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Abstract—In year 2006 the author proposed an approach to the invariant subspace problem for
an operator on a Hilbert space, based on projection-convex combinations in C∗-algebras with the
unitary factorization property. In this paper, we present an operator inequality characterizing the
invariant subspace of such an operator. Eight corollaries are obtained. For an operator C∗-algebra
A with a faithful trace, we give a sufficient condition of commutation for a partial isometry from A
with a projection onto its invariant subspace.
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1. INTRODUCTION

In [1, 2] we proposed an approach to the invariant subspace problem for an operator on a Hilbert
space, based on projection-convex combinations in C∗-algebras with the unitary factorization property.
In this paper, we present an operator inequality characterizing the invariant subspace of such an operator
(Theorem 1). From Theorem 1, eight corollaries are obtained.

Let H be a Hilbert space over the field C, and let B(H) be the ∗-algebra of all bounded linear operators
on H. Let ϕ be a faithful trace on a C∗-algebra A ⊂ B(H), and let a partial isometry U and a projection
P of A be such that PU∗UP ≥ PUU∗P , ϕ(P ) < +∞ and PH is an invariant subspace of the operator
U . Then UP = PU (Theorem 2). It is a generalization of Theorem 4.1 of [3]. Let a Hermitian operator
A ∈ B(H) and a projection P ∈ B(H) be such that i[A,P ] ≥ λ|A|+ μP for some numbers λ ∈ R

+,
μ ∈ R, moreover, λ = 0 ⇔ μ = 0. Then [A,P ] = 0 (Theorem 3).

2. NOTATION AND DEFINITIONS

A C∗-algebra is a complex Banach ∗-algebra A such that ||A∗A|| = ||A||2 for all A ∈ A. For a C∗-
algebra A, by Apr, Aid, Asa, and A+ we denote the subsets of projections (A = A2 = A∗), idempotents
(A = A2), Hermitian elements (A∗ = A), and positive elements of A, respectively. If A ∈ A, then |A| =√
A∗A ∈ A+. If A ∈ Asa, then A+ = (|A| +A)/2 and A− = (|A| −A)/2 lie in A+ and A = A+ −A−,

A+A− = 0. If I is the unit of an algebra A and P ∈ Aid, then P⊥ = I − P ∈ Aid. By [A,B] we denote
the commutator of elements A and B of A, i.e. the element AB −BA.

By trace on a C∗-algebra we mean a mapping ϕ : A+ → [0,+∞] such that

ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X,Y ∈ A+, λ ≥ 0

(here 0 · (+∞) ≡ 0), and

ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ A.
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A trace ϕ is said to be faithful, if ϕ(X) = 0 (X ∈ A+) ⇒ X = 0.
Let H be a Hilbert space over the field C, and let B(H) be the ∗-algebra of all bounded linear

operators on H. Any C∗-algebra can be realized as a C∗-subalgebra in B(H) for some Hilbert space
H (Gelfand–Naimark theorem; see Theorem 3.4.1 in [4]). An operator A ∈ B(H) is called hyponormal
if A∗A ≥ AA∗; an isometry if A∗A = I; a partial isometry if A∗A is a projection.

Definition. The subspace K ⊂ H is invariant under the operator A ∈ B(H) if Aξ ∈ K for every
ξ ∈ K.

3. MAIN RESULTS

Theorem 1. Let P ∈ B(H)id and A ∈ B(H).
(i) If PH is an invariant subspace of an operator A then APP ∗A∗ ≤ ||AP ||2PP ∗ ≤

||A||2||P ||2PP ∗.
(ii) If APP ∗A∗ ≤ cPP ∗ for some number c > 0 then PH is an invariant subspace of an

operator A.
Proof. It is well known that the subspace PH is invariant under the operator A ∈ B(H) if and only if

AP = PAP [5, Chap. 0, Theorem 0.1].
(i). Since P ∗A∗ = (AP )∗ = (PAP )∗ = P ∗A∗P ∗ and APP ∗A∗ ≤ ||AP ||2I, ||AP || ≤ ||A||||P ||, we

have

APP ∗A∗ = PAP · P ∗A∗P ∗ = P ·APP ∗A∗ · P ∗ ≤ P · ||AP ||2I · P ∗

= ||AP ||2PP ∗ ≤ ||A||2||P ||2PP ∗.

