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Let H be a Hopf algebra and A a right H-comodule algebra. Suppose that P is a
prime ideal of A such that the factor ring A/P is either right or left Goldie, so that
A/P has a simple artinian classical right or left quotient ring QP . We will introduce
two QP -corings Stab(P ) and Inert(P ) called the stabilizer and the inertializer of P .
The latter is a factor coring of the former. When A is commutative and H is the
function algebra on a finite group, these corings are described explicitly in terms
of the set-theoretic stabilizer and the inertia group of P with respect to the group
action corresponding to the coaction of H on A. When A is commutative and H is
an arbitrary commutative Hopf algebra, Inert(P ) coincides with the Hopf algebra
over the field QP representing the scheme-theoretic stabilizer (inertia group) of P
in the group scheme represented by H. It seems that in the noncommutative case
too much of information about the original coaction of H may get lost in Inert(P ),
and we will not use the inertializers in any way.

Our interest in stabilizers stems from the desire to generalize basic facts about
homogeneous spaces. Consider a right action X ×G → G of a group scheme G of
finite type over a field k on a k-scheme X . If x ∈ X is a rational point such that the
corresponding orbit morphism G → X is surjective and flat, then X is isomorphic
with the quotient Gx\G where Gx stands for the stabilizer of x in G. In this case the
category of G-linearized quasicoherent sheaves on X is equivalent to the category
of Gx-modules [7]. However, if x is a point with residue field strictly larger than k,
then the former category cannot be recovered from the latter alone since a kind of
descent datum is additionally needed.

The coring stabilizers Stab(P ) remedy this defect of the inertializers. One could
anticipate the appearance of corings in this question, knowing a description of de-
scent data for a ring extension in terms of comodule structures over the Sweedler
coring (see [3, 25.4] or [4]). Theorems 3.1 and 4.4 establish, under suitable hypothe-
ses, two category equivalences

MH
A / T

H
A ≈ MStab(P ), AM/AT ≈

Stab(P )
H M .

In general we denote by MR and RM the categories of right and left modules over a
ring R, by MC and CM the categories of right and left comodules over a coring C,
by MH

A and C
HM the categories of Hopf modules. The localizing subcategories T H

A

and AT are defined by the filters of H-costable right and left ideals of A containing
a regular element. From the viewpoint of noncommutative geometry the quotient
categories MH

A / T
H

A and AM/AT represent quasicoherent sheaves on a “noncom-
mutative scheme”. The assumption that P contains no nonzero H-costable ideals
of A means that this scheme is sufficiently close to a homogeneous space.



If P is a maximal ideal of codimension 1 in A, then the aforementioned results
reduce to the ungraded versions of Theorems 0.1, 0.4 in [23] since in this case A is
isomorphic to a right coideal subalgebra of H. Certainly, the previous condition on
P imposes serious limitations, especially for noncommutative algebras. Unlike [23]
we do not consider the graded versions of results in this paper.

The proof of the second equivalence is based on the first equivalence in one crucial
argument concerning the flatness of a certain ring extension of A. There are also
several other interesting consequences of the first equivalence. It is proved in section
3 that TorA

i

(

M, QP

)

and Exti
A

(

M, QP

)

vanish for all M ∈ MH
A and i > 0. If P ′

is a second prime ideal of A satisfying the same hypotheses as P in Theorem 3.1,
then Stab(P ) and Stab(P ′) are Morita-Takeuchi equivalent.

In section 5 we look at birational H-coequivariant extensions by which we mean
embeddings of right H-comodule algebras A →֒ B with the same classical quotient
ring Q(A) ∼= Q(B). We are interested to find objects associated with H-comodule
algebras which are preserved in such extensions. So it is shown in Proposition 5.4
that the quotient categories MH

A / T
H

A and MA/ TA are birational invariants of A.
Still deeper is the correspondence between the prime ideals in a birational extension
which makes the content of Theorem 5.6. There is a subset Spec′A of the prime spec-
trum SpecA which exhibits desired behaviour. These results support the intuitive
idea that comodule algebras are relevant only up to birational equivalence when we
view them as models of noncommutative homogeneous spaces.

The notion of relative Hopf modules has proved to be of fundamental impor-
tance since the work of Takeuchi [26] and Doi [10]. A special attention was given
to the categories of Hopf modules in the case of Hopf Galois extensions and their
generalizations [1], [5], [12], [19], [20]. If the H-comodule algebra A is an H-Galois
extension, then Stab(P ) is generated as a QP -bimodule by its distinguished group-
like element, i.e. Stab(P ) is a homomorphic image of the QP -coring QP ⊗QP . For
general comodule algebras the stabilizers may be quite complicated.

The main results of sections 3 and 4 assume the base ring k to be a field. In all
other results k is an arbitrary commutative ring. The tensor product ⊗k is abbre-
viated to ⊗.

1. Localizing filters and classical quotient rings

We recall some terminology which will be used in this paper. Let R be a ring. A
nonempty set I of right ideals of R is a localizing filter (also called an idempotent

topologizing filter or a Gabriel topology) if the following four conditions are satisfied:

(T1) if J ∈ I then I contains each right ideal I with J ⊂ I,

(T2) if I, J ∈ I then I ∩ J ∈ I,

(T3) if I ∈ I then for each a ∈ R there exists Ia ∈ I such that aIa ⊂ I,

(T4) if J ∈ I and I is a right ideal such that for each a ∈ J there exists Ia ∈ I
satisfying aIa ⊂ I, then I ∈ I.

In any right R-module V the subset τI(V ) consisting of those elements v ∈ V
whose annihilator in R belongs to I is a submodule called the I-torsion submodule.
The R-module V is said to be I-torsion when τI(V ) = V , and V is I-torsion-free

when τI(V ) = 0. Axiom (T4) ensures that the class of I-torsion modules is closed
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under extensions. When a set of right ideals satisfies (T1)–(T3), but not necessarily
(T4), it is called a topologizing filter.

A full subcategory of a Grothendieck category is localizing if and only if it is
closed under subobjects, factor objects, extensions and small direct limits [13, Ch.
III, Prop. 8]. A full subcategory of MR is localizing precisely when it consists of
the torsion modules for some localizing filter of right ideals of R [13, Ch. V, p. 412].

Denote by Σ(R) the set of regular elements, i.e. nonzerodivisors, of R. If Σ(R)
satisfies the right Ore condition, then the set G(R) of those right ideals of R which
intersect Σ(R) is a localizing filter. The ring of fractions Q(R) = RΣ(R)−1 is called
the classical right quotient ring of R (occasionally Q(R) will stand for the classical
left quotient ring of R). More generally, any overring of R isomorphic to Q(R) is a
classical right quotient ring of R. If Σ(R) satisfies both the right and the left Ore
conditions, then Q(R) is the classical two-sided quotient ring.

Let H be a k-flat Hopf algebra with a bijective antipode S : H → H over the
base ring k, and let A be a right H-comodule algebra. The comodule structure map
ρ : A → A ⊗ H is a homomorphism of algebras. All algebras are assumed to be
associative and unital. Denote by GH(A) the set of right ideals of A characterized
by the property that a right ideal I belongs to GH(A) if and only if there exists an
H-costable right ideal I ′ ∈ G(A) such that I ′ ⊂ I. Since the largest H-subcomodule
IH of A contained in I is a right ideal, we have I ∈ GH(A) if and only if IH ∈ G(A),
which can also be rewritten as IH ∩ Σ(A) 6= ∅. Note that

IH = ρ−1(I ⊗H).

By definition GH(A) ⊂ G(A) and an H-costable right ideal of A belongs to GH(A)
if and only if it belongs to G(A).

Assuming that Σ(A) satisfies the right Ore condition, we denote by TA the class
of GH(A)-torsion right A-modules (thus TA actually depends on H). Let T H

A be the
class of right (H,A)-Hopf modules which are GH(A)-torsion in MA.

Lemma 1.1. If Σ(A) is right Ore, then GH(A) is a localizing filter. In this case TA

and T H
A are localizing subcategories, respectively, of MA and of MH

A .

Proof. We know that G(A) is a localizing filter. Properties (T1), (T2) of GH(A) are
immediate from the respective properties of G(A) since the set of H-subcomodules
of A is closed under finite intersections. For each right ideal I of A and an element
a ∈ A put Ia = {x ∈ A | ax ∈ I}, and let λa : A→ A denote the left multiplication
by a. Then Ia is the unique right ideal of A such that λa induces an injective map
A/Ia → A/I. Since λa ⊗ H coincides with the left multiplication by a ⊗ 1 in the
algebra A⊗H and induces an injective map A/Ia ⊗H → A/I ⊗H, we get

Ia ⊗H = {y ∈ A⊗H | (a⊗ 1)y ∈ I ⊗H}.

Suppose that I ∈ G(A) is an H-costable right ideal. Given a ∈ A, we can find a
finitely generated k-submodule U ⊂ A such that ρ(a) ∈ U ⊗H. Put IU =

⋂

u∈U Iu,
so that UIU ⊂ I. If u1, . . . , un generate U , then IU = Iu1

∩ · · · ∩ Iun
. Since G(A)

satisfies (T3), we have Iu ∈ G(A) for all u ∈ A. Therefore IU ∈ G(A) by (T2). An
easy calculation in the algebra A⊗H shows that
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(a⊗ 1) · ρ(x) =
∑

(

a(0) ⊗ S−1(a(2)) a(1)

)

· ρ(x)

=
∑

(1 ⊗ S−1a(1)) · ρ(a(0)x) ∈ (1 ⊗H) · ρ(UIU) ⊂ I ⊗H

for all x ∈ IU . Hence ρ(IU) ⊂ Ia ⊗H, and therefore IU ⊂ (Ia)H . The last inclusion
entails (Ia)H ∈ G(A), whence Ia ∈ GH(A). This proves (T3).

