МОДЕЛИРОВАНИЕ МНОГОСЕКТОРНОГО ЗОНДА ИМПУЛЬСНОГО НЕЙТРОННОГО КАРОТАЖА ДЛЯ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ТРЕЩИНЫ ГРП
 Хамиев Марсель Маратович, Косарев Виктор Евгеньевич, Гончарова Галина Сергеевна
 Казань, Институт геологии и нефтегазовых технологий
 Казанский (Приволжсккий) федеральный университет

Abstract

Аннотация

Проведено численное моделирование многосекторного зонда импульсного нейтронного каротажа для определения пространственного положения трещины ГРП. Построены различные модели коллимации детекторов в зонде, проведена оценка качества коллимации. Предложены оптимальные конфигурации многосекторных зондов ИНК.

Ключевые слова: импульсный нейтронный каротаж (ИНК), замедление нейтронов, поглощение нейтронов, нейлон, капролон, кадмий, ГРП, коллимация.

1. Введение.

В современное время истощение крупных месторождений нефти и газа, вопрос разработки трудно-извлекаемых углеводородов стал очень актуален. Одним из ведущих, наиболее популярных и результативных методов добычи такого рода углеводородов стал гидроразрыв пласта (ГРП) - метод позволяющий извлекать сланцевый газ и многократно повысить дебит добывающих скважин. Технология осуществления ГРП при добычи нефти включает в себя закачку в скважину с помощью мощных насосных станций жидкости разрыва при давлениях выше давления разрыва нефтеносного пласта. Для поддержания трещины в открытом состоянии, как правило, в терригенных коллекторах используется расклинивающий агент - проппант. Несмотря на все свои преимущества, метод является дорогостоящим и требует тщательного контроля. В частности, когда неизвестен азимут трещины, необходимо производить перфорацию с плотностью 6 отверстий на фут и фазировкой 60°, когда определен азимут трещины, для улучшения качества ГРП может быть использовано направленное перфорирование (с фазировкой 180°).

В данной работе моделируется многосекторная аппаратура ИНК, позволяющая оценивать не только пористость пласта (интегральная аппаратура), но и определять пространственное положение трещины ГРП за счет использования нескольких (6) детекторов в ближнем и дальнем зондах. В состав аппаратуры импульсного нейтронного каротажа (ИНК) входит источник быстрых нейтронов (т.н. «генератор нейтронов») [1], а также набор тепловых детекторов, формирующих ближний (БЗ) и дальний (ДЗ) зонды [2]. Цикл измерения прибором ИНК включает процесс облучения породы потоком быстрых нейтронов, создаваемым генератором нейтронов, и регистрации количества тепловых нейтронов, достигших детекторов ближнего и дальнего зондов.

Целью данной работы является исследование зависимости вклада нейтронов приходящих из породы в показания детекторов от конструкции коллимации детекторов. В данной работе предложена эффективная модель коллиматора детекторов, позволяющая изолировать приходящий с соответствующего сектора породы сигнал (например трещины,

которая имеет отличный состав материала от породы) от сигнала из соседних секторов породы.

2. Моделирование многосекторной аппаратуры ИНК.

Построение физической модели ИНК не представлялось возможным в первую очередь вследствие высокой стоимости генератора нейтронов. Однако для подобных случаев в мировой практике широко распространен подход создания математических моделей и проведения численного моделирования. Для этого в настоящее время широко используются программные средства, использующие аппарат методов Монте-Карло ([3], [4] и др.). Процесс моделирования заключается в отслеживании положения каждой элементарной частицы (в данном случае - нейтрона), покинувшей источник, от ее «рождения» до исчезновения.

На рисунке 1 представлена математическая модель аппаратуры ИНК в скважине. Внешний диаметр прибора составляет 90мм, толщина стенки прибора (кожух) 6мм, аппаратура имеет ближний и дальний зонд с гелиевыми детекторами 20 мм* 160 мм, источник нейтронов находится на расстоянии 25 см от ближнего зонда, расстояние между источником и ближним детекторам, также как и между ближним и дальним детекторами заполнялось капролоном (нейлон). В данном случае рассматривается однородная горная порода (известняк) с вертикальной скважиной ($\mathrm{d}=216 \mathrm{mм}$), обсадной металлической колонной (9мм), с цементированием за колонного пространства (35мм). Вода в скважине - не минерализованная. Горная порода пересечена вертикальной трещиной 10 мм заполненной смесью проппанта и воды. Рассчитывались разный состав проппанта (с разным \% содержания гадолиния).

