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Abstract

The problem of forced oscillations of an elastic strip containing a
longitudinal crack of a finite length is considered. The diffraction prob-
lem is reduced to the system of paired integral equations. The system
of integral equations is reduced to the system of linear algebraic equa-
tions by using the Galerkin method. Singularities of integrand func-
tions, through which coefficients of the system matrix are calculated,
are determined.
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1 Introduction

Problems of diffraction by cracks in layers arise in various applications. For
example, such problems arise in non-destructive testing of pipes. Similar prob-
lems often are reduced to the solving of the hyper singular integral equations.
The detailed review of these methods is carried out in [1]. In our work, the
method which reduces the initial problem to a system of the pair integral
equations defined on an infinite interval is offered.
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The obtained system of the pair integral equations is reduced by the Galerkin
method to system of linear algebraic equations. The Hermitian functions are
chosen as basic functions.

Boundary conditions in our work represent the set of displacements on
border. It corresponds the enclosed oscillations to a layer wall. Note that often
boundary conditions can be conditions of the third type. Such conditions arise
in problems of diffraction of an elastic wave by the layers of various structure
both for a normal incidence [2], and for the incidence under any angle [3], [4].

Coefficients of a matrix of system are expressed through integrals of func-
tions which contain singularities. Singularities of each integrand function are
marked out.

2 Statement of the problem

The Cartesian coordinate is chosen in such way that walls of the strip coincide
with straight lines y = 0 and y = H2. The straight line y = H1 conditionally
splits the strip of density ρ, longitudinal velocity vP and transverse velocity vS
into two parts. The crack’s location is on this straight line at x ∈ (0, L). It is
assumed that the crack edges oscillate freely. A material of the strip is assumed
to be homogeneous and isotropic. A source of the oscillations is assumed to
be located on the upper boundary of the layer at y = 0: ux(x, 0) = u0x(x)
and uy(x, 0) = u0y(x). The lower boundary is assumed to be a free boundary:
σy(x,H2) = 0, τ(x,H2) = 0. It is required to find a scattered field.
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Figure 1. The elastic strip with a longitudinal crack.

Mathematical formulation of the problem of diffraction of the elastic wave
by a longitudinal crack located inside the strip is the following: it is required to
find a solution to the system of equations from the dynamic theory of elasticity
satisfying the boundary conditions and the condition at the crack. The system
of equations from the dynamic theory of elasticity has the form

∂σx
∂x

+
∂τ

∂y
+ ρω2ux = 0,

∂τ

∂x
+
∂σy
∂y

+ ρω2uy = 0,
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σx = (λ+ 2µ)
∂ux
∂x

+ λ
∂uy
∂y

, σy = λ
∂ux
∂x

+ (λ+ 2µ)
∂uy
∂y

, (1)

τ = µ

(
∂ux
∂y

+
∂uy
∂x

)
.

The boundary conditions at the strip edges have the form

ux(x, 0) = u0x(x), uy(x, 0) = u0y(x),

σy(x,H2) = 0, τ(x,H2) = 0,
(2)

the boundary conditions at the crack have the form

σy(x,H1) = 0, τ(x,H1) = 0, x ∈ (0, L), (3)

and the the boundary conditions on the outside of the crack at x /∈ (0, L) in
the following form:

ux(x,H1 − 0) = ux(x,H1 + 0),

uy(x,H1 − 0) = uy(x,H1 + 0),

σy(x,H1 − 0) = σy(x,H1 + 0),

τ(x,H1 − 0) = τ(x,H1 + 0).

(4)

3 Reducing the system to the system of paired

integral equations

After the Fourier transformation (or with the account for dependence of the
functions to find on the x coordinate), the general solution to system (1) takes
the form [5]:

ux(ξ, y) = −eiyγ1ξA1(ξ) + e−iyγ1ξB1(ξ) + eiyγ2γ2C1(ξ) + e−iyγ2γ2D1(ξ),

uy(ξ, y) = eiyγ1γ1A1(ξ) + e−iyγ1γ1B1(ξ) + eiyγ2ξC1(ξ) − e−iyγ2ξD1(ξ),

σy(ξ, y) = i
(
eiyγ1(ρω2 − 2µξ2)A1(ξ) − e−iyγ1(ρω2 − 2µξ2)B1(ξ)+

+2eiyγ2µξγ2C1(ξ) + 2e−iyγ2µξγ2D1(ξ)
)
,

τ(ξ, y) = −i
(
2eiyγ1µξγ1A1(ξ) + 2e−iyγ1µξγ1B1(ξ) −

−eiyγ2(ρω2 − 2µξ2)C1(ξ) + e−iyγ2(ρω2 − 2µξ2)D1(ξ)
)
,
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where γj = γj(ξ) =
√
k2j − ξ2, j = 1, 2 (kj is a wave number) and A(ξ), B(ξ),