Now let J ∈ GH(A), and let I be any right ideal of A such that Ia ∈ GH(A) for
each a ∈ J . Pick any element s in the nonempty set JH ∩Σ(A). Since ρ(s) ∈ J ⊗H,
we can find a finitely generated k-submodule U ⊂ J such that ρ(s) ∈ U ⊗H. Note
that s ∈ U ′ ⊂ U where U ′ = ρ−1(U⊗H) is an H-subcomodule of A. The right ideal
IU =

⋂

u∈U Iu belongs to GH(A) by (T2) and satisfies UIU ⊂ I. Hence there exists
an H-costable K ∈ G(A) such that U ′K ⊂ UK ⊂ I. Since the multiplicatively
closed set Σ(A) intersects both U ′ and K, we get U ′K ∩Σ(A) 6= ∅. But U ′K is an
H-costable right ideal of A, so that I ∈ GH(A). Thus (T4) also holds. �

Lemma 1.2. We have T H
A = {M ∈ MH

A |M ⊗A Q(A) = 0}.

Proof. A right A-module V satisfies V ⊗A Q(A) = 0 if and only if each element of
V is annihilated by an element of Σ(A). In particular, V ⊗A Q(A) = 0 whenever
V ∈ TA. Conversely, suppose that M ⊗A Q(A) = 0 where M ∈ MH

A , and denote by
I the annihilator in A of some element v ∈M . Let U ⊂M be any finitely generated
k-submodule such that δ(v) ∈ U ⊗H where δ : M →M ⊗H denotes the comodule
structure map. There exists J ∈ G(A) such that UJ = 0. We may regard M ⊗H as
an (H,A⊗H)-bimodule. Since δ(ma) = δ(m)ρ(a) for all m ∈M and a ∈ A, we get

(v ⊗ 1) · ρ(x) =
∑

(

v(0) ⊗ S−1(v(2)) v(1)
)

· ρ(x) =
∑

S−1(v(1)) · δ(v(0)x) = 0

for all x ∈ J . By the k-flatness of H the annihilator in A ⊗ H of v ⊗ 1 ∈ M ⊗H
coincides with I ⊗H. Hence ρ(J) ⊂ I ⊗H, i.e. J ⊂ IH . It follows that IH ∈ G(A),
and therefore I ∈ GH(A). Thus M ∈ T H

A . �

When Σ(A) satisfies the left Ore condition, there is a localizing filter Gl
H(A) of left

ideals of A defined similarly to GH(A). In this case the class AT of Gl
H(A)-torsion

left A-modules is a localizing subcategory of AM.
Included below are two subsidiary results on the existence of classical quotient

rings. Proposition 1.4 will be used in the proof of Theorem 5.6. A special case of this
result was given in [24, Prop. 7.1]. Proposition 1.5 will allow us to shorten slightly
the hypotheses in the results of sections 3 and 4. We will denote by rannQ S and
lannQ S, respectively, the right and left annihilators of a subset S in a ring Q.

Lemma 1.3. Suppose that R is a subring of a right artinian ring Q. Then every

right ideal I of R contains an element x such that Q = xQ⊕ rannQ x and the right

ideal rannI x = I ∩ rannQ x of R is nilpotent. If Q is a classical right quotient ring

of R and I ∈ G(R) then x ∈ Σ(R) for any such x.

Proof. Put X = {x ∈ Q | rannQ x = rannQ x
2}. Each u ∈ Q satisfies un ∈ X for

sufficiently large n > 0 since in Q the ascending chain of right ideals rannQ u
i with

i = 1, 2, . . . has to stabilize. The condition on x in the definition of X means pre-
cisely that xQ∩ rannQ x = 0. Since xQ ∼= Q/ rannQ x in MQ, we have the equality
between the composition series lengths
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lengthxQ+ length rannQ x = lengthQ.

It follows that

X = {x ∈ Q | Q = xQ⊕ rannQ x}.

Now pick x ∈ I ∩X for which the right ideal rannQ x of Q is minimal possible.
Let u ∈ rannI x. There is an integer n > 0 such that v = un lies in X . Since xv = 0,
we have xQ ∩ vQ = 0. Then y = x+ v also lies in X (an easy check is given in the
proof of [24, Lemma 7.5]), actually y ∈ I ∩X , with

rannQ y = rannQ x
⋂

rannQ v.

In particular, rannQ y ⊂ rannQ x. If v 6= 0 then the previous inclusion is proper
since yv = v2 6= 0. But this is impossible by the choice of x. Thus un = 0. We
conclude that rannI x is nil. By [15] every nil multiplicatively closed subset of a
right artinian ring is nilpotent. In particular, this applies to rannI x.

Suppose that Q is a classical right quotient ring of R and I ∈ G(R). The first
of these two assumptions implies that the nil radical N of R is contained in the
Jacobson radical J of Q. Since all elements of Σ(R) are invertible in Q, the second
assumption entails IQ = Q. Given any q ∈ Q, it is possible to find s ∈ Σ(R) such
that qs ∈ I. If q ∈ rannQ x, then qs ∈ rannI x. Hence rannQ x = (rannI x)Q. Since
rannI x is a nil right ideal of R, we have rannI x ⊂ N ⊂ J . Then rannQ x ⊂ J as
well. Since J is nilpotent, so too is rannQ x. On the other hand, rannQ x = eQ for a
suitable idempotent e ∈ Q since rannQ x is an MQ-direct summand of Q. It follows
that e = 0, i.e. rannQ x = 0. Thus x is right regular in Q. By [17, Prop. 3.1.1] right
regular elements of a right artinian ring are invertible. So x is invertible in Q, and
therefore x ∈ Σ(R). �

Proposition 1.4. Let B be a ring with a quasi-Frobenius classical right quotient

ring Q. Suppose that R is a subring of B and I is a topologizing filter of right ideals

of R with the following properties:

(a) each I ∈ I has zero left and right annihilators in Q,

(b) for each b ∈ B there exists I ∈ I such that bI ⊂ R.

Then I ∩ Σ(R) 6= ∅ for all I ∈ I and Q is a classical right quotient ring of R.

Proof. Since Q is quasi-Frobenius, each left (right) ideal of Q is the left (right)
annihilator of a uniquely determined right (left) ideal. Denote by N the nil radical
of R. It is a nilpotent two-sided ideal of R containing every nil right ideal of R
(such an ideal exists because R is a subring of an artinian ring). There are several
intermediate steps in the proof:

Step 1. QI = IQ = Q for all I ∈ I.

Step 2. If I ∈ I and J is any right ideal of Q then J = (J ∩ I) ·Q.

Step 3. QT = TQ for any two-sided ideal T of R.

Step 4. rannQ N = lannQN .

By (a) rannQQI = 0 and lannQ IQ = 0 for I ∈ I. Therefore Step 1 is immediate
from the bijective correspondence between the left and the right ideals of Q.
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In Step 2 let q ∈ J . Since Q ∼= BΣ(B)−1, there exists s ∈ Σ(B) for which qs ∈ B.
According to (b) we can find I ′ ∈ I with the property qsI ′ ⊂ R. Since s is invertible
in Q, we have sI ′Q = sQ = Q by Step 1, whence q ∈ qsI ′Q ⊂ (J ∩ R)Q. Hence
J = (J ∩R)Q. Furthermore, if q ∈ J ∩R, then (T3) allows us to find I ′′ ∈ I such
that qI ′′ ⊂ J ∩ I. In this case q ∈ qI ′′Q ⊂ (J ∩ I)Q since 1 ∈ I ′′Q by Step 1. So
J ∩R ⊂ (J ∩ I)Q, and the desired conclusion follows.

Step 3 generalizes [24, Lemma 7.3]. First we note that the inclusion BT ⊂ TQ
implies that QT ⊂ TQ, in which case TQ is a two-sided ideal of Q. Assuming that
BT ⊂ TQ, we have sTQ ⊂ TQ for any s ∈ Σ(B). If sTQ were properly contained
in TQ, then we would get an infinite strictly descending chain of right ideals siTQ
of Q with i = 0, 1, . . . , but this is impossible since Q is artinian. Hence sTQ = TQ,
and therefore s−1T ⊂ TQ. Then qT ⊂ TQ for any q ∈ Q since q can be written as
bs−1 for some b ∈ B and s ∈ Σ(B).

Suppose now that there exist two-sided ideals T of R such that QT 6⊂ TQ. Let
us choose such a T with the additional property that the right ideal TQ of Q is
minimal possible. If we had ITQ = TQ for all I ∈ I then, taking Ib ∈ I such that
bIb ⊂ R, we would get bTQ = bIbTQ ⊂ RTQ = TQ for each b ∈ B, but this yields
the inclusion BT ⊂ TQ contradicting our previous observation. Hence there exist
I ∈ I for which ITQ 6= TQ. We pick such an I with the additional property that
the right ideal ITQ of Q is minimal possible.

