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Application of the Discrete Geometrical Invariants to the 
Quantitative Monitoring of the Electrochemical Background

In this paper, we apply the statistics of the fractional moments 
(SFM) and discrete geometrical sets/invariants (DGI) for explain 
of the temporal evolution of the electrochemical background. 
For analysis of this phenomenon, we apply the internal correla-
tion factor (ICF) and proved that integral curves expressed in 
the form of voltammograms (VAGs) are more sensitive in com-
parison with their derivatives. For analysis of the VAGs (integral 
curves), we propose the set of the quantitative parameters that 
form the invariant DGI curves of the second and the fourth or-
ders, correspondingly. The method of their calculation based on 
the generalization of the well-known Pythagor’s theorem is de-
scribed. The quantitative parameters that determine these DGI 
allow monitoring the background of the electrochemical solution 
covering the period of 1-1000 measurements for two types of 
electrode (Pt and C) and notice the specific peculiarities that 
characterize each electrode material. The total set of 1000 mea-
surements was divided on 9 parts (1-100, 101-200, 201-300, …, 
901-1000) and the duration of each hundred set was 1300 sec. 
The proposed algorithm is sensitive and has a “universal” char-
acter. It can be applied for a wide set of random curves (experi-
mental measurements) that are needed to be compared in terms 
of a limited number of the integer moments. The qualitative pe-
culiarities of the background behavior for two types of electrodes 
(Pt and C) based on the DGI can be explained quantitatively. 
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1. Introduction and Formulation of the 

Problem 

The phase boundary surface between 

electrode/solution is under the attention of 

many researches, working in the 

electroanalytical chemistry. This surface serves 

as a specific microreactor in which many 

temporal and electrochemical processes being 

under the controlled conditions give useful 

information about the electrode material, 

structure of the surface, about the components 

of the solution reacting in the depth of the 

solute and near the DEL (see for details the 

papers [1,2]).  

The evolution of an analytical signal (or signals 

in the case of the electrode set usage), which is 

generated in this process contains full 

information. The selection of the proper 

equipment is determined by the aims and 

problems that can be solved in carrying out of 

this research. In the case of many-dimensional 

parameters that are appeared in the result of 

the multi-sensor electrodes usage, the 

corresponding mathematical treatment should 

be used. It can be associated with the hard or 

soft models [3, 4], accordingly. New materials 

and innovation technologies related to 

formation of the structural surfaces with the 

usage of different composites, supramolecular 

structures etc. require more informative and 

sophisticated methods for the various 

electrodes-sensors creation and taking into 

account other factors that can modify the given 

electrode in the stage of its production or in the 

process of its reaction with components of 

solution under investigation. From one side, a 

researcher has a variety of different sensitive 

equipment [5] however, from another side for 

the mathematical treatment of the data 

obtained and construction of the informative 

and effective models, new approaches are 

necessary. The most vital problem in this 

attention is related to description and 

quantitative characterization of the electrode 

surface in its continuous interaction with 

solution components. This problem is tightly 

related to creation of new generation of multi-

sensor systems, which enable to detect all 

temporal changing in the process of its 

interaction with the solute under investigation. 