C(ξ), D(ξ) are arbitrary functions.
Using the boundary conditions and the condition of continuity of stresses

σy and τ at y = H1, the arbitrary functions B(ξ), C(ξ), D(ξ) can be expressed
through A(ξ) in the upper and lower parts of the strip. The obtained expres-
sions can be substituted into the conditions at the crack as well as into the
condition of continuity of displacements ux and uy at y = H1. The inverse
Fourier transformation gives a system of paired integral equations.

Theorem 1. The problem of diffraction by a longitudinal crack of width L
(1)–(4) is reduced to the system of paired integral equations with amplitudes
A1(ξ) and A2(ξ) being unknown functions:

+∞∫
−∞

A1(ξ)K1j(ξ)e
−iξxdξ +

+∞∫
−∞

A2(ξ)K2j(ξ)e
−iξxdξ =

=

+∞∫
−∞

fj(ξ)e
−iξxdξ, x /∈ (0, L), j = 1, 2, (5)

+∞∫
−∞

A1(ξ)K1j(ξ)e
−iξxdξ +

+∞∫
−∞

A2(ξ)K2j(ξ)e
−iξxdξ =

=

+∞∫
−∞

fj(ξ)e
−iξxdξ, x ∈ (0, L), j = 3, 4, (6)

where Kij(ξ) and fj(ξ) are some known functions.

4 Reducing the system of paired integral equa-

tions to the system of linear equations

For solving the system of integral equations (5), (6), the Galerkin method can
be used with the scalar product defined by an integral along the entire axis.

The functions hn(x) = Hn(x)e−x
2/2 are basis functions, where Hn(x) are

the Hermitian polynomials. The chosen system of functions is orthogonal

+∞∫
−∞

hm(x)hn(x)dx =

+∞∫
−∞

Hm(x)Hn(x)e−x
2

dx =
√
π2nn!δmn,
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where δmn is the Kronecker delta.
The required functions of paired integral equations will be sought in the

following form:

A1(ξ) ≈
N∑
n=0

Bnhn(ξ), A2(ξ) ≈
N∑
n=0

Cnhn(ξ). (7)

The representations (7) for the unknown functions can be substituted into
the first equation of the system of paired integral equations (5),(6) and multi-
plied scalarly by hm(x):

N∑
n=0

Bn

+∞∫
−∞

hn(ξ)

 0∫
−∞

K11(ξ)e
−iξxhm(x)dx +

+∞∫
L

K11(ξ)e
−iξxhm(x)dx+

+

L∫
0

K13(ξ)e
−iξxhm(x)dx

 dξ+
+

N∑
n=0

Cn

+∞∫
−∞

hn(ξ)

 0∫
−∞

K21(ξ)e
−iξxhm(x)dx +

+∞∫
L

K21(ξ)e
−iξxhm(x)dx+

+

L∫
0

K23(ξ)e
−iξxhm(x)dx

 dξ =

=

0∫
−∞

+∞∫
−∞

f1(ξ)e
−iξxdξhm(x)dx+

+∞∫
L

+∞∫
−∞

f1(ξ)e
−iξxdξhm(x)dx+

+

L∫
0

+∞∫
−∞

f3(ξ)e
−iξxdξhm(x)dx, m = 0..N.