If J ∈ I is arbitrary then (I ∩ J)TQ = ITQ by the minimality assumption since
I∩J ∈ I by (T2). It follows that ITQ ⊂ JTQ. Given any a ∈ R, we can use (T3) to
find J ∈ I such that aJ ⊂ I and get aITQ ⊂ aJTQ ⊂ ITQ. Thus RITQ = ITQ.
So the two-sided ideal V = RIT of R satisfies V Q = ITQ 6= TQ. On the other
hand, V Q ⊂ TQ because V ⊂ T . The choice of T ensures that V Q has to be a two-
sided ideal of Q. Since QI = Q by Step 1, we get QT = QIT ⊂ QV ⊂ V Q ⊂ TQ,
a contradiction.

We conclude that QT ⊂ TQ for any two-sided ideal T of R. Now QT = lannQK
where we put K = rannQQT . As TRK ⊂ TK = 0, we have RK ⊂ K; hence K ∩R
is a two-sided ideal of R. By Step 2 K = (K ∩R)Q. As we have proved already, this
implies that K is a two-sided ideal of Q. Then so is its left annihilator QT . Hence
TQ ⊂ QT as well.

In Step 4 denote by J the Jacobson radical of Q. Since J ∩R is a nilpotent two-
sided ideal of R, we have J ∩ R ⊂ N . Step 2 yields J = (J ∩R)Q ⊂ NQ. By Step
3 NQ = QN . Hence NQ is a nilpotent ideal of Q, which implies that NQ ⊂ J .
Thus J = NQ = QN . It follows that the right and the left annihilators of N in Q
are equal to the respective annihilators of J . However, lannQ J = rannQ J since the
right and the left socles of a quasi-Frobenius ring coincide.

Now we show that each I ∈ I contains an element invertible in Q, and therefore
I ∩ Σ(R) 6= ∅. By Lemma 1.3 there exists x ∈ I such that Q = xQ⊕ rannQ x and
rannI x is nil. In particular, rannI x ⊂ N . Suppose that the left ideal L = lannQ x
of Q is nonzero. Since N is nilpotent, there exists 0 6= t ∈ L such that Nt = 0.
Step 4 allows us to deduce that tN = 0 as well. Then t (rannI x) = 0. By Step 2
we have rannQ x = (rannI x)Q. Hence tq = 0 for all q ∈ rannQ x. Since tx = 0, it
follows that 0 = t(xQ + rannQ x) = tQ. This entails t = 0, a contradiction. Thus
L = 0, i.e. x is left regular in Q. But left regular elements of a left artinian ring are
invertible [17, 3.1.1]. Hence x is invertible in Q, as desired.
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To conclude that Q is a classical right quotient ring of R it suffices to check that
R is a right order in Q, i.e. every q ∈ Q can be written as q = au−1 for some
a, u ∈ R such that u is invertible in Q [17, 3.1.4]. We have qs ∈ B for a suitable
s ∈ Σ(B). By (b) there exist I ′, I ′′ ∈ I such that sI ′ ⊂ R and qsI ′′ ⊂ R. By (T2)
I ′ ∩ I ′′ ∈ I. Let v ∈ I ′ ∩ I ′′ be any element invertible in Q. Then we may take
u = sv and a = qsv, completing the proof. �

Proposition 1.5. Let A, B be two k-algebras where B is faithfully k-flat. If A⊗B
has a right artinian classical right quotient ring then so does A as well. Moreover,

the canonical map i : A → A ⊗ B, a 7→ a ⊗ 1, extends to an injective ring homo-

morphism Q(A) → Q(A⊗B).

Proof. Put Q = Q(A⊗B) for short and denote by I the set of those right ideals I
of A for which I ⊗ B ∈ G(A ⊗ B). Then I is a localizing filter. In the subsequent
argument we will use only property (T3) of I which is checked as follows. For each
right ideal I of A and an element a ∈ A put Ia = {x ∈ A | ax ∈ I}. As in the proof
of Lemma 1.1 we have

Ia ⊗B = {y ∈ A⊗B | (a⊗ 1)y ∈ I ⊗B}.

If I ∈ I, then property (T3) of G(A⊗B) yields Ia ⊗B ∈ G(A⊗B), so that Ia ∈ I.
The canonical ring homomorphism i : A → A⊗B is injective. Indeed, it suffices

to check that i ⊗ B : A ⊗ B → A ⊗ B ⊗ B is injective. But the latter map admits
a retraction arising from the multiplication in B. Thus A may be identified with a
subring in A⊗B and in Q. The left multiplication λa : A→ A by a ∈ A is injective
if and only if λa ⊗ B is injective, and a similar observation is valid for the right
multiplications. This shows that

Σ(A) = {a ∈ A | a⊗ 1 ∈ Σ(A⊗B)}.

Each I ∈ I intersects Σ(A). To prove this claim we first apply Lemma 1.3 to get
an element x ∈ I such that Q = (x⊗1)Q⊕ rannQ(x⊗1) and the right ideal rannI x
of A is nilpotent. The k-flatness of B ensures that rannI⊗B(x⊗ 1) = (rannI x)⊗B
is a nilpotent right ideal of A⊗B. Lemma 1.3 applied this time to the subring A⊗B
of Q yields x⊗ 1 ∈ Σ(A⊗B), i.e. x ∈ Σ(A).

If s ∈ Σ(A), then sA ∈ I since s ⊗ 1 ∈ Σ(A⊗B). Taking I = sA, we get Ia ∈ I
for any a ∈ A. As we have proved already, this implies that Ia ∩Σ(A) 6= ∅. In other
words, for each pair s, a there exists t ∈ Σ(A) such that at ∈ sA, i.e. Σ(A) satisfies
the right Ore condition. So A has a classical right quotient ring QA = Q(A). Since
i is injective and takes regular elements to regular ones, QA embeds in Q.

Let I be any right ideal of A. The right ideal IQ ∩A consists of those a ∈ A for
which there exists u ∈ Σ(A ⊗ B) such that (a ⊗ 1)u ∈ I ⊗ B. This condition on a
can be rewritten, in the earlier notation, as (Ia ⊗B)∩Σ(A⊗B) 6= ∅, and therefore
as Ia ∈ I. As we have seen, the last inclusion implies that Ia ∩Σ(A) 6= ∅. Thus for
each a ∈ IQ ∩ A there exists s ∈ Σ(A) such that as ∈ I. Since all right ideals of
QA are extensions of right ideals of A, we get JQ ∩QA = J for each right ideal J
of QA. Hence the assignment J 7→ JQ embeds the lattice of right ideals of QA into
that of Q. Since Q is right artinian, so too is QA. �
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2. Definition of stabilizers and some special cases

A thorough treatment of corings and comodules is given by Brzeziński and Wis-
bauer [3]. We refer to this book for all details. Some aspects of the coring theory
are also covered in a book of Caenepeel, Militaru and Zhu [6].

Let R be a ring. An R-coring is an (R,R)-bimodule C together with two bimod-
ule homomorphisms ∆ : C → C ⊗R C and ε : C → R satisfying the coassociativity
and the counit conditions. A right C-comodule is a right R-module V together
with a right R-linear map δ : V → V ⊗R C satisfying the coassociativity and the
counit conditions. If C is left R-flat, then the category MC of right C-comodules
is Grothendieck and the forgetful functor MC → MR is exact [3, 18.6]. All corings
considered in this paper will satisfy the flatness condition. For each right R-module
X we will view X ⊗R C as a right C-comodule with respect to the map id ⊗R ∆.

Given an R-coring C and a ring homomorphism R → R′, the (R′, R′)-bimodule
C′ = R′ ⊗R C ⊗R R′ has a natural R′-coring structure obtained by extending ∆
and ε to C′ [3, 17.2]. There is a functor

Φ : MC → MC′

, Φ =? ⊗R R′.

If C is left R-flat, then Φ has a right adjoint

Ψ : MC′

→ MC , Ψ =? �C′ (R′ ⊗R C)

(see [3, 23.9 and 24.11]). Here �C′ stands for the cotensor product and R′ ⊗R C is
viewed as a (C′, C)-bicomodule.

In the next lemma we encounter the assumption about the flatness of injective
modules. Rings with this property were studied by Colby [8]. The class of such rings
contains all von Neumann regular rings and all quasi-Frobenius rings.

Lemma 2.1. Assume C to be left R-flat and C′ to be left R′-flat. Suppose also that

all injectives in MR′ are flat. Then the counit of adjunction ηE : ΦΨ(E) → E is

an isomorphism whenever E is an injective in MC . If Φ is exact, then Ψ is fully

faithful.

Proof. First of all, Ψ(C′) ∼= R′ ⊗R C and Φ(R′ ⊗R C) ∼= C′. The map ηC′ coincides
with the resulting isomorphism Φ

(

Ψ(C′)
)

∼= C′. If X is any flat right R′-module,
then Ψ(X ⊗R′ C′) ∼= X ⊗R′ Ψ(C′) by properties of cotensor products [3, 21.4] and
Φ

(

X ⊗R′ Ψ(C′)
)

∼= X ⊗R′ Φ
(

Ψ(C′)
)

by the associativity of tensor products. Hence
ηX⊗

R′ C′ is an isomorphism as well. By [3, 18.10] there are bijections

HomC′

(V,X ⊗R′ C′) ∼= HomR′(V,X) for V ∈ MC′

.