When the number of the measurements are 

rather small there are mathematical methods 

that take into account the drift of the detected 

signal in time [6] while for the multi-cycling 

sensor(the number of the measurement cycles 

are large, M ≥ 1000) the mathematical methods 

related to quantitative monitoring of these 

sensors in time are not well developed. In this 

case, the electrode surface is changed 

significantly and can reflect the different stages 

of its electrochemical transformations [7, 8]. It is 

known that in the inverse voltamperometry for 

the receiving of the reproducible working 

electrode surface, it is polarized in the cycling 

regime for the chosen potential range. This 

experimental technique can be applied also for 

the sensor electrodes. The solution of the 

problem of the sensor control and its proper 

“aging” process parameterization in the 

condition of the continuous sensor functioning 

determines the reliability in detection of 

possible component traces [9]. It is known that 

the less dispersion of the background signals 

(but not their absolute values) extends the 

detection limit of an analyte. The state of the 

sensor/electrode surface in the result of 

extended temporal action can be determined as 

self-modification. It is necessary to describe the 

self-modification surface phenomenon by new 

methods because it has large fields of its 

possible application. It can be observed in the 

process of catalysts production, different 

sorbents, and porous composite materials and 

having, in turn, a practical importance in 

industry. It is known also that the creation of the 

fireproof materials includes the stage of 

electrochemical intercalation of the graphite in 

various media and the quality of the final 

product strongly depends on the duration of the 

electrochemical action on electrode, the nature 

of the background electrolyte, the values of the 

applied anode potentials and etc. [10]. The 

saying above put forward a problem related to 
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new and general mathematical method creation 

that can control quantitatively the evolution 

state of the electrode surface and expresses it 

in terms of the finite number of the given 

parameters. This method based on the usage 

of the discrete geometrical invariants (DGI) 

developed in this paper.  

 

2. Description of the Method  

2.1. Preliminary considerations and the DGI of 

the second order 

In the books of Yu. I Babenko [11, 12] it was 

shown that the well-known Pythagoras theorem 

can be generalized and propagated for a set of 

random points having coordinates (xk, yk) 

(k=1,2,3…,n). Really, let us consider the square 

of the distance connecting an arbitrary point 

M(x, y) with the kth point (xk, yk) belonging to the 

given set  

   
2 22

k k kl x x y y    ,   (1) 

We require that 

2 2

1

1 n

k

k

l I const
n 

  .     (2) 

Inserting expression (1) into (2), we obtain 

   
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  (3) 

As one can notice from (3) the set of circles can 

exist if the invariant I2 ≥ R2, the equality sign 

corresponds to the circle with zero radius. For 

as, it is convenient to consider the invariant 

circle with radius I2=2R2. From another point of 

view, the requirement (2) can be considered as 

the reduction of the given set of points to the 

continuous circle with 4 statistical parameters 

(<xp>, <yp>, p=1,2). However, for practical 

purposes this simplest requirement (2) is not 

sufficient and therefore, it has sense to 

consider other geometrical combinations. In 

order to have reduction to the curve with eight 

statistical parameters, we consider another 

combination that is more complex in 

comparison with (1) 

       
2 2(2) 2 22 ,

1,2,...,

k k k k kL C y y B x x y y A x x

k n
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

 (4) 

The quadratic form (4) contains 5 statistical 

parameters (<xp>, <yp>, p=1,2; <xy>) and 3 

unknown parameters (A,B,C) figuring in (4). We 

subordinate this combination to the requirement  

(2) 2

1

1 n

k

k

L I const
n 

  .    

  (5) 

Inserting (4) into (5) after simple algebraic 

manipulations, one can obtain 

       
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  (6) 

As before, we put I2=2E2. In order to find three 

unknown parameters (A,B,C), it is convenient to 

use the obvious parameterization for the 

variables (x,y) relatively the angle  

 
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Excluding the parameter  from (7) and 

identifying expression (6) with expression 

       
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we obtain  

2 2 2 2cos , .
B
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AC

       (9) 

In order to decrease the number of unknown 

parameters, we find from (7) the values A and 

C from the obvious conditions: 

 
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Parameter B is found from relationships (8) and 
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(9) as a positive root of the quadratic equation 

written relatively B 

 

2 2 2 2 2 2 2

1/2
2 2 2 2 2 2 2

2 0,

.

B x y B A C x A y C

B x y x y A C x A y C

         
 

           
 

 

 (11) 

This root is chosen from the comparison of two 

identity sequences (xk = yk) that follows from 

the obvious requirement B=A2, (α=0). 

Concluding this section, one can say that with 

the help of the rotated counterclockwise ellipse 

(7) we reduced 2n random points figuring in (4) 

to 7 statistical parameters (<xp>, <yp>, p=1,2; 

<xy>, A, C). If it is necessary to include the 

higher moments <xpys> (p=0,1,2,..; s=0,1,2…) 

then other combinations of the type (4) should 

be considered. Based on these preliminary 

considerations one can propose the basis of 

the DGI theory. 