The obtained linear equations for m = 0..N are transformed to the following
form:

N∑
n=0

Bn

 +∞∫
−∞

+∞∫
−∞

K11(ξ)e
−iξxhm(x)dxhn(ξ)dξ +

+

L∫
0

+∞∫
−∞

(K13(ξ)−K11(ξ)) e
−iξxhm(x)hn(ξ)dξdx

+
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+
N∑
n=0

Cn

 +∞∫
−∞

+∞∫
−∞

K21(ξ)e
−iξxhm(x)dxhn(ξ)dξ +

+

L∫
0

+∞∫
−∞

(K23(ξ)−K21(ξ)) e
−iξxhm(x)hn(ξ)dξdx

 =

=

+∞∫
−∞

+∞∫
−∞

f1(ξ)e
−iξxdξhm(x)dx+

L∫
0

+∞∫
−∞

(f3(ξ)− f1(ξ)) e−iξxdξhm(x)dx.

Note that the Hermitian polynomials, obviously, are eigen functions of the
Fourier transformation:

+∞∫
−∞

hm(x)e−iξxdx =
√

2πimhm(ξ).

Thus, a system of linear algebraic equations is obtained.

Theorem 2. The problem of diffraction by a longitudinal crack is reduced to
the system of linear equations for m = 0..N

N∑
n=0

Bna
(1)
mn +

N∑
n=0

Cna
(2)
mn = c(1)mn,

N∑
n=0

Bnb
(1)
mn +

N∑
n=0

Cnb
(2)
mn = c(2)mn,

(8)

where

a(j)mn =
√

2πim
+∞∫
−∞

Kj1(ξ)hm(ξ)hn(ξ)dξ+

+

L∫
0

+∞∫
−∞

(Kj3(ξ)−Kj1(ξ)) e
−iξxhm(x)hn(ξ)dξdx,

b(j)mn =
√

2πim
+∞∫
−∞

Kj2(ξ)hm(ξ)hn(ξ)dξ+

+

L∫
0

+∞∫
−∞

(Kj4(ξ)−Kj2(ξ)) e
−iξxhm(x)hn(ξ)dξdx,
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c(j)mn =
√

2πim
+∞∫
−∞

fj(ξ)hm(ξ)dξ+

+

L∫
0

+∞∫
−∞

(fj+2(ξ)− fj(ξ)) e−iξxdξhm(x)dx.

5 Peculiarities of integrand functions

Coefficients of a matrix of system (8) are calculated as integrals from functions
which contain singularities. All singularities are singularities of the first order
and are contained in functions Kij(ξ).

K11(ξ) =
Q11(ξ)

ξZ(ξ)
+
P11(ξ)

Z(ξ)
+
R11(ξ)

ξ
+ S11(ξ),

K21(ξ) =
Q21(ξ)

ξZ(ξ)
+
P21(ξ)

Z(ξ)
+
R21(ξ)

ξ
,

K12(ξ) =
P21(ξ)

Z(ξ)
+ S12(ξ), K22(ξ) =

P22(ξ)

Z(ξ)
+ S22(ξ),

K13(ξ) =
Q13(ξ)

ξZ(ξ)
+
R13(ξ)

ξ
− S13(ξ), K23(ξ) =

Q23(ξ)

ξZ(ξ)
,

K14(ξ) =
P14(ξ)

Z(ξ)
+ S14(ξ), K24(ξ) =

P24(ξ)

Z(ξ)
,

where functions Qij(ξ), Pij(ξ), Rij(ξ) and Sij(ξ) are some continuous functions.
Function Z(ξ) has two zeros: ξ = ±ξ∗. Thus, all Kij(ξ) have a singularity

at ξ = ±ξ∗. Functions K11(ξ), K13(ξ), K21(ξ) and K23(ξ) have singularities at
ξ = 0 also.

Singularities at zero, in difference from case ξ = ±ξ∗ can be found an-
alytically. For example, the function K11(ξ) has the singularity of the first
order:

lim
ξ→0

ξK11(ξ) = (k22 cos k1H1 cos k2H2)×

×
(
eik1(H2−H1) cos k2H1 − cos k2H2

−i

√
λ+ 2µ

4µ
e−ik1H1 sin k2(H2 −H1)

)−1

It should be noted that all integrals containing functions Kij(ξ) exist. It is
necessary to calculate the integrals accurately considering their singularities.
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6 Conclusions

The problem of diffraction of an elastic wave by the longitudinal crack in a
layer is reduced to system of the linear algebraic equations. It is shown that
coefficients of a matrix of system are calculated as integrals of functions with
one or three features. These features are marked out.
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