Taking X to be an injective hull of V in MR′ , we get a right C′-colinear embedding
V → X ⊗R′ C′. If V is injective in MC′

, then V has to be a direct summand of
X ⊗R′ C′, whence ηV is an isomorphism. In general we can find an exact sequence
of right C′-comodules 0 → V → X ⊗R′ C′ → Y ⊗R′ C′ for some injective modules
X, Y ∈ MR′ . By a general property of right adjoint functors Ψ is left exact. If Φ is
exact, then ΦΨ takes the above exact sequence to an exact sequence

0 → ΦΨ(V ) → ΦΨ(X ⊗R′ C′) → ΦΨ(Y ⊗R′ C′).
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Since ηX⊗R′ C′ and ηY ⊗R′C′ are isomorphisms, so too is ηV : ΦΨ(V ) → V for any V .
Thus we have checked a necessary and sufficient condition for Ψ to be fully faithful
[16, p. 88, Th. 1]. �

Let A be a right H-comodule algebra with the comodule structure map ρ. If R
is an arbitrary algebra, then HR = R ⊗ H will be viewed as a right H-comodule
algebra with respect to the comodule structure map id ⊗ ∆. Each algebra homo-
morphism α : A→ R gives rise to a homomorphism of H-comodule algebras

ϕα : A
ρ

−−→ A⊗H
α⊗id
−−−→ R ⊗H.

Denoting by εR the algebra homomorphism id ⊗ ε : R ⊗H → R where ε : H → k
is the counit, we have α = εR ◦ϕα. Conversely, any homomorphism of H-comodule
algebras A→ HR is obtained in this way. For an arbitrary homomorphism of right
H-comodule algebras A→ B there is a functor ?⊗AB : MH

A → MH
B . In particular,

this functor is defined for B = HR.

Lemma 2.2. Let ϕ : A → HR be a homomorphism of right H-comodule algebras.

Suppose that H is k-flat. Then for each M ∈ MH
A the map

ξ : M ⊗A HR → (M ⊗A R) ⊗H, m⊗ b 7→
∑

(

(m(0) ⊗ 1) ⊗m(1)

)

· b,

is an isomorphism in MH
HR

.

Proof. Since k is an Mk-direct summand of H, the flatness of H in Mk implies
faithful flatness. Hence HR is a faithfully flat H-Galois extension of R, and therefore
the functor ? ⊗R HR gives a category equivalence MR → MH

HR
by [11, Th. 9] or

[20, Th. I]. Thus each object of MH
HR

can be written as V ⊗RHR
∼= V ⊗H for some

V ∈ MR. The retraction εR : HR → R of the canonical embedding R → HR gives
rise to a quasi-inverse equivalence ? ⊗HR

R : MH
HR

→ MR. It is easy to see that ξ

is a morphism in MH
HR

. The final conclusion follows from the fact that ξ ⊗HR
R is

an isomorphism in MR. �

By a general construction in [3, 32.6] C(A,H) = A ⊗H is an A-coring with the
bimodule structure

x(a⊗ h) = xa⊗ h, (a⊗ h)x =
∑

ax(0) ⊗ hx(1)

where a, x ∈ A, h ∈ H, the comultiplication and the counit

∆(a⊗ h) = (a⊗ h(1)) ⊗A (1 ⊗ h(2)), ε(a⊗ h) = aε(h).

Note that C(A,H) is left A-flat provided H is k-flat.
Suppose that P is a prime ideal of A such that the factor ring A/P is either right

or left Goldie. So A/P has a simple artinian classical right or left quotient ring
QP = Q(A/P ). We define Stab(P ) as the QP -coring obtained from C(A,H) by the
base ring extension α : A→ A/P → QP where α is the composite of two canonical
maps. Thus

Stab(P ) = QP ⊗A C(A,H) ⊗A QP
∼=

(

QP ⊗H
)

⊗A QP .
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In the previous line HP = QP ⊗H is viewed as a ring extension of A via the homo-
morphism of H-comodule algebras ϕ : A→ HP corresponding to α : A→ QP . Note
that Stab(P ) has a left HP -module structure and, in particular, a left H-module
structure. If A/P is simple artinian, then QP

∼= A/P and Stab(P ) ∼= HP /HPϕ(P )
with HP

∼= A/P ⊗H.
The coring Stab(P ) has a distinguished grouplike e, the image of 1⊗ 1 ∈ A⊗H.

Moreover, Stab(P ) is generated by e as an
(

HP , QP

)

-bimodule. The comultiplica-
tion in Stab(P ) is expressed as

∆(beq) =
∑

b(0)e⊗ b(1)eq for b ∈ HP , q ∈ QP .

Also, ε(beq) = εP (b)q where εP : HP → QP is the map id ⊗ ε.
Next we turn to the inertializer of P . Let us view the algebra HP = QP ⊗ H

itself as a QP -coring with respect to the natural QP -bimodule structure, the counit
εP and the comultiplication ∆ : HP → HP ⊗QP

HP which extends by left and
right QP -linearity the comultiplication of H. The ring unity e = 1 ⊗ 1 ∈ HP is a
distinguished grouplike of HP . We have

∆(b) =
∑

b(0) ⊗ b(1)e for b ∈ HP .

Lemma 2.3. The (HP , QP )-subbimodule I of HP generated by {ϕ(a)−α(a)e | a ∈ A}
is a coideal of HP .

Proof. For a ∈ A we have ϕ(a) =
∑

α(a(0)) ⊗ a(1), whence

εP

(

ϕ(a) − α(a)e
)

= α(a) − α(a) = 0.

Since εP is a ring homomorphism, we get εP (I) = 0. Also,

∆
(

ϕ(a) − α(a)e
)

=
∑

ϕ(a(0)) ⊗ a(1)e− α(a)e⊗ e

=
∑

(

ϕ(a(0)) − α(a(0))e
)

⊗ a(1)e+ e⊗
(

ϕ(a) − α(a)e
)

.

Since ∆ is right QP -linear and left HP -linear if we let HP operate on HP ⊗QP
HP

via the comodule structure map HP → HP ⊗H, we deduce that

∆(I) ⊂ I ⊗QP
HP +HP ⊗QP

I.
�

We define Inert(P ) as the factor coring HP /I of HP where I is given in Lemma
2.3. The coset e = e+ I is taken to be the distinguished grouplike of Inert(P ).

Lemma 2.4. There is a surjective left HP -linear homomorphism of QP -corings

Stab(P ) → Inert(P ) compatible with the distinguished grouplikes. Its kernel coin-

cides with the left HP -submodule L of Stab(P ) generated by {eq − qe | q ∈ QP }.

Proof. Since bϕ(a)eq = beα(a)q for all a ∈ A, b ∈ HP and q ∈ QP , there is a
well-defined left HP -linear and right QP -linear map π : Stab(P ) → Inert(P ) which
sends e to e. Since π(eq − qe) = eq − qe = 0, we have L ⊂ Kerπ. On the other
hand, Stab(P ) = L+HP e. Furthermore, be ∈ Kerπ for b ∈ HP if and only if b ∈ I
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where I is as in Lemma 2.3. It is easy to check that L is a right QP -submodule of
Stab(P ). Hence I ′ = {b ∈ HP | be ∈ L} is an (HP , QP )-subbimodule of HP . Since

ϕ(a)e− α(a)e = eα(a) − α(a)e ∈ L

for all a ∈ A, we deduce that I ⊂ I ′. It follows that Ie ⊂ L, whence Ker π = L. It
is also clear that π is compatible with the comultiplications and the counits. �

The notions of the stabilizer and the inertializer are explained in several examples
below. Propositions 2.5–2.7 will not be used later in this paper.

Proposition 2.5. Suppose that the base ring k is a field and P is a maximal ideal

of codimension 1 in A. Then Stab(P ) = Inert(P ) and Stab(P ) coincides with the

largest left H-module factor coalgebra C of H such that P is stable under the in-

duced C-comodule structure A→ A⊗ C.

Proof. By the assumptions QP
∼= A/P ∼= k. In this case α is the algebra homomor-

phism A → k with Kerα = P and ϕ is the corresponding homomorphism of right
H-comodule algebras A→ H. Thus Stab(P ) = H/Hϕ(P ). The map A→ H given
by the rule a 7→ ϕ(a)−α(a)1 vanishes on the image of k in A and coincides with ϕ
on P . Hence {ϕ(a)−α(a)1 | a ∈ A} = ϕ(P ), so that Inert(P ) = H/Hϕ(P ) as well.
For a ∈ A we have

ρ(a) =
∑

a(0) ⊗ a(1) ≡
∑

α(a(0))1 ⊗ a(1) ≡ 1 ⊗ ϕ(a) (modP ⊗H).

If I is a left ideal and a coideal of H, then P is stable under the induced comodule
structure A→ A⊗H/I if and only if ϕ(P ) ⊂ I, if and only if Hϕ(P ) ⊂ I. �

Suppose now that Γ is a finite group which acts on an algebra A via automor-
phisms. The decomposition group of a prime ideal P of A is the set-theoretic stabi-
lizer DP = {x ∈ Γ | xP = P} = {x ∈ Γ | xP ⊂ P}, while the inertia group TP is its
subgroup consisting of those x ∈ DP which induce the identity transformation of
A/P . Although this terminology is ordinarily used only in the commutative algebra,
commutativity of A is not needed in the next result.