2.2. The general theory of the geometrical 

invariants based on the higher order curves and 

the GDI of the forth order 

Unifying the ideas expressed in books [11, 12], 

one can consider the following combination  
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This combination can be considered as the 

most general form that can be used for 

comparison of two random sets having 

coordinates (xk, yk) (k=1,2,3…,n). If one 

requires that  
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1
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then this form can be considered as the most 

general form for comparison of two random 

sequences of an arbitrary order in terms of 

different combinations of the integer moments. 

If we insert (12) into (13) and open the 

corresponding terms then we obtain possible 

combinations of the integer moments of the 

type  
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 (14) 

In this section, having in mind its practical 

application for comparison of the different 

experimental data with each other we consider 

only the special invariant of the 4-th order that 

will be helpful for more fine comparison of two 

sets (in our case the comparison of the integral 

VAGs affected by the presence of some 

external factor). This combination allowing 

finding the desired invariant in the analytical 

form has a form 

       
4 2 2 4(4)

4 4 42k k k k kL A x x B x x y y C y y       .

   (15) 

Inserting expression (15) into (13) and equating 

the linear terms relatively the variables  

,X x x Y y y    ,    (16) 

to zero, we obtain the following combination 
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The following combinations shown below define 

the constants figuring in the DGI (17)  
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The constant I4 and Inv from (13) are defined 

by expression (19) 
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 (19) 

The averaged values <(x)q(y)p> 

characterizing two comparing sets are defined 

by expressions (14). The curve K(X,Y) can be 

separated in the polar coordinate system. Using 

the notations (16) and taking into account the 

fact that constant A4 figuring in K(X,Y) is the 

proportion multiplier and therefore can be 

omitted, we present the desired curve in the 

form 
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The functions q2,4() figuring in (20) are 

determined by expressions  
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This curve of the 4th order containing 8 

statistical parameters (<x>, <y>, B, C, SA,B,C, 

I4) determines statistical proximity/difference 

between 2D random curves/sets located in the 

plane. What is happened if two random curves 

are identical with each other (xj=yj) for all 

numbers of the discrete points j=1,2,…,N?. In 

this case as it is easy to see from expressions 

(18) B = C =1, I4 = 0, SA,B,C =4<(x)2> and, 

therefore, from (20), it follows that r() =0. In 

this case, expression (20) is degenerated into a 

point with coordinates <x>=<y> located on the 

line y=x.  

We want to stress here that the algorithm 

proposed in this paper is original and differs 

from the mathematical proofs that are given in 

the abovementioned book.  

2.3 The statistics of the fractional moments and 

the usage of the internal correlation factor 

The generalized Pearson correlation (GPC)-

function was used earlier in the papers [13, 14] 

and it is defined as  

1 2

1 1 2 2
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where the generalized mean value GMV-

function of the K-th order is 
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It employs the normalized sequences nrmj(y), 

with 0 < nrmj(y) < 1, and the current value of 

the moment, defined as momp. More 

specifically, for j = 1, 2,…,N, it holds: 

min( )
( )

max( min( ))

j j

j

j j

y y
nrm y

y y





, (24) 

where yj denotes the initial random sequence 

that can contain a trend or that is to be 

compared with another trendless sequence. 

The initial sequences are chosen like follows. 

The minimum of the GMV function is zero, 

while the maximum coincides with the 

maximum of the normalized sequence. 