(ii). Multiply both sides of the relation APP ∗A∗ ≤ cPP ∗ by the idempotent P⊥ from the left and by
the idempotent P⊥∗ from the right. Then 0 = P⊥APP ∗A∗P⊥∗ = |P ∗A∗P ∗⊥|2. Hence |P ∗A∗P ∗⊥| = 0

and P ∗A∗P ∗⊥ = 0. Thus P ∗A∗ = P ∗A∗P ∗ and AP = (P ∗A∗)∗ = (P ∗A∗P ∗)∗ = PAP , i.e. PH is an
invariant subspace of the operator A. �

Corollary 1. For A ∈ B(H) and P ∈ B(H)pr the following conditions are equivalent:
(i) AP = PAP , i.e. PH is an invariant subspace of the operator A;
(ii) APA∗ ≤ ||A||2P .
Corollary 2. For A ∈ B(H)sa and P ∈ B(H)pr the following conditions are equivalent:
(i) [A,P ] = 0;
(ii) APA ≤ ||A||2P .
Corollary 3 ([6, Chap. 2, item 217]). If B ∈ B(H)+, P ∈ B(H)pr and B ≤ P , then [B,P ] = 0.

Proof. If A ∈ B(H)+ and
A

||A|| =
√
B, then A2 ≤ ||A||2P . Since APA ≤ AIA = A2, we have

APA ≤ ||A||2P . �

Corollary 4. Let A ∈ B(H) be such that ||A|| ≤ 1, P ∈ B(H)pr and AP⊥A∗ ≥ P⊥. Then PH is
an invariant subspace of the operator A.

Proof. We have

I − P = P⊥ ≤ AP⊥A∗ = AA∗ −APA∗ ≤ I −APA∗,

i.e. APA∗ ≤ P . �

Corollary 5. Let A ∈ B(H) be such that ||A|| = 1, P ∈ B(H)pr and APA∗ = P . Then PH and
P⊥H are invariant subspaces of the operator A, i.e. AP = PA.

Corollary 6. Let P,Q ∈ B(H)pr be such that PH is an invariant subspace of an operator A ∈
B(H) and QAPA∗Q ≥ λAQA∗ for some number λ > 0. Then QH is also an invariant subspace of
the operator A.

Proof. Since QPQ ≤ Q and APA∗ ≤ ||A||2P , we have

||A||2Q ≥ ||A||2QPQ ≥ QAPA∗Q ≥ λAQA∗,
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i.e. AQA∗ ≤ λ−1||A||2Q. �

Corollary 7. Let P,Q ∈ B(H)pr and PH be an invariant subspace of an operator A ∈ B(H).
(i) We have APA∗ ≤ A∗PA+ ||A||2 I −A∗A.
(ii) If the operator T = PA∗Q is hyponormal then QH is an invariant subspace of the operator

AP .
Proof. (i). We have APA∗ ≤ ||A||2P by Theorem 1. Since ||A∗|| = ||A|| and P⊥H is an invariant

subspace of the operator A∗, we have A∗P⊥A ≤ ||A||2P⊥ by Theorem 1. Summing up these two
inequalities term by term, we obtain

APA∗ +A∗P⊥A = APA∗ +A∗A−A∗PA ≤ ||A||2 I.

(ii). Both sides of the relation APA∗ ≤ ||A||2P multiplication by the projection Q from the left and
the right, given inequalities TT ∗ ≤ T ∗T and QPQ ≤ Q, allows us to obtain

PA∗QAP = TT ∗ ≤ T ∗T = QAPA∗Q ≤ ||A||2QPQ ≤ ||A||2Q.

The asserion is proved. �

Corollary 8. Let P ∈ B(H)pr and PH be an invariant subspace of an isometry A ∈ B(H). Then
APA∗ ≤ P ≤ A∗PA.

Theorem 2 (cf. [3, Theorem 4.1]). Let ϕ be a faithful trace on a C∗-algebra A ⊂ B(H), and a
partial isometry U and a projection P of A be such that PU∗UP ≥ PUU∗P , ϕ(P ) < +∞ and PH
be an invariant subspace of an operator U . Then UP = PU .

Proof. Since ||U || = 1, we have UPU∗ ≤ P by Theorem 1. Both sides of these relation multiplica-
tion by the projection UU∗ from the left and the right, given equality UU∗U = U [7, Problem 98], allows
us to obtain

UPU∗ ≤ UU∗ P UU∗. (1)

Since PU∗UP ≥ PUU∗P and UU∗ is a projection, from (1) we have

ϕ(PU∗UP ) = ϕ(UPU∗) ≤ ϕ(UU∗PUU∗) = ϕ(P (UU∗)2P ) = ϕ(PUU∗P ) ≤ ϕ(PU∗UP )

by the monotonocity of the trace ϕ on A+. Thus, ϕ(PUU∗P ) = ϕ(PU∗UP ) and since the trace ϕ is
faithful, we have

PU∗UP = PUU∗P. (2)

Both sides of the relation UPU∗ ≤ P multiplication by U∗ from the left and and by U from the right,
leads us to the inequality U∗UPU∗U ≤ U∗PU . Since Q = U∗U is a projection, by the monotonocity of
the trace ϕ on A+ and by (2) we obtain

ϕ(PU∗UP ) = ϕ(U∗UPU∗U) ≤ ϕ(U∗PU) = ϕ(PUU∗P ) = ϕ(PU∗UP ).