We may view A as a right H-comodule algebra where H = k[Γ] is the function
algebra on Γ consisting of all maps Γ → k. Algebraic operations on H are pointwise,
and the comultiplication in H is dual to the multiplication in the group algebra of Γ.
The group DP operates on QP via automorphisms, so that QP may be regarded as
a right k[DP ]-comodule algebra. The action of TP and the corresponding coaction
of k[TP ] on QP are trivial.

Proposition 2.6. Let Γ, DP , TP , H be as above. If A/P is a right Ore domain,

then
Stab(P ) ∼= C(QP , k[DP ]) = QP ⊗ k[DP ] ,

Inert(P ) ∼= C(QP , k[TP ]) = QP ⊗ k[TP ] .

Proof. The ring HP = QP ⊗H may be identified with the ring of functions Γ → QP ,
and so HP is isomorphic to a direct product of finitely many copies of QP . With
this identification ϕ : A→ HP is expressed as ϕ(a)(x) = α(xa) for a ∈ A and x ∈ Γ
where α : A → QP is the canonical map with kernel P . Since QP is a skew field,
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any one-sided ideal I of HP is a two-sided ideal, and moreover

I = {f ∈ HP | f(X) = 0}

for some subset X ⊂ Γ. The factor ring HP /I may be identified with the ring of
functions X → QP . In particular, this applies to the left ideal I = HP ϕ(P ). Given
x ∈ Γ, we have f(x) = 0 for all f ∈ I if and only if ϕ(a)(x) = 0 for all a ∈ P , if
and only if xP ⊂ P , i.e. x ∈ DP . Thus I corresponds to the subset X = DP of Γ.
If a ∈ A, a /∈ P , then ϕ(a)(x) 6= 0 for all x ∈ DP , whence the coset ϕ(a) + I is an
invertible element of HP /I. It follows that

Stab(P ) ∼= HP ⊗A QP
∼= HP /I ⊗A/P QP

∼= HP /I ∼= QP ⊗ k[DP ].

It is straightforward to check that the corresponding coring structure on QP ⊗k[DP ]
is the one defined in C(QP , k[DP ]).

In the case of Inert(P ) we replace I with the left ideal of HP defined in Lemma
2.3. Then f(x) = 0 for all f ∈ I if and only if

(

ϕ(a) − α(a)e
)

(x) = 0 for all a ∈ A.
The last equality can be rewritten as α(xa−a) = 0, which amounts to the condition
xa ≡ a (modP ). Thus I corresponds to the subset X = TP of Γ, and therefore

Inert(P ) = HP /I ∼= QP ⊗ k[TP ].
�

Proposition 2.7. Suppose that A and H are commutative. Then Inert(P ) is a fac-

tor Hopf algebra of the Hopf algebra HP = QP ⊗H over the field QP . Let G and

GT(P ) denote the group schemes represented by H and Inert(P ), respectively. Then

GT(P ) coincides with the scheme-theoretic stabilizer of P in G.

Proof. We may view the commutative algebra AP = QP ⊗ A over QP as a right
HP -comodule algebra. Let αP : AP → QP be the homomorphism of QP -algebras
extending the canonical map α : A → QP and ϕP : AP → HP the homomorphism
of HP -comodule algebras such that εP ◦ ϕP = αP . Denote by J the ideal of AP

generated by {1 ⊗ a− α(a) ⊗ 1 | a ∈ A}. Clearly J ⊂ KerαP . Since AP = J +QP ,
it follows that J = kerαP . Since

ϕP

(

1 ⊗ a− α(a) ⊗ 1
)

= ϕ(a) − α(a) ⊗ 1,

the ideal I of HP defined in Lemma 2.3 is generated by the image of J in HP . Hence

Inert(P ) = HP /I ∼= HP ⊗AP
AP /J ∼= HP ⊗AP

QP

and GT(P ) = Spec Inert(P ) is described as the product SpecHP ×Spec AP
SpecQP

which defines the scheme-theoretic inertia group of P [9, III.2.2.3]. �

3. The first equivalence

Let A be a right H-comodule algebra and P ∈ SpecA. When A/P is right or left
Goldie, we put

QP = Q(A/P ), HP = Q(A/P ) ⊗H.
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Let ϕ : A → HP be the homomorphism of H-comodule algebras such that εP ◦ ϕ
coincides with the canonical map A→ QP where εP : HP → QP stands for id ⊗ ε.
Since Ker(εP ◦ ϕ) = P , the kernel of ϕ is an H-costable ideal of A contained in P .
Therefore ϕ is injective whenever PH = 0.

Recalling the A-coring C(A,H) = A⊗H, we have MC(A,H) ≈ MH
A by [3, 32.6].

Thus a special case of considerations in section 2 yields a pair of adjoint functors

Φ : MH
A → MStab(P ), Ψ : MStab(P ) → MH

A .

In particular, Φ(M) = M⊗AQP . A Hopf algebra over a field is said to be residually

finite dimensional if its ideals of finite codimension have zero intersection [18].

Theorem 3.1. Let H be a residually finite dimensional Hopf algebra over a field,

A a right H-comodule algebra and P a prime ideal of A with the property PH = 0.
If both A and A/P ⊗ H have right artinian classical right quotient rings, then Φ
induces a category equivalence MH

A /T
H

A ≈ MStab(P ).

Proof. We follow the proof of [23, Th. 1.8] very closely. By Proposition 1.5 A/P
and H have right artinian classical right quotient rings. In particular, A/P is right
Goldie. The existence of a right artinian ring Q(H) implies that the antipode of H
is bijective [21, Th. A]. By Proposition 1.5 the ring QP embeds in the quotient ring
Q(A/P ⊗H). The latter is then also a classical right quotient ring of HP .

We may view A and HP as left module algebras over the finite dual H◦ of H.
Since H is residually finite dimensional, the H◦-submodules in A and HP are pre-
cisely the H-subcomodules. By [24, Th. 2.2] the action of H◦ extends to Q(A) and
Q(HP ). Since PH = 0, products of nonzero H◦-stable two-sided ideals of A are
nonzero, i.e. the H◦-module algebra A is H◦-prime. Then so too is Q(A), whence
Q(A) is H◦-simple by [24, Lemma 4.2].

Since H embeds in HP as a right H-comodule algebra, each H-costable right ideal
K of HP may be regarded as an object of MH

H . By Sweedler’s structure theorem
for Hopf modules [25, Th. 4.1.1] we have K ∼= K0 ⊗H where

K0 = {x ∈ K | (id ⊗ ∆)(x) = x⊗ 1} ⊂ QP ⊗ 1 ∼= QP .

Applying εP , we deduce that K0 = εP (K0 ⊗H) = εP (K).
Suppose that K = ϕ(I)HP where I is an H-costable two-sided ideal of A. Then

K0 coincides with the extension IQP of I. It follows from standard properties of
classical quotient rings [17, 2.1.16] that K0 is a two-sided ideal of QP . If I 6= 0,
then I 6⊂ P since PH = 0. In this case K0 6= 0, and therefore K0 = QP since QP is
simple artinian. We conclude that ϕ(I)HP = HP for each nonzero H◦-stable (i.e.
H-costable) ideal I of A. Thus the assumptions of [23, Lemma 1.7] are satisfied. By
that lemma ϕ extends to a homomorphism of H◦-module algebras Q(A) → Q(HP ).
This extension is injective since so is ϕ.

For M ∈ MH
A we have

M ⊗A Q(HP ) ∼=
(

M ⊗A Q(A)
)

⊗Q(A) Q(HP ).

Here M ⊗AQ(A) is an H◦-equivariant Q(A)-module. It coincides with the union of
H◦-stable finitely generated Q(A)-submodules V A⊗A Q(A) where V runs over the
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finite dimensional H-subcomodules V ⊂M . This means that M ⊗A Q(A) is locally
Q(A)-finite. By [23, Lemma 1.6] the functor ? ⊗Q(A) Q(HP ) is faithfully exact on
the category of locally Q(A)-finite H◦-equivariant Q(A)-modules. Since Q(A) is left
A-flat, the functor ?⊗A Q(A) is exact on MA. It follows that ?⊗A Q(HP ) is exact
on MH

A . On the other hand,

M ⊗A Q(HP ) ∼= (M ⊗A HP ) ⊗HP
Q(HP ) ∼= (M ⊗A QP ) ⊗QP

Q(HP )

∼= Φ(M) ⊗QP
Q(HP )

since M⊗AHP
∼= (M⊗AQP )⊗QP

HP according to Lemma 2.2 (in the left hand side
HP is viewed as a ring extension of A via ϕ). As QP is simple artinian, the functor
? ⊗QP

Q(HP ) is faithfully exact on MQP
. It follows that Φ has to be exact. Now

Lemma 2.1 shows that Ψ is fully faithful. By [13, Ch. III, Prop. 5] Ker Φ is a local-
izing subcategory of MH

A , and Φ induces an equivalence MH
A /Ker Φ ∼= MStab(P ).

Moreover, Φ(M) = 0 if and only if M ⊗A Q(HP ) = 0, which is equivalent to the
equality M ⊗A Q(A) = 0. Hence Ker Φ = T H

A by Lemma 1.2. �

Remarks. (1) If dimA/P = 1, then ϕ is an isomorphism of A onto a right coideal
subalgebra of H. In this case Theorem 3.1 reduces to [23, Th. 1.8].

(2) The right quotient rings in Theorem 3.1 cannot be replaced with the left quo-
tient rings because it is essential in the proof that Q(A) is left A-flat.