Moreover, the set of moments is computed as 

follows: 

 Ppmnmx
P

p
mnLemom p

pn
n

L
p  ,...,1 ,0)(  , 










 (25) 

so that pnL takes values between (mn) and 

(mx) that define the limits of the moments in the 

uniform logarithmic scale. Usually, mn = –15, 

mx = 15, and 50 P100. This choice is 

because the transition region of the random 

sequences that are expressed in the form of 

GMV-functions is usually concentrated in the 

interval [–10,10]. The extension to [–15,15] is 

considered for the accurate calculation of the 

limit values of the functions in the space of 

fractional moments. Finally note that GPCp 

determined by (22) coincides with the 

conventional definition of the Pearson 

correlation coefficient at momp = 1. 
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If the limits (mn) and (mx) have the opposite 

signs and take sufficiently large values, then 

the GPCF has two plateaus (with GPCFmn =1 

for small values of mn) and another limiting 

value GPCmx that depends on the degree of 

internal correlation between the two compared 

random sequences. This right-hand limit, say 

Lm, satisfies the following condition: 

min( ) 1p mxM GPC Lm GPC    . (26) 

The appearance of two plateaus implies that all 

information about possible correlations is 

complete and a further increase of (mn) and 

(mx) is useless. Several tests showed that the 

highest degree of correlation between two 

random sequences is achieved when Lm = 1, 

while the lowest when Lm = M. For quantitative 

comparison of the internal correlations of two 

random sequences we introduce the following 

internal correlation factor (ICF) 

ICF M L  . (27) 

Note that ICF is determined by using the total 

set of the fractional moments from the 

interval ],[ mxmn ee . Putting (mn) = –15 and(mx) 

= 15, ICF tends to M for high correlation, and to 

M2 for the lowest (remnant) degree of 

correlations. Moreover, ICF does not depend 

on the amplitudes of two compared random 

sequences. Since 0  |yj|  1 must hold for both 

sequences, (27) contains complete information 

about the internal correlations between the pair 

of the compared random sequences that is 

based on the similarity of probability distribution 

functions of the sequences, even if the last 

ones are usually not known. 

Recently the statistics of the fractional moments 

was applied with promising results [13, 14], 

which gave the idea to use the ICF for 

unification of the significant parameters. 

Namely, for a set of significant parameters 

referring to one qualitative factor, it holds (note 

that always the parameter M < 1) 

cfmin =M2ICFM, (28) 

where the low limit cfmin is determined by the 

sampling volume and the practical conditions of 

random sequences, that should be almost the 

same when comparing two different sequences, 

e.g. the first affected by a qualitative factor, the 

second by another factor like a control action. 

Then, the clusterization method is based on 

comparing the values of the ICF factor, by 

making a sort of extension of the conventional 

method based on the Pearson correlation 

coefficient (PCC) that is not complete for 

detailed comparison of a pair of random 

sequences. 

 

3. Electrochemical Application of the 

Method 

3.1. Experimental part 

All measurements were conducted with the use 

of potentiostat/galvanostat Elins-P30S 

(Chernogolovka, Russia) and three-electrode 

cell, where the glassy carbon rod as the 

counter electrode and Ag/AgCl (3.5 М KCl) 

electrode is used as the reference electrode. 

The graphite (C) and (Pt) electrodes were used 

as the working electrodes. The standard 

phosphate buffer solution (pH 6.86, the mixture 

Na2HPO4 and KH2PO4) was served as a 

background electrolyte. 1000 measurements 

were registered continuously with the constant 

stirring. 

Each measurement cycle includes two stages: 

1) Electrochemical regeneration – five 

successive cycling with the potential scan rate 

2.5 V/sec. 

2) Registration of VAG in the background 

electrolyte at the given potential scan rate 0.5 

V/sec in the range of the potentials [0,1.5] V.  

The cycling scheme of the current 

measurement is presented in Fig. 1.  

3.2. Description of the algorithm 

From experimental records, we obtained a set 

containing 1000 measurements and the 

obtained set was divided on 9 separate groups 

and each group, in turn, had 100 

measurements (1-100, 101-200, 201-300, 

…,901-1000). The aim of this research is to 
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notice the surface modifications (possible aging 

tendencies) of each electrode (as it has been 

mentioned above we used Pt - and C- 

electrode, accordingly) that can be detected by 

electrodes during the extended experiment. 