Therefore, ϕ(U∗UPU∗U) = ϕ(U∗PU) and

U∗UPU∗U = U∗PU, (3)

since the trace ϕ is faithful. Relation (3) multiplication by projection P from the left and and the
right-hand sides, given equality UP = PUP , provides us with the identity (PU∗UP )2 = PU∗PUP =
PU∗UP , i.e. the operator PU∗UP = PUU∗P is a projection. Therefore, the operator PU is a partial
isometry, hence the operator U∗PU is a projection. Now from (3) we infer that the product QPQ
of the projections P and Q is a projection. Thus, PQ = QP by [8, Proposition 2]. (The equality
PQ = QP follows also from Corollary 5.) From (3) we have PU∗U = U∗UPU∗U = U∗PU , and given
equality PU∗ = PU∗P we obtain PU∗PU = U∗PU . The last equality is equivalent to the inequality
U∗PU ≤ P . So, since ||U∗|| = 1, we have U∗P = PU∗P by Theorem 1. Passing to adjoints here, we
obtain PU = (U∗P )∗ = (PU∗P )∗ = PUP = UP . �

In particular, if an isometry U ∈ B(H) and PH is a finite-dimensional invariant subspace of an
operator U , then PU = UP .

Theorem 3. Let A ∈ B(H)sa and P ∈ B(H)pr be such that

i[A,P ] ≥ λ|A|+ μP (4)
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for some numbers λ ∈ R
+, μ ∈ R, moreover λ = 0 ⇔ μ = 0. Then [A,P ] = 0 and for λ > 0 we have

A+ = A+P = PA+ and |A| ≤ −μ
λP .

Proof. If λ = μ = 0, then we have AP = PA by Proposition 4.2 of [3]. For λ > 0 relation (4)
multiplication by projection P⊥ from the left and and the right-hand sides, leads us to

0 = P⊥ · i(AP − PA) · P⊥ ≥ λP⊥|A|P⊥ ≥ 0.

Therefore, λP⊥|A|P⊥ = 0 and P⊥|A|P⊥ = P⊥A+P
⊥ +P⊥A−P⊥ = 0. Since P⊥A+P

⊥ ≥ 0, we have
P⊥A+P

⊥ = P⊥A−P⊥ = 0. We have

P⊥A+P
⊥ = |

√
A+P

⊥|2 = 0

and
√
A+P

⊥ = 0, hence A+P
⊥ =

√
A+ ·

√
A+P

⊥ = 0. Now A+ = A+P = PA+, A = AP = PA и
|A| = |A|P = P |A|. From (4) we obtain 0 ≥ λ|A|+ μP , i.e. μ < 0 and |A| ≤ −μ

λP .

For an operator A ≥ 0 we have [A,P ] = 0 ⇔ i[A,P ] ≤ a(AP + PA) for some a ∈ R
+. Indeed, if

A ≥ 0 and AP = PA, then AP + PA = 2PAP ≥ 0. Conversely, if a = 0, then by Proposition 4.2 of [3]
we have AP = PA. For a > 0 we apply the proof of the implication (iv)⇒(i) of Proposition 2 of [8], that
featured the projector Q instead of the operator A. �

Let A be a C∗-algebra. For any P ∈ Aid there exists a unique decomposition P = P̃ + Z, where
P̃ ∈ Apr and Z ∈ A is a nilpotent with Z2 = 0, moreover,

ZP̃ = 0, P̃Z = Z (5)

[9, Theorem 1.3].

Theorem 4. Let a C∗-algebra A ⊂ B(H) and P ∈ Aid be so that PH is an invariant subspace
of an operator A ∈ A. Let P = P̃ + Z be the above mentioned decomposition. Then AZ = P̃AZ

and ZAP̃ = ZAZ = 0.
Proof. Note that P̃H = PH, hence AP̃ = P̃AP̃ and AP = PAP by [5, Chap. 0, Theorem 0.1]. The

equality AP = PAP can be rewritten as

AZ = P̃AZ + ZAP̃ + ZAZ. (6)

We multiply relation (6) by the projection P̃ from the right, apply (5), and obtain ZAP̃ = 0. This relation
multiplication by the operator Z from the right and application of the equality P̃Z = Z lead us to the
equality ZAZ = 0. Now from (6) we have AZ = P̃AZ. �
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