторах.



Рис.3: Движение нейтронов в области детекторов.

Такая регистрация нейтронов в детекторах может привести к возникновению существенных погрешностей в оценке пространственного положения трещины ГРП. Поэтому была создана модель установки оценки качества коллимации детекторов (рисунок 4).

На рисунке 4 представлена модель, которая состоит из породы известняка Кп=0.05 с источником (по центру) быстрых нейтронов, один детектор (из 6) был повернут в сторону породы. Нейтроны поступить в зонд и на детекторы могут только из породы (все остальное пространство – это черная дыра, в которой нейтроны не регистрируются).



Рис.4:Модель установки оценки качества коллимации детекторов.

Уменьшение количества «прямых» нейтронов способствует добавление между детекторами слоя вещества, обладающего высоким сечением захвата тепловых нейтронов. Использование вещества с аномально высоким сечением захвата нейтронов позволяет минимизировать количество нейтронов в районе детектора, тем самым существенно сократив поток «прямых» нейтронов. Конструктивно в аппаратуре ИНК подобные вещества-поглотители помещают в виде пластины малой толщины. В качестве материалов при создании модели коллиматора использовались следующие материалы:

- капролон (нейлон), вещество с высоким водородосодержанием, обеспечивающее замедление быстрых нейтронов до тепловых, выдерживающий широкий диапазон температур. Капролон прост и технологичен в обработке, уже зарекомендовал себя в геофизике как качественная нейтронная защита;

-кадмий, относительно недорогой металл, обеспечивающий практически полное поглощение тепловых нейтронов. Также прост и технологичен в обработке.

На рисунке 4 каждый детектор в зонде был огражден кадмиевой пластиной, по центру зонда проходил нейлоновый стержень. Расчеты показали, что если количество нейтронов, регистрировавшихся в «основном» (направленный в породу) детекторе считать за 100%, то количество нейтронов, пришедших на «соседние» детекторы составляет 1.3%.

На рисунке 5 представлены другие конфигурации изоляции детекторов друг от друга в зонде. Как видно из рисунков, самой оптимальной коллимацией является модель 3 (описанная выше). Детекторы в зонде с такой конфигурацией при определении пространственного положения трещины ГРП покажут наиболее точный результат.



Рис.5: Конфигурации изоляции детекторов друг от друга.

### 4. Заключение.

Численные расчеты подтвердили принципиальную возможность определения многосекторной аппаратурой импульсного нейтронного каротажа пространственного положения трещины ГРП, что не может делать интегральная аппаратура ИНК. Предложена конфигурация коллимации детекторов в многосекторной аппаратуре ИНК. Показано, что кадмиевые пластины-перегородки необходимы для изоляции друг от друга детекторов в зонде для получения информативного сигнала.

# Литература

- 1. Генератор нейтронов 14.1 МэВ (ДТ) // GRADEL URL: <a href="http://gradel.lu/en/activities/neutrons-generators/products/14-1-mev-neutrons-dt/">http://gradel.lu/en/activities/neutrons-generators/products/14-1-mev-neutrons-dt/</a> (дата обращения: 26.03.2015).
- 2. Аппаратура импульсного нейтронного каротажа // Официальный сайт ВНИИА URL: <a href="http://www.vniia.ru/ng/karotazh.html">http://www.vniia.ru/ng/karotazh.html</a> (дата обращения: 26.03.2015).
- 3. Geant4 URL: http://geant4.web.cern.ch/geant4/ (дата обращения: 26.03.2015).
- 4. Monte Carlo Code Group // Los Alamos National Laboratory URL: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml (дата обращения: 26.03.2015).