However, before the proposing of an algorithm, 

we should find a definite and justified answer 

for the following question: which curve is more 

sensitive for detection of possible electrode 

changings (a) differential curve (dJ/dU without 

trend or (b) the curve J(U) obtained after 

integration with trend? For the finding of the 

definite answer, we use for comparison of two 

random curves with the help of the GPC-

function (22) that is based on the complete set 

of the real moments and generalizes the 

conventional Pearson correlation coefficient. 

Therefore, we prepared initially the following 

data that allow to eliminate the influence of the 

remnant currents. The prepared data satisfy to 

the following requirements 

 

 

1 1

( ) ( )
,

( ) ( )

, , ,

1 1
, .

m m

m

m m

m m m m m

M M

m mm m
m m

DV U DV U
Yn

stdev DV U DV U

DY Yn Yn JY Intergal U DY

DY DY JY JY
M M 






  

  

 (29) 

 

Here parameter m=1,2…,M defines the number 

of the total measurements in one set (M=100) 

and measurement space, accordingly. DVm(U) 

– is initial data file refereed to the measurement 

m; the symbol <…> determines the arithmetic 

mean for each fixed measurement and is 

calculated in accordance with expression (14). 

Number of data points (j=1,2,…, N) for each 

measurement is equaled to N=1181 and any 

dependence from the applied potential Uj 

defines the data space. The symbol 

Integral(x,y) determines the conventional 

integral calculated by means of the recurrence 

trapezoid formula 

   1 1 1

1
( , )

2
j j j j j jIntegral x y J J x x y y         

  (30) 

The final notions 1

mm
m

Y M Y   determine the 

couple of functions averaged over all 

measurements. This simple procedure helps to 

eliminate essentially the remnant currents and 

obtain the desired averaged curves that can be 

used for comparison of one set of a hundred 

measurements (d+1-d+100) (with d=0,100,200, 

…,900) with another one. The typical curves 

corresponding to comparison (1-100, 101-200) 

for Pt electrode are illustrated by the Figs 2(a,b) 

and Figs. 3(a,b) for the data (dJ/dU and J(U)) 

and measurements (DYm and JYm) spaces, 

correspondingly. Showing these figures we 

want to stress also another important fact, i.e., 

the curves in the data space given to respect of 

the applied potential have different sensitivity to 

the presence of the external factor in 

comparison with curves that show the range of 

the previous curves with respect to the number 

of measurements (m=1,2,…,M=100). The 

range of any random curve is defined by the 

conventional expression: Range(y)= max(y)-

min(y). The differences between these curves 

expressed in the form of the GPC-functions 

(22) are shown in Figs. 4(a,b). The figures 

5(a,b) demonstrate the behavior of the ICF for 

both types of the curves in data and 

measurement spaces, correspondingly. 

Analysis of these curves shows that with 

increasing of the duration of number of 

measurements (from 1 to 1000) the correlations 

between each hundred are diminishing. The 

correlation parameters of the DGIs of the 

second and the fourth order are shown in Fig. 

6(a,b) and Fig. 7, correspondingly.  

 

4. Results and Discussions  

In order to understand better the results that 

were obtained in the frame of the DGIs 

parameters, we should remind to a potential 

reader some facts known earlier:  

1. The receiving of the sensor stable response 

is important problem of the electroanalytical 

chemistry. Besides the mechanical cleaning of 

the sensor surface, its treatment by various 
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solutes and reagents the electrochemical 

regeneration of the sensor surface is applied. 

The electrochemical regeneration efficiency 

depends on the applied potential working 

range, the scanning rate, the content of the 

background electrolyte etc. For each specific 

case, the choice of the regeneration conditions 

has an empirical character. The direct control 

related to the state of the sensor/electrode 

surface is limited, especially in the routine 

analysis conditions. We note also that the low 

sensor sensitivity, its stability or the temporal 

drift cannot influence on the accuracy of the 

complete analysis.  