(3) There is a version of Theorem 3.1 for an arbitrary base ring k which reduces,
however, to the case of a field. Denote by p ∈ Spec k the preimage of P ∈ SpecA in
k. The assumption PH = 0 forces pA = 0, so that A is an algebra over the domain
k/p. Passing to the field of fractions Qp = Q(k/p), we may view A′ = Qp ⊗ A as a
right comodule algebra over the Hopf algebra H ′ = Qp⊗H. There is a unique prime
P ′ ∈ SpecA′ whose preimage in A coincides with P . Since Qp embeds in QP , we

have QP
∼= QP ′ and Stab(P ) ∼= Stab(P ′). There is a functor Qp⊗ ? : MH

A → MH′

A′ .
Viewing right (H ′, A′)-Hopf modules as right (H,A)-Hopf modules gives another
functor MH′

A′ → MH
A . It is easy to see that these two functors induce quasi-inverse

equivalences between MH
A /T

H
A and MH′

A′ /T H′

A′ . Thus we may replace the pair A,H
with A′, H ′.

For W ∈ AM and U ∈ HM we regard W ⊗ U as a left A-module, letting A
operate on W ⊗U via ρ : A→ A⊗H. In a similar way V ⊗U ′ ∈ MA for V ∈ MA

and U ′ ∈ MH . Let US denote U with the right H-module structure uh = S(h)u
(u ∈ U , h ∈ H) where S is the antipode of H.

Lemma 3.2. There are natural k-linear bijections

(V ⊗ US) ⊗A W ∼= V ⊗A (W ⊗ U) for V ∈ MA, W ∈ AM, U ∈ HM.

Assuming S : H → H to be bijective, we have (V ⊗H) ⊗A W ∼= V ⊗A (W ⊗H).

Proof. Clearly (V ⊗ US) ⊗A W ∼= (V ⊗ U ⊗W )/K where K is the k-linear span of
elements

∑

va(0) ⊗ S(a(1))u⊗ w − v ⊗ u⊗ aw

with u ∈ U , v ∈ V , w ∈W and a ∈ A. Similarly V ⊗A (W ⊗ U) ∼= (V ⊗W ⊗ U)/L
where L is the k-linear span of elements
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va⊗ w ⊗ u−
∑

v ⊗ a(0)w ⊗ a(1)u.

If ζ : V ⊗ U ⊗W ∼= V ⊗W ⊗ U is the canonical k-linear bijection, then

ζ
(

∑

va(0) ⊗ S(a(1))u⊗ w
)

=
∑

va(0) ⊗ w ⊗ S(a(1))u

≡
∑

v ⊗ a(0)w ⊗ a(1)S(a(2))u

= v ⊗ aw ⊗ u = ζ(v ⊗ u⊗ aw) (modL)

Hence ζ(K) ⊂ L. A similar calculation shows that ζ−1(L) ⊂ K. In other words,
ζ(K) = L. Now take U = H, U ′ = H with the H-module structures given, respec-
tively, by left and right multiplications. The map S : H → H is a homomorphism
of right H-modules U ′ → US . Thus US

∼= U ′ in MH when S is bijective. �

For each V ∈ MA we may regard V ⊗H as an object of MH
A with the action of

A obtained via ρ : A→ A⊗H and the coaction of H given by the map id ⊗ ∆.

Lemma 3.3. If S : H → H is bijective then Φ(V ⊗H) ∼= V ⊗A HP in MQP
.

Proof. The desired isomorphism can be rewritten as

(V ⊗H) ⊗A QP
∼= V ⊗A (QP ⊗H).

It is obtained by taking W = QP in Lemma 3.2. By naturality the isomorphisms of
Lemma 3.2 are EndA W -linear. In particular, they are right QP -linear for W = QP .

�

Proposition 3.4. Under the hypotheses of Theorem 3.1 HP is left A-flat with re-

spect to ϕ and V ⊗A HP = 0 for V ∈ MA if and only if V ∈ TA. Moreover, we

have TorA
i

(

M, QP

)

= 0 and Exti
A

(

M, QP

)

= 0 for all M ∈ MH
A and i > 0.

Proof. The functor Φ( ?⊗H) is exact on MA by Theorem 3.1, whence so is ?⊗AHP

in view of Lemma 3.3. This verifies the flatness of HP . By Lemma 3.3 V ⊗AHP = 0
if and only if Φ(V ⊗H) = 0, and Theorem 3.1 allows us to rewrite the last condition
as V ⊗H ∈ T H

A . Note that id⊗ε : V ⊗H → V is an epimorphism in MA. Therefore
V ∈ TA whenever V ⊗ H ∈ TA. Conversely, suppose that V ∈ TA. Then for each
v ∈ V there exists an H-costable right ideal I of A such that I ∈ G(A) and vI = 0.
Since (v ⊗H) · I = 0, we conclude that V ⊗H ∈ TA as well.

As mentioned in the proof of Lemma 2.2, each object N ∈ MH
HP

can be written
as X⊗QP

HP for some right QP -module X . Since the ring QP is simple artinian, all

QP -modules are projective. Hence N is projective in MHP
, so that TorHP

i (N, ?) = 0
for all i > 0. The ring homomorphism A → QP factors through ϕ : A → HP , and
? ⊗A HP is defined as a functor MH

A → MH
HP

. Therefore

TorA
i

(

M, QP

)

∼= TorHP

i

(

M ⊗A HP , QP

)

= 0

by standard homological algebra [27, Prop. 3.2.9]. A similar argument applies to
the functors Exti. �

For a finitely generated right A-module M we define the normalized rank at P
and another quantity which does not depend on P . The lengths of right QP -modules
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are used in the former case and the lengths of right Q(A)-modules in the latter:

rP (M) =
lengthQP

M ⊗A QP

lengthQP
, r(M) =

lengthQ(A)M ⊗A Q(A)

lengthQ(A)
.

Proposition 3.5. Under the hypotheses of Theorem 3.1 we have rP (M) = r(M)
for each A-finite object M ∈ MH

A .

Proof. As was mentioned in the proof of Theorem 3.1, Q(A) is an H◦-simple right
artinian H◦-module algebra and M⊗AQ(A) is an H◦-equivariant right module over
Q(A). By [22, Th. 7.6] a suitable finite direct sum of copies of M ⊗A Q(A) is a free
module. Thus there exist integers n ≥ 0 and l ≥ 0 such that

M l ⊗A Q(A) ∼= Q(A)n

in MQ(A). Comparing the lengths of these two modules, we find r(M) = n/l. Now
applying the functor ? ⊗Q(A) Q(HP ) and comparing similarly the lengths of the
resulting right Q(HP )-modules, we get

lengthQ(HP )M ⊗A Q(HP )

lengthQ(HP )
=
n

l
= r(M).

On the other hand, M ⊗A Q(HP ) ∼= (M ⊗A QP ) ⊗QP
Q(HP ) (see again the proof

of Theorem 3.1). Since the ring QP is simple artinian, a suitable finite direct sum
of copies of M ⊗A QP is a free QP -module. Repeating the previous argument, but
now with respect to the ring extension QP → Q(HP ), we deduce that

lengthQ(HP )M ⊗A Q(HP )

lengthQ(HP )
= rP (M).

�

Corollary 3.6. Let P, P ′ be two prime ideals of A, both satisfying the hypotheses of

Theorem 3.1. Then MStab(P ) ≈ MStab(P ′). If V ∈ MStab(P ) and V ′ ∈ MStab(P ′)

correspond to each other under this equivalence, then

lengthQP
V

lengthQP
=

lengthQP ′
V ′

lengthQP ′

.

Proof. By Theorem 3.1 MStab(P ) ≈ MH
A ≈ MStab(P ′). The second assertion follows

from Proposition 3.5. �

Equivalences of comodule categories over corings are described in [3, 23.3, 23.12].

4. The second equivalence

Let H be a Hopf algebra over the base ring k, and R a k-algebra. A left H-module

R-coring is an R-coring C equipped with a left H-module structure such that the
three module structures on C restrict to the same k-module structure, the action
of H on C commutes both with the left and the right actions of R and
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∆(hc) = ∆(h)∆(c) =
∑

h(1)c(1) ⊗ h(2)c(2), ε(hc) = ε(h)ε(c)

for all h ∈ H, c ∈ C (the second of the previous two identities is actually a conse-
quence of the first one).

A left (C,H)-Hopf module M is a left C-comodule and a left H-module such that
the two module structures on M restrict to the same k-module structure, the action
of H commutes with the action of R, and

δ(hm) = ∆(h)δ(m) =
∑

h(1)m(−1) ⊗ h(2)m(0) for all h ∈ H, m ∈M

where δ : M → C⊗RM is the comodule structure map and C⊗RM is viewed as an
H ⊗H-module in a natural way. Denote by C

HM the category of left (C,H)-Hopf
modules. We will view C ⊗H as an R⊗H-coring with the bimodule structure

(a⊗ g)(c⊗ h) =
∑

ag(1)c⊗ g(2)h, (c⊗ h)(a⊗ g) = ca⊗ hg

where a ∈ R, g, h ∈ H, c ∈ C, the comultiplication and the counit

∆(c⊗ h) =
∑

(c(1) ⊗ 1) ⊗(R⊗H) (c(2) ⊗ h), ε(c⊗ h) = ε(c) ⊗ h.