Рис.1: Математическая модель аппаратуры ИНК в скважине с трещиной ГРП

На рисунке 2 представлены два случая пространственного положения трещины относительно зонда с 6 -ю гелиевыми счетчиками (детекторами) и счет нейтронов до и после проведения ГРП. Рассматривался случай, а) когда хотя бы один детектор «смотрит» в трещину, и случай, б) когда все детекторы расположены под углом от трещины. Bce основные элементы конструкции соответствуют реально существующим и используемым в геофизическом приборостроении. Количество детекторов (а именно 6) было продиктовано внутренним диаметром корпуса прибора, который в свою очередь выбран по рекомендациям конструкторов используемых в Татарстане зондов ИННК. Были проведены расчеты попадания нейтронов в детекторы для определения пространственной ориентации трещины. Как показано на рисунке 2 в, график счета нейтронов для 6 детекторов имеет вид шестигранника. Там, где наименьшее количество нейтронов (вид «эллипса»)- там и трещина. Содержание гадолиния в проппанте 0.2% или 0.4% и под каким углом к трещине детектор особенно не влияет на интерпретацию - где трещина.

Рис.2: а) и б) Пространственное положение трещины относительно 6-детекторного зонда; в) Условный счет нейтронов на 6 детекторах до (линия 1) и после (линия 2) проведения ГРП.

3. Оценка качества коллиматора детектора.

Такая регистрация нейтронов в детекторах может привести к возникновению существенных погрешностей в оценке пространственного положения трещины ГРП. Поэтому была создана модель установки оценки качества коллимации детекторов (рисунок 4).

На рисунке 4 представлена модель, которая состоит из породы известняка Кп $=0.05$ с источником (по центру) быстрых нейтронов, один детектор (из 6) был повернут в сторону породы. Нейтроны поступить в зонд и на детекторы могут только из породы (все остальное пространство - это черная дыра, в которой нейтроны не регистрируются).

Рис.4:Модель установки оценки качества коллимации детекторов.

Уменьшение количества «прямых» нейтронов способствует добавление между детекторами слоя вещества, обладающего высоким сечением захвата тепловых нейтронов. Использование вещества с аномально высоким сечением захвата нейтронов позволяет минимизировать количество нейтронов в районе детектора, тем самым существенно сократив поток «прямых» нейтронов. Конструктивно в аппаратуре ИНК подобные веществапоглотители помещают в виде пластины малой толщины. В качестве материалов при создании модели коллиматора использовались следующие материалы:

- капролон (нейлон), вещество с высоким водородосодержанием, обеспечивающее замедление быстрых нейтронов до тепловых, выдерживающий широкий диапазон температур. Капролон прост и технологичен в обработке, уже зарекомендовал себя в геофизике как качественная нейтронная защита;
-кадмий, относительно недорогой металл, обеспечивающий практически полное поглощение тепловых нейтронов. Также прост и технологичен в обработке.

На рисунке 4 каждый детектор в зонде был огражден кадмиевой пластиной, по центру зонда проходил нейлоновый стержень. Расчеты показали, что если количество нейтронов, регистрировавшихся в «основном» (направленный в породу) детекторе считать за 100%, то количество нейтронов, пришедших на «соседние» детекторы составляет 1.3%.

На рисунке 5 представлены другие конфигурации изоляции детекторов друг от друга в зонде. Как видно из рисунков, самой оптимальной коллимацией является модель 3 (описанная выше). Детекторы в зонде с такой конфигурацией при определении пространственного положения трещины ГРП покажут наиболее точный результат.

Рис.5: Конфигурации изоляции детекторов друг от друга.

4. Заключение.

Численные расчеты подтвердили принципиальную возможность определения многосекторной аппаратурой импульсного нейтронного каротажа пространственного положения трещины ГРП, что не может делать интегральная аппаратура ИНК. Предложена конфигурация коллимации детекторов в многосекторной аппаратуре ИНК. Показано, что кадмиевые пластины-перегородки необходимы для изоляции друг от друга детекторов в зонде для получения информативного сигнала.

Литература

1. Генератор нейтронов 14.1 МэВ (ДТ) // GRADEL URL: http://gradel.lu/en/activities/neutrons-generators/products/14-1-mev-neutrons-dt/ (дата обращения: 26.03.2015).
2. Аппаратура импульсного нейтронного каротажа // Официальный сайт BHИИA URL: http://www.vniia.ru/ng/karotazh.html (дата обращения: 26.03.2015).
3. Geant4 URL: http://geant4.web.cern.ch/geant4/ (дата обращения: 26.03.2015).
4. Monte Carlo Code Group // Los Alamos National Laboratory URL: https://laws.lanl.gov/vhosts/menp.lanl.gov/index.shtml (дата обращения: 26.03.2015).