2. In the case of nano-electroanalytics (it 

investigates a formation of different 

nanostructures on the electrode surface, 

chemical reaction of the solute components 

with nanoparticles located on the electrode 

surface and etc.) the final result depends 

strongly on the structure and nanostructures 

composition formed on the given electrode 

surface [15]. The results of electro-analysis 

have a practical importance in any case, but 

especially in cases, when the massive data are 

obtained in the long-time functioning sensors 

conditions. It has been established that the data 

obtained in the long-time conditions strongly 

depend on the material of the used electrode, in 

particular, the graphite (carbon C) exhibits more 

strong surface variations in comparison with 

platinum (Pt).  

3. It was known that for modification of the 

graphite surface the electrochemical 

intercalation in various background electrolytes 

is used. In the result of this process application 

the following modifications are observed: (a) a 

partial carbon oxidation; (b) cavities opening 

between the layers of the graphite rings; (c) 

penetration of molecules and ions from the 

solutes inside the formed carbon cavities; (d) 

and formation of new chemical compositions 

with carbon. In the conditions of the realized 

experiment described in this paper, it leads to 

formation of some  

 

 

 

 

Fig. 1. The scheme of the measurement cycle. The time interval between measurements equals 

10 sec. The period of the VAG registration occupies 3 sec. 
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Fig.2(a). Initial data after elimination of the mean value, normalized for the standard deviation, and 

averaged over 100 measurements. See expression (29) for details. 
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Fig. 2(b) The same curves after application of the mathematical manipulations (29) and subjected 

to the integration procedure. The differences between curves in comparison with initial curves 

shown in Fig.2(a) are expressed more clearly. The calculated correlations between these curves 

and expressed in the form of the ICFconfirm this visual observation quantitatively.  
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Fig.3(a). The behavior of the ranges of the curves depicted in Fig.2(a). As one can see from this 

figure the curves are monotone and close to each other. One can conclude that some process on 

Pt electrodes takes place. 
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Fig.3(b). The comparison of the ranges for two integral curves shows that the ranges for integral 

curves are more deviated and, therefore, they can be used for detection of different additives, 

chemical electrode changing and influence of external factors, as temperature, pressure and etc. 
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Fig.4(a). These curves demonstrate a typical behavior of the GPC-functions calculated for the 

curves shown above. Comparison of the two curves shows that the correlations for integral curves 

are stronger in comparison with correlations expressed for differential curves. But this tendency is 

not common, the comparison with other curves for measurements (201-300), …, (901-1000) show 

that correlations become weaken for integral curves with growing time in comparison with 

differential curves. 
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Fig.4(b). Comparison of the curves showing the range distributions for integral (central figure) and 

differential (small figure above) curves depicted in figures 3 demonstrates the opposite tendency. 

The correlation between integral curves weakens while for the differential curves one can observe 

the strong correlations located in the range 0.99991 <ICF< 1.0. 
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Fig.5(a). These plots demonstrate the different sensitivity of the integral and differential curves in 

the data space for all set of measurements covering the whole interval of measurements (1-1000). 

One can notice the general tendency hat is common for all curves, i.e. with increasing of time the 

correlation between measurement decreases. For integral curves, this tendency is stronger in 

comparison with differential curves. The almost monotone behavior belongs to integral curve for Pt 

electrode, while for carbon (C) electrode these correlations weaken and their behavior is not 

monotone.  
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Fig.5(b). Here we plot the values of correlations for distribution of the ranges referring to integral 

and differential curves. The same tendency is observed, i.e. the correlations for integral curves 

weaken in comparison with the ranges distributions for differential curves however, this weakening 

correlation tendency is not monotone.  
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Fig.6(a). This figure demonstrates the parameters of the DGI of the second order (see expression 

(9)). As one can see from this figure the gravity centers <x>Pt,Cfor both ellipses remain constant, 

while the parameters <y>Pt,C are changed. These changes for carbon (C) electrode are expressed 

more clearly and not monotone in comparison with the behavior of the gravity center <y>Pt for Pt 

electrode (the lowest curve).  
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Fig.6(b). The behavior of the parameters A and C (see expressions (7) and (11)) characterizing 

the DGI of the second order. The parameters C for two types of electrodes remain constant, while 

the parameters A are changed. Again for C electrode these changes are expressed more clearly 

in comparison with C(Pt) electrode. 