When C is considered with a distinguished grouplike e, then e ⊗ 1 is taken to be
the distinguished grouplike of C ⊗H. For M ∈ CM one defines

M coC = {m ∈M | δ(m) = e⊗m}.

Similarly, M coC⊗H is defined for each M ∈ C⊗HM. Given a ring homomorphism
R→ R′, the H-module structure on C passes to C′ = R′ ⊗R C ⊗R R

′. It makes C′

into a left H-module R′-coring. The distinguished grouplike of C′ is 1 ⊗ e⊗ 1.
When R = k, a left H-module R-coring is just a left H-module coalgebra, and

the next lemma reduces to a well-known fact [3, 32.6].

Lemma 4.1. Structures of a left (C,H)-Hopf module may be identified with struc-

tures of a left comodule over the R ⊗H-coring C ⊗H. Thus C
HM ≈ C⊗HM. Fur-

thermore, M coC = M coC⊗H for each M ∈ C
HM.

Proof. A pair of commuting left R-module and H-module structures on M may be
interpreted as a single left R⊗H-module structure. Next,

(C ⊗H) ⊗(R⊗H) M ∼= C ⊗R (R⊗H) ⊗(R⊗H) M ∼= C ⊗R M.

This bijection is left R⊗H-linear if we let H operate on C ⊗R M via the comulti-
plication H → H ⊗H. Thus the left R-linear maps δ : M → C ⊗R M satisfying the
required compatibility condition with the action of H correspond to the left R⊗H-
linear maps δ′ : M → (C ⊗H) ⊗(R⊗H) M . It is straightforward to check that the
coassociativity and the counit conditions for δ are equivalent to similar conditions
for δ′. For m ∈M one has δ(m) = e⊗m if and only if δ′(m) = (e⊗ 1) ⊗m. �

Let A be a right H-comodule algebra, and P a prime ideal of A such that A/P
is right or left Goldie. The A-coring A⊗H is a left H-module coring in the obvious
way. Hence Stab(P ) is a left H-module coring too. We continue to use the notations
QP , HP , ϕ of section 3. With ϕ : A → HP one associates the Sweedler HP -coring
HP ⊗A HP whose distinguished grouplike is taken to be 1 ⊗ 1 [3, 25.1]. Taking C
to be the QP -coring Stab(P ) in the previous discussion, we derive an HP -coring
structure on Stab(P ) ⊗H.
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Lemma 4.2. Assume H to be k-flat. Then there is an isomorphism of HP -corings

Stab(P ) ⊗H ∼= HP ⊗A HP compatible with the distinguished grouplikes.

Proof. Recall that Stab(P ) ∼= HP ⊗A QP . By Lemma 2.2 there is an isomorphism

HP ⊗A HP
∼=

(

HP ⊗A QP

)

⊗H ∼= Stab(P ) ⊗H

in MH
HP

. Explicit formula for this isomorphism shows that the action of HP by left
multiplications on the first tensorand of HP ⊗A HP corresponds to the left action
of HP on Stab(P ) ⊗H defined earlier in this section. Thus b ⊗ b′ ∈ HP ⊗A HP is
sent to b(e⊗ 1)b′ ∈ Stab(P ) ⊗H where e stands for the distinguished grouplike of
Stab(P ). This map respects the HP -coring structures. �

By Lemma 4.2 the HP -coring Stab(P )⊗H is a Galois coring, in the terminology
of [2]. There are functors

Φ : AM →
Stab(P )

H M and Ψ :
Stab(P )

H M → AM

defined as Φ = HP ⊗A?, Ψ = ?co Stab(P ).

Lemma 4.3. Assume H to be k-flat. Then Ψ is right adjoint of Φ. If HP is right

A-flat, then Φ is exact, while Ψ is fully faithful.

Proof. By Lemmas 4.1 and 4.2
Stab(P )

H M ≈ HP ⊗AHPM. Under this equivalence Φ
and Ψ correspond to the canonical pair of functors

AM → HP ⊗AHPM and HP ⊗AHPM → AM.

Their adjointness is verified in [6, p. 206, Prop. 107] (compared with [6] we switched
the left and right sides). Exactness of Φ is immediate from the right A-flatness of
HP . In this case Ψ is fully faithful by [6, p. 207, Prop. 108]. �

Theorem 4.4. Let H be a residually finite dimensional Hopf algebra over a field, A
a right H-comodule algebra and P a prime ideal of A with the property PH = 0. If

both A and A/P ⊗H have left artinian classical left quotient rings, then Φ induces

a category equivalence AM/AT ≈
Stab(P )

H M.

Proof. By the assumptions Aop and (A/P )op ⊗ Hop have right artinian classical
right quotient rings. Proposition 1.5 then shows that so does Hop too. This implies,
in view of [21, Th. A], that the antipode of the Hopf algebra Hop,cop is bijective.
Then Hop is itself a Hopf algebra. The right Hop-comodule algebra Aop and its
prime ideal P satisfy the hypotheses of Theorem 3.1. Applying Proposition 3.4 to
Aop, we deduce that (HP )op is left Aop-flat with respect to ϕ. Hence HP is right
A-flat with respect to ϕ. This allows us to apply Lemma 4.3 which, in conjunction
with [13, Ch. III, Prop. 5], entails a category equivalence

AM/KerΦ ≈
Stab(P )

H M.

By Proposition 3.4 applied again to Aop we have HP ⊗A V = 0 for V ∈ AM if and
only if V ∈ AT . Thus Ker Φ = AT . �
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We denote by Stabr(P ) the stabilizer of P considered as a prime ideal of the right
Hop-comodule algebra Aop. Then Stabr(P ) is a left Hop-module Qop

P -coring, hence
a right H-module Qop

P -coring. For example, if P is a maximal ideal of codimension
1 in A and ϕ : A → H is the corresponding homomorphism of right H-comodule
algebras, then Stabr(P ) ∼= H/ϕ(P )H. For each right H-module coring C the cate-
gory CMH of left-right Hopf (C,H)-modules can be defined. Replacing A with Aop

in Theorem 4.4, we get an equivalent formulation:

Theorem 4.5. Under the hypotheses of Theorem 3.1 there is a category equivalence

MA/ TA ≈ Stabr(P )MH .

5. Birational extensions

In this section we assume that H is a k-flat Hopf algebra with a bijective antipode
over an arbitrary commutative ring k. Suppose that ψ : A→ B is a homomorphism
of right H-comodule algebras which extends to an isomorphism of classical right
quotient rings Q(A) → Q(B) (thus Q(A) and Q(B) exist but are not necessarily
artinian). In this case we say that B is a birational H-coequivariant extension of
A. Identifying Q(A) with Q(B) and the algebras A, B with their images in the
quotient ring, we may assume that A ⊂ B ⊂ Q(A). Put

Spec′A = {P ∈ SpecA | the ring A/P is right Goldie and PH ∩ Σ(A) = ∅}.

The condition PH ∩ Σ(A) = ∅ means precisely that P /∈ GH(A).

Lemma 5.1. The right A-module B/A is GH(A)-torsion.

Proof. By the initial assumptions B ⊗A Q(A) ∼= Q(A), whence B/A⊗A Q(A) = 0.
Since B/A is an object of MH

A , the conclusion follows from Lemma 1.2. �

Lemma 5.2. Let I and J be right ideals of A and B, respectively. If I ∈ GH(A)
then IB ∈ GH(B). If J ∈ GH(B) then J ∩A ∈ GH(A).

Proof. We may assume I and J to be H-costable. Then IB and J∩A are H-costable
right ideals of B and A, respectively. Since I ∩Σ(A) 6= ∅ and Σ(A) ⊂ Σ(B), we get
IB ∩ Σ(B) 6= ∅, which proves the first conclusion.

Take any s ∈ J ∩ Σ(B). By the finiteness theorem (see [3, 3.16]) there exists an
H-subcomodule U ⊂ J such that s ∈ U and U is contained in a finitely generated
k-submodule of B. In view of Lemma 5.1 UK ⊂ A for a suitable K ∈ GH(A). We
may assume K to be H-costable. Then UK is an H-costable right ideal of A, and
UK ⊂ J ∩ A. Since U ∩ Σ(B) 6= ∅ and K ∩ Σ(B) 6= ∅, we have UK ∩ Σ(B) 6= ∅

as well. But UK ∩ Σ(B) ⊂ Σ(A) because UK ⊂ A. It follows that UK ∈ GH(A),
whence the second conclusion. �

Lemma 5.3. A right B-module W is GH(B)-torsion (resp. GH(B)-torsion-free) if

and only if W is GH(A)-torsion (resp. GH(A)-torsion-free).

Proof. Let w ∈W and denote by I and J the annihilators of w in A and B, respec-
tively. Then I = J ∩A and IB ⊂ J . Hence I ∈ GH(A) if and only if J ∈ GH(B) by
Lemma 5.2. This shows that the GH(B)-torsion submodule of W in MB coincides
with the GH(A)-torsion submodule in MA. �
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The canonical functor MA → MA/TA sends a morphism f in MA to an isomor-
phism in MA/TA if and only if the kernel and the cokernel of f are GH(A)-torsion
[13, Ch. III, Lemme 4]. Moreover, the category MA/TA is universal with respect to
inverting such morphisms [14, I.2.5.4]. In other words, for an arbitrary category C a
functor F : MA → C factors through MA/TA if and only if F (f) is an isomorphism
for each MA-morphism f with Ker f ∈ TA and Coker f ∈ TA. When C is abelian
and F is exact, the previous condition means that F vanishes on TA.

Proposition 5.4. Assuming that B is a birational H-coequivariant extension of A,

we have MA/TA ≈ MB/TB and MH
A /T

H
A ≈ MH

B/T
H

B .

Proof. Consider the adjoint functors MA → MB and MB → MA given, respec-
tively, by extension and restriction of scalars. Let

ξV : V → V ⊗A B, v 7→ v ⊗ 1, V ∈ MA,

ηW : W ⊗A B →W , w ⊗ b 7→ wb, W ∈ MB,

be the unit and the counit of adjunction.
Since tensor products commute with inductive direct limits, we have V ⊗A B ∼=

lim
−−→

V ⊗A F where F runs over the finitely generated left A-submodules of B, and

we may use only those F for which A ⊂ F . Since B/A is GH(A)-torsion by Lemma
5.1, for such an F there exists IF ∈ GH(A) with the property that FIF ⊂ A. Sup-
pose that v ∈ Ker ξV . Then v ⊗ 1 = 0 in V ⊗A F for some F as above. The right
multiplication by an element a ∈ IF gives a left A-linear map µa : F → A. The map
id ⊗ µa : V ⊗A F → V sends v ⊗ 1 to va. Hence vIF = 0. This shows that Ker ξV
is GH(A)-torsion. Any element x ∈ V ⊗A B lies in the image of some V ⊗A F , and
then xIF is contained in the image of V ⊗AA ∼= V . In other words, Coker ξV is also
GH(A)-torsion. Thus ξV is an isomorphism in MA/TA.

Since ηW ◦ξW = id and ξW is an isomorphism in MA/TA, so too is ηW . It follows
that Ker ηW is GH(A)-torsion, hence GH(B)-torsion by Lemma 5.3. At the same
time Coker ηW = 0. Therefore ηW is an isomorphism in MB/TB.

Suppose that f : V → V ′ is a morphism in MA with GH(A)-torsion kernel and
cokernel. Since (f ⊗ id) ◦ ξV = ξV ′ ◦ f and f , ξV , ξV ′ are isomorphisms in MA/TA,
so is f ⊗ id : V ⊗A B → V ′ ⊗A B. In other words, Ker(f ⊗ id) and Coker(f ⊗ id)
are GH(A)-torsion. Since these two B-modules have to be GH(B)-torsion by Lemma
5.3, f ⊗ id is an isomorphism also in MB/TB . It follows that ?⊗A B : MA → MB

gives rise to a functor MA/TA → MB/TB . Since all GH(B)-torsion right B-modules
are GH(A)-torsion in MA by Lemma 5.3, the exact functor MB → MA induces
a functor MB/TB → MA/TA. The fact that ξV and ηW are isomorphisms in the
quotient categories for all V and W means that the two induced functors between
the quotient categories are quasi-inverse to each other.

For each object M ∈ MH
A the map ξM : M → M ⊗A B is a morphism in MH

A .
Since we have proved already that Ker ξM and Coker ξM are GH(A)-torsion, ξM is
an isomorphism in MH

A /T
H

A . Similarly, ηN is an isomorphism in MH
B /T

H
B for each

object N ∈ MH
B . Then the second category equivalence also follows. �

Lemma 5.5. Let P ∈ SpecA r GH(A). If A/P is either right or left Goldie, then

the quotient ring QP = Q(A/P ) is GH(A)-torsion-free in MA and IQP = QP for

each I ∈ GH(A).
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Proof. Denote by T the GH(A)-torsion right A-submodule of QP . Since T is stable
under all MA-endomorphisms of QP , it is a left ideal of QP . If s is any regular
element of A/P then the left ideal Ts of QP has the same length as T ; since Ts ⊂ T ,
we deduce that Ts = T , and therefore Ts−1 = T . It follows that T is a two-sided
ideal of QP . Since QP is a simple artinian ring, either T = 0 or T = QP . Note that
P is the annihilator in A of 1 ∈ QP . Since P /∈ GH(A), we have 1 /∈ T . Therefore
T = 0, i.e. QP is GH(A)-torsion-free.

We can conclude that each right QP -module is GH(A)-torsion-free in MA since
it embeds in a free QP -module. If I ∈ GH(A), then the GH(A)-torsion submodule
of QP /IQP contains the coset 1 + IQP . It follows that 1 ∈ IQP since QP /IQP is
GH(A)-torsion-free, but then IQP = QP . �

Theorem 5.6. Let B be a birational H-coequivariant extension of A. Suppose that

Q(A) is a classical two-sided quotient ring of A. Then the assignment P 7→ P ∩ A
gives a bijection Spec′B → Spec′A.

If P ∈ Spec′A corresponds to P ∈ Spec′B, then the canonical map A/P → B/P
extends to an isomorphism of quotient rings QP → QP and to coring isomorphisms

Stab(P ) → Stab(P), Inert(P ) → Inert(P).

Proof. By the assumptions the opposite ring Q(A)op is a classical right quotient ring
of Aop and Bop. Thus Bop is a birational Hop-coequivariant extension of Aop. This
observation allows us to use freely the left hand versions of the previous results in
this section.

Given some P ∈ Spec′B, put B = B/P, P = A ∩ P, and A = A/P . We will
apply Proposition 1.4 to the chain of rings A ⊂ B ⊂ QP = Q(B). The ring QP

is simple artinian, hence quasi-Frobenius. Denote by I the set of right ideals of A
consisting of the images of right ideals in GH(A). Conditions (T1)–(T3) for I are
immediate from the respective conditions for GH(A) (condition (T4) also holds, but
we do not need it). Thus I is a topologizing filter.

Applying Lemma 5.5 with B in place of A, we see that QP is GH(B)-torsion-free
in MB. By Lemma 5.3 QP is GH(A)-torsion-free in MA. This means that each right
ideal I ∈ GH(A) has zero left annihilator in QP. By the left hand version of Lemma
5.5 QP is Gl

H(B)-torsion-free in BM. Note that BIH is an H-costable left ideal
of B which intersects Σ(B). Since BIH ⊂ BI, we get BI ∈ Gl

H(B). Therefore the
right annihilator of I in QP, equal to the right annihilator of BI, is 0. This verifies
condition (a) of Proposition 1.4. Condition (b) holds because B/A is GH(A)-torsion
in MA by Lemma 5.1.

Thus Proposition 1.4 shows that QP is a classical right quotient ring of A. Since
QP is simple artinian, A is prime right Goldie. In particular, P ∈ SpecA. Since QP

is GH(A)-torsion-free, we get P /∈ GH(A), i.e. P ∈ Spec′A. Note that P/P ∈ TA in
view of Lemma 5.1 since P/P embeds in B/A. Since B ⊂ QP is GH(A)-torsion-free,
P/P must coincide with the GH(A)-torsion submodule of B/P in MA. Thus P is
recovered from P in a unique way.

Next we will work out the correspondence between the primes of A and B in the
opposite direction. Starting with an arbitrary P ∈ Spec′A, we first prove that the
map

ξ : QP → B ⊗A QP , q 7→ 1 ⊗ q,

is bijective. Given any b ∈ B, Lemma 5.1 shows that bI ⊂ A for some I ∈ GH(A).
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Then the image of ξ contains all elements u⊗ q with u ∈ bI and q ∈ QP . It follows
that b ⊗QP ⊂ Im ξ since IQP = QP by Lemma 5.5. Hence ξ is surjective. On the
other hand, Ker ξ is Gl

H(A)-torsion by (the left hand version of) Proposition 5.4.
Since QP is Gl

H(A)-torsion-free in AM by Lemma 5.5, ξ is injective.
Thus the (B,QP )-bimodule B ⊗A QP is freely generated by e = 1 ⊗ 1 as a right

QP -module. Hence there is a ring homomorphism f : B → QP defined by the for-
mula be = ef(b) for b ∈ B. The restriction of f to A coincides with the canonical
map A→ QP . Therefore the subring f(B) of QP contains the image of A/P . In par-
ticular, f(B) is a right order in QP . Letting P = Ker f , we see that B/P ∼= f(B) is
prime right Goldie with the right quotient ring QP

∼= QP . Hence P is a prime ideal
of B and P ∩ A = Ker f |A = P . Since P /∈ GH(A), Lemma 5.2 yields P /∈ GH(B).
This shows that P ∈ Spec′B.

Recall that Stab(P ) ∼= (QP ⊗H) ⊗A QP and Stab(P) ∼= (QP ⊗H) ⊗B QP. The
obvious map Stab(P ) → Stab(P) is a homomorphism of corings, and we need only
to check its bijectivity. Since B ⊗A QP

∼= QP and QP
∼= QP , we have

Stab(P ) ∼= (QP ⊗H) ⊗B (B ⊗A QP ) ∼= (QP ⊗H) ⊗B QP
∼= Stab(P).

Lemma 2.4 allows us to pass easily to the inertializers. �

It is not clear whether Theorem 5.6 remains true when Q(A) is not a two-sided
quotient ring. By the left-right symmetry of the hypotheses in Theorem 5.6 the con-
clusion holds also when the right Goldie condition on the factor rings corresponding
to prime ideals in Spec′A and Spec′B is replaced with the left Goldie condition.
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13. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962) 323–448.
14. P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer,

1967.

22
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