R. R. Nigmatullin et al., RJMCS, 2017; 1:7 

 http://escipub.com/research-journal-of-mathematics-and-computer-science/                14

0 3 6 9

0,05

0,10

0,15

0,20

0,25

B
e

h
a

v
io

r 
o

f 
th

e
 c

o
rr

e
la

ti
o

n
 a

n
g

le
 

fo
r 

tw
o

 t
y
p

e
s
 o

f 
e

le
c
tr

o
d

e
s
. 

NF

 Correlation Angle()_Pt

 Correlation Angle()_C

Pt_electrode

C_electrode

 

Fig.6(c) The behavior of the correlation angle α for two types of electrodes. This behavior is the 

most interesting in comparison with other plots. It demonstrates monotone behavior for the Pt-

electrode while for the C-electrode this behavior is not monotone and more miscorrelated. This 

angle (in share of radians) is counted off relatively the angle /4 in clockwise direction formed by 

the curve Y=X.  
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Fig.7. Here we show the behavior of the parameters B,C (defined by expressions (18)) of the DGI 

of the 4-th order. As preliminary analysis shows that these parameters are the most sensitive to 

possible changings of the presence of electrodes (Pt,C) in the given solution. If the sequences are 

strongly correlated then these parameters tend to the unit value. Again, we observe the weakening 

correlation phenomenon that is observed for all these parameters analyzed. The quasi-monotone 

behavior is observed for the parameters B,C corresponding to the carbon (C) electrode.  
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regions where the registered signal changes 

monotonically and sharp cross breaks on 

dynamical curves, where the formed graphite 

structure can be abruptly changed. These 

changes for carbon electrodes are noticeable 

also on Figs.6(a,b,c) which track the 

quantitative parameters belonging to the DGI of 

the second order. In Fig.7, they are also 

noticeable, especially in case when the 

background set (0-100) is compared with the 

set (401-500). This noticeable cross break in 

the same region is appeared on all the 

corresponding curves characterizing the 

behavior of C-electrode also in Figs.6(a,b,c).  

4. In comparison with C-electrode the Pt –

electrode is the chemically inert material. The 

basic changes take place on the metal surface 

of Pt. In the result of electro chemical input one 

obtains the oxygen and hydrate films with 

implantation of molecules and ions from the 

background electrolyte. On the surface of C-

electrode, one observes a constant changing of 

the graphite layers that are chemically modified 

with the increasing of a distance from the initial 

layer while on the Pt-electrode one observes 

the growth of the dense film formed from the 

oxygen and hydrate atoms reacted with pure Pt 

surface. In the result of 1000-fold activation 

cycles, the surface of the C-electrode becomes 

loose while for the Pt-surface one observes the 

opposite tendency, i.e. the dense film is formed 

without essential modification of the Pt-

electrode structure [16, 17]. It is interesting to 

note that the formation of the oxide film is 

monotone in time. This fact is confirmed by the 

curves depicted in Figs. (6,7) and referred to 

the Pt-electrode.  

Finishing this final section, one can say 

the following. With the help of the proposed 

approach, one can detect quantitatively all 

qualitative changes of the analyzed VAGs, 

detect monotone regions and select the cross 

breaks regions, where the abrupt surface 

changings are possible. For this purpose, one 

can use the quantitative parameters of the DGI 

of the second order (<x>, <y>, A, C, α) (see 

expressions (9) and (10) above) and the most 

sensitive parameters as B,C defined by 

expression (18) and belonging to the DGI of the 

4-th order. Besides of their application in 

electrochemistry, this general approach can be 

used for quantitative comparison of any couple 

of random sets located in 2D-plane. The 

authors do hope that this approach can find its 

proper place in various physical and chemical 

applications.  
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